OSDN Git Service

Merge tag 'iommu-fixes-v5.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
26 /*
27  * For AMD SEV all DMA must be to unencrypted addresses.
28  */
29 static inline bool force_dma_unencrypted(void)
30 {
31         return sev_active();
32 }
33
34 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
35 {
36         if (!dev->dma_mask) {
37                 dev_err_once(dev, "DMA map on device without dma_mask\n");
38         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
39                 dev_err_once(dev,
40                         "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
41                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
42         }
43         WARN_ON_ONCE(1);
44 }
45
46 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
47                 phys_addr_t phys)
48 {
49         if (force_dma_unencrypted())
50                 return __phys_to_dma(dev, phys);
51         return phys_to_dma(dev, phys);
52 }
53
54 u64 dma_direct_get_required_mask(struct device *dev)
55 {
56         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
57
58         if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
59                 max_dma = dev->bus_dma_mask;
60
61         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
62 }
63
64 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
65                 u64 *phys_mask)
66 {
67         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
68                 dma_mask = dev->bus_dma_mask;
69
70         if (force_dma_unencrypted())
71                 *phys_mask = __dma_to_phys(dev, dma_mask);
72         else
73                 *phys_mask = dma_to_phys(dev, dma_mask);
74
75         /*
76          * Optimistically try the zone that the physical address mask falls
77          * into first.  If that returns memory that isn't actually addressable
78          * we will fallback to the next lower zone and try again.
79          *
80          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
81          * zones.
82          */
83         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
84                 return GFP_DMA;
85         if (*phys_mask <= DMA_BIT_MASK(32))
86                 return GFP_DMA32;
87         return 0;
88 }
89
90 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
91 {
92         return phys_to_dma_direct(dev, phys) + size - 1 <=
93                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
94 }
95
96 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
97                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
98 {
99         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
100         int page_order = get_order(size);
101         struct page *page = NULL;
102         u64 phys_mask;
103
104         if (attrs & DMA_ATTR_NO_WARN)
105                 gfp |= __GFP_NOWARN;
106
107         /* we always manually zero the memory once we are done: */
108         gfp &= ~__GFP_ZERO;
109         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
110                         &phys_mask);
111 again:
112         /* CMA can be used only in the context which permits sleeping */
113         if (gfpflags_allow_blocking(gfp)) {
114                 page = dma_alloc_from_contiguous(dev, count, page_order,
115                                                  gfp & __GFP_NOWARN);
116                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117                         dma_release_from_contiguous(dev, page, count);
118                         page = NULL;
119                 }
120         }
121         if (!page)
122                 page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
123
124         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
125                 __free_pages(page, page_order);
126                 page = NULL;
127
128                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
129                     phys_mask < DMA_BIT_MASK(64) &&
130                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
131                         gfp |= GFP_DMA32;
132                         goto again;
133                 }
134
135                 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
136                     phys_mask < DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) {
137                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
138                         goto again;
139                 }
140         }
141
142         return page;
143 }
144
145 void *dma_direct_alloc_pages(struct device *dev, size_t size,
146                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
147 {
148         struct page *page;
149         void *ret;
150
151         page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
152         if (!page)
153                 return NULL;
154
155         if (PageHighMem(page)) {
156                 /*
157                  * Depending on the cma= arguments and per-arch setup
158                  * dma_alloc_from_contiguous could return highmem pages.
159                  * Without remapping there is no way to return them here,
160                  * so log an error and fail.
161                  */
162                 dev_info(dev, "Rejecting highmem page from CMA.\n");
163                 __dma_direct_free_pages(dev, size, page);
164                 return NULL;
165         }
166
167         ret = page_address(page);
168         if (force_dma_unencrypted()) {
169                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
170                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
171         } else {
172                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
173         }
174         memset(ret, 0, size);
175         return ret;
176 }
177
178 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179 {
180         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
181
182         if (!dma_release_from_contiguous(dev, page, count))
183                 __free_pages(page, get_order(size));
184 }
185
186 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
187                 dma_addr_t dma_addr, unsigned long attrs)
188 {
189         unsigned int page_order = get_order(size);
190
191         if (force_dma_unencrypted())
192                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
193         __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
194 }
195
196 void *dma_direct_alloc(struct device *dev, size_t size,
197                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
198 {
199         if (!dev_is_dma_coherent(dev))
200                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
201         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
202 }
203
204 void dma_direct_free(struct device *dev, size_t size,
205                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
206 {
207         if (!dev_is_dma_coherent(dev))
208                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
209         else
210                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
211 }
212
213 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
214     defined(CONFIG_SWIOTLB)
215 void dma_direct_sync_single_for_device(struct device *dev,
216                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
217 {
218         phys_addr_t paddr = dma_to_phys(dev, addr);
219
220         if (unlikely(is_swiotlb_buffer(paddr)))
221                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
222
223         if (!dev_is_dma_coherent(dev))
224                 arch_sync_dma_for_device(dev, paddr, size, dir);
225 }
226 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
227
228 void dma_direct_sync_sg_for_device(struct device *dev,
229                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
230 {
231         struct scatterlist *sg;
232         int i;
233
234         for_each_sg(sgl, sg, nents, i) {
235                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
236                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
237                                         dir, SYNC_FOR_DEVICE);
238
239                 if (!dev_is_dma_coherent(dev))
240                         arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
241                                         dir);
242         }
243 }
244 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
245 #endif
246
247 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
248     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
249     defined(CONFIG_SWIOTLB)
250 void dma_direct_sync_single_for_cpu(struct device *dev,
251                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
252 {
253         phys_addr_t paddr = dma_to_phys(dev, addr);
254
255         if (!dev_is_dma_coherent(dev)) {
256                 arch_sync_dma_for_cpu(dev, paddr, size, dir);
257                 arch_sync_dma_for_cpu_all(dev);
258         }
259
260         if (unlikely(is_swiotlb_buffer(paddr)))
261                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
262 }
263 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
264
265 void dma_direct_sync_sg_for_cpu(struct device *dev,
266                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
267 {
268         struct scatterlist *sg;
269         int i;
270
271         for_each_sg(sgl, sg, nents, i) {
272                 if (!dev_is_dma_coherent(dev))
273                         arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
274         
275                 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
276                         swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
277                                         SYNC_FOR_CPU);
278         }
279
280         if (!dev_is_dma_coherent(dev))
281                 arch_sync_dma_for_cpu_all(dev);
282 }
283 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
284
285 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
286                 size_t size, enum dma_data_direction dir, unsigned long attrs)
287 {
288         phys_addr_t phys = dma_to_phys(dev, addr);
289
290         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
291                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
292
293         if (unlikely(is_swiotlb_buffer(phys)))
294                 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
295 }
296 EXPORT_SYMBOL(dma_direct_unmap_page);
297
298 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
299                 int nents, enum dma_data_direction dir, unsigned long attrs)
300 {
301         struct scatterlist *sg;
302         int i;
303
304         for_each_sg(sgl, sg, nents, i)
305                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
306                              attrs);
307 }
308 EXPORT_SYMBOL(dma_direct_unmap_sg);
309 #endif
310
311 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
312                 size_t size)
313 {
314         return swiotlb_force != SWIOTLB_FORCE &&
315                 (!dev || dma_capable(dev, dma_addr, size));
316 }
317
318 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
319                 unsigned long offset, size_t size, enum dma_data_direction dir,
320                 unsigned long attrs)
321 {
322         phys_addr_t phys = page_to_phys(page) + offset;
323         dma_addr_t dma_addr = phys_to_dma(dev, phys);
324
325         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
326             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
327                 report_addr(dev, dma_addr, size);
328                 return DMA_MAPPING_ERROR;
329         }
330
331         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
332                 arch_sync_dma_for_device(dev, phys, size, dir);
333         return dma_addr;
334 }
335 EXPORT_SYMBOL(dma_direct_map_page);
336
337 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
338                 enum dma_data_direction dir, unsigned long attrs)
339 {
340         int i;
341         struct scatterlist *sg;
342
343         for_each_sg(sgl, sg, nents, i) {
344                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
345                                 sg->offset, sg->length, dir, attrs);
346                 if (sg->dma_address == DMA_MAPPING_ERROR)
347                         goto out_unmap;
348                 sg_dma_len(sg) = sg->length;
349         }
350
351         return nents;
352
353 out_unmap:
354         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
355         return 0;
356 }
357 EXPORT_SYMBOL(dma_direct_map_sg);
358
359 /*
360  * Because 32-bit DMA masks are so common we expect every architecture to be
361  * able to satisfy them - either by not supporting more physical memory, or by
362  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
363  * use an IOMMU instead of the direct mapping.
364  */
365 int dma_direct_supported(struct device *dev, u64 mask)
366 {
367         u64 min_mask;
368
369         if (IS_ENABLED(CONFIG_ZONE_DMA))
370                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
371         else
372                 min_mask = DMA_BIT_MASK(32);
373
374         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
375
376         /*
377          * This check needs to be against the actual bit mask value, so
378          * use __phys_to_dma() here so that the SME encryption mask isn't
379          * part of the check.
380          */
381         return mask >= __phys_to_dma(dev, min_mask);
382 }