OSDN Git Service

perf/core: Fix endless multiplex timer
[android-x86/kernel.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 /*
592  * State based event timekeeping...
593  *
594  * The basic idea is to use event->state to determine which (if any) time
595  * fields to increment with the current delta. This means we only need to
596  * update timestamps when we change state or when they are explicitly requested
597  * (read).
598  *
599  * Event groups make things a little more complicated, but not terribly so. The
600  * rules for a group are that if the group leader is OFF the entire group is
601  * OFF, irrespecive of what the group member states are. This results in
602  * __perf_effective_state().
603  *
604  * A futher ramification is that when a group leader flips between OFF and
605  * !OFF, we need to update all group member times.
606  *
607  *
608  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
609  * need to make sure the relevant context time is updated before we try and
610  * update our timestamps.
611  */
612
613 static __always_inline enum perf_event_state
614 __perf_effective_state(struct perf_event *event)
615 {
616         struct perf_event *leader = event->group_leader;
617
618         if (leader->state <= PERF_EVENT_STATE_OFF)
619                 return leader->state;
620
621         return event->state;
622 }
623
624 static __always_inline void
625 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
626 {
627         enum perf_event_state state = __perf_effective_state(event);
628         u64 delta = now - event->tstamp;
629
630         *enabled = event->total_time_enabled;
631         if (state >= PERF_EVENT_STATE_INACTIVE)
632                 *enabled += delta;
633
634         *running = event->total_time_running;
635         if (state >= PERF_EVENT_STATE_ACTIVE)
636                 *running += delta;
637 }
638
639 static void perf_event_update_time(struct perf_event *event)
640 {
641         u64 now = perf_event_time(event);
642
643         __perf_update_times(event, now, &event->total_time_enabled,
644                                         &event->total_time_running);
645         event->tstamp = now;
646 }
647
648 static void perf_event_update_sibling_time(struct perf_event *leader)
649 {
650         struct perf_event *sibling;
651
652         for_each_sibling_event(sibling, leader)
653                 perf_event_update_time(sibling);
654 }
655
656 static void
657 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
658 {
659         if (event->state == state)
660                 return;
661
662         perf_event_update_time(event);
663         /*
664          * If a group leader gets enabled/disabled all its siblings
665          * are affected too.
666          */
667         if ((event->state < 0) ^ (state < 0))
668                 perf_event_update_sibling_time(event);
669
670         WRITE_ONCE(event->state, state);
671 }
672
673 #ifdef CONFIG_CGROUP_PERF
674
675 static inline bool
676 perf_cgroup_match(struct perf_event *event)
677 {
678         struct perf_event_context *ctx = event->ctx;
679         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
680
681         /* @event doesn't care about cgroup */
682         if (!event->cgrp)
683                 return true;
684
685         /* wants specific cgroup scope but @cpuctx isn't associated with any */
686         if (!cpuctx->cgrp)
687                 return false;
688
689         /*
690          * Cgroup scoping is recursive.  An event enabled for a cgroup is
691          * also enabled for all its descendant cgroups.  If @cpuctx's
692          * cgroup is a descendant of @event's (the test covers identity
693          * case), it's a match.
694          */
695         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
696                                     event->cgrp->css.cgroup);
697 }
698
699 static inline void perf_detach_cgroup(struct perf_event *event)
700 {
701         css_put(&event->cgrp->css);
702         event->cgrp = NULL;
703 }
704
705 static inline int is_cgroup_event(struct perf_event *event)
706 {
707         return event->cgrp != NULL;
708 }
709
710 static inline u64 perf_cgroup_event_time(struct perf_event *event)
711 {
712         struct perf_cgroup_info *t;
713
714         t = per_cpu_ptr(event->cgrp->info, event->cpu);
715         return t->time;
716 }
717
718 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
719 {
720         struct perf_cgroup_info *info;
721         u64 now;
722
723         now = perf_clock();
724
725         info = this_cpu_ptr(cgrp->info);
726
727         info->time += now - info->timestamp;
728         info->timestamp = now;
729 }
730
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733         struct perf_cgroup *cgrp = cpuctx->cgrp;
734         struct cgroup_subsys_state *css;
735
736         if (cgrp) {
737                 for (css = &cgrp->css; css; css = css->parent) {
738                         cgrp = container_of(css, struct perf_cgroup, css);
739                         __update_cgrp_time(cgrp);
740                 }
741         }
742 }
743
744 static inline void update_cgrp_time_from_event(struct perf_event *event)
745 {
746         struct perf_cgroup *cgrp;
747
748         /*
749          * ensure we access cgroup data only when needed and
750          * when we know the cgroup is pinned (css_get)
751          */
752         if (!is_cgroup_event(event))
753                 return;
754
755         cgrp = perf_cgroup_from_task(current, event->ctx);
756         /*
757          * Do not update time when cgroup is not active
758          */
759        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
760                 __update_cgrp_time(event->cgrp);
761 }
762
763 static inline void
764 perf_cgroup_set_timestamp(struct task_struct *task,
765                           struct perf_event_context *ctx)
766 {
767         struct perf_cgroup *cgrp;
768         struct perf_cgroup_info *info;
769         struct cgroup_subsys_state *css;
770
771         /*
772          * ctx->lock held by caller
773          * ensure we do not access cgroup data
774          * unless we have the cgroup pinned (css_get)
775          */
776         if (!task || !ctx->nr_cgroups)
777                 return;
778
779         cgrp = perf_cgroup_from_task(task, ctx);
780
781         for (css = &cgrp->css; css; css = css->parent) {
782                 cgrp = container_of(css, struct perf_cgroup, css);
783                 info = this_cpu_ptr(cgrp->info);
784                 info->timestamp = ctx->timestamp;
785         }
786 }
787
788 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
789
790 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
791 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
792
793 /*
794  * reschedule events based on the cgroup constraint of task.
795  *
796  * mode SWOUT : schedule out everything
797  * mode SWIN : schedule in based on cgroup for next
798  */
799 static void perf_cgroup_switch(struct task_struct *task, int mode)
800 {
801         struct perf_cpu_context *cpuctx;
802         struct list_head *list;
803         unsigned long flags;
804
805         /*
806          * Disable interrupts and preemption to avoid this CPU's
807          * cgrp_cpuctx_entry to change under us.
808          */
809         local_irq_save(flags);
810
811         list = this_cpu_ptr(&cgrp_cpuctx_list);
812         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
813                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
814
815                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
816                 perf_pmu_disable(cpuctx->ctx.pmu);
817
818                 if (mode & PERF_CGROUP_SWOUT) {
819                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
820                         /*
821                          * must not be done before ctxswout due
822                          * to event_filter_match() in event_sched_out()
823                          */
824                         cpuctx->cgrp = NULL;
825                 }
826
827                 if (mode & PERF_CGROUP_SWIN) {
828                         WARN_ON_ONCE(cpuctx->cgrp);
829                         /*
830                          * set cgrp before ctxsw in to allow
831                          * event_filter_match() to not have to pass
832                          * task around
833                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
834                          * because cgorup events are only per-cpu
835                          */
836                         cpuctx->cgrp = perf_cgroup_from_task(task,
837                                                              &cpuctx->ctx);
838                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
839                 }
840                 perf_pmu_enable(cpuctx->ctx.pmu);
841                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
842         }
843
844         local_irq_restore(flags);
845 }
846
847 static inline void perf_cgroup_sched_out(struct task_struct *task,
848                                          struct task_struct *next)
849 {
850         struct perf_cgroup *cgrp1;
851         struct perf_cgroup *cgrp2 = NULL;
852
853         rcu_read_lock();
854         /*
855          * we come here when we know perf_cgroup_events > 0
856          * we do not need to pass the ctx here because we know
857          * we are holding the rcu lock
858          */
859         cgrp1 = perf_cgroup_from_task(task, NULL);
860         cgrp2 = perf_cgroup_from_task(next, NULL);
861
862         /*
863          * only schedule out current cgroup events if we know
864          * that we are switching to a different cgroup. Otherwise,
865          * do no touch the cgroup events.
866          */
867         if (cgrp1 != cgrp2)
868                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
869
870         rcu_read_unlock();
871 }
872
873 static inline void perf_cgroup_sched_in(struct task_struct *prev,
874                                         struct task_struct *task)
875 {
876         struct perf_cgroup *cgrp1;
877         struct perf_cgroup *cgrp2 = NULL;
878
879         rcu_read_lock();
880         /*
881          * we come here when we know perf_cgroup_events > 0
882          * we do not need to pass the ctx here because we know
883          * we are holding the rcu lock
884          */
885         cgrp1 = perf_cgroup_from_task(task, NULL);
886         cgrp2 = perf_cgroup_from_task(prev, NULL);
887
888         /*
889          * only need to schedule in cgroup events if we are changing
890          * cgroup during ctxsw. Cgroup events were not scheduled
891          * out of ctxsw out if that was not the case.
892          */
893         if (cgrp1 != cgrp2)
894                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
895
896         rcu_read_unlock();
897 }
898
899 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
900                                       struct perf_event_attr *attr,
901                                       struct perf_event *group_leader)
902 {
903         struct perf_cgroup *cgrp;
904         struct cgroup_subsys_state *css;
905         struct fd f = fdget(fd);
906         int ret = 0;
907
908         if (!f.file)
909                 return -EBADF;
910
911         css = css_tryget_online_from_dir(f.file->f_path.dentry,
912                                          &perf_event_cgrp_subsys);
913         if (IS_ERR(css)) {
914                 ret = PTR_ERR(css);
915                 goto out;
916         }
917
918         cgrp = container_of(css, struct perf_cgroup, css);
919         event->cgrp = cgrp;
920
921         /*
922          * all events in a group must monitor
923          * the same cgroup because a task belongs
924          * to only one perf cgroup at a time
925          */
926         if (group_leader && group_leader->cgrp != cgrp) {
927                 perf_detach_cgroup(event);
928                 ret = -EINVAL;
929         }
930 out:
931         fdput(f);
932         return ret;
933 }
934
935 static inline void
936 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
937 {
938         struct perf_cgroup_info *t;
939         t = per_cpu_ptr(event->cgrp->info, event->cpu);
940         event->shadow_ctx_time = now - t->timestamp;
941 }
942
943 /*
944  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
945  * cleared when last cgroup event is removed.
946  */
947 static inline void
948 list_update_cgroup_event(struct perf_event *event,
949                          struct perf_event_context *ctx, bool add)
950 {
951         struct perf_cpu_context *cpuctx;
952         struct list_head *cpuctx_entry;
953
954         if (!is_cgroup_event(event))
955                 return;
956
957         /*
958          * Because cgroup events are always per-cpu events,
959          * this will always be called from the right CPU.
960          */
961         cpuctx = __get_cpu_context(ctx);
962
963         /*
964          * Since setting cpuctx->cgrp is conditional on the current @cgrp
965          * matching the event's cgroup, we must do this for every new event,
966          * because if the first would mismatch, the second would not try again
967          * and we would leave cpuctx->cgrp unset.
968          */
969         if (add && !cpuctx->cgrp) {
970                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
971
972                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
973                         cpuctx->cgrp = cgrp;
974         }
975
976         if (add && ctx->nr_cgroups++)
977                 return;
978         else if (!add && --ctx->nr_cgroups)
979                 return;
980
981         /* no cgroup running */
982         if (!add)
983                 cpuctx->cgrp = NULL;
984
985         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
986         if (add)
987                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
988         else
989                 list_del(cpuctx_entry);
990 }
991
992 #else /* !CONFIG_CGROUP_PERF */
993
994 static inline bool
995 perf_cgroup_match(struct perf_event *event)
996 {
997         return true;
998 }
999
1000 static inline void perf_detach_cgroup(struct perf_event *event)
1001 {}
1002
1003 static inline int is_cgroup_event(struct perf_event *event)
1004 {
1005         return 0;
1006 }
1007
1008 static inline void update_cgrp_time_from_event(struct perf_event *event)
1009 {
1010 }
1011
1012 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_out(struct task_struct *task,
1017                                          struct task_struct *next)
1018 {
1019 }
1020
1021 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1022                                         struct task_struct *task)
1023 {
1024 }
1025
1026 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1027                                       struct perf_event_attr *attr,
1028                                       struct perf_event *group_leader)
1029 {
1030         return -EINVAL;
1031 }
1032
1033 static inline void
1034 perf_cgroup_set_timestamp(struct task_struct *task,
1035                           struct perf_event_context *ctx)
1036 {
1037 }
1038
1039 void
1040 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1041 {
1042 }
1043
1044 static inline void
1045 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1046 {
1047 }
1048
1049 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1050 {
1051         return 0;
1052 }
1053
1054 static inline void
1055 list_update_cgroup_event(struct perf_event *event,
1056                          struct perf_event_context *ctx, bool add)
1057 {
1058 }
1059
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_context *cpuctx;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078         rotations = perf_rotate_context(cpuctx);
1079
1080         raw_spin_lock(&cpuctx->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083         else
1084                 cpuctx->hrtimer_active = 0;
1085         raw_spin_unlock(&cpuctx->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092         struct hrtimer *timer = &cpuctx->hrtimer;
1093         struct pmu *pmu = cpuctx->ctx.pmu;
1094         u64 interval;
1095
1096         /* no multiplexing needed for SW PMU */
1097         if (pmu->task_ctx_nr == perf_sw_context)
1098                 return;
1099
1100         /*
1101          * check default is sane, if not set then force to
1102          * default interval (1/tick)
1103          */
1104         interval = pmu->hrtimer_interval_ms;
1105         if (interval < 1)
1106                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107
1108         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109
1110         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1112         timer->function = perf_mux_hrtimer_handler;
1113 }
1114
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117         struct hrtimer *timer = &cpuctx->hrtimer;
1118         struct pmu *pmu = cpuctx->ctx.pmu;
1119         unsigned long flags;
1120
1121         /* not for SW PMU */
1122         if (pmu->task_ctx_nr == perf_sw_context)
1123                 return 0;
1124
1125         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126         if (!cpuctx->hrtimer_active) {
1127                 cpuctx->hrtimer_active = 1;
1128                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1130         }
1131         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132
1133         return 0;
1134 }
1135
1136 void perf_pmu_disable(struct pmu *pmu)
1137 {
1138         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1139         if (!(*count)++)
1140                 pmu->pmu_disable(pmu);
1141 }
1142
1143 void perf_pmu_enable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!--(*count))
1147                 pmu->pmu_enable(pmu);
1148 }
1149
1150 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1151
1152 /*
1153  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1154  * perf_event_task_tick() are fully serialized because they're strictly cpu
1155  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1156  * disabled, while perf_event_task_tick is called from IRQ context.
1157  */
1158 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1159 {
1160         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1161
1162         lockdep_assert_irqs_disabled();
1163
1164         WARN_ON(!list_empty(&ctx->active_ctx_list));
1165
1166         list_add(&ctx->active_ctx_list, head);
1167 }
1168
1169 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1170 {
1171         lockdep_assert_irqs_disabled();
1172
1173         WARN_ON(list_empty(&ctx->active_ctx_list));
1174
1175         list_del_init(&ctx->active_ctx_list);
1176 }
1177
1178 static void get_ctx(struct perf_event_context *ctx)
1179 {
1180         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1181 }
1182
1183 static void free_ctx(struct rcu_head *head)
1184 {
1185         struct perf_event_context *ctx;
1186
1187         ctx = container_of(head, struct perf_event_context, rcu_head);
1188         kfree(ctx->task_ctx_data);
1189         kfree(ctx);
1190 }
1191
1192 static void put_ctx(struct perf_event_context *ctx)
1193 {
1194         if (atomic_dec_and_test(&ctx->refcount)) {
1195                 if (ctx->parent_ctx)
1196                         put_ctx(ctx->parent_ctx);
1197                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1198                         put_task_struct(ctx->task);
1199                 call_rcu(&ctx->rcu_head, free_ctx);
1200         }
1201 }
1202
1203 /*
1204  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1205  * perf_pmu_migrate_context() we need some magic.
1206  *
1207  * Those places that change perf_event::ctx will hold both
1208  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1209  *
1210  * Lock ordering is by mutex address. There are two other sites where
1211  * perf_event_context::mutex nests and those are:
1212  *
1213  *  - perf_event_exit_task_context()    [ child , 0 ]
1214  *      perf_event_exit_event()
1215  *        put_event()                   [ parent, 1 ]
1216  *
1217  *  - perf_event_init_context()         [ parent, 0 ]
1218  *      inherit_task_group()
1219  *        inherit_group()
1220  *          inherit_event()
1221  *            perf_event_alloc()
1222  *              perf_init_event()
1223  *                perf_try_init_event() [ child , 1 ]
1224  *
1225  * While it appears there is an obvious deadlock here -- the parent and child
1226  * nesting levels are inverted between the two. This is in fact safe because
1227  * life-time rules separate them. That is an exiting task cannot fork, and a
1228  * spawning task cannot (yet) exit.
1229  *
1230  * But remember that that these are parent<->child context relations, and
1231  * migration does not affect children, therefore these two orderings should not
1232  * interact.
1233  *
1234  * The change in perf_event::ctx does not affect children (as claimed above)
1235  * because the sys_perf_event_open() case will install a new event and break
1236  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1237  * concerned with cpuctx and that doesn't have children.
1238  *
1239  * The places that change perf_event::ctx will issue:
1240  *
1241  *   perf_remove_from_context();
1242  *   synchronize_rcu();
1243  *   perf_install_in_context();
1244  *
1245  * to affect the change. The remove_from_context() + synchronize_rcu() should
1246  * quiesce the event, after which we can install it in the new location. This
1247  * means that only external vectors (perf_fops, prctl) can perturb the event
1248  * while in transit. Therefore all such accessors should also acquire
1249  * perf_event_context::mutex to serialize against this.
1250  *
1251  * However; because event->ctx can change while we're waiting to acquire
1252  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1253  * function.
1254  *
1255  * Lock order:
1256  *    cred_guard_mutex
1257  *      task_struct::perf_event_mutex
1258  *        perf_event_context::mutex
1259  *          perf_event::child_mutex;
1260  *            perf_event_context::lock
1261  *          perf_event::mmap_mutex
1262  *          mmap_sem
1263  *            perf_addr_filters_head::lock
1264  *
1265  *    cpu_hotplug_lock
1266  *      pmus_lock
1267  *        cpuctx->mutex / perf_event_context::mutex
1268  */
1269 static struct perf_event_context *
1270 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1271 {
1272         struct perf_event_context *ctx;
1273
1274 again:
1275         rcu_read_lock();
1276         ctx = READ_ONCE(event->ctx);
1277         if (!atomic_inc_not_zero(&ctx->refcount)) {
1278                 rcu_read_unlock();
1279                 goto again;
1280         }
1281         rcu_read_unlock();
1282
1283         mutex_lock_nested(&ctx->mutex, nesting);
1284         if (event->ctx != ctx) {
1285                 mutex_unlock(&ctx->mutex);
1286                 put_ctx(ctx);
1287                 goto again;
1288         }
1289
1290         return ctx;
1291 }
1292
1293 static inline struct perf_event_context *
1294 perf_event_ctx_lock(struct perf_event *event)
1295 {
1296         return perf_event_ctx_lock_nested(event, 0);
1297 }
1298
1299 static void perf_event_ctx_unlock(struct perf_event *event,
1300                                   struct perf_event_context *ctx)
1301 {
1302         mutex_unlock(&ctx->mutex);
1303         put_ctx(ctx);
1304 }
1305
1306 /*
1307  * This must be done under the ctx->lock, such as to serialize against
1308  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1309  * calling scheduler related locks and ctx->lock nests inside those.
1310  */
1311 static __must_check struct perf_event_context *
1312 unclone_ctx(struct perf_event_context *ctx)
1313 {
1314         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1315
1316         lockdep_assert_held(&ctx->lock);
1317
1318         if (parent_ctx)
1319                 ctx->parent_ctx = NULL;
1320         ctx->generation++;
1321
1322         return parent_ctx;
1323 }
1324
1325 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1326                                 enum pid_type type)
1327 {
1328         u32 nr;
1329         /*
1330          * only top level events have the pid namespace they were created in
1331          */
1332         if (event->parent)
1333                 event = event->parent;
1334
1335         nr = __task_pid_nr_ns(p, type, event->ns);
1336         /* avoid -1 if it is idle thread or runs in another ns */
1337         if (!nr && !pid_alive(p))
1338                 nr = -1;
1339         return nr;
1340 }
1341
1342 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1345 }
1346
1347 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1348 {
1349         return perf_event_pid_type(event, p, PIDTYPE_PID);
1350 }
1351
1352 /*
1353  * If we inherit events we want to return the parent event id
1354  * to userspace.
1355  */
1356 static u64 primary_event_id(struct perf_event *event)
1357 {
1358         u64 id = event->id;
1359
1360         if (event->parent)
1361                 id = event->parent->id;
1362
1363         return id;
1364 }
1365
1366 /*
1367  * Get the perf_event_context for a task and lock it.
1368  *
1369  * This has to cope with with the fact that until it is locked,
1370  * the context could get moved to another task.
1371  */
1372 static struct perf_event_context *
1373 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1374 {
1375         struct perf_event_context *ctx;
1376
1377 retry:
1378         /*
1379          * One of the few rules of preemptible RCU is that one cannot do
1380          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1381          * part of the read side critical section was irqs-enabled -- see
1382          * rcu_read_unlock_special().
1383          *
1384          * Since ctx->lock nests under rq->lock we must ensure the entire read
1385          * side critical section has interrupts disabled.
1386          */
1387         local_irq_save(*flags);
1388         rcu_read_lock();
1389         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1390         if (ctx) {
1391                 /*
1392                  * If this context is a clone of another, it might
1393                  * get swapped for another underneath us by
1394                  * perf_event_task_sched_out, though the
1395                  * rcu_read_lock() protects us from any context
1396                  * getting freed.  Lock the context and check if it
1397                  * got swapped before we could get the lock, and retry
1398                  * if so.  If we locked the right context, then it
1399                  * can't get swapped on us any more.
1400                  */
1401                 raw_spin_lock(&ctx->lock);
1402                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1403                         raw_spin_unlock(&ctx->lock);
1404                         rcu_read_unlock();
1405                         local_irq_restore(*flags);
1406                         goto retry;
1407                 }
1408
1409                 if (ctx->task == TASK_TOMBSTONE ||
1410                     !atomic_inc_not_zero(&ctx->refcount)) {
1411                         raw_spin_unlock(&ctx->lock);
1412                         ctx = NULL;
1413                 } else {
1414                         WARN_ON_ONCE(ctx->task != task);
1415                 }
1416         }
1417         rcu_read_unlock();
1418         if (!ctx)
1419                 local_irq_restore(*flags);
1420         return ctx;
1421 }
1422
1423 /*
1424  * Get the context for a task and increment its pin_count so it
1425  * can't get swapped to another task.  This also increments its
1426  * reference count so that the context can't get freed.
1427  */
1428 static struct perf_event_context *
1429 perf_pin_task_context(struct task_struct *task, int ctxn)
1430 {
1431         struct perf_event_context *ctx;
1432         unsigned long flags;
1433
1434         ctx = perf_lock_task_context(task, ctxn, &flags);
1435         if (ctx) {
1436                 ++ctx->pin_count;
1437                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1438         }
1439         return ctx;
1440 }
1441
1442 static void perf_unpin_context(struct perf_event_context *ctx)
1443 {
1444         unsigned long flags;
1445
1446         raw_spin_lock_irqsave(&ctx->lock, flags);
1447         --ctx->pin_count;
1448         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1449 }
1450
1451 /*
1452  * Update the record of the current time in a context.
1453  */
1454 static void update_context_time(struct perf_event_context *ctx)
1455 {
1456         u64 now = perf_clock();
1457
1458         ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460 }
1461
1462 static u64 perf_event_time(struct perf_event *event)
1463 {
1464         struct perf_event_context *ctx = event->ctx;
1465
1466         if (is_cgroup_event(event))
1467                 return perf_cgroup_event_time(event);
1468
1469         return ctx ? ctx->time : 0;
1470 }
1471
1472 static enum event_type_t get_event_type(struct perf_event *event)
1473 {
1474         struct perf_event_context *ctx = event->ctx;
1475         enum event_type_t event_type;
1476
1477         lockdep_assert_held(&ctx->lock);
1478
1479         /*
1480          * It's 'group type', really, because if our group leader is
1481          * pinned, so are we.
1482          */
1483         if (event->group_leader != event)
1484                 event = event->group_leader;
1485
1486         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1487         if (!ctx->task)
1488                 event_type |= EVENT_CPU;
1489
1490         return event_type;
1491 }
1492
1493 /*
1494  * Helper function to initialize event group nodes.
1495  */
1496 static void init_event_group(struct perf_event *event)
1497 {
1498         RB_CLEAR_NODE(&event->group_node);
1499         event->group_index = 0;
1500 }
1501
1502 /*
1503  * Extract pinned or flexible groups from the context
1504  * based on event attrs bits.
1505  */
1506 static struct perf_event_groups *
1507 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1508 {
1509         if (event->attr.pinned)
1510                 return &ctx->pinned_groups;
1511         else
1512                 return &ctx->flexible_groups;
1513 }
1514
1515 /*
1516  * Helper function to initializes perf_event_group trees.
1517  */
1518 static void perf_event_groups_init(struct perf_event_groups *groups)
1519 {
1520         groups->tree = RB_ROOT;
1521         groups->index = 0;
1522 }
1523
1524 /*
1525  * Compare function for event groups;
1526  *
1527  * Implements complex key that first sorts by CPU and then by virtual index
1528  * which provides ordering when rotating groups for the same CPU.
1529  */
1530 static bool
1531 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1532 {
1533         if (left->cpu < right->cpu)
1534                 return true;
1535         if (left->cpu > right->cpu)
1536                 return false;
1537
1538         if (left->group_index < right->group_index)
1539                 return true;
1540         if (left->group_index > right->group_index)
1541                 return false;
1542
1543         return false;
1544 }
1545
1546 /*
1547  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1548  * key (see perf_event_groups_less). This places it last inside the CPU
1549  * subtree.
1550  */
1551 static void
1552 perf_event_groups_insert(struct perf_event_groups *groups,
1553                          struct perf_event *event)
1554 {
1555         struct perf_event *node_event;
1556         struct rb_node *parent;
1557         struct rb_node **node;
1558
1559         event->group_index = ++groups->index;
1560
1561         node = &groups->tree.rb_node;
1562         parent = *node;
1563
1564         while (*node) {
1565                 parent = *node;
1566                 node_event = container_of(*node, struct perf_event, group_node);
1567
1568                 if (perf_event_groups_less(event, node_event))
1569                         node = &parent->rb_left;
1570                 else
1571                         node = &parent->rb_right;
1572         }
1573
1574         rb_link_node(&event->group_node, parent, node);
1575         rb_insert_color(&event->group_node, &groups->tree);
1576 }
1577
1578 /*
1579  * Helper function to insert event into the pinned or flexible groups.
1580  */
1581 static void
1582 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584         struct perf_event_groups *groups;
1585
1586         groups = get_event_groups(event, ctx);
1587         perf_event_groups_insert(groups, event);
1588 }
1589
1590 /*
1591  * Delete a group from a tree.
1592  */
1593 static void
1594 perf_event_groups_delete(struct perf_event_groups *groups,
1595                          struct perf_event *event)
1596 {
1597         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1598                      RB_EMPTY_ROOT(&groups->tree));
1599
1600         rb_erase(&event->group_node, &groups->tree);
1601         init_event_group(event);
1602 }
1603
1604 /*
1605  * Helper function to delete event from its groups.
1606  */
1607 static void
1608 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1609 {
1610         struct perf_event_groups *groups;
1611
1612         groups = get_event_groups(event, ctx);
1613         perf_event_groups_delete(groups, event);
1614 }
1615
1616 /*
1617  * Get the leftmost event in the @cpu subtree.
1618  */
1619 static struct perf_event *
1620 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1621 {
1622         struct perf_event *node_event = NULL, *match = NULL;
1623         struct rb_node *node = groups->tree.rb_node;
1624
1625         while (node) {
1626                 node_event = container_of(node, struct perf_event, group_node);
1627
1628                 if (cpu < node_event->cpu) {
1629                         node = node->rb_left;
1630                 } else if (cpu > node_event->cpu) {
1631                         node = node->rb_right;
1632                 } else {
1633                         match = node_event;
1634                         node = node->rb_left;
1635                 }
1636         }
1637
1638         return match;
1639 }
1640
1641 /*
1642  * Like rb_entry_next_safe() for the @cpu subtree.
1643  */
1644 static struct perf_event *
1645 perf_event_groups_next(struct perf_event *event)
1646 {
1647         struct perf_event *next;
1648
1649         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1650         if (next && next->cpu == event->cpu)
1651                 return next;
1652
1653         return NULL;
1654 }
1655
1656 /*
1657  * Iterate through the whole groups tree.
1658  */
1659 #define perf_event_groups_for_each(event, groups)                       \
1660         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1661                                 typeof(*event), group_node); event;     \
1662                 event = rb_entry_safe(rb_next(&event->group_node),      \
1663                                 typeof(*event), group_node))
1664
1665 /*
1666  * Add an event from the lists for its context.
1667  * Must be called with ctx->mutex and ctx->lock held.
1668  */
1669 static void
1670 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672         lockdep_assert_held(&ctx->lock);
1673
1674         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1675         event->attach_state |= PERF_ATTACH_CONTEXT;
1676
1677         event->tstamp = perf_event_time(event);
1678
1679         /*
1680          * If we're a stand alone event or group leader, we go to the context
1681          * list, group events are kept attached to the group so that
1682          * perf_group_detach can, at all times, locate all siblings.
1683          */
1684         if (event->group_leader == event) {
1685                 event->group_caps = event->event_caps;
1686                 add_event_to_groups(event, ctx);
1687         }
1688
1689         list_update_cgroup_event(event, ctx, true);
1690
1691         list_add_rcu(&event->event_entry, &ctx->event_list);
1692         ctx->nr_events++;
1693         if (event->attr.inherit_stat)
1694                 ctx->nr_stat++;
1695
1696         ctx->generation++;
1697 }
1698
1699 /*
1700  * Initialize event state based on the perf_event_attr::disabled.
1701  */
1702 static inline void perf_event__state_init(struct perf_event *event)
1703 {
1704         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1705                                               PERF_EVENT_STATE_INACTIVE;
1706 }
1707
1708 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1709 {
1710         int entry = sizeof(u64); /* value */
1711         int size = 0;
1712         int nr = 1;
1713
1714         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1715                 size += sizeof(u64);
1716
1717         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1718                 size += sizeof(u64);
1719
1720         if (event->attr.read_format & PERF_FORMAT_ID)
1721                 entry += sizeof(u64);
1722
1723         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1724                 nr += nr_siblings;
1725                 size += sizeof(u64);
1726         }
1727
1728         size += entry * nr;
1729         event->read_size = size;
1730 }
1731
1732 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1733 {
1734         struct perf_sample_data *data;
1735         u16 size = 0;
1736
1737         if (sample_type & PERF_SAMPLE_IP)
1738                 size += sizeof(data->ip);
1739
1740         if (sample_type & PERF_SAMPLE_ADDR)
1741                 size += sizeof(data->addr);
1742
1743         if (sample_type & PERF_SAMPLE_PERIOD)
1744                 size += sizeof(data->period);
1745
1746         if (sample_type & PERF_SAMPLE_WEIGHT)
1747                 size += sizeof(data->weight);
1748
1749         if (sample_type & PERF_SAMPLE_READ)
1750                 size += event->read_size;
1751
1752         if (sample_type & PERF_SAMPLE_DATA_SRC)
1753                 size += sizeof(data->data_src.val);
1754
1755         if (sample_type & PERF_SAMPLE_TRANSACTION)
1756                 size += sizeof(data->txn);
1757
1758         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1759                 size += sizeof(data->phys_addr);
1760
1761         event->header_size = size;
1762 }
1763
1764 /*
1765  * Called at perf_event creation and when events are attached/detached from a
1766  * group.
1767  */
1768 static void perf_event__header_size(struct perf_event *event)
1769 {
1770         __perf_event_read_size(event,
1771                                event->group_leader->nr_siblings);
1772         __perf_event_header_size(event, event->attr.sample_type);
1773 }
1774
1775 static void perf_event__id_header_size(struct perf_event *event)
1776 {
1777         struct perf_sample_data *data;
1778         u64 sample_type = event->attr.sample_type;
1779         u16 size = 0;
1780
1781         if (sample_type & PERF_SAMPLE_TID)
1782                 size += sizeof(data->tid_entry);
1783
1784         if (sample_type & PERF_SAMPLE_TIME)
1785                 size += sizeof(data->time);
1786
1787         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1788                 size += sizeof(data->id);
1789
1790         if (sample_type & PERF_SAMPLE_ID)
1791                 size += sizeof(data->id);
1792
1793         if (sample_type & PERF_SAMPLE_STREAM_ID)
1794                 size += sizeof(data->stream_id);
1795
1796         if (sample_type & PERF_SAMPLE_CPU)
1797                 size += sizeof(data->cpu_entry);
1798
1799         event->id_header_size = size;
1800 }
1801
1802 static bool perf_event_validate_size(struct perf_event *event)
1803 {
1804         /*
1805          * The values computed here will be over-written when we actually
1806          * attach the event.
1807          */
1808         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1809         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1810         perf_event__id_header_size(event);
1811
1812         /*
1813          * Sum the lot; should not exceed the 64k limit we have on records.
1814          * Conservative limit to allow for callchains and other variable fields.
1815          */
1816         if (event->read_size + event->header_size +
1817             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1818                 return false;
1819
1820         return true;
1821 }
1822
1823 static void perf_group_attach(struct perf_event *event)
1824 {
1825         struct perf_event *group_leader = event->group_leader, *pos;
1826
1827         lockdep_assert_held(&event->ctx->lock);
1828
1829         /*
1830          * We can have double attach due to group movement in perf_event_open.
1831          */
1832         if (event->attach_state & PERF_ATTACH_GROUP)
1833                 return;
1834
1835         event->attach_state |= PERF_ATTACH_GROUP;
1836
1837         if (group_leader == event)
1838                 return;
1839
1840         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1841
1842         group_leader->group_caps &= event->event_caps;
1843
1844         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1845         group_leader->nr_siblings++;
1846
1847         perf_event__header_size(group_leader);
1848
1849         for_each_sibling_event(pos, group_leader)
1850                 perf_event__header_size(pos);
1851 }
1852
1853 /*
1854  * Remove an event from the lists for its context.
1855  * Must be called with ctx->mutex and ctx->lock held.
1856  */
1857 static void
1858 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1859 {
1860         WARN_ON_ONCE(event->ctx != ctx);
1861         lockdep_assert_held(&ctx->lock);
1862
1863         /*
1864          * We can have double detach due to exit/hot-unplug + close.
1865          */
1866         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1867                 return;
1868
1869         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1870
1871         list_update_cgroup_event(event, ctx, false);
1872
1873         ctx->nr_events--;
1874         if (event->attr.inherit_stat)
1875                 ctx->nr_stat--;
1876
1877         list_del_rcu(&event->event_entry);
1878
1879         if (event->group_leader == event)
1880                 del_event_from_groups(event, ctx);
1881
1882         /*
1883          * If event was in error state, then keep it
1884          * that way, otherwise bogus counts will be
1885          * returned on read(). The only way to get out
1886          * of error state is by explicit re-enabling
1887          * of the event
1888          */
1889         if (event->state > PERF_EVENT_STATE_OFF)
1890                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1891
1892         ctx->generation++;
1893 }
1894
1895 static void perf_group_detach(struct perf_event *event)
1896 {
1897         struct perf_event *sibling, *tmp;
1898         struct perf_event_context *ctx = event->ctx;
1899
1900         lockdep_assert_held(&ctx->lock);
1901
1902         /*
1903          * We can have double detach due to exit/hot-unplug + close.
1904          */
1905         if (!(event->attach_state & PERF_ATTACH_GROUP))
1906                 return;
1907
1908         event->attach_state &= ~PERF_ATTACH_GROUP;
1909
1910         /*
1911          * If this is a sibling, remove it from its group.
1912          */
1913         if (event->group_leader != event) {
1914                 list_del_init(&event->sibling_list);
1915                 event->group_leader->nr_siblings--;
1916                 goto out;
1917         }
1918
1919         /*
1920          * If this was a group event with sibling events then
1921          * upgrade the siblings to singleton events by adding them
1922          * to whatever list we are on.
1923          */
1924         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1925
1926                 sibling->group_leader = sibling;
1927                 list_del_init(&sibling->sibling_list);
1928
1929                 /* Inherit group flags from the previous leader */
1930                 sibling->group_caps = event->group_caps;
1931
1932                 if (!RB_EMPTY_NODE(&event->group_node)) {
1933                         add_event_to_groups(sibling, event->ctx);
1934
1935                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1936                                 struct list_head *list = sibling->attr.pinned ?
1937                                         &ctx->pinned_active : &ctx->flexible_active;
1938
1939                                 list_add_tail(&sibling->active_list, list);
1940                         }
1941                 }
1942
1943                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1944         }
1945
1946 out:
1947         perf_event__header_size(event->group_leader);
1948
1949         for_each_sibling_event(tmp, event->group_leader)
1950                 perf_event__header_size(tmp);
1951 }
1952
1953 static bool is_orphaned_event(struct perf_event *event)
1954 {
1955         return event->state == PERF_EVENT_STATE_DEAD;
1956 }
1957
1958 static inline int __pmu_filter_match(struct perf_event *event)
1959 {
1960         struct pmu *pmu = event->pmu;
1961         return pmu->filter_match ? pmu->filter_match(event) : 1;
1962 }
1963
1964 /*
1965  * Check whether we should attempt to schedule an event group based on
1966  * PMU-specific filtering. An event group can consist of HW and SW events,
1967  * potentially with a SW leader, so we must check all the filters, to
1968  * determine whether a group is schedulable:
1969  */
1970 static inline int pmu_filter_match(struct perf_event *event)
1971 {
1972         struct perf_event *sibling;
1973
1974         if (!__pmu_filter_match(event))
1975                 return 0;
1976
1977         for_each_sibling_event(sibling, event) {
1978                 if (!__pmu_filter_match(sibling))
1979                         return 0;
1980         }
1981
1982         return 1;
1983 }
1984
1985 static inline int
1986 event_filter_match(struct perf_event *event)
1987 {
1988         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1989                perf_cgroup_match(event) && pmu_filter_match(event);
1990 }
1991
1992 static void
1993 event_sched_out(struct perf_event *event,
1994                   struct perf_cpu_context *cpuctx,
1995                   struct perf_event_context *ctx)
1996 {
1997         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1998
1999         WARN_ON_ONCE(event->ctx != ctx);
2000         lockdep_assert_held(&ctx->lock);
2001
2002         if (event->state != PERF_EVENT_STATE_ACTIVE)
2003                 return;
2004
2005         /*
2006          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2007          * we can schedule events _OUT_ individually through things like
2008          * __perf_remove_from_context().
2009          */
2010         list_del_init(&event->active_list);
2011
2012         perf_pmu_disable(event->pmu);
2013
2014         event->pmu->del(event, 0);
2015         event->oncpu = -1;
2016
2017         if (READ_ONCE(event->pending_disable) >= 0) {
2018                 WRITE_ONCE(event->pending_disable, -1);
2019                 state = PERF_EVENT_STATE_OFF;
2020         }
2021         perf_event_set_state(event, state);
2022
2023         if (!is_software_event(event))
2024                 cpuctx->active_oncpu--;
2025         if (!--ctx->nr_active)
2026                 perf_event_ctx_deactivate(ctx);
2027         if (event->attr.freq && event->attr.sample_freq)
2028                 ctx->nr_freq--;
2029         if (event->attr.exclusive || !cpuctx->active_oncpu)
2030                 cpuctx->exclusive = 0;
2031
2032         perf_pmu_enable(event->pmu);
2033 }
2034
2035 static void
2036 group_sched_out(struct perf_event *group_event,
2037                 struct perf_cpu_context *cpuctx,
2038                 struct perf_event_context *ctx)
2039 {
2040         struct perf_event *event;
2041
2042         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2043                 return;
2044
2045         perf_pmu_disable(ctx->pmu);
2046
2047         event_sched_out(group_event, cpuctx, ctx);
2048
2049         /*
2050          * Schedule out siblings (if any):
2051          */
2052         for_each_sibling_event(event, group_event)
2053                 event_sched_out(event, cpuctx, ctx);
2054
2055         perf_pmu_enable(ctx->pmu);
2056
2057         if (group_event->attr.exclusive)
2058                 cpuctx->exclusive = 0;
2059 }
2060
2061 #define DETACH_GROUP    0x01UL
2062
2063 /*
2064  * Cross CPU call to remove a performance event
2065  *
2066  * We disable the event on the hardware level first. After that we
2067  * remove it from the context list.
2068  */
2069 static void
2070 __perf_remove_from_context(struct perf_event *event,
2071                            struct perf_cpu_context *cpuctx,
2072                            struct perf_event_context *ctx,
2073                            void *info)
2074 {
2075         unsigned long flags = (unsigned long)info;
2076
2077         if (ctx->is_active & EVENT_TIME) {
2078                 update_context_time(ctx);
2079                 update_cgrp_time_from_cpuctx(cpuctx);
2080         }
2081
2082         event_sched_out(event, cpuctx, ctx);
2083         if (flags & DETACH_GROUP)
2084                 perf_group_detach(event);
2085         list_del_event(event, ctx);
2086
2087         if (!ctx->nr_events && ctx->is_active) {
2088                 ctx->is_active = 0;
2089                 ctx->rotate_necessary = 0;
2090                 if (ctx->task) {
2091                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2092                         cpuctx->task_ctx = NULL;
2093                 }
2094         }
2095 }
2096
2097 /*
2098  * Remove the event from a task's (or a CPU's) list of events.
2099  *
2100  * If event->ctx is a cloned context, callers must make sure that
2101  * every task struct that event->ctx->task could possibly point to
2102  * remains valid.  This is OK when called from perf_release since
2103  * that only calls us on the top-level context, which can't be a clone.
2104  * When called from perf_event_exit_task, it's OK because the
2105  * context has been detached from its task.
2106  */
2107 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2108 {
2109         struct perf_event_context *ctx = event->ctx;
2110
2111         lockdep_assert_held(&ctx->mutex);
2112
2113         event_function_call(event, __perf_remove_from_context, (void *)flags);
2114
2115         /*
2116          * The above event_function_call() can NO-OP when it hits
2117          * TASK_TOMBSTONE. In that case we must already have been detached
2118          * from the context (by perf_event_exit_event()) but the grouping
2119          * might still be in-tact.
2120          */
2121         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2122         if ((flags & DETACH_GROUP) &&
2123             (event->attach_state & PERF_ATTACH_GROUP)) {
2124                 /*
2125                  * Since in that case we cannot possibly be scheduled, simply
2126                  * detach now.
2127                  */
2128                 raw_spin_lock_irq(&ctx->lock);
2129                 perf_group_detach(event);
2130                 raw_spin_unlock_irq(&ctx->lock);
2131         }
2132 }
2133
2134 /*
2135  * Cross CPU call to disable a performance event
2136  */
2137 static void __perf_event_disable(struct perf_event *event,
2138                                  struct perf_cpu_context *cpuctx,
2139                                  struct perf_event_context *ctx,
2140                                  void *info)
2141 {
2142         if (event->state < PERF_EVENT_STATE_INACTIVE)
2143                 return;
2144
2145         if (ctx->is_active & EVENT_TIME) {
2146                 update_context_time(ctx);
2147                 update_cgrp_time_from_event(event);
2148         }
2149
2150         if (event == event->group_leader)
2151                 group_sched_out(event, cpuctx, ctx);
2152         else
2153                 event_sched_out(event, cpuctx, ctx);
2154
2155         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2156 }
2157
2158 /*
2159  * Disable an event.
2160  *
2161  * If event->ctx is a cloned context, callers must make sure that
2162  * every task struct that event->ctx->task could possibly point to
2163  * remains valid.  This condition is satisifed when called through
2164  * perf_event_for_each_child or perf_event_for_each because they
2165  * hold the top-level event's child_mutex, so any descendant that
2166  * goes to exit will block in perf_event_exit_event().
2167  *
2168  * When called from perf_pending_event it's OK because event->ctx
2169  * is the current context on this CPU and preemption is disabled,
2170  * hence we can't get into perf_event_task_sched_out for this context.
2171  */
2172 static void _perf_event_disable(struct perf_event *event)
2173 {
2174         struct perf_event_context *ctx = event->ctx;
2175
2176         raw_spin_lock_irq(&ctx->lock);
2177         if (event->state <= PERF_EVENT_STATE_OFF) {
2178                 raw_spin_unlock_irq(&ctx->lock);
2179                 return;
2180         }
2181         raw_spin_unlock_irq(&ctx->lock);
2182
2183         event_function_call(event, __perf_event_disable, NULL);
2184 }
2185
2186 void perf_event_disable_local(struct perf_event *event)
2187 {
2188         event_function_local(event, __perf_event_disable, NULL);
2189 }
2190
2191 /*
2192  * Strictly speaking kernel users cannot create groups and therefore this
2193  * interface does not need the perf_event_ctx_lock() magic.
2194  */
2195 void perf_event_disable(struct perf_event *event)
2196 {
2197         struct perf_event_context *ctx;
2198
2199         ctx = perf_event_ctx_lock(event);
2200         _perf_event_disable(event);
2201         perf_event_ctx_unlock(event, ctx);
2202 }
2203 EXPORT_SYMBOL_GPL(perf_event_disable);
2204
2205 void perf_event_disable_inatomic(struct perf_event *event)
2206 {
2207         WRITE_ONCE(event->pending_disable, smp_processor_id());
2208         /* can fail, see perf_pending_event_disable() */
2209         irq_work_queue(&event->pending);
2210 }
2211
2212 static void perf_set_shadow_time(struct perf_event *event,
2213                                  struct perf_event_context *ctx)
2214 {
2215         /*
2216          * use the correct time source for the time snapshot
2217          *
2218          * We could get by without this by leveraging the
2219          * fact that to get to this function, the caller
2220          * has most likely already called update_context_time()
2221          * and update_cgrp_time_xx() and thus both timestamp
2222          * are identical (or very close). Given that tstamp is,
2223          * already adjusted for cgroup, we could say that:
2224          *    tstamp - ctx->timestamp
2225          * is equivalent to
2226          *    tstamp - cgrp->timestamp.
2227          *
2228          * Then, in perf_output_read(), the calculation would
2229          * work with no changes because:
2230          * - event is guaranteed scheduled in
2231          * - no scheduled out in between
2232          * - thus the timestamp would be the same
2233          *
2234          * But this is a bit hairy.
2235          *
2236          * So instead, we have an explicit cgroup call to remain
2237          * within the time time source all along. We believe it
2238          * is cleaner and simpler to understand.
2239          */
2240         if (is_cgroup_event(event))
2241                 perf_cgroup_set_shadow_time(event, event->tstamp);
2242         else
2243                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2244 }
2245
2246 #define MAX_INTERRUPTS (~0ULL)
2247
2248 static void perf_log_throttle(struct perf_event *event, int enable);
2249 static void perf_log_itrace_start(struct perf_event *event);
2250
2251 static int
2252 event_sched_in(struct perf_event *event,
2253                  struct perf_cpu_context *cpuctx,
2254                  struct perf_event_context *ctx)
2255 {
2256         int ret = 0;
2257
2258         lockdep_assert_held(&ctx->lock);
2259
2260         if (event->state <= PERF_EVENT_STATE_OFF)
2261                 return 0;
2262
2263         WRITE_ONCE(event->oncpu, smp_processor_id());
2264         /*
2265          * Order event::oncpu write to happen before the ACTIVE state is
2266          * visible. This allows perf_event_{stop,read}() to observe the correct
2267          * ->oncpu if it sees ACTIVE.
2268          */
2269         smp_wmb();
2270         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2271
2272         /*
2273          * Unthrottle events, since we scheduled we might have missed several
2274          * ticks already, also for a heavily scheduling task there is little
2275          * guarantee it'll get a tick in a timely manner.
2276          */
2277         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2278                 perf_log_throttle(event, 1);
2279                 event->hw.interrupts = 0;
2280         }
2281
2282         perf_pmu_disable(event->pmu);
2283
2284         perf_set_shadow_time(event, ctx);
2285
2286         perf_log_itrace_start(event);
2287
2288         if (event->pmu->add(event, PERF_EF_START)) {
2289                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2290                 event->oncpu = -1;
2291                 ret = -EAGAIN;
2292                 goto out;
2293         }
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu++;
2297         if (!ctx->nr_active++)
2298                 perf_event_ctx_activate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq++;
2301
2302         if (event->attr.exclusive)
2303                 cpuctx->exclusive = 1;
2304
2305 out:
2306         perf_pmu_enable(event->pmu);
2307
2308         return ret;
2309 }
2310
2311 static int
2312 group_sched_in(struct perf_event *group_event,
2313                struct perf_cpu_context *cpuctx,
2314                struct perf_event_context *ctx)
2315 {
2316         struct perf_event *event, *partial_group = NULL;
2317         struct pmu *pmu = ctx->pmu;
2318
2319         if (group_event->state == PERF_EVENT_STATE_OFF)
2320                 return 0;
2321
2322         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2323
2324         if (event_sched_in(group_event, cpuctx, ctx)) {
2325                 pmu->cancel_txn(pmu);
2326                 perf_mux_hrtimer_restart(cpuctx);
2327                 return -EAGAIN;
2328         }
2329
2330         /*
2331          * Schedule in siblings as one group (if any):
2332          */
2333         for_each_sibling_event(event, group_event) {
2334                 if (event_sched_in(event, cpuctx, ctx)) {
2335                         partial_group = event;
2336                         goto group_error;
2337                 }
2338         }
2339
2340         if (!pmu->commit_txn(pmu))
2341                 return 0;
2342
2343 group_error:
2344         /*
2345          * Groups can be scheduled in as one unit only, so undo any
2346          * partial group before returning:
2347          * The events up to the failed event are scheduled out normally.
2348          */
2349         for_each_sibling_event(event, group_event) {
2350                 if (event == partial_group)
2351                         break;
2352
2353                 event_sched_out(event, cpuctx, ctx);
2354         }
2355         event_sched_out(group_event, cpuctx, ctx);
2356
2357         pmu->cancel_txn(pmu);
2358
2359         perf_mux_hrtimer_restart(cpuctx);
2360
2361         return -EAGAIN;
2362 }
2363
2364 /*
2365  * Work out whether we can put this event group on the CPU now.
2366  */
2367 static int group_can_go_on(struct perf_event *event,
2368                            struct perf_cpu_context *cpuctx,
2369                            int can_add_hw)
2370 {
2371         /*
2372          * Groups consisting entirely of software events can always go on.
2373          */
2374         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2375                 return 1;
2376         /*
2377          * If an exclusive group is already on, no other hardware
2378          * events can go on.
2379          */
2380         if (cpuctx->exclusive)
2381                 return 0;
2382         /*
2383          * If this group is exclusive and there are already
2384          * events on the CPU, it can't go on.
2385          */
2386         if (event->attr.exclusive && cpuctx->active_oncpu)
2387                 return 0;
2388         /*
2389          * Otherwise, try to add it if all previous groups were able
2390          * to go on.
2391          */
2392         return can_add_hw;
2393 }
2394
2395 static void add_event_to_ctx(struct perf_event *event,
2396                                struct perf_event_context *ctx)
2397 {
2398         list_add_event(event, ctx);
2399         perf_group_attach(event);
2400 }
2401
2402 static void ctx_sched_out(struct perf_event_context *ctx,
2403                           struct perf_cpu_context *cpuctx,
2404                           enum event_type_t event_type);
2405 static void
2406 ctx_sched_in(struct perf_event_context *ctx,
2407              struct perf_cpu_context *cpuctx,
2408              enum event_type_t event_type,
2409              struct task_struct *task);
2410
2411 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2412                                struct perf_event_context *ctx,
2413                                enum event_type_t event_type)
2414 {
2415         if (!cpuctx->task_ctx)
2416                 return;
2417
2418         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2419                 return;
2420
2421         ctx_sched_out(ctx, cpuctx, event_type);
2422 }
2423
2424 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2425                                 struct perf_event_context *ctx,
2426                                 struct task_struct *task)
2427 {
2428         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2429         if (ctx)
2430                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2431         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2432         if (ctx)
2433                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2434 }
2435
2436 /*
2437  * We want to maintain the following priority of scheduling:
2438  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2439  *  - task pinned (EVENT_PINNED)
2440  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2441  *  - task flexible (EVENT_FLEXIBLE).
2442  *
2443  * In order to avoid unscheduling and scheduling back in everything every
2444  * time an event is added, only do it for the groups of equal priority and
2445  * below.
2446  *
2447  * This can be called after a batch operation on task events, in which case
2448  * event_type is a bit mask of the types of events involved. For CPU events,
2449  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2450  */
2451 static void ctx_resched(struct perf_cpu_context *cpuctx,
2452                         struct perf_event_context *task_ctx,
2453                         enum event_type_t event_type)
2454 {
2455         enum event_type_t ctx_event_type;
2456         bool cpu_event = !!(event_type & EVENT_CPU);
2457
2458         /*
2459          * If pinned groups are involved, flexible groups also need to be
2460          * scheduled out.
2461          */
2462         if (event_type & EVENT_PINNED)
2463                 event_type |= EVENT_FLEXIBLE;
2464
2465         ctx_event_type = event_type & EVENT_ALL;
2466
2467         perf_pmu_disable(cpuctx->ctx.pmu);
2468         if (task_ctx)
2469                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2470
2471         /*
2472          * Decide which cpu ctx groups to schedule out based on the types
2473          * of events that caused rescheduling:
2474          *  - EVENT_CPU: schedule out corresponding groups;
2475          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2476          *  - otherwise, do nothing more.
2477          */
2478         if (cpu_event)
2479                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2480         else if (ctx_event_type & EVENT_PINNED)
2481                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2482
2483         perf_event_sched_in(cpuctx, task_ctx, current);
2484         perf_pmu_enable(cpuctx->ctx.pmu);
2485 }
2486
2487 /*
2488  * Cross CPU call to install and enable a performance event
2489  *
2490  * Very similar to remote_function() + event_function() but cannot assume that
2491  * things like ctx->is_active and cpuctx->task_ctx are set.
2492  */
2493 static int  __perf_install_in_context(void *info)
2494 {
2495         struct perf_event *event = info;
2496         struct perf_event_context *ctx = event->ctx;
2497         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2498         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2499         bool reprogram = true;
2500         int ret = 0;
2501
2502         raw_spin_lock(&cpuctx->ctx.lock);
2503         if (ctx->task) {
2504                 raw_spin_lock(&ctx->lock);
2505                 task_ctx = ctx;
2506
2507                 reprogram = (ctx->task == current);
2508
2509                 /*
2510                  * If the task is running, it must be running on this CPU,
2511                  * otherwise we cannot reprogram things.
2512                  *
2513                  * If its not running, we don't care, ctx->lock will
2514                  * serialize against it becoming runnable.
2515                  */
2516                 if (task_curr(ctx->task) && !reprogram) {
2517                         ret = -ESRCH;
2518                         goto unlock;
2519                 }
2520
2521                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2522         } else if (task_ctx) {
2523                 raw_spin_lock(&task_ctx->lock);
2524         }
2525
2526 #ifdef CONFIG_CGROUP_PERF
2527         if (is_cgroup_event(event)) {
2528                 /*
2529                  * If the current cgroup doesn't match the event's
2530                  * cgroup, we should not try to schedule it.
2531                  */
2532                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2533                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2534                                         event->cgrp->css.cgroup);
2535         }
2536 #endif
2537
2538         if (reprogram) {
2539                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2540                 add_event_to_ctx(event, ctx);
2541                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2542         } else {
2543                 add_event_to_ctx(event, ctx);
2544         }
2545
2546 unlock:
2547         perf_ctx_unlock(cpuctx, task_ctx);
2548
2549         return ret;
2550 }
2551
2552 static bool exclusive_event_installable(struct perf_event *event,
2553                                         struct perf_event_context *ctx);
2554
2555 /*
2556  * Attach a performance event to a context.
2557  *
2558  * Very similar to event_function_call, see comment there.
2559  */
2560 static void
2561 perf_install_in_context(struct perf_event_context *ctx,
2562                         struct perf_event *event,
2563                         int cpu)
2564 {
2565         struct task_struct *task = READ_ONCE(ctx->task);
2566
2567         lockdep_assert_held(&ctx->mutex);
2568
2569         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2570
2571         if (event->cpu != -1)
2572                 event->cpu = cpu;
2573
2574         /*
2575          * Ensures that if we can observe event->ctx, both the event and ctx
2576          * will be 'complete'. See perf_iterate_sb_cpu().
2577          */
2578         smp_store_release(&event->ctx, ctx);
2579
2580         if (!task) {
2581                 cpu_function_call(cpu, __perf_install_in_context, event);
2582                 return;
2583         }
2584
2585         /*
2586          * Should not happen, we validate the ctx is still alive before calling.
2587          */
2588         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2589                 return;
2590
2591         /*
2592          * Installing events is tricky because we cannot rely on ctx->is_active
2593          * to be set in case this is the nr_events 0 -> 1 transition.
2594          *
2595          * Instead we use task_curr(), which tells us if the task is running.
2596          * However, since we use task_curr() outside of rq::lock, we can race
2597          * against the actual state. This means the result can be wrong.
2598          *
2599          * If we get a false positive, we retry, this is harmless.
2600          *
2601          * If we get a false negative, things are complicated. If we are after
2602          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2603          * value must be correct. If we're before, it doesn't matter since
2604          * perf_event_context_sched_in() will program the counter.
2605          *
2606          * However, this hinges on the remote context switch having observed
2607          * our task->perf_event_ctxp[] store, such that it will in fact take
2608          * ctx::lock in perf_event_context_sched_in().
2609          *
2610          * We do this by task_function_call(), if the IPI fails to hit the task
2611          * we know any future context switch of task must see the
2612          * perf_event_ctpx[] store.
2613          */
2614
2615         /*
2616          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2617          * task_cpu() load, such that if the IPI then does not find the task
2618          * running, a future context switch of that task must observe the
2619          * store.
2620          */
2621         smp_mb();
2622 again:
2623         if (!task_function_call(task, __perf_install_in_context, event))
2624                 return;
2625
2626         raw_spin_lock_irq(&ctx->lock);
2627         task = ctx->task;
2628         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2629                 /*
2630                  * Cannot happen because we already checked above (which also
2631                  * cannot happen), and we hold ctx->mutex, which serializes us
2632                  * against perf_event_exit_task_context().
2633                  */
2634                 raw_spin_unlock_irq(&ctx->lock);
2635                 return;
2636         }
2637         /*
2638          * If the task is not running, ctx->lock will avoid it becoming so,
2639          * thus we can safely install the event.
2640          */
2641         if (task_curr(task)) {
2642                 raw_spin_unlock_irq(&ctx->lock);
2643                 goto again;
2644         }
2645         add_event_to_ctx(event, ctx);
2646         raw_spin_unlock_irq(&ctx->lock);
2647 }
2648
2649 /*
2650  * Cross CPU call to enable a performance event
2651  */
2652 static void __perf_event_enable(struct perf_event *event,
2653                                 struct perf_cpu_context *cpuctx,
2654                                 struct perf_event_context *ctx,
2655                                 void *info)
2656 {
2657         struct perf_event *leader = event->group_leader;
2658         struct perf_event_context *task_ctx;
2659
2660         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2661             event->state <= PERF_EVENT_STATE_ERROR)
2662                 return;
2663
2664         if (ctx->is_active)
2665                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2666
2667         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2668
2669         if (!ctx->is_active)
2670                 return;
2671
2672         if (!event_filter_match(event)) {
2673                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2674                 return;
2675         }
2676
2677         /*
2678          * If the event is in a group and isn't the group leader,
2679          * then don't put it on unless the group is on.
2680          */
2681         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2682                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2683                 return;
2684         }
2685
2686         task_ctx = cpuctx->task_ctx;
2687         if (ctx->task)
2688                 WARN_ON_ONCE(task_ctx != ctx);
2689
2690         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2691 }
2692
2693 /*
2694  * Enable an event.
2695  *
2696  * If event->ctx is a cloned context, callers must make sure that
2697  * every task struct that event->ctx->task could possibly point to
2698  * remains valid.  This condition is satisfied when called through
2699  * perf_event_for_each_child or perf_event_for_each as described
2700  * for perf_event_disable.
2701  */
2702 static void _perf_event_enable(struct perf_event *event)
2703 {
2704         struct perf_event_context *ctx = event->ctx;
2705
2706         raw_spin_lock_irq(&ctx->lock);
2707         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2708             event->state <  PERF_EVENT_STATE_ERROR) {
2709                 raw_spin_unlock_irq(&ctx->lock);
2710                 return;
2711         }
2712
2713         /*
2714          * If the event is in error state, clear that first.
2715          *
2716          * That way, if we see the event in error state below, we know that it
2717          * has gone back into error state, as distinct from the task having
2718          * been scheduled away before the cross-call arrived.
2719          */
2720         if (event->state == PERF_EVENT_STATE_ERROR)
2721                 event->state = PERF_EVENT_STATE_OFF;
2722         raw_spin_unlock_irq(&ctx->lock);
2723
2724         event_function_call(event, __perf_event_enable, NULL);
2725 }
2726
2727 /*
2728  * See perf_event_disable();
2729  */
2730 void perf_event_enable(struct perf_event *event)
2731 {
2732         struct perf_event_context *ctx;
2733
2734         ctx = perf_event_ctx_lock(event);
2735         _perf_event_enable(event);
2736         perf_event_ctx_unlock(event, ctx);
2737 }
2738 EXPORT_SYMBOL_GPL(perf_event_enable);
2739
2740 struct stop_event_data {
2741         struct perf_event       *event;
2742         unsigned int            restart;
2743 };
2744
2745 static int __perf_event_stop(void *info)
2746 {
2747         struct stop_event_data *sd = info;
2748         struct perf_event *event = sd->event;
2749
2750         /* if it's already INACTIVE, do nothing */
2751         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2752                 return 0;
2753
2754         /* matches smp_wmb() in event_sched_in() */
2755         smp_rmb();
2756
2757         /*
2758          * There is a window with interrupts enabled before we get here,
2759          * so we need to check again lest we try to stop another CPU's event.
2760          */
2761         if (READ_ONCE(event->oncpu) != smp_processor_id())
2762                 return -EAGAIN;
2763
2764         event->pmu->stop(event, PERF_EF_UPDATE);
2765
2766         /*
2767          * May race with the actual stop (through perf_pmu_output_stop()),
2768          * but it is only used for events with AUX ring buffer, and such
2769          * events will refuse to restart because of rb::aux_mmap_count==0,
2770          * see comments in perf_aux_output_begin().
2771          *
2772          * Since this is happening on an event-local CPU, no trace is lost
2773          * while restarting.
2774          */
2775         if (sd->restart)
2776                 event->pmu->start(event, 0);
2777
2778         return 0;
2779 }
2780
2781 static int perf_event_stop(struct perf_event *event, int restart)
2782 {
2783         struct stop_event_data sd = {
2784                 .event          = event,
2785                 .restart        = restart,
2786         };
2787         int ret = 0;
2788
2789         do {
2790                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2791                         return 0;
2792
2793                 /* matches smp_wmb() in event_sched_in() */
2794                 smp_rmb();
2795
2796                 /*
2797                  * We only want to restart ACTIVE events, so if the event goes
2798                  * inactive here (event->oncpu==-1), there's nothing more to do;
2799                  * fall through with ret==-ENXIO.
2800                  */
2801                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2802                                         __perf_event_stop, &sd);
2803         } while (ret == -EAGAIN);
2804
2805         return ret;
2806 }
2807
2808 /*
2809  * In order to contain the amount of racy and tricky in the address filter
2810  * configuration management, it is a two part process:
2811  *
2812  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2813  *      we update the addresses of corresponding vmas in
2814  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2815  * (p2) when an event is scheduled in (pmu::add), it calls
2816  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2817  *      if the generation has changed since the previous call.
2818  *
2819  * If (p1) happens while the event is active, we restart it to force (p2).
2820  *
2821  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2822  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2823  *     ioctl;
2824  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2825  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2826  *     for reading;
2827  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2828  *     of exec.
2829  */
2830 void perf_event_addr_filters_sync(struct perf_event *event)
2831 {
2832         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2833
2834         if (!has_addr_filter(event))
2835                 return;
2836
2837         raw_spin_lock(&ifh->lock);
2838         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2839                 event->pmu->addr_filters_sync(event);
2840                 event->hw.addr_filters_gen = event->addr_filters_gen;
2841         }
2842         raw_spin_unlock(&ifh->lock);
2843 }
2844 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2845
2846 static int _perf_event_refresh(struct perf_event *event, int refresh)
2847 {
2848         /*
2849          * not supported on inherited events
2850          */
2851         if (event->attr.inherit || !is_sampling_event(event))
2852                 return -EINVAL;
2853
2854         atomic_add(refresh, &event->event_limit);
2855         _perf_event_enable(event);
2856
2857         return 0;
2858 }
2859
2860 /*
2861  * See perf_event_disable()
2862  */
2863 int perf_event_refresh(struct perf_event *event, int refresh)
2864 {
2865         struct perf_event_context *ctx;
2866         int ret;
2867
2868         ctx = perf_event_ctx_lock(event);
2869         ret = _perf_event_refresh(event, refresh);
2870         perf_event_ctx_unlock(event, ctx);
2871
2872         return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(perf_event_refresh);
2875
2876 static int perf_event_modify_breakpoint(struct perf_event *bp,
2877                                          struct perf_event_attr *attr)
2878 {
2879         int err;
2880
2881         _perf_event_disable(bp);
2882
2883         err = modify_user_hw_breakpoint_check(bp, attr, true);
2884
2885         if (!bp->attr.disabled)
2886                 _perf_event_enable(bp);
2887
2888         return err;
2889 }
2890
2891 static int perf_event_modify_attr(struct perf_event *event,
2892                                   struct perf_event_attr *attr)
2893 {
2894         if (event->attr.type != attr->type)
2895                 return -EINVAL;
2896
2897         switch (event->attr.type) {
2898         case PERF_TYPE_BREAKPOINT:
2899                 return perf_event_modify_breakpoint(event, attr);
2900         default:
2901                 /* Place holder for future additions. */
2902                 return -EOPNOTSUPP;
2903         }
2904 }
2905
2906 static void ctx_sched_out(struct perf_event_context *ctx,
2907                           struct perf_cpu_context *cpuctx,
2908                           enum event_type_t event_type)
2909 {
2910         struct perf_event *event, *tmp;
2911         int is_active = ctx->is_active;
2912
2913         lockdep_assert_held(&ctx->lock);
2914
2915         if (likely(!ctx->nr_events)) {
2916                 /*
2917                  * See __perf_remove_from_context().
2918                  */
2919                 WARN_ON_ONCE(ctx->is_active);
2920                 if (ctx->task)
2921                         WARN_ON_ONCE(cpuctx->task_ctx);
2922                 return;
2923         }
2924
2925         ctx->is_active &= ~event_type;
2926         if (!(ctx->is_active & EVENT_ALL))
2927                 ctx->is_active = 0;
2928
2929         if (ctx->task) {
2930                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2931                 if (!ctx->is_active)
2932                         cpuctx->task_ctx = NULL;
2933         }
2934
2935         /*
2936          * Always update time if it was set; not only when it changes.
2937          * Otherwise we can 'forget' to update time for any but the last
2938          * context we sched out. For example:
2939          *
2940          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2941          *   ctx_sched_out(.event_type = EVENT_PINNED)
2942          *
2943          * would only update time for the pinned events.
2944          */
2945         if (is_active & EVENT_TIME) {
2946                 /* update (and stop) ctx time */
2947                 update_context_time(ctx);
2948                 update_cgrp_time_from_cpuctx(cpuctx);
2949         }
2950
2951         is_active ^= ctx->is_active; /* changed bits */
2952
2953         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2954                 return;
2955
2956         perf_pmu_disable(ctx->pmu);
2957         if (is_active & EVENT_PINNED) {
2958                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2959                         group_sched_out(event, cpuctx, ctx);
2960         }
2961
2962         if (is_active & EVENT_FLEXIBLE) {
2963                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2964                         group_sched_out(event, cpuctx, ctx);
2965
2966                 /*
2967                  * Since we cleared EVENT_FLEXIBLE, also clear
2968                  * rotate_necessary, is will be reset by
2969                  * ctx_flexible_sched_in() when needed.
2970                  */
2971                 ctx->rotate_necessary = 0;
2972         }
2973         perf_pmu_enable(ctx->pmu);
2974 }
2975
2976 /*
2977  * Test whether two contexts are equivalent, i.e. whether they have both been
2978  * cloned from the same version of the same context.
2979  *
2980  * Equivalence is measured using a generation number in the context that is
2981  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2982  * and list_del_event().
2983  */
2984 static int context_equiv(struct perf_event_context *ctx1,
2985                          struct perf_event_context *ctx2)
2986 {
2987         lockdep_assert_held(&ctx1->lock);
2988         lockdep_assert_held(&ctx2->lock);
2989
2990         /* Pinning disables the swap optimization */
2991         if (ctx1->pin_count || ctx2->pin_count)
2992                 return 0;
2993
2994         /* If ctx1 is the parent of ctx2 */
2995         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2996                 return 1;
2997
2998         /* If ctx2 is the parent of ctx1 */
2999         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3000                 return 1;
3001
3002         /*
3003          * If ctx1 and ctx2 have the same parent; we flatten the parent
3004          * hierarchy, see perf_event_init_context().
3005          */
3006         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3007                         ctx1->parent_gen == ctx2->parent_gen)
3008                 return 1;
3009
3010         /* Unmatched */
3011         return 0;
3012 }
3013
3014 static void __perf_event_sync_stat(struct perf_event *event,
3015                                      struct perf_event *next_event)
3016 {
3017         u64 value;
3018
3019         if (!event->attr.inherit_stat)
3020                 return;
3021
3022         /*
3023          * Update the event value, we cannot use perf_event_read()
3024          * because we're in the middle of a context switch and have IRQs
3025          * disabled, which upsets smp_call_function_single(), however
3026          * we know the event must be on the current CPU, therefore we
3027          * don't need to use it.
3028          */
3029         if (event->state == PERF_EVENT_STATE_ACTIVE)
3030                 event->pmu->read(event);
3031
3032         perf_event_update_time(event);
3033
3034         /*
3035          * In order to keep per-task stats reliable we need to flip the event
3036          * values when we flip the contexts.
3037          */
3038         value = local64_read(&next_event->count);
3039         value = local64_xchg(&event->count, value);
3040         local64_set(&next_event->count, value);
3041
3042         swap(event->total_time_enabled, next_event->total_time_enabled);
3043         swap(event->total_time_running, next_event->total_time_running);
3044
3045         /*
3046          * Since we swizzled the values, update the user visible data too.
3047          */
3048         perf_event_update_userpage(event);
3049         perf_event_update_userpage(next_event);
3050 }
3051
3052 static void perf_event_sync_stat(struct perf_event_context *ctx,
3053                                    struct perf_event_context *next_ctx)
3054 {
3055         struct perf_event *event, *next_event;
3056
3057         if (!ctx->nr_stat)
3058                 return;
3059
3060         update_context_time(ctx);
3061
3062         event = list_first_entry(&ctx->event_list,
3063                                    struct perf_event, event_entry);
3064
3065         next_event = list_first_entry(&next_ctx->event_list,
3066                                         struct perf_event, event_entry);
3067
3068         while (&event->event_entry != &ctx->event_list &&
3069                &next_event->event_entry != &next_ctx->event_list) {
3070
3071                 __perf_event_sync_stat(event, next_event);
3072
3073                 event = list_next_entry(event, event_entry);
3074                 next_event = list_next_entry(next_event, event_entry);
3075         }
3076 }
3077
3078 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3079                                          struct task_struct *next)
3080 {
3081         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3082         struct perf_event_context *next_ctx;
3083         struct perf_event_context *parent, *next_parent;
3084         struct perf_cpu_context *cpuctx;
3085         int do_switch = 1;
3086
3087         if (likely(!ctx))
3088                 return;
3089
3090         cpuctx = __get_cpu_context(ctx);
3091         if (!cpuctx->task_ctx)
3092                 return;
3093
3094         rcu_read_lock();
3095         next_ctx = next->perf_event_ctxp[ctxn];
3096         if (!next_ctx)
3097                 goto unlock;
3098
3099         parent = rcu_dereference(ctx->parent_ctx);
3100         next_parent = rcu_dereference(next_ctx->parent_ctx);
3101
3102         /* If neither context have a parent context; they cannot be clones. */
3103         if (!parent && !next_parent)
3104                 goto unlock;
3105
3106         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3107                 /*
3108                  * Looks like the two contexts are clones, so we might be
3109                  * able to optimize the context switch.  We lock both
3110                  * contexts and check that they are clones under the
3111                  * lock (including re-checking that neither has been
3112                  * uncloned in the meantime).  It doesn't matter which
3113                  * order we take the locks because no other cpu could
3114                  * be trying to lock both of these tasks.
3115                  */
3116                 raw_spin_lock(&ctx->lock);
3117                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3118                 if (context_equiv(ctx, next_ctx)) {
3119                         WRITE_ONCE(ctx->task, next);
3120                         WRITE_ONCE(next_ctx->task, task);
3121
3122                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3123
3124                         /*
3125                          * RCU_INIT_POINTER here is safe because we've not
3126                          * modified the ctx and the above modification of
3127                          * ctx->task and ctx->task_ctx_data are immaterial
3128                          * since those values are always verified under
3129                          * ctx->lock which we're now holding.
3130                          */
3131                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3132                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3133
3134                         do_switch = 0;
3135
3136                         perf_event_sync_stat(ctx, next_ctx);
3137                 }
3138                 raw_spin_unlock(&next_ctx->lock);
3139                 raw_spin_unlock(&ctx->lock);
3140         }
3141 unlock:
3142         rcu_read_unlock();
3143
3144         if (do_switch) {
3145                 raw_spin_lock(&ctx->lock);
3146                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3147                 raw_spin_unlock(&ctx->lock);
3148         }
3149 }
3150
3151 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3152
3153 void perf_sched_cb_dec(struct pmu *pmu)
3154 {
3155         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3156
3157         this_cpu_dec(perf_sched_cb_usages);
3158
3159         if (!--cpuctx->sched_cb_usage)
3160                 list_del(&cpuctx->sched_cb_entry);
3161 }
3162
3163
3164 void perf_sched_cb_inc(struct pmu *pmu)
3165 {
3166         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3167
3168         if (!cpuctx->sched_cb_usage++)
3169                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3170
3171         this_cpu_inc(perf_sched_cb_usages);
3172 }
3173
3174 /*
3175  * This function provides the context switch callback to the lower code
3176  * layer. It is invoked ONLY when the context switch callback is enabled.
3177  *
3178  * This callback is relevant even to per-cpu events; for example multi event
3179  * PEBS requires this to provide PID/TID information. This requires we flush
3180  * all queued PEBS records before we context switch to a new task.
3181  */
3182 static void perf_pmu_sched_task(struct task_struct *prev,
3183                                 struct task_struct *next,
3184                                 bool sched_in)
3185 {
3186         struct perf_cpu_context *cpuctx;
3187         struct pmu *pmu;
3188
3189         if (prev == next)
3190                 return;
3191
3192         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3193                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3194
3195                 if (WARN_ON_ONCE(!pmu->sched_task))
3196                         continue;
3197
3198                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3199                 perf_pmu_disable(pmu);
3200
3201                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3202
3203                 perf_pmu_enable(pmu);
3204                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3205         }
3206 }
3207
3208 static void perf_event_switch(struct task_struct *task,
3209                               struct task_struct *next_prev, bool sched_in);
3210
3211 #define for_each_task_context_nr(ctxn)                                  \
3212         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3213
3214 /*
3215  * Called from scheduler to remove the events of the current task,
3216  * with interrupts disabled.
3217  *
3218  * We stop each event and update the event value in event->count.
3219  *
3220  * This does not protect us against NMI, but disable()
3221  * sets the disabled bit in the control field of event _before_
3222  * accessing the event control register. If a NMI hits, then it will
3223  * not restart the event.
3224  */
3225 void __perf_event_task_sched_out(struct task_struct *task,
3226                                  struct task_struct *next)
3227 {
3228         int ctxn;
3229
3230         if (__this_cpu_read(perf_sched_cb_usages))
3231                 perf_pmu_sched_task(task, next, false);
3232
3233         if (atomic_read(&nr_switch_events))
3234                 perf_event_switch(task, next, false);
3235
3236         for_each_task_context_nr(ctxn)
3237                 perf_event_context_sched_out(task, ctxn, next);
3238
3239         /*
3240          * if cgroup events exist on this CPU, then we need
3241          * to check if we have to switch out PMU state.
3242          * cgroup event are system-wide mode only
3243          */
3244         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3245                 perf_cgroup_sched_out(task, next);
3246 }
3247
3248 /*
3249  * Called with IRQs disabled
3250  */
3251 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3252                               enum event_type_t event_type)
3253 {
3254         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3255 }
3256
3257 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3258                               int (*func)(struct perf_event *, void *), void *data)
3259 {
3260         struct perf_event **evt, *evt1, *evt2;
3261         int ret;
3262
3263         evt1 = perf_event_groups_first(groups, -1);
3264         evt2 = perf_event_groups_first(groups, cpu);
3265
3266         while (evt1 || evt2) {
3267                 if (evt1 && evt2) {
3268                         if (evt1->group_index < evt2->group_index)
3269                                 evt = &evt1;
3270                         else
3271                                 evt = &evt2;
3272                 } else if (evt1) {
3273                         evt = &evt1;
3274                 } else {
3275                         evt = &evt2;
3276                 }
3277
3278                 ret = func(*evt, data);
3279                 if (ret)
3280                         return ret;
3281
3282                 *evt = perf_event_groups_next(*evt);
3283         }
3284
3285         return 0;
3286 }
3287
3288 struct sched_in_data {
3289         struct perf_event_context *ctx;
3290         struct perf_cpu_context *cpuctx;
3291         int can_add_hw;
3292 };
3293
3294 static int pinned_sched_in(struct perf_event *event, void *data)
3295 {
3296         struct sched_in_data *sid = data;
3297
3298         if (event->state <= PERF_EVENT_STATE_OFF)
3299                 return 0;
3300
3301         if (!event_filter_match(event))
3302                 return 0;
3303
3304         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3305                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3306                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3307         }
3308
3309         /*
3310          * If this pinned group hasn't been scheduled,
3311          * put it in error state.
3312          */
3313         if (event->state == PERF_EVENT_STATE_INACTIVE)
3314                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3315
3316         return 0;
3317 }
3318
3319 static int flexible_sched_in(struct perf_event *event, void *data)
3320 {
3321         struct sched_in_data *sid = data;
3322
3323         if (event->state <= PERF_EVENT_STATE_OFF)
3324                 return 0;
3325
3326         if (!event_filter_match(event))
3327                 return 0;
3328
3329         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3330                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3331                 if (ret) {
3332                         sid->can_add_hw = 0;
3333                         sid->ctx->rotate_necessary = 1;
3334                         return 0;
3335                 }
3336                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3337         }
3338
3339         return 0;
3340 }
3341
3342 static void
3343 ctx_pinned_sched_in(struct perf_event_context *ctx,
3344                     struct perf_cpu_context *cpuctx)
3345 {
3346         struct sched_in_data sid = {
3347                 .ctx = ctx,
3348                 .cpuctx = cpuctx,
3349                 .can_add_hw = 1,
3350         };
3351
3352         visit_groups_merge(&ctx->pinned_groups,
3353                            smp_processor_id(),
3354                            pinned_sched_in, &sid);
3355 }
3356
3357 static void
3358 ctx_flexible_sched_in(struct perf_event_context *ctx,
3359                       struct perf_cpu_context *cpuctx)
3360 {
3361         struct sched_in_data sid = {
3362                 .ctx = ctx,
3363                 .cpuctx = cpuctx,
3364                 .can_add_hw = 1,
3365         };
3366
3367         visit_groups_merge(&ctx->flexible_groups,
3368                            smp_processor_id(),
3369                            flexible_sched_in, &sid);
3370 }
3371
3372 static void
3373 ctx_sched_in(struct perf_event_context *ctx,
3374              struct perf_cpu_context *cpuctx,
3375              enum event_type_t event_type,
3376              struct task_struct *task)
3377 {
3378         int is_active = ctx->is_active;
3379         u64 now;
3380
3381         lockdep_assert_held(&ctx->lock);
3382
3383         if (likely(!ctx->nr_events))
3384                 return;
3385
3386         ctx->is_active |= (event_type | EVENT_TIME);
3387         if (ctx->task) {
3388                 if (!is_active)
3389                         cpuctx->task_ctx = ctx;
3390                 else
3391                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3392         }
3393
3394         is_active ^= ctx->is_active; /* changed bits */
3395
3396         if (is_active & EVENT_TIME) {
3397                 /* start ctx time */
3398                 now = perf_clock();
3399                 ctx->timestamp = now;
3400                 perf_cgroup_set_timestamp(task, ctx);
3401         }
3402
3403         /*
3404          * First go through the list and put on any pinned groups
3405          * in order to give them the best chance of going on.
3406          */
3407         if (is_active & EVENT_PINNED)
3408                 ctx_pinned_sched_in(ctx, cpuctx);
3409
3410         /* Then walk through the lower prio flexible groups */
3411         if (is_active & EVENT_FLEXIBLE)
3412                 ctx_flexible_sched_in(ctx, cpuctx);
3413 }
3414
3415 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3416                              enum event_type_t event_type,
3417                              struct task_struct *task)
3418 {
3419         struct perf_event_context *ctx = &cpuctx->ctx;
3420
3421         ctx_sched_in(ctx, cpuctx, event_type, task);
3422 }
3423
3424 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3425                                         struct task_struct *task)
3426 {
3427         struct perf_cpu_context *cpuctx;
3428
3429         cpuctx = __get_cpu_context(ctx);
3430         if (cpuctx->task_ctx == ctx)
3431                 return;
3432
3433         perf_ctx_lock(cpuctx, ctx);
3434         /*
3435          * We must check ctx->nr_events while holding ctx->lock, such
3436          * that we serialize against perf_install_in_context().
3437          */
3438         if (!ctx->nr_events)
3439                 goto unlock;
3440
3441         perf_pmu_disable(ctx->pmu);
3442         /*
3443          * We want to keep the following priority order:
3444          * cpu pinned (that don't need to move), task pinned,
3445          * cpu flexible, task flexible.
3446          *
3447          * However, if task's ctx is not carrying any pinned
3448          * events, no need to flip the cpuctx's events around.
3449          */
3450         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3451                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3452         perf_event_sched_in(cpuctx, ctx, task);
3453         perf_pmu_enable(ctx->pmu);
3454
3455 unlock:
3456         perf_ctx_unlock(cpuctx, ctx);
3457 }
3458
3459 /*
3460  * Called from scheduler to add the events of the current task
3461  * with interrupts disabled.
3462  *
3463  * We restore the event value and then enable it.
3464  *
3465  * This does not protect us against NMI, but enable()
3466  * sets the enabled bit in the control field of event _before_
3467  * accessing the event control register. If a NMI hits, then it will
3468  * keep the event running.
3469  */
3470 void __perf_event_task_sched_in(struct task_struct *prev,
3471                                 struct task_struct *task)
3472 {
3473         struct perf_event_context *ctx;
3474         int ctxn;
3475
3476         /*
3477          * If cgroup events exist on this CPU, then we need to check if we have
3478          * to switch in PMU state; cgroup event are system-wide mode only.
3479          *
3480          * Since cgroup events are CPU events, we must schedule these in before
3481          * we schedule in the task events.
3482          */
3483         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3484                 perf_cgroup_sched_in(prev, task);
3485
3486         for_each_task_context_nr(ctxn) {
3487                 ctx = task->perf_event_ctxp[ctxn];
3488                 if (likely(!ctx))
3489                         continue;
3490
3491                 perf_event_context_sched_in(ctx, task);
3492         }
3493
3494         if (atomic_read(&nr_switch_events))
3495                 perf_event_switch(task, prev, true);
3496
3497         if (__this_cpu_read(perf_sched_cb_usages))
3498                 perf_pmu_sched_task(prev, task, true);
3499 }
3500
3501 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3502 {
3503         u64 frequency = event->attr.sample_freq;
3504         u64 sec = NSEC_PER_SEC;
3505         u64 divisor, dividend;
3506
3507         int count_fls, nsec_fls, frequency_fls, sec_fls;
3508
3509         count_fls = fls64(count);
3510         nsec_fls = fls64(nsec);
3511         frequency_fls = fls64(frequency);
3512         sec_fls = 30;
3513
3514         /*
3515          * We got @count in @nsec, with a target of sample_freq HZ
3516          * the target period becomes:
3517          *
3518          *             @count * 10^9
3519          * period = -------------------
3520          *          @nsec * sample_freq
3521          *
3522          */
3523
3524         /*
3525          * Reduce accuracy by one bit such that @a and @b converge
3526          * to a similar magnitude.
3527          */
3528 #define REDUCE_FLS(a, b)                \
3529 do {                                    \
3530         if (a##_fls > b##_fls) {        \
3531                 a >>= 1;                \
3532                 a##_fls--;              \
3533         } else {                        \
3534                 b >>= 1;                \
3535                 b##_fls--;              \
3536         }                               \
3537 } while (0)
3538
3539         /*
3540          * Reduce accuracy until either term fits in a u64, then proceed with
3541          * the other, so that finally we can do a u64/u64 division.
3542          */
3543         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3544                 REDUCE_FLS(nsec, frequency);
3545                 REDUCE_FLS(sec, count);
3546         }
3547
3548         if (count_fls + sec_fls > 64) {
3549                 divisor = nsec * frequency;
3550
3551                 while (count_fls + sec_fls > 64) {
3552                         REDUCE_FLS(count, sec);
3553                         divisor >>= 1;
3554                 }
3555
3556                 dividend = count * sec;
3557         } else {
3558                 dividend = count * sec;
3559
3560                 while (nsec_fls + frequency_fls > 64) {
3561                         REDUCE_FLS(nsec, frequency);
3562                         dividend >>= 1;
3563                 }
3564
3565                 divisor = nsec * frequency;
3566         }
3567
3568         if (!divisor)
3569                 return dividend;
3570
3571         return div64_u64(dividend, divisor);
3572 }
3573
3574 static DEFINE_PER_CPU(int, perf_throttled_count);
3575 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3576
3577 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3578 {
3579         struct hw_perf_event *hwc = &event->hw;
3580         s64 period, sample_period;
3581         s64 delta;
3582
3583         period = perf_calculate_period(event, nsec, count);
3584
3585         delta = (s64)(period - hwc->sample_period);
3586         delta = (delta + 7) / 8; /* low pass filter */
3587
3588         sample_period = hwc->sample_period + delta;
3589
3590         if (!sample_period)
3591                 sample_period = 1;
3592
3593         hwc->sample_period = sample_period;
3594
3595         if (local64_read(&hwc->period_left) > 8*sample_period) {
3596                 if (disable)
3597                         event->pmu->stop(event, PERF_EF_UPDATE);
3598
3599                 local64_set(&hwc->period_left, 0);
3600
3601                 if (disable)
3602                         event->pmu->start(event, PERF_EF_RELOAD);
3603         }
3604 }
3605
3606 /*
3607  * combine freq adjustment with unthrottling to avoid two passes over the
3608  * events. At the same time, make sure, having freq events does not change
3609  * the rate of unthrottling as that would introduce bias.
3610  */
3611 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3612                                            int needs_unthr)
3613 {
3614         struct perf_event *event;
3615         struct hw_perf_event *hwc;
3616         u64 now, period = TICK_NSEC;
3617         s64 delta;
3618
3619         /*
3620          * only need to iterate over all events iff:
3621          * - context have events in frequency mode (needs freq adjust)
3622          * - there are events to unthrottle on this cpu
3623          */
3624         if (!(ctx->nr_freq || needs_unthr))
3625                 return;
3626
3627         raw_spin_lock(&ctx->lock);
3628         perf_pmu_disable(ctx->pmu);
3629
3630         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3631                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3632                         continue;
3633
3634                 if (!event_filter_match(event))
3635                         continue;
3636
3637                 perf_pmu_disable(event->pmu);
3638
3639                 hwc = &event->hw;
3640
3641                 if (hwc->interrupts == MAX_INTERRUPTS) {
3642                         hwc->interrupts = 0;
3643                         perf_log_throttle(event, 1);
3644                         event->pmu->start(event, 0);
3645                 }
3646
3647                 if (!event->attr.freq || !event->attr.sample_freq)
3648                         goto next;
3649
3650                 /*
3651                  * stop the event and update event->count
3652                  */
3653                 event->pmu->stop(event, PERF_EF_UPDATE);
3654
3655                 now = local64_read(&event->count);
3656                 delta = now - hwc->freq_count_stamp;
3657                 hwc->freq_count_stamp = now;
3658
3659                 /*
3660                  * restart the event
3661                  * reload only if value has changed
3662                  * we have stopped the event so tell that
3663                  * to perf_adjust_period() to avoid stopping it
3664                  * twice.
3665                  */
3666                 if (delta > 0)
3667                         perf_adjust_period(event, period, delta, false);
3668
3669                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3670         next:
3671                 perf_pmu_enable(event->pmu);
3672         }
3673
3674         perf_pmu_enable(ctx->pmu);
3675         raw_spin_unlock(&ctx->lock);
3676 }
3677
3678 /*
3679  * Move @event to the tail of the @ctx's elegible events.
3680  */
3681 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3682 {
3683         /*
3684          * Rotate the first entry last of non-pinned groups. Rotation might be
3685          * disabled by the inheritance code.
3686          */
3687         if (ctx->rotate_disable)
3688                 return;
3689
3690         perf_event_groups_delete(&ctx->flexible_groups, event);
3691         perf_event_groups_insert(&ctx->flexible_groups, event);
3692 }
3693
3694 /* pick an event from the flexible_groups to rotate */
3695 static inline struct perf_event *
3696 ctx_event_to_rotate(struct perf_event_context *ctx)
3697 {
3698         struct perf_event *event;
3699
3700         /* pick the first active flexible event */
3701         event = list_first_entry_or_null(&ctx->flexible_active,
3702                                          struct perf_event, active_list);
3703
3704         /* if no active flexible event, pick the first event */
3705         if (!event) {
3706                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3707                                       typeof(*event), group_node);
3708         }
3709
3710         /*
3711          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3712          * finds there are unschedulable events, it will set it again.
3713          */
3714         ctx->rotate_necessary = 0;
3715
3716         return event;
3717 }
3718
3719 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3720 {
3721         struct perf_event *cpu_event = NULL, *task_event = NULL;
3722         struct perf_event_context *task_ctx = NULL;
3723         int cpu_rotate, task_rotate;
3724
3725         /*
3726          * Since we run this from IRQ context, nobody can install new
3727          * events, thus the event count values are stable.
3728          */
3729
3730         cpu_rotate = cpuctx->ctx.rotate_necessary;
3731         task_ctx = cpuctx->task_ctx;
3732         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3733
3734         if (!(cpu_rotate || task_rotate))
3735                 return false;
3736
3737         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3738         perf_pmu_disable(cpuctx->ctx.pmu);
3739
3740         if (task_rotate)
3741                 task_event = ctx_event_to_rotate(task_ctx);
3742         if (cpu_rotate)
3743                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3744
3745         /*
3746          * As per the order given at ctx_resched() first 'pop' task flexible
3747          * and then, if needed CPU flexible.
3748          */
3749         if (task_event || (task_ctx && cpu_event))
3750                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3751         if (cpu_event)
3752                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3753
3754         if (task_event)
3755                 rotate_ctx(task_ctx, task_event);
3756         if (cpu_event)
3757                 rotate_ctx(&cpuctx->ctx, cpu_event);
3758
3759         perf_event_sched_in(cpuctx, task_ctx, current);
3760
3761         perf_pmu_enable(cpuctx->ctx.pmu);
3762         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3763
3764         return true;
3765 }
3766
3767 void perf_event_task_tick(void)
3768 {
3769         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3770         struct perf_event_context *ctx, *tmp;
3771         int throttled;
3772
3773         lockdep_assert_irqs_disabled();
3774
3775         __this_cpu_inc(perf_throttled_seq);
3776         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3777         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3778
3779         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3780                 perf_adjust_freq_unthr_context(ctx, throttled);
3781 }
3782
3783 static int event_enable_on_exec(struct perf_event *event,
3784                                 struct perf_event_context *ctx)
3785 {
3786         if (!event->attr.enable_on_exec)
3787                 return 0;
3788
3789         event->attr.enable_on_exec = 0;
3790         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3791                 return 0;
3792
3793         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3794
3795         return 1;
3796 }
3797
3798 /*
3799  * Enable all of a task's events that have been marked enable-on-exec.
3800  * This expects task == current.
3801  */
3802 static void perf_event_enable_on_exec(int ctxn)
3803 {
3804         struct perf_event_context *ctx, *clone_ctx = NULL;
3805         enum event_type_t event_type = 0;
3806         struct perf_cpu_context *cpuctx;
3807         struct perf_event *event;
3808         unsigned long flags;
3809         int enabled = 0;
3810
3811         local_irq_save(flags);
3812         ctx = current->perf_event_ctxp[ctxn];
3813         if (!ctx || !ctx->nr_events)
3814                 goto out;
3815
3816         cpuctx = __get_cpu_context(ctx);
3817         perf_ctx_lock(cpuctx, ctx);
3818         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3819         list_for_each_entry(event, &ctx->event_list, event_entry) {
3820                 enabled |= event_enable_on_exec(event, ctx);
3821                 event_type |= get_event_type(event);
3822         }
3823
3824         /*
3825          * Unclone and reschedule this context if we enabled any event.
3826          */
3827         if (enabled) {
3828                 clone_ctx = unclone_ctx(ctx);
3829                 ctx_resched(cpuctx, ctx, event_type);
3830         } else {
3831                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3832         }
3833         perf_ctx_unlock(cpuctx, ctx);
3834
3835 out:
3836         local_irq_restore(flags);
3837
3838         if (clone_ctx)
3839                 put_ctx(clone_ctx);
3840 }
3841
3842 struct perf_read_data {
3843         struct perf_event *event;
3844         bool group;
3845         int ret;
3846 };
3847
3848 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3849 {
3850         u16 local_pkg, event_pkg;
3851
3852         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3853                 int local_cpu = smp_processor_id();
3854
3855                 event_pkg = topology_physical_package_id(event_cpu);
3856                 local_pkg = topology_physical_package_id(local_cpu);
3857
3858                 if (event_pkg == local_pkg)
3859                         return local_cpu;
3860         }
3861
3862         return event_cpu;
3863 }
3864
3865 /*
3866  * Cross CPU call to read the hardware event
3867  */
3868 static void __perf_event_read(void *info)
3869 {
3870         struct perf_read_data *data = info;
3871         struct perf_event *sub, *event = data->event;
3872         struct perf_event_context *ctx = event->ctx;
3873         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3874         struct pmu *pmu = event->pmu;
3875
3876         /*
3877          * If this is a task context, we need to check whether it is
3878          * the current task context of this cpu.  If not it has been
3879          * scheduled out before the smp call arrived.  In that case
3880          * event->count would have been updated to a recent sample
3881          * when the event was scheduled out.
3882          */
3883         if (ctx->task && cpuctx->task_ctx != ctx)
3884                 return;
3885
3886         raw_spin_lock(&ctx->lock);
3887         if (ctx->is_active & EVENT_TIME) {
3888                 update_context_time(ctx);
3889                 update_cgrp_time_from_event(event);
3890         }
3891
3892         perf_event_update_time(event);
3893         if (data->group)
3894                 perf_event_update_sibling_time(event);
3895
3896         if (event->state != PERF_EVENT_STATE_ACTIVE)
3897                 goto unlock;
3898
3899         if (!data->group) {
3900                 pmu->read(event);
3901                 data->ret = 0;
3902                 goto unlock;
3903         }
3904
3905         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3906
3907         pmu->read(event);
3908
3909         for_each_sibling_event(sub, event) {
3910                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3911                         /*
3912                          * Use sibling's PMU rather than @event's since
3913                          * sibling could be on different (eg: software) PMU.
3914                          */
3915                         sub->pmu->read(sub);
3916                 }
3917         }
3918
3919         data->ret = pmu->commit_txn(pmu);
3920
3921 unlock:
3922         raw_spin_unlock(&ctx->lock);
3923 }
3924
3925 static inline u64 perf_event_count(struct perf_event *event)
3926 {
3927         return local64_read(&event->count) + atomic64_read(&event->child_count);
3928 }
3929
3930 /*
3931  * NMI-safe method to read a local event, that is an event that
3932  * is:
3933  *   - either for the current task, or for this CPU
3934  *   - does not have inherit set, for inherited task events
3935  *     will not be local and we cannot read them atomically
3936  *   - must not have a pmu::count method
3937  */
3938 int perf_event_read_local(struct perf_event *event, u64 *value,
3939                           u64 *enabled, u64 *running)
3940 {
3941         unsigned long flags;
3942         int ret = 0;
3943
3944         /*
3945          * Disabling interrupts avoids all counter scheduling (context
3946          * switches, timer based rotation and IPIs).
3947          */
3948         local_irq_save(flags);
3949
3950         /*
3951          * It must not be an event with inherit set, we cannot read
3952          * all child counters from atomic context.
3953          */
3954         if (event->attr.inherit) {
3955                 ret = -EOPNOTSUPP;
3956                 goto out;
3957         }
3958
3959         /* If this is a per-task event, it must be for current */
3960         if ((event->attach_state & PERF_ATTACH_TASK) &&
3961             event->hw.target != current) {
3962                 ret = -EINVAL;
3963                 goto out;
3964         }
3965
3966         /* If this is a per-CPU event, it must be for this CPU */
3967         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3968             event->cpu != smp_processor_id()) {
3969                 ret = -EINVAL;
3970                 goto out;
3971         }
3972
3973         /* If this is a pinned event it must be running on this CPU */
3974         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3975                 ret = -EBUSY;
3976                 goto out;
3977         }
3978
3979         /*
3980          * If the event is currently on this CPU, its either a per-task event,
3981          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3982          * oncpu == -1).
3983          */
3984         if (event->oncpu == smp_processor_id())
3985                 event->pmu->read(event);
3986
3987         *value = local64_read(&event->count);
3988         if (enabled || running) {
3989                 u64 now = event->shadow_ctx_time + perf_clock();
3990                 u64 __enabled, __running;
3991
3992                 __perf_update_times(event, now, &__enabled, &__running);
3993                 if (enabled)
3994                         *enabled = __enabled;
3995                 if (running)
3996                         *running = __running;
3997         }
3998 out:
3999         local_irq_restore(flags);
4000
4001         return ret;
4002 }
4003
4004 static int perf_event_read(struct perf_event *event, bool group)
4005 {
4006         enum perf_event_state state = READ_ONCE(event->state);
4007         int event_cpu, ret = 0;
4008
4009         /*
4010          * If event is enabled and currently active on a CPU, update the
4011          * value in the event structure:
4012          */
4013 again:
4014         if (state == PERF_EVENT_STATE_ACTIVE) {
4015                 struct perf_read_data data;
4016
4017                 /*
4018                  * Orders the ->state and ->oncpu loads such that if we see
4019                  * ACTIVE we must also see the right ->oncpu.
4020                  *
4021                  * Matches the smp_wmb() from event_sched_in().
4022                  */
4023                 smp_rmb();
4024
4025                 event_cpu = READ_ONCE(event->oncpu);
4026                 if ((unsigned)event_cpu >= nr_cpu_ids)
4027                         return 0;
4028
4029                 data = (struct perf_read_data){
4030                         .event = event,
4031                         .group = group,
4032                         .ret = 0,
4033                 };
4034
4035                 preempt_disable();
4036                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4037
4038                 /*
4039                  * Purposely ignore the smp_call_function_single() return
4040                  * value.
4041                  *
4042                  * If event_cpu isn't a valid CPU it means the event got
4043                  * scheduled out and that will have updated the event count.
4044                  *
4045                  * Therefore, either way, we'll have an up-to-date event count
4046                  * after this.
4047                  */
4048                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4049                 preempt_enable();
4050                 ret = data.ret;
4051
4052         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4053                 struct perf_event_context *ctx = event->ctx;
4054                 unsigned long flags;
4055
4056                 raw_spin_lock_irqsave(&ctx->lock, flags);
4057                 state = event->state;
4058                 if (state != PERF_EVENT_STATE_INACTIVE) {
4059                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4060                         goto again;
4061                 }
4062
4063                 /*
4064                  * May read while context is not active (e.g., thread is
4065                  * blocked), in that case we cannot update context time
4066                  */
4067                 if (ctx->is_active & EVENT_TIME) {
4068                         update_context_time(ctx);
4069                         update_cgrp_time_from_event(event);
4070                 }
4071
4072                 perf_event_update_time(event);
4073                 if (group)
4074                         perf_event_update_sibling_time(event);
4075                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4076         }
4077
4078         return ret;
4079 }
4080
4081 /*
4082  * Initialize the perf_event context in a task_struct:
4083  */
4084 static void __perf_event_init_context(struct perf_event_context *ctx)
4085 {
4086         raw_spin_lock_init(&ctx->lock);
4087         mutex_init(&ctx->mutex);
4088         INIT_LIST_HEAD(&ctx->active_ctx_list);
4089         perf_event_groups_init(&ctx->pinned_groups);
4090         perf_event_groups_init(&ctx->flexible_groups);
4091         INIT_LIST_HEAD(&ctx->event_list);
4092         INIT_LIST_HEAD(&ctx->pinned_active);
4093         INIT_LIST_HEAD(&ctx->flexible_active);
4094         atomic_set(&ctx->refcount, 1);
4095 }
4096
4097 static struct perf_event_context *
4098 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4099 {
4100         struct perf_event_context *ctx;
4101
4102         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4103         if (!ctx)
4104                 return NULL;
4105
4106         __perf_event_init_context(ctx);
4107         if (task) {
4108                 ctx->task = task;
4109                 get_task_struct(task);
4110         }
4111         ctx->pmu = pmu;
4112
4113         return ctx;
4114 }
4115
4116 static struct task_struct *
4117 find_lively_task_by_vpid(pid_t vpid)
4118 {
4119         struct task_struct *task;
4120
4121         rcu_read_lock();
4122         if (!vpid)
4123                 task = current;
4124         else
4125                 task = find_task_by_vpid(vpid);
4126         if (task)
4127                 get_task_struct(task);
4128         rcu_read_unlock();
4129
4130         if (!task)
4131                 return ERR_PTR(-ESRCH);
4132
4133         return task;
4134 }
4135
4136 /*
4137  * Returns a matching context with refcount and pincount.
4138  */
4139 static struct perf_event_context *
4140 find_get_context(struct pmu *pmu, struct task_struct *task,
4141                 struct perf_event *event)
4142 {
4143         struct perf_event_context *ctx, *clone_ctx = NULL;
4144         struct perf_cpu_context *cpuctx;
4145         void *task_ctx_data = NULL;
4146         unsigned long flags;
4147         int ctxn, err;
4148         int cpu = event->cpu;
4149
4150         if (!task) {
4151                 /* Must be root to operate on a CPU event: */
4152                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4153                         return ERR_PTR(-EACCES);
4154
4155                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4156                 ctx = &cpuctx->ctx;
4157                 get_ctx(ctx);
4158                 ++ctx->pin_count;
4159
4160                 return ctx;
4161         }
4162
4163         err = -EINVAL;
4164         ctxn = pmu->task_ctx_nr;
4165         if (ctxn < 0)
4166                 goto errout;
4167
4168         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4169                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4170                 if (!task_ctx_data) {
4171                         err = -ENOMEM;
4172                         goto errout;
4173                 }
4174         }
4175
4176 retry:
4177         ctx = perf_lock_task_context(task, ctxn, &flags);
4178         if (ctx) {
4179                 clone_ctx = unclone_ctx(ctx);
4180                 ++ctx->pin_count;
4181
4182                 if (task_ctx_data && !ctx->task_ctx_data) {
4183                         ctx->task_ctx_data = task_ctx_data;
4184                         task_ctx_data = NULL;
4185                 }
4186                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4187
4188                 if (clone_ctx)
4189                         put_ctx(clone_ctx);
4190         } else {
4191                 ctx = alloc_perf_context(pmu, task);
4192                 err = -ENOMEM;
4193                 if (!ctx)
4194                         goto errout;
4195
4196                 if (task_ctx_data) {
4197                         ctx->task_ctx_data = task_ctx_data;
4198                         task_ctx_data = NULL;
4199                 }
4200
4201                 err = 0;
4202                 mutex_lock(&task->perf_event_mutex);
4203                 /*
4204                  * If it has already passed perf_event_exit_task().
4205                  * we must see PF_EXITING, it takes this mutex too.
4206                  */
4207                 if (task->flags & PF_EXITING)
4208                         err = -ESRCH;
4209                 else if (task->perf_event_ctxp[ctxn])
4210                         err = -EAGAIN;
4211                 else {
4212                         get_ctx(ctx);
4213                         ++ctx->pin_count;
4214                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4215                 }
4216                 mutex_unlock(&task->perf_event_mutex);
4217
4218                 if (unlikely(err)) {
4219                         put_ctx(ctx);
4220
4221                         if (err == -EAGAIN)
4222                                 goto retry;
4223                         goto errout;
4224                 }
4225         }
4226
4227         kfree(task_ctx_data);
4228         return ctx;
4229
4230 errout:
4231         kfree(task_ctx_data);
4232         return ERR_PTR(err);
4233 }
4234
4235 static void perf_event_free_filter(struct perf_event *event);
4236 static void perf_event_free_bpf_prog(struct perf_event *event);
4237
4238 static void free_event_rcu(struct rcu_head *head)
4239 {
4240         struct perf_event *event;
4241
4242         event = container_of(head, struct perf_event, rcu_head);
4243         if (event->ns)
4244                 put_pid_ns(event->ns);
4245         perf_event_free_filter(event);
4246         kfree(event);
4247 }
4248
4249 static void ring_buffer_attach(struct perf_event *event,
4250                                struct ring_buffer *rb);
4251
4252 static void detach_sb_event(struct perf_event *event)
4253 {
4254         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4255
4256         raw_spin_lock(&pel->lock);
4257         list_del_rcu(&event->sb_list);
4258         raw_spin_unlock(&pel->lock);
4259 }
4260
4261 static bool is_sb_event(struct perf_event *event)
4262 {
4263         struct perf_event_attr *attr = &event->attr;
4264
4265         if (event->parent)
4266                 return false;
4267
4268         if (event->attach_state & PERF_ATTACH_TASK)
4269                 return false;
4270
4271         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4272             attr->comm || attr->comm_exec ||
4273             attr->task ||
4274             attr->context_switch)
4275                 return true;
4276         return false;
4277 }
4278
4279 static void unaccount_pmu_sb_event(struct perf_event *event)
4280 {
4281         if (is_sb_event(event))
4282                 detach_sb_event(event);
4283 }
4284
4285 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4286 {
4287         if (event->parent)
4288                 return;
4289
4290         if (is_cgroup_event(event))
4291                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4292 }
4293
4294 #ifdef CONFIG_NO_HZ_FULL
4295 static DEFINE_SPINLOCK(nr_freq_lock);
4296 #endif
4297
4298 static void unaccount_freq_event_nohz(void)
4299 {
4300 #ifdef CONFIG_NO_HZ_FULL
4301         spin_lock(&nr_freq_lock);
4302         if (atomic_dec_and_test(&nr_freq_events))
4303                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4304         spin_unlock(&nr_freq_lock);
4305 #endif
4306 }
4307
4308 static void unaccount_freq_event(void)
4309 {
4310         if (tick_nohz_full_enabled())
4311                 unaccount_freq_event_nohz();
4312         else
4313                 atomic_dec(&nr_freq_events);
4314 }
4315
4316 static void unaccount_event(struct perf_event *event)
4317 {
4318         bool dec = false;
4319
4320         if (event->parent)
4321                 return;
4322
4323         if (event->attach_state & PERF_ATTACH_TASK)
4324                 dec = true;
4325         if (event->attr.mmap || event->attr.mmap_data)
4326                 atomic_dec(&nr_mmap_events);
4327         if (event->attr.comm)
4328                 atomic_dec(&nr_comm_events);
4329         if (event->attr.namespaces)
4330                 atomic_dec(&nr_namespaces_events);
4331         if (event->attr.task)
4332                 atomic_dec(&nr_task_events);
4333         if (event->attr.freq)
4334                 unaccount_freq_event();
4335         if (event->attr.context_switch) {
4336                 dec = true;
4337                 atomic_dec(&nr_switch_events);
4338         }
4339         if (is_cgroup_event(event))
4340                 dec = true;
4341         if (has_branch_stack(event))
4342                 dec = true;
4343
4344         if (dec) {
4345                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4346                         schedule_delayed_work(&perf_sched_work, HZ);
4347         }
4348
4349         unaccount_event_cpu(event, event->cpu);
4350
4351         unaccount_pmu_sb_event(event);
4352 }
4353
4354 static void perf_sched_delayed(struct work_struct *work)
4355 {
4356         mutex_lock(&perf_sched_mutex);
4357         if (atomic_dec_and_test(&perf_sched_count))
4358                 static_branch_disable(&perf_sched_events);
4359         mutex_unlock(&perf_sched_mutex);
4360 }
4361
4362 /*
4363  * The following implement mutual exclusion of events on "exclusive" pmus
4364  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4365  * at a time, so we disallow creating events that might conflict, namely:
4366  *
4367  *  1) cpu-wide events in the presence of per-task events,
4368  *  2) per-task events in the presence of cpu-wide events,
4369  *  3) two matching events on the same context.
4370  *
4371  * The former two cases are handled in the allocation path (perf_event_alloc(),
4372  * _free_event()), the latter -- before the first perf_install_in_context().
4373  */
4374 static int exclusive_event_init(struct perf_event *event)
4375 {
4376         struct pmu *pmu = event->pmu;
4377
4378         if (!is_exclusive_pmu(pmu))
4379                 return 0;
4380
4381         /*
4382          * Prevent co-existence of per-task and cpu-wide events on the
4383          * same exclusive pmu.
4384          *
4385          * Negative pmu::exclusive_cnt means there are cpu-wide
4386          * events on this "exclusive" pmu, positive means there are
4387          * per-task events.
4388          *
4389          * Since this is called in perf_event_alloc() path, event::ctx
4390          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4391          * to mean "per-task event", because unlike other attach states it
4392          * never gets cleared.
4393          */
4394         if (event->attach_state & PERF_ATTACH_TASK) {
4395                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4396                         return -EBUSY;
4397         } else {
4398                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4399                         return -EBUSY;
4400         }
4401
4402         return 0;
4403 }
4404
4405 static void exclusive_event_destroy(struct perf_event *event)
4406 {
4407         struct pmu *pmu = event->pmu;
4408
4409         if (!is_exclusive_pmu(pmu))
4410                 return;
4411
4412         /* see comment in exclusive_event_init() */
4413         if (event->attach_state & PERF_ATTACH_TASK)
4414                 atomic_dec(&pmu->exclusive_cnt);
4415         else
4416                 atomic_inc(&pmu->exclusive_cnt);
4417 }
4418
4419 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4420 {
4421         if ((e1->pmu == e2->pmu) &&
4422             (e1->cpu == e2->cpu ||
4423              e1->cpu == -1 ||
4424              e2->cpu == -1))
4425                 return true;
4426         return false;
4427 }
4428
4429 static bool exclusive_event_installable(struct perf_event *event,
4430                                         struct perf_event_context *ctx)
4431 {
4432         struct perf_event *iter_event;
4433         struct pmu *pmu = event->pmu;
4434
4435         lockdep_assert_held(&ctx->mutex);
4436
4437         if (!is_exclusive_pmu(pmu))
4438                 return true;
4439
4440         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4441                 if (exclusive_event_match(iter_event, event))
4442                         return false;
4443         }
4444
4445         return true;
4446 }
4447
4448 static void perf_addr_filters_splice(struct perf_event *event,
4449                                        struct list_head *head);
4450
4451 static void _free_event(struct perf_event *event)
4452 {
4453         irq_work_sync(&event->pending);
4454
4455         unaccount_event(event);
4456
4457         if (event->rb) {
4458                 /*
4459                  * Can happen when we close an event with re-directed output.
4460                  *
4461                  * Since we have a 0 refcount, perf_mmap_close() will skip
4462                  * over us; possibly making our ring_buffer_put() the last.
4463                  */
4464                 mutex_lock(&event->mmap_mutex);
4465                 ring_buffer_attach(event, NULL);
4466                 mutex_unlock(&event->mmap_mutex);
4467         }
4468
4469         if (is_cgroup_event(event))
4470                 perf_detach_cgroup(event);
4471
4472         if (!event->parent) {
4473                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4474                         put_callchain_buffers();
4475         }
4476
4477         perf_event_free_bpf_prog(event);
4478         perf_addr_filters_splice(event, NULL);
4479         kfree(event->addr_filter_ranges);
4480
4481         if (event->destroy)
4482                 event->destroy(event);
4483
4484         /*
4485          * Must be after ->destroy(), due to uprobe_perf_close() using
4486          * hw.target.
4487          */
4488         if (event->hw.target)
4489                 put_task_struct(event->hw.target);
4490
4491         /*
4492          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4493          * all task references must be cleaned up.
4494          */
4495         if (event->ctx)
4496                 put_ctx(event->ctx);
4497
4498         exclusive_event_destroy(event);
4499         module_put(event->pmu->module);
4500
4501         call_rcu(&event->rcu_head, free_event_rcu);
4502 }
4503
4504 /*
4505  * Used to free events which have a known refcount of 1, such as in error paths
4506  * where the event isn't exposed yet and inherited events.
4507  */
4508 static void free_event(struct perf_event *event)
4509 {
4510         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4511                                 "unexpected event refcount: %ld; ptr=%p\n",
4512                                 atomic_long_read(&event->refcount), event)) {
4513                 /* leak to avoid use-after-free */
4514                 return;
4515         }
4516
4517         _free_event(event);
4518 }
4519
4520 /*
4521  * Remove user event from the owner task.
4522  */
4523 static void perf_remove_from_owner(struct perf_event *event)
4524 {
4525         struct task_struct *owner;
4526
4527         rcu_read_lock();
4528         /*
4529          * Matches the smp_store_release() in perf_event_exit_task(). If we
4530          * observe !owner it means the list deletion is complete and we can
4531          * indeed free this event, otherwise we need to serialize on
4532          * owner->perf_event_mutex.
4533          */
4534         owner = READ_ONCE(event->owner);
4535         if (owner) {
4536                 /*
4537                  * Since delayed_put_task_struct() also drops the last
4538                  * task reference we can safely take a new reference
4539                  * while holding the rcu_read_lock().
4540                  */
4541                 get_task_struct(owner);
4542         }
4543         rcu_read_unlock();
4544
4545         if (owner) {
4546                 /*
4547                  * If we're here through perf_event_exit_task() we're already
4548                  * holding ctx->mutex which would be an inversion wrt. the
4549                  * normal lock order.
4550                  *
4551                  * However we can safely take this lock because its the child
4552                  * ctx->mutex.
4553                  */
4554                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4555
4556                 /*
4557                  * We have to re-check the event->owner field, if it is cleared
4558                  * we raced with perf_event_exit_task(), acquiring the mutex
4559                  * ensured they're done, and we can proceed with freeing the
4560                  * event.
4561                  */
4562                 if (event->owner) {
4563                         list_del_init(&event->owner_entry);
4564                         smp_store_release(&event->owner, NULL);
4565                 }
4566                 mutex_unlock(&owner->perf_event_mutex);
4567                 put_task_struct(owner);
4568         }
4569 }
4570
4571 static void put_event(struct perf_event *event)
4572 {
4573         if (!atomic_long_dec_and_test(&event->refcount))
4574                 return;
4575
4576         _free_event(event);
4577 }
4578
4579 /*
4580  * Kill an event dead; while event:refcount will preserve the event
4581  * object, it will not preserve its functionality. Once the last 'user'
4582  * gives up the object, we'll destroy the thing.
4583  */
4584 int perf_event_release_kernel(struct perf_event *event)
4585 {
4586         struct perf_event_context *ctx = event->ctx;
4587         struct perf_event *child, *tmp;
4588         LIST_HEAD(free_list);
4589
4590         /*
4591          * If we got here through err_file: fput(event_file); we will not have
4592          * attached to a context yet.
4593          */
4594         if (!ctx) {
4595                 WARN_ON_ONCE(event->attach_state &
4596                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4597                 goto no_ctx;
4598         }
4599
4600         if (!is_kernel_event(event))
4601                 perf_remove_from_owner(event);
4602
4603         ctx = perf_event_ctx_lock(event);
4604         WARN_ON_ONCE(ctx->parent_ctx);
4605         perf_remove_from_context(event, DETACH_GROUP);
4606
4607         raw_spin_lock_irq(&ctx->lock);
4608         /*
4609          * Mark this event as STATE_DEAD, there is no external reference to it
4610          * anymore.
4611          *
4612          * Anybody acquiring event->child_mutex after the below loop _must_
4613          * also see this, most importantly inherit_event() which will avoid
4614          * placing more children on the list.
4615          *
4616          * Thus this guarantees that we will in fact observe and kill _ALL_
4617          * child events.
4618          */
4619         event->state = PERF_EVENT_STATE_DEAD;
4620         raw_spin_unlock_irq(&ctx->lock);
4621
4622         perf_event_ctx_unlock(event, ctx);
4623
4624 again:
4625         mutex_lock(&event->child_mutex);
4626         list_for_each_entry(child, &event->child_list, child_list) {
4627
4628                 /*
4629                  * Cannot change, child events are not migrated, see the
4630                  * comment with perf_event_ctx_lock_nested().
4631                  */
4632                 ctx = READ_ONCE(child->ctx);
4633                 /*
4634                  * Since child_mutex nests inside ctx::mutex, we must jump
4635                  * through hoops. We start by grabbing a reference on the ctx.
4636                  *
4637                  * Since the event cannot get freed while we hold the
4638                  * child_mutex, the context must also exist and have a !0
4639                  * reference count.
4640                  */
4641                 get_ctx(ctx);
4642
4643                 /*
4644                  * Now that we have a ctx ref, we can drop child_mutex, and
4645                  * acquire ctx::mutex without fear of it going away. Then we
4646                  * can re-acquire child_mutex.
4647                  */
4648                 mutex_unlock(&event->child_mutex);
4649                 mutex_lock(&ctx->mutex);
4650                 mutex_lock(&event->child_mutex);
4651
4652                 /*
4653                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4654                  * state, if child is still the first entry, it didn't get freed
4655                  * and we can continue doing so.
4656                  */
4657                 tmp = list_first_entry_or_null(&event->child_list,
4658                                                struct perf_event, child_list);
4659                 if (tmp == child) {
4660                         perf_remove_from_context(child, DETACH_GROUP);
4661                         list_move(&child->child_list, &free_list);
4662                         /*
4663                          * This matches the refcount bump in inherit_event();
4664                          * this can't be the last reference.
4665                          */
4666                         put_event(event);
4667                 }
4668
4669                 mutex_unlock(&event->child_mutex);
4670                 mutex_unlock(&ctx->mutex);
4671                 put_ctx(ctx);
4672                 goto again;
4673         }
4674         mutex_unlock(&event->child_mutex);
4675
4676         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4677                 void *var = &child->ctx->refcount;
4678
4679                 list_del(&child->child_list);
4680                 free_event(child);
4681
4682                 /*
4683                  * Wake any perf_event_free_task() waiting for this event to be
4684                  * freed.
4685                  */
4686                 smp_mb(); /* pairs with wait_var_event() */
4687                 wake_up_var(var);
4688         }
4689
4690 no_ctx:
4691         put_event(event); /* Must be the 'last' reference */
4692         return 0;
4693 }
4694 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4695
4696 /*
4697  * Called when the last reference to the file is gone.
4698  */
4699 static int perf_release(struct inode *inode, struct file *file)
4700 {
4701         perf_event_release_kernel(file->private_data);
4702         return 0;
4703 }
4704
4705 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4706 {
4707         struct perf_event *child;
4708         u64 total = 0;
4709
4710         *enabled = 0;
4711         *running = 0;
4712
4713         mutex_lock(&event->child_mutex);
4714
4715         (void)perf_event_read(event, false);
4716         total += perf_event_count(event);
4717
4718         *enabled += event->total_time_enabled +
4719                         atomic64_read(&event->child_total_time_enabled);
4720         *running += event->total_time_running +
4721                         atomic64_read(&event->child_total_time_running);
4722
4723         list_for_each_entry(child, &event->child_list, child_list) {
4724                 (void)perf_event_read(child, false);
4725                 total += perf_event_count(child);
4726                 *enabled += child->total_time_enabled;
4727                 *running += child->total_time_running;
4728         }
4729         mutex_unlock(&event->child_mutex);
4730
4731         return total;
4732 }
4733
4734 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4735 {
4736         struct perf_event_context *ctx;
4737         u64 count;
4738
4739         ctx = perf_event_ctx_lock(event);
4740         count = __perf_event_read_value(event, enabled, running);
4741         perf_event_ctx_unlock(event, ctx);
4742
4743         return count;
4744 }
4745 EXPORT_SYMBOL_GPL(perf_event_read_value);
4746
4747 static int __perf_read_group_add(struct perf_event *leader,
4748                                         u64 read_format, u64 *values)
4749 {
4750         struct perf_event_context *ctx = leader->ctx;
4751         struct perf_event *sub;
4752         unsigned long flags;
4753         int n = 1; /* skip @nr */
4754         int ret;
4755
4756         ret = perf_event_read(leader, true);
4757         if (ret)
4758                 return ret;
4759
4760         raw_spin_lock_irqsave(&ctx->lock, flags);
4761
4762         /*
4763          * Since we co-schedule groups, {enabled,running} times of siblings
4764          * will be identical to those of the leader, so we only publish one
4765          * set.
4766          */
4767         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4768                 values[n++] += leader->total_time_enabled +
4769                         atomic64_read(&leader->child_total_time_enabled);
4770         }
4771
4772         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4773                 values[n++] += leader->total_time_running +
4774                         atomic64_read(&leader->child_total_time_running);
4775         }
4776
4777         /*
4778          * Write {count,id} tuples for every sibling.
4779          */
4780         values[n++] += perf_event_count(leader);
4781         if (read_format & PERF_FORMAT_ID)
4782                 values[n++] = primary_event_id(leader);
4783
4784         for_each_sibling_event(sub, leader) {
4785                 values[n++] += perf_event_count(sub);
4786                 if (read_format & PERF_FORMAT_ID)
4787                         values[n++] = primary_event_id(sub);
4788         }
4789
4790         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4791         return 0;
4792 }
4793
4794 static int perf_read_group(struct perf_event *event,
4795                                    u64 read_format, char __user *buf)
4796 {
4797         struct perf_event *leader = event->group_leader, *child;
4798         struct perf_event_context *ctx = leader->ctx;
4799         int ret;
4800         u64 *values;
4801
4802         lockdep_assert_held(&ctx->mutex);
4803
4804         values = kzalloc(event->read_size, GFP_KERNEL);
4805         if (!values)
4806                 return -ENOMEM;
4807
4808         values[0] = 1 + leader->nr_siblings;
4809
4810         /*
4811          * By locking the child_mutex of the leader we effectively
4812          * lock the child list of all siblings.. XXX explain how.
4813          */
4814         mutex_lock(&leader->child_mutex);
4815
4816         ret = __perf_read_group_add(leader, read_format, values);
4817         if (ret)
4818                 goto unlock;
4819
4820         list_for_each_entry(child, &leader->child_list, child_list) {
4821                 ret = __perf_read_group_add(child, read_format, values);
4822                 if (ret)
4823                         goto unlock;
4824         }
4825
4826         mutex_unlock(&leader->child_mutex);
4827
4828         ret = event->read_size;
4829         if (copy_to_user(buf, values, event->read_size))
4830                 ret = -EFAULT;
4831         goto out;
4832
4833 unlock:
4834         mutex_unlock(&leader->child_mutex);
4835 out:
4836         kfree(values);
4837         return ret;
4838 }
4839
4840 static int perf_read_one(struct perf_event *event,
4841                                  u64 read_format, char __user *buf)
4842 {
4843         u64 enabled, running;
4844         u64 values[4];
4845         int n = 0;
4846
4847         values[n++] = __perf_event_read_value(event, &enabled, &running);
4848         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4849                 values[n++] = enabled;
4850         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4851                 values[n++] = running;
4852         if (read_format & PERF_FORMAT_ID)
4853                 values[n++] = primary_event_id(event);
4854
4855         if (copy_to_user(buf, values, n * sizeof(u64)))
4856                 return -EFAULT;
4857
4858         return n * sizeof(u64);
4859 }
4860
4861 static bool is_event_hup(struct perf_event *event)
4862 {
4863         bool no_children;
4864
4865         if (event->state > PERF_EVENT_STATE_EXIT)
4866                 return false;
4867
4868         mutex_lock(&event->child_mutex);
4869         no_children = list_empty(&event->child_list);
4870         mutex_unlock(&event->child_mutex);
4871         return no_children;
4872 }
4873
4874 /*
4875  * Read the performance event - simple non blocking version for now
4876  */
4877 static ssize_t
4878 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4879 {
4880         u64 read_format = event->attr.read_format;
4881         int ret;
4882
4883         /*
4884          * Return end-of-file for a read on an event that is in
4885          * error state (i.e. because it was pinned but it couldn't be
4886          * scheduled on to the CPU at some point).
4887          */
4888         if (event->state == PERF_EVENT_STATE_ERROR)
4889                 return 0;
4890
4891         if (count < event->read_size)
4892                 return -ENOSPC;
4893
4894         WARN_ON_ONCE(event->ctx->parent_ctx);
4895         if (read_format & PERF_FORMAT_GROUP)
4896                 ret = perf_read_group(event, read_format, buf);
4897         else
4898                 ret = perf_read_one(event, read_format, buf);
4899
4900         return ret;
4901 }
4902
4903 static ssize_t
4904 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4905 {
4906         struct perf_event *event = file->private_data;
4907         struct perf_event_context *ctx;
4908         int ret;
4909
4910         ctx = perf_event_ctx_lock(event);
4911         ret = __perf_read(event, buf, count);
4912         perf_event_ctx_unlock(event, ctx);
4913
4914         return ret;
4915 }
4916
4917 static __poll_t perf_poll(struct file *file, poll_table *wait)
4918 {
4919         struct perf_event *event = file->private_data;
4920         struct ring_buffer *rb;
4921         __poll_t events = EPOLLHUP;
4922
4923         poll_wait(file, &event->waitq, wait);
4924
4925         if (is_event_hup(event))
4926                 return events;
4927
4928         /*
4929          * Pin the event->rb by taking event->mmap_mutex; otherwise
4930          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4931          */
4932         mutex_lock(&event->mmap_mutex);
4933         rb = event->rb;
4934         if (rb)
4935                 events = atomic_xchg(&rb->poll, 0);
4936         mutex_unlock(&event->mmap_mutex);
4937         return events;
4938 }
4939
4940 static void _perf_event_reset(struct perf_event *event)
4941 {
4942         (void)perf_event_read(event, false);
4943         local64_set(&event->count, 0);
4944         perf_event_update_userpage(event);
4945 }
4946
4947 /*
4948  * Holding the top-level event's child_mutex means that any
4949  * descendant process that has inherited this event will block
4950  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4951  * task existence requirements of perf_event_enable/disable.
4952  */
4953 static void perf_event_for_each_child(struct perf_event *event,
4954                                         void (*func)(struct perf_event *))
4955 {
4956         struct perf_event *child;
4957
4958         WARN_ON_ONCE(event->ctx->parent_ctx);
4959
4960         mutex_lock(&event->child_mutex);
4961         func(event);
4962         list_for_each_entry(child, &event->child_list, child_list)
4963                 func(child);
4964         mutex_unlock(&event->child_mutex);
4965 }
4966
4967 static void perf_event_for_each(struct perf_event *event,
4968                                   void (*func)(struct perf_event *))
4969 {
4970         struct perf_event_context *ctx = event->ctx;
4971         struct perf_event *sibling;
4972
4973         lockdep_assert_held(&ctx->mutex);
4974
4975         event = event->group_leader;
4976
4977         perf_event_for_each_child(event, func);
4978         for_each_sibling_event(sibling, event)
4979                 perf_event_for_each_child(sibling, func);
4980 }
4981
4982 static void __perf_event_period(struct perf_event *event,
4983                                 struct perf_cpu_context *cpuctx,
4984                                 struct perf_event_context *ctx,
4985                                 void *info)
4986 {
4987         u64 value = *((u64 *)info);
4988         bool active;
4989
4990         if (event->attr.freq) {
4991                 event->attr.sample_freq = value;
4992         } else {
4993                 event->attr.sample_period = value;
4994                 event->hw.sample_period = value;
4995         }
4996
4997         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4998         if (active) {
4999                 perf_pmu_disable(ctx->pmu);
5000                 /*
5001                  * We could be throttled; unthrottle now to avoid the tick
5002                  * trying to unthrottle while we already re-started the event.
5003                  */
5004                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5005                         event->hw.interrupts = 0;
5006                         perf_log_throttle(event, 1);
5007                 }
5008                 event->pmu->stop(event, PERF_EF_UPDATE);
5009         }
5010
5011         local64_set(&event->hw.period_left, 0);
5012
5013         if (active) {
5014                 event->pmu->start(event, PERF_EF_RELOAD);
5015                 perf_pmu_enable(ctx->pmu);
5016         }
5017 }
5018
5019 static int perf_event_check_period(struct perf_event *event, u64 value)
5020 {
5021         return event->pmu->check_period(event, value);
5022 }
5023
5024 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5025 {
5026         u64 value;
5027
5028         if (!is_sampling_event(event))
5029                 return -EINVAL;
5030
5031         if (copy_from_user(&value, arg, sizeof(value)))
5032                 return -EFAULT;
5033
5034         if (!value)
5035                 return -EINVAL;
5036
5037         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5038                 return -EINVAL;
5039
5040         if (perf_event_check_period(event, value))
5041                 return -EINVAL;
5042
5043         if (!event->attr.freq && (value & (1ULL << 63)))
5044                 return -EINVAL;
5045
5046         event_function_call(event, __perf_event_period, &value);
5047
5048         return 0;
5049 }
5050
5051 static const struct file_operations perf_fops;
5052
5053 static inline int perf_fget_light(int fd, struct fd *p)
5054 {
5055         struct fd f = fdget(fd);
5056         if (!f.file)
5057                 return -EBADF;
5058
5059         if (f.file->f_op != &perf_fops) {
5060                 fdput(f);
5061                 return -EBADF;
5062         }
5063         *p = f;
5064         return 0;
5065 }
5066
5067 static int perf_event_set_output(struct perf_event *event,
5068                                  struct perf_event *output_event);
5069 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5070 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5071 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5072                           struct perf_event_attr *attr);
5073
5074 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5075 {
5076         void (*func)(struct perf_event *);
5077         u32 flags = arg;
5078
5079         switch (cmd) {
5080         case PERF_EVENT_IOC_ENABLE:
5081                 func = _perf_event_enable;
5082                 break;
5083         case PERF_EVENT_IOC_DISABLE:
5084                 func = _perf_event_disable;
5085                 break;
5086         case PERF_EVENT_IOC_RESET:
5087                 func = _perf_event_reset;
5088                 break;
5089
5090         case PERF_EVENT_IOC_REFRESH:
5091                 return _perf_event_refresh(event, arg);
5092
5093         case PERF_EVENT_IOC_PERIOD:
5094                 return perf_event_period(event, (u64 __user *)arg);
5095
5096         case PERF_EVENT_IOC_ID:
5097         {
5098                 u64 id = primary_event_id(event);
5099
5100                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5101                         return -EFAULT;
5102                 return 0;
5103         }
5104
5105         case PERF_EVENT_IOC_SET_OUTPUT:
5106         {
5107                 int ret;
5108                 if (arg != -1) {
5109                         struct perf_event *output_event;
5110                         struct fd output;
5111                         ret = perf_fget_light(arg, &output);
5112                         if (ret)
5113                                 return ret;
5114                         output_event = output.file->private_data;
5115                         ret = perf_event_set_output(event, output_event);
5116                         fdput(output);
5117                 } else {
5118                         ret = perf_event_set_output(event, NULL);
5119                 }
5120                 return ret;
5121         }
5122
5123         case PERF_EVENT_IOC_SET_FILTER:
5124                 return perf_event_set_filter(event, (void __user *)arg);
5125
5126         case PERF_EVENT_IOC_SET_BPF:
5127                 return perf_event_set_bpf_prog(event, arg);
5128
5129         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5130                 struct ring_buffer *rb;
5131
5132                 rcu_read_lock();
5133                 rb = rcu_dereference(event->rb);
5134                 if (!rb || !rb->nr_pages) {
5135                         rcu_read_unlock();
5136                         return -EINVAL;
5137                 }
5138                 rb_toggle_paused(rb, !!arg);
5139                 rcu_read_unlock();
5140                 return 0;
5141         }
5142
5143         case PERF_EVENT_IOC_QUERY_BPF:
5144                 return perf_event_query_prog_array(event, (void __user *)arg);
5145
5146         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5147                 struct perf_event_attr new_attr;
5148                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5149                                          &new_attr);
5150
5151                 if (err)
5152                         return err;
5153
5154                 return perf_event_modify_attr(event,  &new_attr);
5155         }
5156         default:
5157                 return -ENOTTY;
5158         }
5159
5160         if (flags & PERF_IOC_FLAG_GROUP)
5161                 perf_event_for_each(event, func);
5162         else
5163                 perf_event_for_each_child(event, func);
5164
5165         return 0;
5166 }
5167
5168 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5169 {
5170         struct perf_event *event = file->private_data;
5171         struct perf_event_context *ctx;
5172         long ret;
5173
5174         ctx = perf_event_ctx_lock(event);
5175         ret = _perf_ioctl(event, cmd, arg);
5176         perf_event_ctx_unlock(event, ctx);
5177
5178         return ret;
5179 }
5180
5181 #ifdef CONFIG_COMPAT
5182 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5183                                 unsigned long arg)
5184 {
5185         switch (_IOC_NR(cmd)) {
5186         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5187         case _IOC_NR(PERF_EVENT_IOC_ID):
5188         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5189         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5190                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5191                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5192                         cmd &= ~IOCSIZE_MASK;
5193                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5194                 }
5195                 break;
5196         }
5197         return perf_ioctl(file, cmd, arg);
5198 }
5199 #else
5200 # define perf_compat_ioctl NULL
5201 #endif
5202
5203 int perf_event_task_enable(void)
5204 {
5205         struct perf_event_context *ctx;
5206         struct perf_event *event;
5207
5208         mutex_lock(&current->perf_event_mutex);
5209         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5210                 ctx = perf_event_ctx_lock(event);
5211                 perf_event_for_each_child(event, _perf_event_enable);
5212                 perf_event_ctx_unlock(event, ctx);
5213         }
5214         mutex_unlock(&current->perf_event_mutex);
5215
5216         return 0;
5217 }
5218
5219 int perf_event_task_disable(void)
5220 {
5221         struct perf_event_context *ctx;
5222         struct perf_event *event;
5223
5224         mutex_lock(&current->perf_event_mutex);
5225         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5226                 ctx = perf_event_ctx_lock(event);
5227                 perf_event_for_each_child(event, _perf_event_disable);
5228                 perf_event_ctx_unlock(event, ctx);
5229         }
5230         mutex_unlock(&current->perf_event_mutex);
5231
5232         return 0;
5233 }
5234
5235 static int perf_event_index(struct perf_event *event)
5236 {
5237         if (event->hw.state & PERF_HES_STOPPED)
5238                 return 0;
5239
5240         if (event->state != PERF_EVENT_STATE_ACTIVE)
5241                 return 0;
5242
5243         return event->pmu->event_idx(event);
5244 }
5245
5246 static void calc_timer_values(struct perf_event *event,
5247                                 u64 *now,
5248                                 u64 *enabled,
5249                                 u64 *running)
5250 {
5251         u64 ctx_time;
5252
5253         *now = perf_clock();
5254         ctx_time = event->shadow_ctx_time + *now;
5255         __perf_update_times(event, ctx_time, enabled, running);
5256 }
5257
5258 static void perf_event_init_userpage(struct perf_event *event)
5259 {
5260         struct perf_event_mmap_page *userpg;
5261         struct ring_buffer *rb;
5262
5263         rcu_read_lock();
5264         rb = rcu_dereference(event->rb);
5265         if (!rb)
5266                 goto unlock;
5267
5268         userpg = rb->user_page;
5269
5270         /* Allow new userspace to detect that bit 0 is deprecated */
5271         userpg->cap_bit0_is_deprecated = 1;
5272         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5273         userpg->data_offset = PAGE_SIZE;
5274         userpg->data_size = perf_data_size(rb);
5275
5276 unlock:
5277         rcu_read_unlock();
5278 }
5279
5280 void __weak arch_perf_update_userpage(
5281         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5282 {
5283 }
5284
5285 /*
5286  * Callers need to ensure there can be no nesting of this function, otherwise
5287  * the seqlock logic goes bad. We can not serialize this because the arch
5288  * code calls this from NMI context.
5289  */
5290 void perf_event_update_userpage(struct perf_event *event)
5291 {
5292         struct perf_event_mmap_page *userpg;
5293         struct ring_buffer *rb;
5294         u64 enabled, running, now;
5295
5296         rcu_read_lock();
5297         rb = rcu_dereference(event->rb);
5298         if (!rb)
5299                 goto unlock;
5300
5301         /*
5302          * compute total_time_enabled, total_time_running
5303          * based on snapshot values taken when the event
5304          * was last scheduled in.
5305          *
5306          * we cannot simply called update_context_time()
5307          * because of locking issue as we can be called in
5308          * NMI context
5309          */
5310         calc_timer_values(event, &now, &enabled, &running);
5311
5312         userpg = rb->user_page;
5313         /*
5314          * Disable preemption to guarantee consistent time stamps are stored to
5315          * the user page.
5316          */
5317         preempt_disable();
5318         ++userpg->lock;
5319         barrier();
5320         userpg->index = perf_event_index(event);
5321         userpg->offset = perf_event_count(event);
5322         if (userpg->index)
5323                 userpg->offset -= local64_read(&event->hw.prev_count);
5324
5325         userpg->time_enabled = enabled +
5326                         atomic64_read(&event->child_total_time_enabled);
5327
5328         userpg->time_running = running +
5329                         atomic64_read(&event->child_total_time_running);
5330
5331         arch_perf_update_userpage(event, userpg, now);
5332
5333         barrier();
5334         ++userpg->lock;
5335         preempt_enable();
5336 unlock:
5337         rcu_read_unlock();
5338 }
5339 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5340
5341 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5342 {
5343         struct perf_event *event = vmf->vma->vm_file->private_data;
5344         struct ring_buffer *rb;
5345         vm_fault_t ret = VM_FAULT_SIGBUS;
5346
5347         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5348                 if (vmf->pgoff == 0)
5349                         ret = 0;
5350                 return ret;
5351         }
5352
5353         rcu_read_lock();
5354         rb = rcu_dereference(event->rb);
5355         if (!rb)
5356                 goto unlock;
5357
5358         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5359                 goto unlock;
5360
5361         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5362         if (!vmf->page)
5363                 goto unlock;
5364
5365         get_page(vmf->page);
5366         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5367         vmf->page->index   = vmf->pgoff;
5368
5369         ret = 0;
5370 unlock:
5371         rcu_read_unlock();
5372
5373         return ret;
5374 }
5375
5376 static void ring_buffer_attach(struct perf_event *event,
5377                                struct ring_buffer *rb)
5378 {
5379         struct ring_buffer *old_rb = NULL;
5380         unsigned long flags;
5381
5382         if (event->rb) {
5383                 /*
5384                  * Should be impossible, we set this when removing
5385                  * event->rb_entry and wait/clear when adding event->rb_entry.
5386                  */
5387                 WARN_ON_ONCE(event->rcu_pending);
5388
5389                 old_rb = event->rb;
5390                 spin_lock_irqsave(&old_rb->event_lock, flags);
5391                 list_del_rcu(&event->rb_entry);
5392                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5393
5394                 event->rcu_batches = get_state_synchronize_rcu();
5395                 event->rcu_pending = 1;
5396         }
5397
5398         if (rb) {
5399                 if (event->rcu_pending) {
5400                         cond_synchronize_rcu(event->rcu_batches);
5401                         event->rcu_pending = 0;
5402                 }
5403
5404                 spin_lock_irqsave(&rb->event_lock, flags);
5405                 list_add_rcu(&event->rb_entry, &rb->event_list);
5406                 spin_unlock_irqrestore(&rb->event_lock, flags);
5407         }
5408
5409         /*
5410          * Avoid racing with perf_mmap_close(AUX): stop the event
5411          * before swizzling the event::rb pointer; if it's getting
5412          * unmapped, its aux_mmap_count will be 0 and it won't
5413          * restart. See the comment in __perf_pmu_output_stop().
5414          *
5415          * Data will inevitably be lost when set_output is done in
5416          * mid-air, but then again, whoever does it like this is
5417          * not in for the data anyway.
5418          */
5419         if (has_aux(event))
5420                 perf_event_stop(event, 0);
5421
5422         rcu_assign_pointer(event->rb, rb);
5423
5424         if (old_rb) {
5425                 ring_buffer_put(old_rb);
5426                 /*
5427                  * Since we detached before setting the new rb, so that we
5428                  * could attach the new rb, we could have missed a wakeup.
5429                  * Provide it now.
5430                  */
5431                 wake_up_all(&event->waitq);
5432         }
5433 }
5434
5435 static void ring_buffer_wakeup(struct perf_event *event)
5436 {
5437         struct ring_buffer *rb;
5438
5439         rcu_read_lock();
5440         rb = rcu_dereference(event->rb);
5441         if (rb) {
5442                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5443                         wake_up_all(&event->waitq);
5444         }
5445         rcu_read_unlock();
5446 }
5447
5448 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5449 {
5450         struct ring_buffer *rb;
5451
5452         rcu_read_lock();
5453         rb = rcu_dereference(event->rb);
5454         if (rb) {
5455                 if (!atomic_inc_not_zero(&rb->refcount))
5456                         rb = NULL;
5457         }
5458         rcu_read_unlock();
5459
5460         return rb;
5461 }
5462
5463 void ring_buffer_put(struct ring_buffer *rb)
5464 {
5465         if (!atomic_dec_and_test(&rb->refcount))
5466                 return;
5467
5468         WARN_ON_ONCE(!list_empty(&rb->event_list));
5469
5470         call_rcu(&rb->rcu_head, rb_free_rcu);
5471 }
5472
5473 static void perf_mmap_open(struct vm_area_struct *vma)
5474 {
5475         struct perf_event *event = vma->vm_file->private_data;
5476
5477         atomic_inc(&event->mmap_count);
5478         atomic_inc(&event->rb->mmap_count);
5479
5480         if (vma->vm_pgoff)
5481                 atomic_inc(&event->rb->aux_mmap_count);
5482
5483         if (event->pmu->event_mapped)
5484                 event->pmu->event_mapped(event, vma->vm_mm);
5485 }
5486
5487 static void perf_pmu_output_stop(struct perf_event *event);
5488
5489 /*
5490  * A buffer can be mmap()ed multiple times; either directly through the same
5491  * event, or through other events by use of perf_event_set_output().
5492  *
5493  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5494  * the buffer here, where we still have a VM context. This means we need
5495  * to detach all events redirecting to us.
5496  */
5497 static void perf_mmap_close(struct vm_area_struct *vma)
5498 {
5499         struct perf_event *event = vma->vm_file->private_data;
5500         struct ring_buffer *rb = ring_buffer_get(event);
5501         struct user_struct *mmap_user = rb->mmap_user;
5502         int mmap_locked = rb->mmap_locked;
5503         unsigned long size = perf_data_size(rb);
5504         bool detach_rest = false;
5505
5506         if (event->pmu->event_unmapped)
5507                 event->pmu->event_unmapped(event, vma->vm_mm);
5508
5509         /*
5510          * rb->aux_mmap_count will always drop before rb->mmap_count and
5511          * event->mmap_count, so it is ok to use event->mmap_mutex to
5512          * serialize with perf_mmap here.
5513          */
5514         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5515             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5516                 /*
5517                  * Stop all AUX events that are writing to this buffer,
5518                  * so that we can free its AUX pages and corresponding PMU
5519                  * data. Note that after rb::aux_mmap_count dropped to zero,
5520                  * they won't start any more (see perf_aux_output_begin()).
5521                  */
5522                 perf_pmu_output_stop(event);
5523
5524                 /* now it's safe to free the pages */
5525                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5526                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5527
5528                 /* this has to be the last one */
5529                 rb_free_aux(rb);
5530                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5531
5532                 mutex_unlock(&event->mmap_mutex);
5533         }
5534
5535         if (atomic_dec_and_test(&rb->mmap_count))
5536                 detach_rest = true;
5537
5538         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5539                 goto out_put;
5540
5541         ring_buffer_attach(event, NULL);
5542         mutex_unlock(&event->mmap_mutex);
5543
5544         /* If there's still other mmap()s of this buffer, we're done. */
5545         if (!detach_rest)
5546                 goto out_put;
5547
5548         /*
5549          * No other mmap()s, detach from all other events that might redirect
5550          * into the now unreachable buffer. Somewhat complicated by the
5551          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5552          */
5553 again:
5554         rcu_read_lock();
5555         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5556                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5557                         /*
5558                          * This event is en-route to free_event() which will
5559                          * detach it and remove it from the list.
5560                          */
5561                         continue;
5562                 }
5563                 rcu_read_unlock();
5564
5565                 mutex_lock(&event->mmap_mutex);
5566                 /*
5567                  * Check we didn't race with perf_event_set_output() which can
5568                  * swizzle the rb from under us while we were waiting to
5569                  * acquire mmap_mutex.
5570                  *
5571                  * If we find a different rb; ignore this event, a next
5572                  * iteration will no longer find it on the list. We have to
5573                  * still restart the iteration to make sure we're not now
5574                  * iterating the wrong list.
5575                  */
5576                 if (event->rb == rb)
5577                         ring_buffer_attach(event, NULL);
5578
5579                 mutex_unlock(&event->mmap_mutex);
5580                 put_event(event);
5581
5582                 /*
5583                  * Restart the iteration; either we're on the wrong list or
5584                  * destroyed its integrity by doing a deletion.
5585                  */
5586                 goto again;
5587         }
5588         rcu_read_unlock();
5589
5590         /*
5591          * It could be there's still a few 0-ref events on the list; they'll
5592          * get cleaned up by free_event() -- they'll also still have their
5593          * ref on the rb and will free it whenever they are done with it.
5594          *
5595          * Aside from that, this buffer is 'fully' detached and unmapped,
5596          * undo the VM accounting.
5597          */
5598
5599         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5600         vma->vm_mm->pinned_vm -= mmap_locked;
5601         free_uid(mmap_user);
5602
5603 out_put:
5604         ring_buffer_put(rb); /* could be last */
5605 }
5606
5607 static const struct vm_operations_struct perf_mmap_vmops = {
5608         .open           = perf_mmap_open,
5609         .close          = perf_mmap_close, /* non mergable */
5610         .fault          = perf_mmap_fault,
5611         .page_mkwrite   = perf_mmap_fault,
5612 };
5613
5614 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5615 {
5616         struct perf_event *event = file->private_data;
5617         unsigned long user_locked, user_lock_limit;
5618         struct user_struct *user = current_user();
5619         unsigned long locked, lock_limit;
5620         struct ring_buffer *rb = NULL;
5621         unsigned long vma_size;
5622         unsigned long nr_pages;
5623         long user_extra = 0, extra = 0;
5624         int ret = 0, flags = 0;
5625
5626         /*
5627          * Don't allow mmap() of inherited per-task counters. This would
5628          * create a performance issue due to all children writing to the
5629          * same rb.
5630          */
5631         if (event->cpu == -1 && event->attr.inherit)
5632                 return -EINVAL;
5633
5634         if (!(vma->vm_flags & VM_SHARED))
5635                 return -EINVAL;
5636
5637         vma_size = vma->vm_end - vma->vm_start;
5638
5639         if (vma->vm_pgoff == 0) {
5640                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5641         } else {
5642                 /*
5643                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5644                  * mapped, all subsequent mappings should have the same size
5645                  * and offset. Must be above the normal perf buffer.
5646                  */
5647                 u64 aux_offset, aux_size;
5648
5649                 if (!event->rb)
5650                         return -EINVAL;
5651
5652                 nr_pages = vma_size / PAGE_SIZE;
5653
5654                 mutex_lock(&event->mmap_mutex);
5655                 ret = -EINVAL;
5656
5657                 rb = event->rb;
5658                 if (!rb)
5659                         goto aux_unlock;
5660
5661                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5662                 aux_size = READ_ONCE(rb->user_page->aux_size);
5663
5664                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5665                         goto aux_unlock;
5666
5667                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5668                         goto aux_unlock;
5669
5670                 /* already mapped with a different offset */
5671                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5672                         goto aux_unlock;
5673
5674                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5675                         goto aux_unlock;
5676
5677                 /* already mapped with a different size */
5678                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5679                         goto aux_unlock;
5680
5681                 if (!is_power_of_2(nr_pages))
5682                         goto aux_unlock;
5683
5684                 if (!atomic_inc_not_zero(&rb->mmap_count))
5685                         goto aux_unlock;
5686
5687                 if (rb_has_aux(rb)) {
5688                         atomic_inc(&rb->aux_mmap_count);
5689                         ret = 0;
5690                         goto unlock;
5691                 }
5692
5693                 atomic_set(&rb->aux_mmap_count, 1);
5694                 user_extra = nr_pages;
5695
5696                 goto accounting;
5697         }
5698
5699         /*
5700          * If we have rb pages ensure they're a power-of-two number, so we
5701          * can do bitmasks instead of modulo.
5702          */
5703         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5704                 return -EINVAL;
5705
5706         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5707                 return -EINVAL;
5708
5709         WARN_ON_ONCE(event->ctx->parent_ctx);
5710 again:
5711         mutex_lock(&event->mmap_mutex);
5712         if (event->rb) {
5713                 if (event->rb->nr_pages != nr_pages) {
5714                         ret = -EINVAL;
5715                         goto unlock;
5716                 }
5717
5718                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5719                         /*
5720                          * Raced against perf_mmap_close() through
5721                          * perf_event_set_output(). Try again, hope for better
5722                          * luck.
5723                          */
5724                         mutex_unlock(&event->mmap_mutex);
5725                         goto again;
5726                 }
5727
5728                 goto unlock;
5729         }
5730
5731         user_extra = nr_pages + 1;
5732
5733 accounting:
5734         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5735
5736         /*
5737          * Increase the limit linearly with more CPUs:
5738          */
5739         user_lock_limit *= num_online_cpus();
5740
5741         user_locked = atomic_long_read(&user->locked_vm);
5742
5743         /*
5744          * sysctl_perf_event_mlock may have changed, so that
5745          *     user->locked_vm > user_lock_limit
5746          */
5747         if (user_locked > user_lock_limit)
5748                 user_locked = user_lock_limit;
5749         user_locked += user_extra;
5750
5751         if (user_locked > user_lock_limit)
5752                 extra = user_locked - user_lock_limit;
5753
5754         lock_limit = rlimit(RLIMIT_MEMLOCK);
5755         lock_limit >>= PAGE_SHIFT;
5756         locked = vma->vm_mm->pinned_vm + extra;
5757
5758         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5759                 !capable(CAP_IPC_LOCK)) {
5760                 ret = -EPERM;
5761                 goto unlock;
5762         }
5763
5764         WARN_ON(!rb && event->rb);
5765
5766         if (vma->vm_flags & VM_WRITE)
5767                 flags |= RING_BUFFER_WRITABLE;
5768
5769         if (!rb) {
5770                 rb = rb_alloc(nr_pages,
5771                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5772                               event->cpu, flags);
5773
5774                 if (!rb) {
5775                         ret = -ENOMEM;
5776                         goto unlock;
5777                 }
5778
5779                 atomic_set(&rb->mmap_count, 1);
5780                 rb->mmap_user = get_current_user();
5781                 rb->mmap_locked = extra;
5782
5783                 ring_buffer_attach(event, rb);
5784
5785                 perf_event_init_userpage(event);
5786                 perf_event_update_userpage(event);
5787         } else {
5788                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5789                                    event->attr.aux_watermark, flags);
5790                 if (!ret)
5791                         rb->aux_mmap_locked = extra;
5792         }
5793
5794 unlock:
5795         if (!ret) {
5796                 atomic_long_add(user_extra, &user->locked_vm);
5797                 vma->vm_mm->pinned_vm += extra;
5798
5799                 atomic_inc(&event->mmap_count);
5800         } else if (rb) {
5801                 atomic_dec(&rb->mmap_count);
5802         }
5803 aux_unlock:
5804         mutex_unlock(&event->mmap_mutex);
5805
5806         /*
5807          * Since pinned accounting is per vm we cannot allow fork() to copy our
5808          * vma.
5809          */
5810         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5811         vma->vm_ops = &perf_mmap_vmops;
5812
5813         if (event->pmu->event_mapped)
5814                 event->pmu->event_mapped(event, vma->vm_mm);
5815
5816         return ret;
5817 }
5818
5819 static int perf_fasync(int fd, struct file *filp, int on)
5820 {
5821         struct inode *inode = file_inode(filp);
5822         struct perf_event *event = filp->private_data;
5823         int retval;
5824
5825         inode_lock(inode);
5826         retval = fasync_helper(fd, filp, on, &event->fasync);
5827         inode_unlock(inode);
5828
5829         if (retval < 0)
5830                 return retval;
5831
5832         return 0;
5833 }
5834
5835 static const struct file_operations perf_fops = {
5836         .llseek                 = no_llseek,
5837         .release                = perf_release,
5838         .read                   = perf_read,
5839         .poll                   = perf_poll,
5840         .unlocked_ioctl         = perf_ioctl,
5841         .compat_ioctl           = perf_compat_ioctl,
5842         .mmap                   = perf_mmap,
5843         .fasync                 = perf_fasync,
5844 };
5845
5846 /*
5847  * Perf event wakeup
5848  *
5849  * If there's data, ensure we set the poll() state and publish everything
5850  * to user-space before waking everybody up.
5851  */
5852
5853 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5854 {
5855         /* only the parent has fasync state */
5856         if (event->parent)
5857                 event = event->parent;
5858         return &event->fasync;
5859 }
5860
5861 void perf_event_wakeup(struct perf_event *event)
5862 {
5863         ring_buffer_wakeup(event);
5864
5865         if (event->pending_kill) {
5866                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5867                 event->pending_kill = 0;
5868         }
5869 }
5870
5871 static void perf_pending_event_disable(struct perf_event *event)
5872 {
5873         int cpu = READ_ONCE(event->pending_disable);
5874
5875         if (cpu < 0)
5876                 return;
5877
5878         if (cpu == smp_processor_id()) {
5879                 WRITE_ONCE(event->pending_disable, -1);
5880                 perf_event_disable_local(event);
5881                 return;
5882         }
5883
5884         /*
5885          *  CPU-A                       CPU-B
5886          *
5887          *  perf_event_disable_inatomic()
5888          *    @pending_disable = CPU-A;
5889          *    irq_work_queue();
5890          *
5891          *  sched-out
5892          *    @pending_disable = -1;
5893          *
5894          *                              sched-in
5895          *                              perf_event_disable_inatomic()
5896          *                                @pending_disable = CPU-B;
5897          *                                irq_work_queue(); // FAILS
5898          *
5899          *  irq_work_run()
5900          *    perf_pending_event()
5901          *
5902          * But the event runs on CPU-B and wants disabling there.
5903          */
5904         irq_work_queue_on(&event->pending, cpu);
5905 }
5906
5907 static void perf_pending_event(struct irq_work *entry)
5908 {
5909         struct perf_event *event = container_of(entry, struct perf_event, pending);
5910         int rctx;
5911
5912         rctx = perf_swevent_get_recursion_context();
5913         /*
5914          * If we 'fail' here, that's OK, it means recursion is already disabled
5915          * and we won't recurse 'further'.
5916          */
5917
5918         perf_pending_event_disable(event);
5919
5920         if (event->pending_wakeup) {
5921                 event->pending_wakeup = 0;
5922                 perf_event_wakeup(event);
5923         }
5924
5925         if (rctx >= 0)
5926                 perf_swevent_put_recursion_context(rctx);
5927 }
5928
5929 /*
5930  * We assume there is only KVM supporting the callbacks.
5931  * Later on, we might change it to a list if there is
5932  * another virtualization implementation supporting the callbacks.
5933  */
5934 struct perf_guest_info_callbacks *perf_guest_cbs;
5935
5936 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5937 {
5938         perf_guest_cbs = cbs;
5939         return 0;
5940 }
5941 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5942
5943 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5944 {
5945         perf_guest_cbs = NULL;
5946         return 0;
5947 }
5948 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5949
5950 static void
5951 perf_output_sample_regs(struct perf_output_handle *handle,
5952                         struct pt_regs *regs, u64 mask)
5953 {
5954         int bit;
5955         DECLARE_BITMAP(_mask, 64);
5956
5957         bitmap_from_u64(_mask, mask);
5958         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5959                 u64 val;
5960
5961                 val = perf_reg_value(regs, bit);
5962                 perf_output_put(handle, val);
5963         }
5964 }
5965
5966 static void perf_sample_regs_user(struct perf_regs *regs_user,
5967                                   struct pt_regs *regs,
5968                                   struct pt_regs *regs_user_copy)
5969 {
5970         if (user_mode(regs)) {
5971                 regs_user->abi = perf_reg_abi(current);
5972                 regs_user->regs = regs;
5973         } else if (!(current->flags & PF_KTHREAD)) {
5974                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5975         } else {
5976                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5977                 regs_user->regs = NULL;
5978         }
5979 }
5980
5981 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5982                                   struct pt_regs *regs)
5983 {
5984         regs_intr->regs = regs;
5985         regs_intr->abi  = perf_reg_abi(current);
5986 }
5987
5988
5989 /*
5990  * Get remaining task size from user stack pointer.
5991  *
5992  * It'd be better to take stack vma map and limit this more
5993  * precisly, but there's no way to get it safely under interrupt,
5994  * so using TASK_SIZE as limit.
5995  */
5996 static u64 perf_ustack_task_size(struct pt_regs *regs)
5997 {
5998         unsigned long addr = perf_user_stack_pointer(regs);
5999
6000         if (!addr || addr >= TASK_SIZE)
6001                 return 0;
6002
6003         return TASK_SIZE - addr;
6004 }
6005
6006 static u16
6007 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6008                         struct pt_regs *regs)
6009 {
6010         u64 task_size;
6011
6012         /* No regs, no stack pointer, no dump. */
6013         if (!regs)
6014                 return 0;
6015
6016         /*
6017          * Check if we fit in with the requested stack size into the:
6018          * - TASK_SIZE
6019          *   If we don't, we limit the size to the TASK_SIZE.
6020          *
6021          * - remaining sample size
6022          *   If we don't, we customize the stack size to
6023          *   fit in to the remaining sample size.
6024          */
6025
6026         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6027         stack_size = min(stack_size, (u16) task_size);
6028
6029         /* Current header size plus static size and dynamic size. */
6030         header_size += 2 * sizeof(u64);
6031
6032         /* Do we fit in with the current stack dump size? */
6033         if ((u16) (header_size + stack_size) < header_size) {
6034                 /*
6035                  * If we overflow the maximum size for the sample,
6036                  * we customize the stack dump size to fit in.
6037                  */
6038                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6039                 stack_size = round_up(stack_size, sizeof(u64));
6040         }
6041
6042         return stack_size;
6043 }
6044
6045 static void
6046 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6047                           struct pt_regs *regs)
6048 {
6049         /* Case of a kernel thread, nothing to dump */
6050         if (!regs) {
6051                 u64 size = 0;
6052                 perf_output_put(handle, size);
6053         } else {
6054                 unsigned long sp;
6055                 unsigned int rem;
6056                 u64 dyn_size;
6057                 mm_segment_t fs;
6058
6059                 /*
6060                  * We dump:
6061                  * static size
6062                  *   - the size requested by user or the best one we can fit
6063                  *     in to the sample max size
6064                  * data
6065                  *   - user stack dump data
6066                  * dynamic size
6067                  *   - the actual dumped size
6068                  */
6069
6070                 /* Static size. */
6071                 perf_output_put(handle, dump_size);
6072
6073                 /* Data. */
6074                 sp = perf_user_stack_pointer(regs);
6075                 fs = get_fs();
6076                 set_fs(USER_DS);
6077                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6078                 set_fs(fs);
6079                 dyn_size = dump_size - rem;
6080
6081                 perf_output_skip(handle, rem);
6082
6083                 /* Dynamic size. */
6084                 perf_output_put(handle, dyn_size);
6085         }
6086 }
6087
6088 static void __perf_event_header__init_id(struct perf_event_header *header,
6089                                          struct perf_sample_data *data,
6090                                          struct perf_event *event)
6091 {
6092         u64 sample_type = event->attr.sample_type;
6093
6094         data->type = sample_type;
6095         header->size += event->id_header_size;
6096
6097         if (sample_type & PERF_SAMPLE_TID) {
6098                 /* namespace issues */
6099                 data->tid_entry.pid = perf_event_pid(event, current);
6100                 data->tid_entry.tid = perf_event_tid(event, current);
6101         }
6102
6103         if (sample_type & PERF_SAMPLE_TIME)
6104                 data->time = perf_event_clock(event);
6105
6106         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6107                 data->id = primary_event_id(event);
6108
6109         if (sample_type & PERF_SAMPLE_STREAM_ID)
6110                 data->stream_id = event->id;
6111
6112         if (sample_type & PERF_SAMPLE_CPU) {
6113                 data->cpu_entry.cpu      = raw_smp_processor_id();
6114                 data->cpu_entry.reserved = 0;
6115         }
6116 }
6117
6118 void perf_event_header__init_id(struct perf_event_header *header,
6119                                 struct perf_sample_data *data,
6120                                 struct perf_event *event)
6121 {
6122         if (event->attr.sample_id_all)
6123                 __perf_event_header__init_id(header, data, event);
6124 }
6125
6126 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6127                                            struct perf_sample_data *data)
6128 {
6129         u64 sample_type = data->type;
6130
6131         if (sample_type & PERF_SAMPLE_TID)
6132                 perf_output_put(handle, data->tid_entry);
6133
6134         if (sample_type & PERF_SAMPLE_TIME)
6135                 perf_output_put(handle, data->time);
6136
6137         if (sample_type & PERF_SAMPLE_ID)
6138                 perf_output_put(handle, data->id);
6139
6140         if (sample_type & PERF_SAMPLE_STREAM_ID)
6141                 perf_output_put(handle, data->stream_id);
6142
6143         if (sample_type & PERF_SAMPLE_CPU)
6144                 perf_output_put(handle, data->cpu_entry);
6145
6146         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6147                 perf_output_put(handle, data->id);
6148 }
6149
6150 void perf_event__output_id_sample(struct perf_event *event,
6151                                   struct perf_output_handle *handle,
6152                                   struct perf_sample_data *sample)
6153 {
6154         if (event->attr.sample_id_all)
6155                 __perf_event__output_id_sample(handle, sample);
6156 }
6157
6158 static void perf_output_read_one(struct perf_output_handle *handle,
6159                                  struct perf_event *event,
6160                                  u64 enabled, u64 running)
6161 {
6162         u64 read_format = event->attr.read_format;
6163         u64 values[4];
6164         int n = 0;
6165
6166         values[n++] = perf_event_count(event);
6167         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6168                 values[n++] = enabled +
6169                         atomic64_read(&event->child_total_time_enabled);
6170         }
6171         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6172                 values[n++] = running +
6173                         atomic64_read(&event->child_total_time_running);
6174         }
6175         if (read_format & PERF_FORMAT_ID)
6176                 values[n++] = primary_event_id(event);
6177
6178         __output_copy(handle, values, n * sizeof(u64));
6179 }
6180
6181 static void perf_output_read_group(struct perf_output_handle *handle,
6182                             struct perf_event *event,
6183                             u64 enabled, u64 running)
6184 {
6185         struct perf_event *leader = event->group_leader, *sub;
6186         u64 read_format = event->attr.read_format;
6187         u64 values[5];
6188         int n = 0;
6189
6190         values[n++] = 1 + leader->nr_siblings;
6191
6192         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6193                 values[n++] = enabled;
6194
6195         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6196                 values[n++] = running;
6197
6198         if ((leader != event) &&
6199             (leader->state == PERF_EVENT_STATE_ACTIVE))
6200                 leader->pmu->read(leader);
6201
6202         values[n++] = perf_event_count(leader);
6203         if (read_format & PERF_FORMAT_ID)
6204                 values[n++] = primary_event_id(leader);
6205
6206         __output_copy(handle, values, n * sizeof(u64));
6207
6208         for_each_sibling_event(sub, leader) {
6209                 n = 0;
6210
6211                 if ((sub != event) &&
6212                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6213                         sub->pmu->read(sub);
6214
6215                 values[n++] = perf_event_count(sub);
6216                 if (read_format & PERF_FORMAT_ID)
6217                         values[n++] = primary_event_id(sub);
6218
6219                 __output_copy(handle, values, n * sizeof(u64));
6220         }
6221 }
6222
6223 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6224                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6225
6226 /*
6227  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6228  *
6229  * The problem is that its both hard and excessively expensive to iterate the
6230  * child list, not to mention that its impossible to IPI the children running
6231  * on another CPU, from interrupt/NMI context.
6232  */
6233 static void perf_output_read(struct perf_output_handle *handle,
6234                              struct perf_event *event)
6235 {
6236         u64 enabled = 0, running = 0, now;
6237         u64 read_format = event->attr.read_format;
6238
6239         /*
6240          * compute total_time_enabled, total_time_running
6241          * based on snapshot values taken when the event
6242          * was last scheduled in.
6243          *
6244          * we cannot simply called update_context_time()
6245          * because of locking issue as we are called in
6246          * NMI context
6247          */
6248         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6249                 calc_timer_values(event, &now, &enabled, &running);
6250
6251         if (event->attr.read_format & PERF_FORMAT_GROUP)
6252                 perf_output_read_group(handle, event, enabled, running);
6253         else
6254                 perf_output_read_one(handle, event, enabled, running);
6255 }
6256
6257 void perf_output_sample(struct perf_output_handle *handle,
6258                         struct perf_event_header *header,
6259                         struct perf_sample_data *data,
6260                         struct perf_event *event)
6261 {
6262         u64 sample_type = data->type;
6263
6264         perf_output_put(handle, *header);
6265
6266         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6267                 perf_output_put(handle, data->id);
6268
6269         if (sample_type & PERF_SAMPLE_IP)
6270                 perf_output_put(handle, data->ip);
6271
6272         if (sample_type & PERF_SAMPLE_TID)
6273                 perf_output_put(handle, data->tid_entry);
6274
6275         if (sample_type & PERF_SAMPLE_TIME)
6276                 perf_output_put(handle, data->time);
6277
6278         if (sample_type & PERF_SAMPLE_ADDR)
6279                 perf_output_put(handle, data->addr);
6280
6281         if (sample_type & PERF_SAMPLE_ID)
6282                 perf_output_put(handle, data->id);
6283
6284         if (sample_type & PERF_SAMPLE_STREAM_ID)
6285                 perf_output_put(handle, data->stream_id);
6286
6287         if (sample_type & PERF_SAMPLE_CPU)
6288                 perf_output_put(handle, data->cpu_entry);
6289
6290         if (sample_type & PERF_SAMPLE_PERIOD)
6291                 perf_output_put(handle, data->period);
6292
6293         if (sample_type & PERF_SAMPLE_READ)
6294                 perf_output_read(handle, event);
6295
6296         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6297                 int size = 1;
6298
6299                 size += data->callchain->nr;
6300                 size *= sizeof(u64);
6301                 __output_copy(handle, data->callchain, size);
6302         }
6303
6304         if (sample_type & PERF_SAMPLE_RAW) {
6305                 struct perf_raw_record *raw = data->raw;
6306
6307                 if (raw) {
6308                         struct perf_raw_frag *frag = &raw->frag;
6309
6310                         perf_output_put(handle, raw->size);
6311                         do {
6312                                 if (frag->copy) {
6313                                         __output_custom(handle, frag->copy,
6314                                                         frag->data, frag->size);
6315                                 } else {
6316                                         __output_copy(handle, frag->data,
6317                                                       frag->size);
6318                                 }
6319                                 if (perf_raw_frag_last(frag))
6320                                         break;
6321                                 frag = frag->next;
6322                         } while (1);
6323                         if (frag->pad)
6324                                 __output_skip(handle, NULL, frag->pad);
6325                 } else {
6326                         struct {
6327                                 u32     size;
6328                                 u32     data;
6329                         } raw = {
6330                                 .size = sizeof(u32),
6331                                 .data = 0,
6332                         };
6333                         perf_output_put(handle, raw);
6334                 }
6335         }
6336
6337         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6338                 if (data->br_stack) {
6339                         size_t size;
6340
6341                         size = data->br_stack->nr
6342                              * sizeof(struct perf_branch_entry);
6343
6344                         perf_output_put(handle, data->br_stack->nr);
6345                         perf_output_copy(handle, data->br_stack->entries, size);
6346                 } else {
6347                         /*
6348                          * we always store at least the value of nr
6349                          */
6350                         u64 nr = 0;
6351                         perf_output_put(handle, nr);
6352                 }
6353         }
6354
6355         if (sample_type & PERF_SAMPLE_REGS_USER) {
6356                 u64 abi = data->regs_user.abi;
6357
6358                 /*
6359                  * If there are no regs to dump, notice it through
6360                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6361                  */
6362                 perf_output_put(handle, abi);
6363
6364                 if (abi) {
6365                         u64 mask = event->attr.sample_regs_user;
6366                         perf_output_sample_regs(handle,
6367                                                 data->regs_user.regs,
6368                                                 mask);
6369                 }
6370         }
6371
6372         if (sample_type & PERF_SAMPLE_STACK_USER) {
6373                 perf_output_sample_ustack(handle,
6374                                           data->stack_user_size,
6375                                           data->regs_user.regs);
6376         }
6377
6378         if (sample_type & PERF_SAMPLE_WEIGHT)
6379                 perf_output_put(handle, data->weight);
6380
6381         if (sample_type & PERF_SAMPLE_DATA_SRC)
6382                 perf_output_put(handle, data->data_src.val);
6383
6384         if (sample_type & PERF_SAMPLE_TRANSACTION)
6385                 perf_output_put(handle, data->txn);
6386
6387         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6388                 u64 abi = data->regs_intr.abi;
6389                 /*
6390                  * If there are no regs to dump, notice it through
6391                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6392                  */
6393                 perf_output_put(handle, abi);
6394
6395                 if (abi) {
6396                         u64 mask = event->attr.sample_regs_intr;
6397
6398                         perf_output_sample_regs(handle,
6399                                                 data->regs_intr.regs,
6400                                                 mask);
6401                 }
6402         }
6403
6404         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6405                 perf_output_put(handle, data->phys_addr);
6406
6407         if (!event->attr.watermark) {
6408                 int wakeup_events = event->attr.wakeup_events;
6409
6410                 if (wakeup_events) {
6411                         struct ring_buffer *rb = handle->rb;
6412                         int events = local_inc_return(&rb->events);
6413
6414                         if (events >= wakeup_events) {
6415                                 local_sub(wakeup_events, &rb->events);
6416                                 local_inc(&rb->wakeup);
6417                         }
6418                 }
6419         }
6420 }
6421
6422 static u64 perf_virt_to_phys(u64 virt)
6423 {
6424         u64 phys_addr = 0;
6425         struct page *p = NULL;
6426
6427         if (!virt)
6428                 return 0;
6429
6430         if (virt >= TASK_SIZE) {
6431                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6432                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6433                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6434                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6435         } else {
6436                 /*
6437                  * Walking the pages tables for user address.
6438                  * Interrupts are disabled, so it prevents any tear down
6439                  * of the page tables.
6440                  * Try IRQ-safe __get_user_pages_fast first.
6441                  * If failed, leave phys_addr as 0.
6442                  */
6443                 if (current->mm != NULL) {
6444                         pagefault_disable();
6445                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6446                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6447                         pagefault_enable();
6448                 }
6449
6450                 if (p)
6451                         put_page(p);
6452         }
6453
6454         return phys_addr;
6455 }
6456
6457 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6458
6459 struct perf_callchain_entry *
6460 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6461 {
6462         bool kernel = !event->attr.exclude_callchain_kernel;
6463         bool user   = !event->attr.exclude_callchain_user;
6464         /* Disallow cross-task user callchains. */
6465         bool crosstask = event->ctx->task && event->ctx->task != current;
6466         const u32 max_stack = event->attr.sample_max_stack;
6467         struct perf_callchain_entry *callchain;
6468
6469         if (!kernel && !user)
6470                 return &__empty_callchain;
6471
6472         callchain = get_perf_callchain(regs, 0, kernel, user,
6473                                        max_stack, crosstask, true);
6474         return callchain ?: &__empty_callchain;
6475 }
6476
6477 void perf_prepare_sample(struct perf_event_header *header,
6478                          struct perf_sample_data *data,
6479                          struct perf_event *event,
6480                          struct pt_regs *regs)
6481 {
6482         u64 sample_type = event->attr.sample_type;
6483
6484         header->type = PERF_RECORD_SAMPLE;
6485         header->size = sizeof(*header) + event->header_size;
6486
6487         header->misc = 0;
6488         header->misc |= perf_misc_flags(regs);
6489
6490         __perf_event_header__init_id(header, data, event);
6491
6492         if (sample_type & PERF_SAMPLE_IP)
6493                 data->ip = perf_instruction_pointer(regs);
6494
6495         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6496                 int size = 1;
6497
6498                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6499                         data->callchain = perf_callchain(event, regs);
6500
6501                 size += data->callchain->nr;
6502
6503                 header->size += size * sizeof(u64);
6504         }
6505
6506         if (sample_type & PERF_SAMPLE_RAW) {
6507                 struct perf_raw_record *raw = data->raw;
6508                 int size;
6509
6510                 if (raw) {
6511                         struct perf_raw_frag *frag = &raw->frag;
6512                         u32 sum = 0;
6513
6514                         do {
6515                                 sum += frag->size;
6516                                 if (perf_raw_frag_last(frag))
6517                                         break;
6518                                 frag = frag->next;
6519                         } while (1);
6520
6521                         size = round_up(sum + sizeof(u32), sizeof(u64));
6522                         raw->size = size - sizeof(u32);
6523                         frag->pad = raw->size - sum;
6524                 } else {
6525                         size = sizeof(u64);
6526                 }
6527
6528                 header->size += size;
6529         }
6530
6531         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6532                 int size = sizeof(u64); /* nr */
6533                 if (data->br_stack) {
6534                         size += data->br_stack->nr
6535                               * sizeof(struct perf_branch_entry);
6536                 }
6537                 header->size += size;
6538         }
6539
6540         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6541                 perf_sample_regs_user(&data->regs_user, regs,
6542                                       &data->regs_user_copy);
6543
6544         if (sample_type & PERF_SAMPLE_REGS_USER) {
6545                 /* regs dump ABI info */
6546                 int size = sizeof(u64);
6547
6548                 if (data->regs_user.regs) {
6549                         u64 mask = event->attr.sample_regs_user;
6550                         size += hweight64(mask) * sizeof(u64);
6551                 }
6552
6553                 header->size += size;
6554         }
6555
6556         if (sample_type & PERF_SAMPLE_STACK_USER) {
6557                 /*
6558                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6559                  * processed as the last one or have additional check added
6560                  * in case new sample type is added, because we could eat
6561                  * up the rest of the sample size.
6562                  */
6563                 u16 stack_size = event->attr.sample_stack_user;
6564                 u16 size = sizeof(u64);
6565
6566                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6567                                                      data->regs_user.regs);
6568
6569                 /*
6570                  * If there is something to dump, add space for the dump
6571                  * itself and for the field that tells the dynamic size,
6572                  * which is how many have been actually dumped.
6573                  */
6574                 if (stack_size)
6575                         size += sizeof(u64) + stack_size;
6576
6577                 data->stack_user_size = stack_size;
6578                 header->size += size;
6579         }
6580
6581         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6582                 /* regs dump ABI info */
6583                 int size = sizeof(u64);
6584
6585                 perf_sample_regs_intr(&data->regs_intr, regs);
6586
6587                 if (data->regs_intr.regs) {
6588                         u64 mask = event->attr.sample_regs_intr;
6589
6590                         size += hweight64(mask) * sizeof(u64);
6591                 }
6592
6593                 header->size += size;
6594         }
6595
6596         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6597                 data->phys_addr = perf_virt_to_phys(data->addr);
6598 }
6599
6600 static __always_inline void
6601 __perf_event_output(struct perf_event *event,
6602                     struct perf_sample_data *data,
6603                     struct pt_regs *regs,
6604                     int (*output_begin)(struct perf_output_handle *,
6605                                         struct perf_event *,
6606                                         unsigned int))
6607 {
6608         struct perf_output_handle handle;
6609         struct perf_event_header header;
6610
6611         /* protect the callchain buffers */
6612         rcu_read_lock();
6613
6614         perf_prepare_sample(&header, data, event, regs);
6615
6616         if (output_begin(&handle, event, header.size))
6617                 goto exit;
6618
6619         perf_output_sample(&handle, &header, data, event);
6620
6621         perf_output_end(&handle);
6622
6623 exit:
6624         rcu_read_unlock();
6625 }
6626
6627 void
6628 perf_event_output_forward(struct perf_event *event,
6629                          struct perf_sample_data *data,
6630                          struct pt_regs *regs)
6631 {
6632         __perf_event_output(event, data, regs, perf_output_begin_forward);
6633 }
6634
6635 void
6636 perf_event_output_backward(struct perf_event *event,
6637                            struct perf_sample_data *data,
6638                            struct pt_regs *regs)
6639 {
6640         __perf_event_output(event, data, regs, perf_output_begin_backward);
6641 }
6642
6643 void
6644 perf_event_output(struct perf_event *event,
6645                   struct perf_sample_data *data,
6646                   struct pt_regs *regs)
6647 {
6648         __perf_event_output(event, data, regs, perf_output_begin);
6649 }
6650
6651 /*
6652  * read event_id
6653  */
6654
6655 struct perf_read_event {
6656         struct perf_event_header        header;
6657
6658         u32                             pid;
6659         u32                             tid;
6660 };
6661
6662 static void
6663 perf_event_read_event(struct perf_event *event,
6664                         struct task_struct *task)
6665 {
6666         struct perf_output_handle handle;
6667         struct perf_sample_data sample;
6668         struct perf_read_event read_event = {
6669                 .header = {
6670                         .type = PERF_RECORD_READ,
6671                         .misc = 0,
6672                         .size = sizeof(read_event) + event->read_size,
6673                 },
6674                 .pid = perf_event_pid(event, task),
6675                 .tid = perf_event_tid(event, task),
6676         };
6677         int ret;
6678
6679         perf_event_header__init_id(&read_event.header, &sample, event);
6680         ret = perf_output_begin(&handle, event, read_event.header.size);
6681         if (ret)
6682                 return;
6683
6684         perf_output_put(&handle, read_event);
6685         perf_output_read(&handle, event);
6686         perf_event__output_id_sample(event, &handle, &sample);
6687
6688         perf_output_end(&handle);
6689 }
6690
6691 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6692
6693 static void
6694 perf_iterate_ctx(struct perf_event_context *ctx,
6695                    perf_iterate_f output,
6696                    void *data, bool all)
6697 {
6698         struct perf_event *event;
6699
6700         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6701                 if (!all) {
6702                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6703                                 continue;
6704                         if (!event_filter_match(event))
6705                                 continue;
6706                 }
6707
6708                 output(event, data);
6709         }
6710 }
6711
6712 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6713 {
6714         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6715         struct perf_event *event;
6716
6717         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6718                 /*
6719                  * Skip events that are not fully formed yet; ensure that
6720                  * if we observe event->ctx, both event and ctx will be
6721                  * complete enough. See perf_install_in_context().
6722                  */
6723                 if (!smp_load_acquire(&event->ctx))
6724                         continue;
6725
6726                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6727                         continue;
6728                 if (!event_filter_match(event))
6729                         continue;
6730                 output(event, data);
6731         }
6732 }
6733
6734 /*
6735  * Iterate all events that need to receive side-band events.
6736  *
6737  * For new callers; ensure that account_pmu_sb_event() includes
6738  * your event, otherwise it might not get delivered.
6739  */
6740 static void
6741 perf_iterate_sb(perf_iterate_f output, void *data,
6742                struct perf_event_context *task_ctx)
6743 {
6744         struct perf_event_context *ctx;
6745         int ctxn;
6746
6747         rcu_read_lock();
6748         preempt_disable();
6749
6750         /*
6751          * If we have task_ctx != NULL we only notify the task context itself.
6752          * The task_ctx is set only for EXIT events before releasing task
6753          * context.
6754          */
6755         if (task_ctx) {
6756                 perf_iterate_ctx(task_ctx, output, data, false);
6757                 goto done;
6758         }
6759
6760         perf_iterate_sb_cpu(output, data);
6761
6762         for_each_task_context_nr(ctxn) {
6763                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6764                 if (ctx)
6765                         perf_iterate_ctx(ctx, output, data, false);
6766         }
6767 done:
6768         preempt_enable();
6769         rcu_read_unlock();
6770 }
6771
6772 /*
6773  * Clear all file-based filters at exec, they'll have to be
6774  * re-instated when/if these objects are mmapped again.
6775  */
6776 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6777 {
6778         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6779         struct perf_addr_filter *filter;
6780         unsigned int restart = 0, count = 0;
6781         unsigned long flags;
6782
6783         if (!has_addr_filter(event))
6784                 return;
6785
6786         raw_spin_lock_irqsave(&ifh->lock, flags);
6787         list_for_each_entry(filter, &ifh->list, entry) {
6788                 if (filter->path.dentry) {
6789                         event->addr_filter_ranges[count].start = 0;
6790                         event->addr_filter_ranges[count].size = 0;
6791                         restart++;
6792                 }
6793
6794                 count++;
6795         }
6796
6797         if (restart)
6798                 event->addr_filters_gen++;
6799         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6800
6801         if (restart)
6802                 perf_event_stop(event, 1);
6803 }
6804
6805 void perf_event_exec(void)
6806 {
6807         struct perf_event_context *ctx;
6808         int ctxn;
6809
6810         rcu_read_lock();
6811         for_each_task_context_nr(ctxn) {
6812                 ctx = current->perf_event_ctxp[ctxn];
6813                 if (!ctx)
6814                         continue;
6815
6816                 perf_event_enable_on_exec(ctxn);
6817
6818                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6819                                    true);
6820         }
6821         rcu_read_unlock();
6822 }
6823
6824 struct remote_output {
6825         struct ring_buffer      *rb;
6826         int                     err;
6827 };
6828
6829 static void __perf_event_output_stop(struct perf_event *event, void *data)
6830 {
6831         struct perf_event *parent = event->parent;
6832         struct remote_output *ro = data;
6833         struct ring_buffer *rb = ro->rb;
6834         struct stop_event_data sd = {
6835                 .event  = event,
6836         };
6837
6838         if (!has_aux(event))
6839                 return;
6840
6841         if (!parent)
6842                 parent = event;
6843
6844         /*
6845          * In case of inheritance, it will be the parent that links to the
6846          * ring-buffer, but it will be the child that's actually using it.
6847          *
6848          * We are using event::rb to determine if the event should be stopped,
6849          * however this may race with ring_buffer_attach() (through set_output),
6850          * which will make us skip the event that actually needs to be stopped.
6851          * So ring_buffer_attach() has to stop an aux event before re-assigning
6852          * its rb pointer.
6853          */
6854         if (rcu_dereference(parent->rb) == rb)
6855                 ro->err = __perf_event_stop(&sd);
6856 }
6857
6858 static int __perf_pmu_output_stop(void *info)
6859 {
6860         struct perf_event *event = info;
6861         struct pmu *pmu = event->ctx->pmu;
6862         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6863         struct remote_output ro = {
6864                 .rb     = event->rb,
6865         };
6866
6867         rcu_read_lock();
6868         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6869         if (cpuctx->task_ctx)
6870                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6871                                    &ro, false);
6872         rcu_read_unlock();
6873
6874         return ro.err;
6875 }
6876
6877 static void perf_pmu_output_stop(struct perf_event *event)
6878 {
6879         struct perf_event *iter;
6880         int err, cpu;
6881
6882 restart:
6883         rcu_read_lock();
6884         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6885                 /*
6886                  * For per-CPU events, we need to make sure that neither they
6887                  * nor their children are running; for cpu==-1 events it's
6888                  * sufficient to stop the event itself if it's active, since
6889                  * it can't have children.
6890                  */
6891                 cpu = iter->cpu;
6892                 if (cpu == -1)
6893                         cpu = READ_ONCE(iter->oncpu);
6894
6895                 if (cpu == -1)
6896                         continue;
6897
6898                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6899                 if (err == -EAGAIN) {
6900                         rcu_read_unlock();
6901                         goto restart;
6902                 }
6903         }
6904         rcu_read_unlock();
6905 }
6906
6907 /*
6908  * task tracking -- fork/exit
6909  *
6910  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6911  */
6912
6913 struct perf_task_event {
6914         struct task_struct              *task;
6915         struct perf_event_context       *task_ctx;
6916
6917         struct {
6918                 struct perf_event_header        header;
6919
6920                 u32                             pid;
6921                 u32                             ppid;
6922                 u32                             tid;
6923                 u32                             ptid;
6924                 u64                             time;
6925         } event_id;
6926 };
6927
6928 static int perf_event_task_match(struct perf_event *event)
6929 {
6930         return event->attr.comm  || event->attr.mmap ||
6931                event->attr.mmap2 || event->attr.mmap_data ||
6932                event->attr.task;
6933 }
6934
6935 static void perf_event_task_output(struct perf_event *event,
6936                                    void *data)
6937 {
6938         struct perf_task_event *task_event = data;
6939         struct perf_output_handle handle;
6940         struct perf_sample_data sample;
6941         struct task_struct *task = task_event->task;
6942         int ret, size = task_event->event_id.header.size;
6943
6944         if (!perf_event_task_match(event))
6945                 return;
6946
6947         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6948
6949         ret = perf_output_begin(&handle, event,
6950                                 task_event->event_id.header.size);
6951         if (ret)
6952                 goto out;
6953
6954         task_event->event_id.pid = perf_event_pid(event, task);
6955         task_event->event_id.tid = perf_event_tid(event, task);
6956
6957         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
6958                 task_event->event_id.ppid = perf_event_pid(event,
6959                                                         task->real_parent);
6960                 task_event->event_id.ptid = perf_event_pid(event,
6961                                                         task->real_parent);
6962         } else {  /* PERF_RECORD_FORK */
6963                 task_event->event_id.ppid = perf_event_pid(event, current);
6964                 task_event->event_id.ptid = perf_event_tid(event, current);
6965         }
6966
6967         task_event->event_id.time = perf_event_clock(event);
6968
6969         perf_output_put(&handle, task_event->event_id);
6970
6971         perf_event__output_id_sample(event, &handle, &sample);
6972
6973         perf_output_end(&handle);
6974 out:
6975         task_event->event_id.header.size = size;
6976 }
6977
6978 static void perf_event_task(struct task_struct *task,
6979                               struct perf_event_context *task_ctx,
6980                               int new)
6981 {
6982         struct perf_task_event task_event;
6983
6984         if (!atomic_read(&nr_comm_events) &&
6985             !atomic_read(&nr_mmap_events) &&
6986             !atomic_read(&nr_task_events))
6987                 return;
6988
6989         task_event = (struct perf_task_event){
6990                 .task     = task,
6991                 .task_ctx = task_ctx,
6992                 .event_id    = {
6993                         .header = {
6994                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6995                                 .misc = 0,
6996                                 .size = sizeof(task_event.event_id),
6997                         },
6998                         /* .pid  */
6999                         /* .ppid */
7000                         /* .tid  */
7001                         /* .ptid */
7002                         /* .time */
7003                 },
7004         };
7005
7006         perf_iterate_sb(perf_event_task_output,
7007                        &task_event,
7008                        task_ctx);
7009 }
7010
7011 void perf_event_fork(struct task_struct *task)
7012 {
7013         perf_event_task(task, NULL, 1);
7014         perf_event_namespaces(task);
7015 }
7016
7017 /*
7018  * comm tracking
7019  */
7020
7021 struct perf_comm_event {
7022         struct task_struct      *task;
7023         char                    *comm;
7024         int                     comm_size;
7025
7026         struct {
7027                 struct perf_event_header        header;
7028
7029                 u32                             pid;
7030                 u32                             tid;
7031         } event_id;
7032 };
7033
7034 static int perf_event_comm_match(struct perf_event *event)
7035 {
7036         return event->attr.comm;
7037 }
7038
7039 static void perf_event_comm_output(struct perf_event *event,
7040                                    void *data)
7041 {
7042         struct perf_comm_event *comm_event = data;
7043         struct perf_output_handle handle;
7044         struct perf_sample_data sample;
7045         int size = comm_event->event_id.header.size;
7046         int ret;
7047
7048         if (!perf_event_comm_match(event))
7049                 return;
7050
7051         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7052         ret = perf_output_begin(&handle, event,
7053                                 comm_event->event_id.header.size);
7054
7055         if (ret)
7056                 goto out;
7057
7058         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7059         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7060
7061         perf_output_put(&handle, comm_event->event_id);
7062         __output_copy(&handle, comm_event->comm,
7063                                    comm_event->comm_size);
7064
7065         perf_event__output_id_sample(event, &handle, &sample);
7066
7067         perf_output_end(&handle);
7068 out:
7069         comm_event->event_id.header.size = size;
7070 }
7071
7072 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7073 {
7074         char comm[TASK_COMM_LEN];
7075         unsigned int size;
7076
7077         memset(comm, 0, sizeof(comm));
7078         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7079         size = ALIGN(strlen(comm)+1, sizeof(u64));
7080
7081         comm_event->comm = comm;
7082         comm_event->comm_size = size;
7083
7084         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7085
7086         perf_iterate_sb(perf_event_comm_output,
7087                        comm_event,
7088                        NULL);
7089 }
7090
7091 void perf_event_comm(struct task_struct *task, bool exec)
7092 {
7093         struct perf_comm_event comm_event;
7094
7095         if (!atomic_read(&nr_comm_events))
7096                 return;
7097
7098         comm_event = (struct perf_comm_event){
7099                 .task   = task,
7100                 /* .comm      */
7101                 /* .comm_size */
7102                 .event_id  = {
7103                         .header = {
7104                                 .type = PERF_RECORD_COMM,
7105                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7106                                 /* .size */
7107                         },
7108                         /* .pid */
7109                         /* .tid */
7110                 },
7111         };
7112
7113         perf_event_comm_event(&comm_event);
7114 }
7115
7116 /*
7117  * namespaces tracking
7118  */
7119
7120 struct perf_namespaces_event {
7121         struct task_struct              *task;
7122
7123         struct {
7124                 struct perf_event_header        header;
7125
7126                 u32                             pid;
7127                 u32                             tid;
7128                 u64                             nr_namespaces;
7129                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7130         } event_id;
7131 };
7132
7133 static int perf_event_namespaces_match(struct perf_event *event)
7134 {
7135         return event->attr.namespaces;
7136 }
7137
7138 static void perf_event_namespaces_output(struct perf_event *event,
7139                                          void *data)
7140 {
7141         struct perf_namespaces_event *namespaces_event = data;
7142         struct perf_output_handle handle;
7143         struct perf_sample_data sample;
7144         u16 header_size = namespaces_event->event_id.header.size;
7145         int ret;
7146
7147         if (!perf_event_namespaces_match(event))
7148                 return;
7149
7150         perf_event_header__init_id(&namespaces_event->event_id.header,
7151                                    &sample, event);
7152         ret = perf_output_begin(&handle, event,
7153                                 namespaces_event->event_id.header.size);
7154         if (ret)
7155                 goto out;
7156
7157         namespaces_event->event_id.pid = perf_event_pid(event,
7158                                                         namespaces_event->task);
7159         namespaces_event->event_id.tid = perf_event_tid(event,
7160                                                         namespaces_event->task);
7161
7162         perf_output_put(&handle, namespaces_event->event_id);
7163
7164         perf_event__output_id_sample(event, &handle, &sample);
7165
7166         perf_output_end(&handle);
7167 out:
7168         namespaces_event->event_id.header.size = header_size;
7169 }
7170
7171 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7172                                    struct task_struct *task,
7173                                    const struct proc_ns_operations *ns_ops)
7174 {
7175         struct path ns_path;
7176         struct inode *ns_inode;
7177         void *error;
7178
7179         error = ns_get_path(&ns_path, task, ns_ops);
7180         if (!error) {
7181                 ns_inode = ns_path.dentry->d_inode;
7182                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7183                 ns_link_info->ino = ns_inode->i_ino;
7184                 path_put(&ns_path);
7185         }
7186 }
7187
7188 void perf_event_namespaces(struct task_struct *task)
7189 {
7190         struct perf_namespaces_event namespaces_event;
7191         struct perf_ns_link_info *ns_link_info;
7192
7193         if (!atomic_read(&nr_namespaces_events))
7194                 return;
7195
7196         namespaces_event = (struct perf_namespaces_event){
7197                 .task   = task,
7198                 .event_id  = {
7199                         .header = {
7200                                 .type = PERF_RECORD_NAMESPACES,
7201                                 .misc = 0,
7202                                 .size = sizeof(namespaces_event.event_id),
7203                         },
7204                         /* .pid */
7205                         /* .tid */
7206                         .nr_namespaces = NR_NAMESPACES,
7207                         /* .link_info[NR_NAMESPACES] */
7208                 },
7209         };
7210
7211         ns_link_info = namespaces_event.event_id.link_info;
7212
7213         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7214                                task, &mntns_operations);
7215
7216 #ifdef CONFIG_USER_NS
7217         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7218                                task, &userns_operations);
7219 #endif
7220 #ifdef CONFIG_NET_NS
7221         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7222                                task, &netns_operations);
7223 #endif
7224 #ifdef CONFIG_UTS_NS
7225         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7226                                task, &utsns_operations);
7227 #endif
7228 #ifdef CONFIG_IPC_NS
7229         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7230                                task, &ipcns_operations);
7231 #endif
7232 #ifdef CONFIG_PID_NS
7233         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7234                                task, &pidns_operations);
7235 #endif
7236 #ifdef CONFIG_CGROUPS
7237         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7238                                task, &cgroupns_operations);
7239 #endif
7240
7241         perf_iterate_sb(perf_event_namespaces_output,
7242                         &namespaces_event,
7243                         NULL);
7244 }
7245
7246 /*
7247  * mmap tracking
7248  */
7249
7250 struct perf_mmap_event {
7251         struct vm_area_struct   *vma;
7252
7253         const char              *file_name;
7254         int                     file_size;
7255         int                     maj, min;
7256         u64                     ino;
7257         u64                     ino_generation;
7258         u32                     prot, flags;
7259
7260         struct {
7261                 struct perf_event_header        header;
7262
7263                 u32                             pid;
7264                 u32                             tid;
7265                 u64                             start;
7266                 u64                             len;
7267                 u64                             pgoff;
7268         } event_id;
7269 };
7270
7271 static int perf_event_mmap_match(struct perf_event *event,
7272                                  void *data)
7273 {
7274         struct perf_mmap_event *mmap_event = data;
7275         struct vm_area_struct *vma = mmap_event->vma;
7276         int executable = vma->vm_flags & VM_EXEC;
7277
7278         return (!executable && event->attr.mmap_data) ||
7279                (executable && (event->attr.mmap || event->attr.mmap2));
7280 }
7281
7282 static void perf_event_mmap_output(struct perf_event *event,
7283                                    void *data)
7284 {
7285         struct perf_mmap_event *mmap_event = data;
7286         struct perf_output_handle handle;
7287         struct perf_sample_data sample;
7288         int size = mmap_event->event_id.header.size;
7289         u32 type = mmap_event->event_id.header.type;
7290         int ret;
7291
7292         if (!perf_event_mmap_match(event, data))
7293                 return;
7294
7295         if (event->attr.mmap2) {
7296                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7297                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7298                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7299                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7300                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7301                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7302                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7303         }
7304
7305         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7306         ret = perf_output_begin(&handle, event,
7307                                 mmap_event->event_id.header.size);
7308         if (ret)
7309                 goto out;
7310
7311         mmap_event->event_id.pid = perf_event_pid(event, current);
7312         mmap_event->event_id.tid = perf_event_tid(event, current);
7313
7314         perf_output_put(&handle, mmap_event->event_id);
7315
7316         if (event->attr.mmap2) {
7317                 perf_output_put(&handle, mmap_event->maj);
7318                 perf_output_put(&handle, mmap_event->min);
7319                 perf_output_put(&handle, mmap_event->ino);
7320                 perf_output_put(&handle, mmap_event->ino_generation);
7321                 perf_output_put(&handle, mmap_event->prot);
7322                 perf_output_put(&handle, mmap_event->flags);
7323         }
7324
7325         __output_copy(&handle, mmap_event->file_name,
7326                                    mmap_event->file_size);
7327
7328         perf_event__output_id_sample(event, &handle, &sample);
7329
7330         perf_output_end(&handle);
7331 out:
7332         mmap_event->event_id.header.size = size;
7333         mmap_event->event_id.header.type = type;
7334 }
7335
7336 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7337 {
7338         struct vm_area_struct *vma = mmap_event->vma;
7339         struct file *file = vma->vm_file;
7340         int maj = 0, min = 0;
7341         u64 ino = 0, gen = 0;
7342         u32 prot = 0, flags = 0;
7343         unsigned int size;
7344         char tmp[16];
7345         char *buf = NULL;
7346         char *name;
7347
7348         if (vma->vm_flags & VM_READ)
7349                 prot |= PROT_READ;
7350         if (vma->vm_flags & VM_WRITE)
7351                 prot |= PROT_WRITE;
7352         if (vma->vm_flags & VM_EXEC)
7353                 prot |= PROT_EXEC;
7354
7355         if (vma->vm_flags & VM_MAYSHARE)
7356                 flags = MAP_SHARED;
7357         else
7358                 flags = MAP_PRIVATE;
7359
7360         if (vma->vm_flags & VM_DENYWRITE)
7361                 flags |= MAP_DENYWRITE;
7362         if (vma->vm_flags & VM_MAYEXEC)
7363                 flags |= MAP_EXECUTABLE;
7364         if (vma->vm_flags & VM_LOCKED)
7365                 flags |= MAP_LOCKED;
7366         if (vma->vm_flags & VM_HUGETLB)
7367                 flags |= MAP_HUGETLB;
7368
7369         if (file) {
7370                 struct inode *inode;
7371                 dev_t dev;
7372
7373                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7374                 if (!buf) {
7375                         name = "//enomem";
7376                         goto cpy_name;
7377                 }
7378                 /*
7379                  * d_path() works from the end of the rb backwards, so we
7380                  * need to add enough zero bytes after the string to handle
7381                  * the 64bit alignment we do later.
7382                  */
7383                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7384                 if (IS_ERR(name)) {
7385                         name = "//toolong";
7386                         goto cpy_name;
7387                 }
7388                 inode = file_inode(vma->vm_file);
7389                 dev = inode->i_sb->s_dev;
7390                 ino = inode->i_ino;
7391                 gen = inode->i_generation;
7392                 maj = MAJOR(dev);
7393                 min = MINOR(dev);
7394
7395                 goto got_name;
7396         } else {
7397                 if (vma->vm_ops && vma->vm_ops->name) {
7398                         name = (char *) vma->vm_ops->name(vma);
7399                         if (name)
7400                                 goto cpy_name;
7401                 }
7402
7403                 name = (char *)arch_vma_name(vma);
7404                 if (name)
7405                         goto cpy_name;
7406
7407                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7408                                 vma->vm_end >= vma->vm_mm->brk) {
7409                         name = "[heap]";
7410                         goto cpy_name;
7411                 }
7412                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7413                                 vma->vm_end >= vma->vm_mm->start_stack) {
7414                         name = "[stack]";
7415                         goto cpy_name;
7416                 }
7417
7418                 name = "//anon";
7419                 goto cpy_name;
7420         }
7421
7422 cpy_name:
7423         strlcpy(tmp, name, sizeof(tmp));
7424         name = tmp;
7425 got_name:
7426         /*
7427          * Since our buffer works in 8 byte units we need to align our string
7428          * size to a multiple of 8. However, we must guarantee the tail end is
7429          * zero'd out to avoid leaking random bits to userspace.
7430          */
7431         size = strlen(name)+1;
7432         while (!IS_ALIGNED(size, sizeof(u64)))
7433                 name[size++] = '\0';
7434
7435         mmap_event->file_name = name;
7436         mmap_event->file_size = size;
7437         mmap_event->maj = maj;
7438         mmap_event->min = min;
7439         mmap_event->ino = ino;
7440         mmap_event->ino_generation = gen;
7441         mmap_event->prot = prot;
7442         mmap_event->flags = flags;
7443
7444         if (!(vma->vm_flags & VM_EXEC))
7445                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7446
7447         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7448
7449         perf_iterate_sb(perf_event_mmap_output,
7450                        mmap_event,
7451                        NULL);
7452
7453         kfree(buf);
7454 }
7455
7456 /*
7457  * Check whether inode and address range match filter criteria.
7458  */
7459 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7460                                      struct file *file, unsigned long offset,
7461                                      unsigned long size)
7462 {
7463         /* d_inode(NULL) won't be equal to any mapped user-space file */
7464         if (!filter->path.dentry)
7465                 return false;
7466
7467         if (d_inode(filter->path.dentry) != file_inode(file))
7468                 return false;
7469
7470         if (filter->offset > offset + size)
7471                 return false;
7472
7473         if (filter->offset + filter->size < offset)
7474                 return false;
7475
7476         return true;
7477 }
7478
7479 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7480                                         struct vm_area_struct *vma,
7481                                         struct perf_addr_filter_range *fr)
7482 {
7483         unsigned long vma_size = vma->vm_end - vma->vm_start;
7484         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7485         struct file *file = vma->vm_file;
7486
7487         if (!perf_addr_filter_match(filter, file, off, vma_size))
7488                 return false;
7489
7490         if (filter->offset < off) {
7491                 fr->start = vma->vm_start;
7492                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7493         } else {
7494                 fr->start = vma->vm_start + filter->offset - off;
7495                 fr->size = min(vma->vm_end - fr->start, filter->size);
7496         }
7497
7498         return true;
7499 }
7500
7501 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7502 {
7503         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7504         struct vm_area_struct *vma = data;
7505         struct perf_addr_filter *filter;
7506         unsigned int restart = 0, count = 0;
7507         unsigned long flags;
7508
7509         if (!has_addr_filter(event))
7510                 return;
7511
7512         if (!vma->vm_file)
7513                 return;
7514
7515         raw_spin_lock_irqsave(&ifh->lock, flags);
7516         list_for_each_entry(filter, &ifh->list, entry) {
7517                 if (perf_addr_filter_vma_adjust(filter, vma,
7518                                                 &event->addr_filter_ranges[count]))
7519                         restart++;
7520
7521                 count++;
7522         }
7523
7524         if (restart)
7525                 event->addr_filters_gen++;
7526         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7527
7528         if (restart)
7529                 perf_event_stop(event, 1);
7530 }
7531
7532 /*
7533  * Adjust all task's events' filters to the new vma
7534  */
7535 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7536 {
7537         struct perf_event_context *ctx;
7538         int ctxn;
7539
7540         /*
7541          * Data tracing isn't supported yet and as such there is no need
7542          * to keep track of anything that isn't related to executable code:
7543          */
7544         if (!(vma->vm_flags & VM_EXEC))
7545                 return;
7546
7547         rcu_read_lock();
7548         for_each_task_context_nr(ctxn) {
7549                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7550                 if (!ctx)
7551                         continue;
7552
7553                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7554         }
7555         rcu_read_unlock();
7556 }
7557
7558 void perf_event_mmap(struct vm_area_struct *vma)
7559 {
7560         struct perf_mmap_event mmap_event;
7561
7562         if (!atomic_read(&nr_mmap_events))
7563                 return;
7564
7565         mmap_event = (struct perf_mmap_event){
7566                 .vma    = vma,
7567                 /* .file_name */
7568                 /* .file_size */
7569                 .event_id  = {
7570                         .header = {
7571                                 .type = PERF_RECORD_MMAP,
7572                                 .misc = PERF_RECORD_MISC_USER,
7573                                 /* .size */
7574                         },
7575                         /* .pid */
7576                         /* .tid */
7577                         .start  = vma->vm_start,
7578                         .len    = vma->vm_end - vma->vm_start,
7579                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7580                 },
7581                 /* .maj (attr_mmap2 only) */
7582                 /* .min (attr_mmap2 only) */
7583                 /* .ino (attr_mmap2 only) */
7584                 /* .ino_generation (attr_mmap2 only) */
7585                 /* .prot (attr_mmap2 only) */
7586                 /* .flags (attr_mmap2 only) */
7587         };
7588
7589         perf_addr_filters_adjust(vma);
7590         perf_event_mmap_event(&mmap_event);
7591 }
7592
7593 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7594                           unsigned long size, u64 flags)
7595 {
7596         struct perf_output_handle handle;
7597         struct perf_sample_data sample;
7598         struct perf_aux_event {
7599                 struct perf_event_header        header;
7600                 u64                             offset;
7601                 u64                             size;
7602                 u64                             flags;
7603         } rec = {
7604                 .header = {
7605                         .type = PERF_RECORD_AUX,
7606                         .misc = 0,
7607                         .size = sizeof(rec),
7608                 },
7609                 .offset         = head,
7610                 .size           = size,
7611                 .flags          = flags,
7612         };
7613         int ret;
7614
7615         perf_event_header__init_id(&rec.header, &sample, event);
7616         ret = perf_output_begin(&handle, event, rec.header.size);
7617
7618         if (ret)
7619                 return;
7620
7621         perf_output_put(&handle, rec);
7622         perf_event__output_id_sample(event, &handle, &sample);
7623
7624         perf_output_end(&handle);
7625 }
7626
7627 /*
7628  * Lost/dropped samples logging
7629  */
7630 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7631 {
7632         struct perf_output_handle handle;
7633         struct perf_sample_data sample;
7634         int ret;
7635
7636         struct {
7637                 struct perf_event_header        header;
7638                 u64                             lost;
7639         } lost_samples_event = {
7640                 .header = {
7641                         .type = PERF_RECORD_LOST_SAMPLES,
7642                         .misc = 0,
7643                         .size = sizeof(lost_samples_event),
7644                 },
7645                 .lost           = lost,
7646         };
7647
7648         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7649
7650         ret = perf_output_begin(&handle, event,
7651                                 lost_samples_event.header.size);
7652         if (ret)
7653                 return;
7654
7655         perf_output_put(&handle, lost_samples_event);
7656         perf_event__output_id_sample(event, &handle, &sample);
7657         perf_output_end(&handle);
7658 }
7659
7660 /*
7661  * context_switch tracking
7662  */
7663
7664 struct perf_switch_event {
7665         struct task_struct      *task;
7666         struct task_struct      *next_prev;
7667
7668         struct {
7669                 struct perf_event_header        header;
7670                 u32                             next_prev_pid;
7671                 u32                             next_prev_tid;
7672         } event_id;
7673 };
7674
7675 static int perf_event_switch_match(struct perf_event *event)
7676 {
7677         return event->attr.context_switch;
7678 }
7679
7680 static void perf_event_switch_output(struct perf_event *event, void *data)
7681 {
7682         struct perf_switch_event *se = data;
7683         struct perf_output_handle handle;
7684         struct perf_sample_data sample;
7685         int ret;
7686
7687         if (!perf_event_switch_match(event))
7688                 return;
7689
7690         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7691         if (event->ctx->task) {
7692                 se->event_id.header.type = PERF_RECORD_SWITCH;
7693                 se->event_id.header.size = sizeof(se->event_id.header);
7694         } else {
7695                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7696                 se->event_id.header.size = sizeof(se->event_id);
7697                 se->event_id.next_prev_pid =
7698                                         perf_event_pid(event, se->next_prev);
7699                 se->event_id.next_prev_tid =
7700                                         perf_event_tid(event, se->next_prev);
7701         }
7702
7703         perf_event_header__init_id(&se->event_id.header, &sample, event);
7704
7705         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7706         if (ret)
7707                 return;
7708
7709         if (event->ctx->task)
7710                 perf_output_put(&handle, se->event_id.header);
7711         else
7712                 perf_output_put(&handle, se->event_id);
7713
7714         perf_event__output_id_sample(event, &handle, &sample);
7715
7716         perf_output_end(&handle);
7717 }
7718
7719 static void perf_event_switch(struct task_struct *task,
7720                               struct task_struct *next_prev, bool sched_in)
7721 {
7722         struct perf_switch_event switch_event;
7723
7724         /* N.B. caller checks nr_switch_events != 0 */
7725
7726         switch_event = (struct perf_switch_event){
7727                 .task           = task,
7728                 .next_prev      = next_prev,
7729                 .event_id       = {
7730                         .header = {
7731                                 /* .type */
7732                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7733                                 /* .size */
7734                         },
7735                         /* .next_prev_pid */
7736                         /* .next_prev_tid */
7737                 },
7738         };
7739
7740         if (!sched_in && task->state == TASK_RUNNING)
7741                 switch_event.event_id.header.misc |=
7742                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7743
7744         perf_iterate_sb(perf_event_switch_output,
7745                        &switch_event,
7746                        NULL);
7747 }
7748
7749 /*
7750  * IRQ throttle logging
7751  */
7752
7753 static void perf_log_throttle(struct perf_event *event, int enable)
7754 {
7755         struct perf_output_handle handle;
7756         struct perf_sample_data sample;
7757         int ret;
7758
7759         struct {
7760                 struct perf_event_header        header;
7761                 u64                             time;
7762                 u64                             id;
7763                 u64                             stream_id;
7764         } throttle_event = {
7765                 .header = {
7766                         .type = PERF_RECORD_THROTTLE,
7767                         .misc = 0,
7768                         .size = sizeof(throttle_event),
7769                 },
7770                 .time           = perf_event_clock(event),
7771                 .id             = primary_event_id(event),
7772                 .stream_id      = event->id,
7773         };
7774
7775         if (enable)
7776                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7777
7778         perf_event_header__init_id(&throttle_event.header, &sample, event);
7779
7780         ret = perf_output_begin(&handle, event,
7781                                 throttle_event.header.size);
7782         if (ret)
7783                 return;
7784
7785         perf_output_put(&handle, throttle_event);
7786         perf_event__output_id_sample(event, &handle, &sample);
7787         perf_output_end(&handle);
7788 }
7789
7790 void perf_event_itrace_started(struct perf_event *event)
7791 {
7792         event->attach_state |= PERF_ATTACH_ITRACE;
7793 }
7794
7795 static void perf_log_itrace_start(struct perf_event *event)
7796 {
7797         struct perf_output_handle handle;
7798         struct perf_sample_data sample;
7799         struct perf_aux_event {
7800                 struct perf_event_header        header;
7801                 u32                             pid;
7802                 u32                             tid;
7803         } rec;
7804         int ret;
7805
7806         if (event->parent)
7807                 event = event->parent;
7808
7809         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7810             event->attach_state & PERF_ATTACH_ITRACE)
7811                 return;
7812
7813         rec.header.type = PERF_RECORD_ITRACE_START;
7814         rec.header.misc = 0;
7815         rec.header.size = sizeof(rec);
7816         rec.pid = perf_event_pid(event, current);
7817         rec.tid = perf_event_tid(event, current);
7818
7819         perf_event_header__init_id(&rec.header, &sample, event);
7820         ret = perf_output_begin(&handle, event, rec.header.size);
7821
7822         if (ret)
7823                 return;
7824
7825         perf_output_put(&handle, rec);
7826         perf_event__output_id_sample(event, &handle, &sample);
7827
7828         perf_output_end(&handle);
7829 }
7830
7831 static int
7832 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7833 {
7834         struct hw_perf_event *hwc = &event->hw;
7835         int ret = 0;
7836         u64 seq;
7837
7838         seq = __this_cpu_read(perf_throttled_seq);
7839         if (seq != hwc->interrupts_seq) {
7840                 hwc->interrupts_seq = seq;
7841                 hwc->interrupts = 1;
7842         } else {
7843                 hwc->interrupts++;
7844                 if (unlikely(throttle
7845                              && hwc->interrupts >= max_samples_per_tick)) {
7846                         __this_cpu_inc(perf_throttled_count);
7847                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7848                         hwc->interrupts = MAX_INTERRUPTS;
7849                         perf_log_throttle(event, 0);
7850                         ret = 1;
7851                 }
7852         }
7853
7854         if (event->attr.freq) {
7855                 u64 now = perf_clock();
7856                 s64 delta = now - hwc->freq_time_stamp;
7857
7858                 hwc->freq_time_stamp = now;
7859
7860                 if (delta > 0 && delta < 2*TICK_NSEC)
7861                         perf_adjust_period(event, delta, hwc->last_period, true);
7862         }
7863
7864         return ret;
7865 }
7866
7867 int perf_event_account_interrupt(struct perf_event *event)
7868 {
7869         return __perf_event_account_interrupt(event, 1);
7870 }
7871
7872 /*
7873  * Generic event overflow handling, sampling.
7874  */
7875
7876 static int __perf_event_overflow(struct perf_event *event,
7877                                    int throttle, struct perf_sample_data *data,
7878                                    struct pt_regs *regs)
7879 {
7880         int events = atomic_read(&event->event_limit);
7881         int ret = 0;
7882
7883         /*
7884          * Non-sampling counters might still use the PMI to fold short
7885          * hardware counters, ignore those.
7886          */
7887         if (unlikely(!is_sampling_event(event)))
7888                 return 0;
7889
7890         ret = __perf_event_account_interrupt(event, throttle);
7891
7892         /*
7893          * XXX event_limit might not quite work as expected on inherited
7894          * events
7895          */
7896
7897         event->pending_kill = POLL_IN;
7898         if (events && atomic_dec_and_test(&event->event_limit)) {
7899                 ret = 1;
7900                 event->pending_kill = POLL_HUP;
7901
7902                 perf_event_disable_inatomic(event);
7903         }
7904
7905         READ_ONCE(event->overflow_handler)(event, data, regs);
7906
7907         if (*perf_event_fasync(event) && event->pending_kill) {
7908                 event->pending_wakeup = 1;
7909                 irq_work_queue(&event->pending);
7910         }
7911
7912         return ret;
7913 }
7914
7915 int perf_event_overflow(struct perf_event *event,
7916                           struct perf_sample_data *data,
7917                           struct pt_regs *regs)
7918 {
7919         return __perf_event_overflow(event, 1, data, regs);
7920 }
7921
7922 /*
7923  * Generic software event infrastructure
7924  */
7925
7926 struct swevent_htable {
7927         struct swevent_hlist            *swevent_hlist;
7928         struct mutex                    hlist_mutex;
7929         int                             hlist_refcount;
7930
7931         /* Recursion avoidance in each contexts */
7932         int                             recursion[PERF_NR_CONTEXTS];
7933 };
7934
7935 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7936
7937 /*
7938  * We directly increment event->count and keep a second value in
7939  * event->hw.period_left to count intervals. This period event
7940  * is kept in the range [-sample_period, 0] so that we can use the
7941  * sign as trigger.
7942  */
7943
7944 u64 perf_swevent_set_period(struct perf_event *event)
7945 {
7946         struct hw_perf_event *hwc = &event->hw;
7947         u64 period = hwc->last_period;
7948         u64 nr, offset;
7949         s64 old, val;
7950
7951         hwc->last_period = hwc->sample_period;
7952
7953 again:
7954         old = val = local64_read(&hwc->period_left);
7955         if (val < 0)
7956                 return 0;
7957
7958         nr = div64_u64(period + val, period);
7959         offset = nr * period;
7960         val -= offset;
7961         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7962                 goto again;
7963
7964         return nr;
7965 }
7966
7967 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7968                                     struct perf_sample_data *data,
7969                                     struct pt_regs *regs)
7970 {
7971         struct hw_perf_event *hwc = &event->hw;
7972         int throttle = 0;
7973
7974         if (!overflow)
7975                 overflow = perf_swevent_set_period(event);
7976
7977         if (hwc->interrupts == MAX_INTERRUPTS)
7978                 return;
7979
7980         for (; overflow; overflow--) {
7981                 if (__perf_event_overflow(event, throttle,
7982                                             data, regs)) {
7983                         /*
7984                          * We inhibit the overflow from happening when
7985                          * hwc->interrupts == MAX_INTERRUPTS.
7986                          */
7987                         break;
7988                 }
7989                 throttle = 1;
7990         }
7991 }
7992
7993 static void perf_swevent_event(struct perf_event *event, u64 nr,
7994                                struct perf_sample_data *data,
7995                                struct pt_regs *regs)
7996 {
7997         struct hw_perf_event *hwc = &event->hw;
7998
7999         local64_add(nr, &event->count);
8000
8001         if (!regs)
8002                 return;
8003
8004         if (!is_sampling_event(event))
8005                 return;
8006
8007         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8008                 data->period = nr;
8009                 return perf_swevent_overflow(event, 1, data, regs);
8010         } else
8011                 data->period = event->hw.last_period;
8012
8013         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8014                 return perf_swevent_overflow(event, 1, data, regs);
8015
8016         if (local64_add_negative(nr, &hwc->period_left))
8017                 return;
8018
8019         perf_swevent_overflow(event, 0, data, regs);
8020 }
8021
8022 static int perf_exclude_event(struct perf_event *event,
8023                               struct pt_regs *regs)
8024 {
8025         if (event->hw.state & PERF_HES_STOPPED)
8026                 return 1;
8027
8028         if (regs) {
8029                 if (event->attr.exclude_user && user_mode(regs))
8030                         return 1;
8031
8032                 if (event->attr.exclude_kernel && !user_mode(regs))
8033                         return 1;
8034         }
8035
8036         return 0;
8037 }
8038
8039 static int perf_swevent_match(struct perf_event *event,
8040                                 enum perf_type_id type,
8041                                 u32 event_id,
8042                                 struct perf_sample_data *data,
8043                                 struct pt_regs *regs)
8044 {
8045         if (event->attr.type != type)
8046                 return 0;
8047
8048         if (event->attr.config != event_id)
8049                 return 0;
8050
8051         if (perf_exclude_event(event, regs))
8052                 return 0;
8053
8054         return 1;
8055 }
8056
8057 static inline u64 swevent_hash(u64 type, u32 event_id)
8058 {
8059         u64 val = event_id | (type << 32);
8060
8061         return hash_64(val, SWEVENT_HLIST_BITS);
8062 }
8063
8064 static inline struct hlist_head *
8065 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8066 {
8067         u64 hash = swevent_hash(type, event_id);
8068
8069         return &hlist->heads[hash];
8070 }
8071
8072 /* For the read side: events when they trigger */
8073 static inline struct hlist_head *
8074 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8075 {
8076         struct swevent_hlist *hlist;
8077
8078         hlist = rcu_dereference(swhash->swevent_hlist);
8079         if (!hlist)
8080                 return NULL;
8081
8082         return __find_swevent_head(hlist, type, event_id);
8083 }
8084
8085 /* For the event head insertion and removal in the hlist */
8086 static inline struct hlist_head *
8087 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8088 {
8089         struct swevent_hlist *hlist;
8090         u32 event_id = event->attr.config;
8091         u64 type = event->attr.type;
8092
8093         /*
8094          * Event scheduling is always serialized against hlist allocation
8095          * and release. Which makes the protected version suitable here.
8096          * The context lock guarantees that.
8097          */
8098         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8099                                           lockdep_is_held(&event->ctx->lock));
8100         if (!hlist)
8101                 return NULL;
8102
8103         return __find_swevent_head(hlist, type, event_id);
8104 }
8105
8106 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8107                                     u64 nr,
8108                                     struct perf_sample_data *data,
8109                                     struct pt_regs *regs)
8110 {
8111         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8112         struct perf_event *event;
8113         struct hlist_head *head;
8114
8115         rcu_read_lock();
8116         head = find_swevent_head_rcu(swhash, type, event_id);
8117         if (!head)
8118                 goto end;
8119
8120         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8121                 if (perf_swevent_match(event, type, event_id, data, regs))
8122                         perf_swevent_event(event, nr, data, regs);
8123         }
8124 end:
8125         rcu_read_unlock();
8126 }
8127
8128 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8129
8130 int perf_swevent_get_recursion_context(void)
8131 {
8132         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8133
8134         return get_recursion_context(swhash->recursion);
8135 }
8136 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8137
8138 void perf_swevent_put_recursion_context(int rctx)
8139 {
8140         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8141
8142         put_recursion_context(swhash->recursion, rctx);
8143 }
8144
8145 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8146 {
8147         struct perf_sample_data data;
8148
8149         if (WARN_ON_ONCE(!regs))
8150                 return;
8151
8152         perf_sample_data_init(&data, addr, 0);
8153         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8154 }
8155
8156 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8157 {
8158         int rctx;
8159
8160         preempt_disable_notrace();
8161         rctx = perf_swevent_get_recursion_context();
8162         if (unlikely(rctx < 0))
8163                 goto fail;
8164
8165         ___perf_sw_event(event_id, nr, regs, addr);
8166
8167         perf_swevent_put_recursion_context(rctx);
8168 fail:
8169         preempt_enable_notrace();
8170 }
8171
8172 static void perf_swevent_read(struct perf_event *event)
8173 {
8174 }
8175
8176 static int perf_swevent_add(struct perf_event *event, int flags)
8177 {
8178         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8179         struct hw_perf_event *hwc = &event->hw;
8180         struct hlist_head *head;
8181
8182         if (is_sampling_event(event)) {
8183                 hwc->last_period = hwc->sample_period;
8184                 perf_swevent_set_period(event);
8185         }
8186
8187         hwc->state = !(flags & PERF_EF_START);
8188
8189         head = find_swevent_head(swhash, event);
8190         if (WARN_ON_ONCE(!head))
8191                 return -EINVAL;
8192
8193         hlist_add_head_rcu(&event->hlist_entry, head);
8194         perf_event_update_userpage(event);
8195
8196         return 0;
8197 }
8198
8199 static void perf_swevent_del(struct perf_event *event, int flags)
8200 {
8201         hlist_del_rcu(&event->hlist_entry);
8202 }
8203
8204 static void perf_swevent_start(struct perf_event *event, int flags)
8205 {
8206         event->hw.state = 0;
8207 }
8208
8209 static void perf_swevent_stop(struct perf_event *event, int flags)
8210 {
8211         event->hw.state = PERF_HES_STOPPED;
8212 }
8213
8214 /* Deref the hlist from the update side */
8215 static inline struct swevent_hlist *
8216 swevent_hlist_deref(struct swevent_htable *swhash)
8217 {
8218         return rcu_dereference_protected(swhash->swevent_hlist,
8219                                          lockdep_is_held(&swhash->hlist_mutex));
8220 }
8221
8222 static void swevent_hlist_release(struct swevent_htable *swhash)
8223 {
8224         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8225
8226         if (!hlist)
8227                 return;
8228
8229         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8230         kfree_rcu(hlist, rcu_head);
8231 }
8232
8233 static void swevent_hlist_put_cpu(int cpu)
8234 {
8235         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8236
8237         mutex_lock(&swhash->hlist_mutex);
8238
8239         if (!--swhash->hlist_refcount)
8240                 swevent_hlist_release(swhash);
8241
8242         mutex_unlock(&swhash->hlist_mutex);
8243 }
8244
8245 static void swevent_hlist_put(void)
8246 {
8247         int cpu;
8248
8249         for_each_possible_cpu(cpu)
8250                 swevent_hlist_put_cpu(cpu);
8251 }
8252
8253 static int swevent_hlist_get_cpu(int cpu)
8254 {
8255         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8256         int err = 0;
8257
8258         mutex_lock(&swhash->hlist_mutex);
8259         if (!swevent_hlist_deref(swhash) &&
8260             cpumask_test_cpu(cpu, perf_online_mask)) {
8261                 struct swevent_hlist *hlist;
8262
8263                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8264                 if (!hlist) {
8265                         err = -ENOMEM;
8266                         goto exit;
8267                 }
8268                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8269         }
8270         swhash->hlist_refcount++;
8271 exit:
8272         mutex_unlock(&swhash->hlist_mutex);
8273
8274         return err;
8275 }
8276
8277 static int swevent_hlist_get(void)
8278 {
8279         int err, cpu, failed_cpu;
8280
8281         mutex_lock(&pmus_lock);
8282         for_each_possible_cpu(cpu) {
8283                 err = swevent_hlist_get_cpu(cpu);
8284                 if (err) {
8285                         failed_cpu = cpu;
8286                         goto fail;
8287                 }
8288         }
8289         mutex_unlock(&pmus_lock);
8290         return 0;
8291 fail:
8292         for_each_possible_cpu(cpu) {
8293                 if (cpu == failed_cpu)
8294                         break;
8295                 swevent_hlist_put_cpu(cpu);
8296         }
8297         mutex_unlock(&pmus_lock);
8298         return err;
8299 }
8300
8301 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8302
8303 static void sw_perf_event_destroy(struct perf_event *event)
8304 {
8305         u64 event_id = event->attr.config;
8306
8307         WARN_ON(event->parent);
8308
8309         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8310         swevent_hlist_put();
8311 }
8312
8313 static int perf_swevent_init(struct perf_event *event)
8314 {
8315         u64 event_id = event->attr.config;
8316
8317         if (event->attr.type != PERF_TYPE_SOFTWARE)
8318                 return -ENOENT;
8319
8320         /*
8321          * no branch sampling for software events
8322          */
8323         if (has_branch_stack(event))
8324                 return -EOPNOTSUPP;
8325
8326         switch (event_id) {
8327         case PERF_COUNT_SW_CPU_CLOCK:
8328         case PERF_COUNT_SW_TASK_CLOCK:
8329                 return -ENOENT;
8330
8331         default:
8332                 break;
8333         }
8334
8335         if (event_id >= PERF_COUNT_SW_MAX)
8336                 return -ENOENT;
8337
8338         if (!event->parent) {
8339                 int err;
8340
8341                 err = swevent_hlist_get();
8342                 if (err)
8343                         return err;
8344
8345                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8346                 event->destroy = sw_perf_event_destroy;
8347         }
8348
8349         return 0;
8350 }
8351
8352 static struct pmu perf_swevent = {
8353         .task_ctx_nr    = perf_sw_context,
8354
8355         .capabilities   = PERF_PMU_CAP_NO_NMI,
8356
8357         .event_init     = perf_swevent_init,
8358         .add            = perf_swevent_add,
8359         .del            = perf_swevent_del,
8360         .start          = perf_swevent_start,
8361         .stop           = perf_swevent_stop,
8362         .read           = perf_swevent_read,
8363 };
8364
8365 #ifdef CONFIG_EVENT_TRACING
8366
8367 static int perf_tp_filter_match(struct perf_event *event,
8368                                 struct perf_sample_data *data)
8369 {
8370         void *record = data->raw->frag.data;
8371
8372         /* only top level events have filters set */
8373         if (event->parent)
8374                 event = event->parent;
8375
8376         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8377                 return 1;
8378         return 0;
8379 }
8380
8381 static int perf_tp_event_match(struct perf_event *event,
8382                                 struct perf_sample_data *data,
8383                                 struct pt_regs *regs)
8384 {
8385         if (event->hw.state & PERF_HES_STOPPED)
8386                 return 0;
8387         /*
8388          * All tracepoints are from kernel-space.
8389          */
8390         if (event->attr.exclude_kernel)
8391                 return 0;
8392
8393         if (!perf_tp_filter_match(event, data))
8394                 return 0;
8395
8396         return 1;
8397 }
8398
8399 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8400                                struct trace_event_call *call, u64 count,
8401                                struct pt_regs *regs, struct hlist_head *head,
8402                                struct task_struct *task)
8403 {
8404         if (bpf_prog_array_valid(call)) {
8405                 *(struct pt_regs **)raw_data = regs;
8406                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8407                         perf_swevent_put_recursion_context(rctx);
8408                         return;
8409                 }
8410         }
8411         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8412                       rctx, task);
8413 }
8414 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8415
8416 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8417                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8418                    struct task_struct *task)
8419 {
8420         struct perf_sample_data data;
8421         struct perf_event *event;
8422
8423         struct perf_raw_record raw = {
8424                 .frag = {
8425                         .size = entry_size,
8426                         .data = record,
8427                 },
8428         };
8429
8430         perf_sample_data_init(&data, 0, 0);
8431         data.raw = &raw;
8432
8433         perf_trace_buf_update(record, event_type);
8434
8435         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8436                 if (perf_tp_event_match(event, &data, regs))
8437                         perf_swevent_event(event, count, &data, regs);
8438         }
8439
8440         /*
8441          * If we got specified a target task, also iterate its context and
8442          * deliver this event there too.
8443          */
8444         if (task && task != current) {
8445                 struct perf_event_context *ctx;
8446                 struct trace_entry *entry = record;
8447
8448                 rcu_read_lock();
8449                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8450                 if (!ctx)
8451                         goto unlock;
8452
8453                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8454                         if (event->cpu != smp_processor_id())
8455                                 continue;
8456                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8457                                 continue;
8458                         if (event->attr.config != entry->type)
8459                                 continue;
8460                         if (perf_tp_event_match(event, &data, regs))
8461                                 perf_swevent_event(event, count, &data, regs);
8462                 }
8463 unlock:
8464                 rcu_read_unlock();
8465         }
8466
8467         perf_swevent_put_recursion_context(rctx);
8468 }
8469 EXPORT_SYMBOL_GPL(perf_tp_event);
8470
8471 static void tp_perf_event_destroy(struct perf_event *event)
8472 {
8473         perf_trace_destroy(event);
8474 }
8475
8476 static int perf_tp_event_init(struct perf_event *event)
8477 {
8478         int err;
8479
8480         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8481                 return -ENOENT;
8482
8483         /*
8484          * no branch sampling for tracepoint events
8485          */
8486         if (has_branch_stack(event))
8487                 return -EOPNOTSUPP;
8488
8489         err = perf_trace_init(event);
8490         if (err)
8491                 return err;
8492
8493         event->destroy = tp_perf_event_destroy;
8494
8495         return 0;
8496 }
8497
8498 static struct pmu perf_tracepoint = {
8499         .task_ctx_nr    = perf_sw_context,
8500
8501         .event_init     = perf_tp_event_init,
8502         .add            = perf_trace_add,
8503         .del            = perf_trace_del,
8504         .start          = perf_swevent_start,
8505         .stop           = perf_swevent_stop,
8506         .read           = perf_swevent_read,
8507 };
8508
8509 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8510 /*
8511  * Flags in config, used by dynamic PMU kprobe and uprobe
8512  * The flags should match following PMU_FORMAT_ATTR().
8513  *
8514  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8515  *                               if not set, create kprobe/uprobe
8516  */
8517 enum perf_probe_config {
8518         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8519 };
8520
8521 PMU_FORMAT_ATTR(retprobe, "config:0");
8522
8523 static struct attribute *probe_attrs[] = {
8524         &format_attr_retprobe.attr,
8525         NULL,
8526 };
8527
8528 static struct attribute_group probe_format_group = {
8529         .name = "format",
8530         .attrs = probe_attrs,
8531 };
8532
8533 static const struct attribute_group *probe_attr_groups[] = {
8534         &probe_format_group,
8535         NULL,
8536 };
8537 #endif
8538
8539 #ifdef CONFIG_KPROBE_EVENTS
8540 static int perf_kprobe_event_init(struct perf_event *event);
8541 static struct pmu perf_kprobe = {
8542         .task_ctx_nr    = perf_sw_context,
8543         .event_init     = perf_kprobe_event_init,
8544         .add            = perf_trace_add,
8545         .del            = perf_trace_del,
8546         .start          = perf_swevent_start,
8547         .stop           = perf_swevent_stop,
8548         .read           = perf_swevent_read,
8549         .attr_groups    = probe_attr_groups,
8550 };
8551
8552 static int perf_kprobe_event_init(struct perf_event *event)
8553 {
8554         int err;
8555         bool is_retprobe;
8556
8557         if (event->attr.type != perf_kprobe.type)
8558                 return -ENOENT;
8559
8560         if (!capable(CAP_SYS_ADMIN))
8561                 return -EACCES;
8562
8563         /*
8564          * no branch sampling for probe events
8565          */
8566         if (has_branch_stack(event))
8567                 return -EOPNOTSUPP;
8568
8569         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8570         err = perf_kprobe_init(event, is_retprobe);
8571         if (err)
8572                 return err;
8573
8574         event->destroy = perf_kprobe_destroy;
8575
8576         return 0;
8577 }
8578 #endif /* CONFIG_KPROBE_EVENTS */
8579
8580 #ifdef CONFIG_UPROBE_EVENTS
8581 static int perf_uprobe_event_init(struct perf_event *event);
8582 static struct pmu perf_uprobe = {
8583         .task_ctx_nr    = perf_sw_context,
8584         .event_init     = perf_uprobe_event_init,
8585         .add            = perf_trace_add,
8586         .del            = perf_trace_del,
8587         .start          = perf_swevent_start,
8588         .stop           = perf_swevent_stop,
8589         .read           = perf_swevent_read,
8590         .attr_groups    = probe_attr_groups,
8591 };
8592
8593 static int perf_uprobe_event_init(struct perf_event *event)
8594 {
8595         int err;
8596         bool is_retprobe;
8597
8598         if (event->attr.type != perf_uprobe.type)
8599                 return -ENOENT;
8600
8601         if (!capable(CAP_SYS_ADMIN))
8602                 return -EACCES;
8603
8604         /*
8605          * no branch sampling for probe events
8606          */
8607         if (has_branch_stack(event))
8608                 return -EOPNOTSUPP;
8609
8610         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8611         err = perf_uprobe_init(event, is_retprobe);
8612         if (err)
8613                 return err;
8614
8615         event->destroy = perf_uprobe_destroy;
8616
8617         return 0;
8618 }
8619 #endif /* CONFIG_UPROBE_EVENTS */
8620
8621 static inline void perf_tp_register(void)
8622 {
8623         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8624 #ifdef CONFIG_KPROBE_EVENTS
8625         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8626 #endif
8627 #ifdef CONFIG_UPROBE_EVENTS
8628         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8629 #endif
8630 }
8631
8632 static void perf_event_free_filter(struct perf_event *event)
8633 {
8634         ftrace_profile_free_filter(event);
8635 }
8636
8637 #ifdef CONFIG_BPF_SYSCALL
8638 static void bpf_overflow_handler(struct perf_event *event,
8639                                  struct perf_sample_data *data,
8640                                  struct pt_regs *regs)
8641 {
8642         struct bpf_perf_event_data_kern ctx = {
8643                 .data = data,
8644                 .event = event,
8645         };
8646         int ret = 0;
8647
8648         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8649         preempt_disable();
8650         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8651                 goto out;
8652         rcu_read_lock();
8653         ret = BPF_PROG_RUN(event->prog, &ctx);
8654         rcu_read_unlock();
8655 out:
8656         __this_cpu_dec(bpf_prog_active);
8657         preempt_enable();
8658         if (!ret)
8659                 return;
8660
8661         event->orig_overflow_handler(event, data, regs);
8662 }
8663
8664 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8665 {
8666         struct bpf_prog *prog;
8667
8668         if (event->overflow_handler_context)
8669                 /* hw breakpoint or kernel counter */
8670                 return -EINVAL;
8671
8672         if (event->prog)
8673                 return -EEXIST;
8674
8675         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8676         if (IS_ERR(prog))
8677                 return PTR_ERR(prog);
8678
8679         event->prog = prog;
8680         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8681         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8682         return 0;
8683 }
8684
8685 static void perf_event_free_bpf_handler(struct perf_event *event)
8686 {
8687         struct bpf_prog *prog = event->prog;
8688
8689         if (!prog)
8690                 return;
8691
8692         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8693         event->prog = NULL;
8694         bpf_prog_put(prog);
8695 }
8696 #else
8697 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8698 {
8699         return -EOPNOTSUPP;
8700 }
8701 static void perf_event_free_bpf_handler(struct perf_event *event)
8702 {
8703 }
8704 #endif
8705
8706 /*
8707  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8708  * with perf_event_open()
8709  */
8710 static inline bool perf_event_is_tracing(struct perf_event *event)
8711 {
8712         if (event->pmu == &perf_tracepoint)
8713                 return true;
8714 #ifdef CONFIG_KPROBE_EVENTS
8715         if (event->pmu == &perf_kprobe)
8716                 return true;
8717 #endif
8718 #ifdef CONFIG_UPROBE_EVENTS
8719         if (event->pmu == &perf_uprobe)
8720                 return true;
8721 #endif
8722         return false;
8723 }
8724
8725 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8726 {
8727         bool is_kprobe, is_tracepoint, is_syscall_tp;
8728         struct bpf_prog *prog;
8729         int ret;
8730
8731         if (!perf_event_is_tracing(event))
8732                 return perf_event_set_bpf_handler(event, prog_fd);
8733
8734         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8735         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8736         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8737         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8738                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8739                 return -EINVAL;
8740
8741         prog = bpf_prog_get(prog_fd);
8742         if (IS_ERR(prog))
8743                 return PTR_ERR(prog);
8744
8745         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8746             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8747             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8748                 /* valid fd, but invalid bpf program type */
8749                 bpf_prog_put(prog);
8750                 return -EINVAL;
8751         }
8752
8753         /* Kprobe override only works for kprobes, not uprobes. */
8754         if (prog->kprobe_override &&
8755             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8756                 bpf_prog_put(prog);
8757                 return -EINVAL;
8758         }
8759
8760         if (is_tracepoint || is_syscall_tp) {
8761                 int off = trace_event_get_offsets(event->tp_event);
8762
8763                 if (prog->aux->max_ctx_offset > off) {
8764                         bpf_prog_put(prog);
8765                         return -EACCES;
8766                 }
8767         }
8768
8769         ret = perf_event_attach_bpf_prog(event, prog);
8770         if (ret)
8771                 bpf_prog_put(prog);
8772         return ret;
8773 }
8774
8775 static void perf_event_free_bpf_prog(struct perf_event *event)
8776 {
8777         if (!perf_event_is_tracing(event)) {
8778                 perf_event_free_bpf_handler(event);
8779                 return;
8780         }
8781         perf_event_detach_bpf_prog(event);
8782 }
8783
8784 #else
8785
8786 static inline void perf_tp_register(void)
8787 {
8788 }
8789
8790 static void perf_event_free_filter(struct perf_event *event)
8791 {
8792 }
8793
8794 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8795 {
8796         return -ENOENT;
8797 }
8798
8799 static void perf_event_free_bpf_prog(struct perf_event *event)
8800 {
8801 }
8802 #endif /* CONFIG_EVENT_TRACING */
8803
8804 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8805 void perf_bp_event(struct perf_event *bp, void *data)
8806 {
8807         struct perf_sample_data sample;
8808         struct pt_regs *regs = data;
8809
8810         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8811
8812         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8813                 perf_swevent_event(bp, 1, &sample, regs);
8814 }
8815 #endif
8816
8817 /*
8818  * Allocate a new address filter
8819  */
8820 static struct perf_addr_filter *
8821 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8822 {
8823         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8824         struct perf_addr_filter *filter;
8825
8826         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8827         if (!filter)
8828                 return NULL;
8829
8830         INIT_LIST_HEAD(&filter->entry);
8831         list_add_tail(&filter->entry, filters);
8832
8833         return filter;
8834 }
8835
8836 static void free_filters_list(struct list_head *filters)
8837 {
8838         struct perf_addr_filter *filter, *iter;
8839
8840         list_for_each_entry_safe(filter, iter, filters, entry) {
8841                 path_put(&filter->path);
8842                 list_del(&filter->entry);
8843                 kfree(filter);
8844         }
8845 }
8846
8847 /*
8848  * Free existing address filters and optionally install new ones
8849  */
8850 static void perf_addr_filters_splice(struct perf_event *event,
8851                                      struct list_head *head)
8852 {
8853         unsigned long flags;
8854         LIST_HEAD(list);
8855
8856         if (!has_addr_filter(event))
8857                 return;
8858
8859         /* don't bother with children, they don't have their own filters */
8860         if (event->parent)
8861                 return;
8862
8863         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8864
8865         list_splice_init(&event->addr_filters.list, &list);
8866         if (head)
8867                 list_splice(head, &event->addr_filters.list);
8868
8869         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8870
8871         free_filters_list(&list);
8872 }
8873
8874 /*
8875  * Scan through mm's vmas and see if one of them matches the
8876  * @filter; if so, adjust filter's address range.
8877  * Called with mm::mmap_sem down for reading.
8878  */
8879 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
8880                                    struct mm_struct *mm,
8881                                    struct perf_addr_filter_range *fr)
8882 {
8883         struct vm_area_struct *vma;
8884
8885         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8886                 if (!vma->vm_file)
8887                         continue;
8888
8889                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
8890                         return;
8891         }
8892 }
8893
8894 /*
8895  * Update event's address range filters based on the
8896  * task's existing mappings, if any.
8897  */
8898 static void perf_event_addr_filters_apply(struct perf_event *event)
8899 {
8900         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8901         struct task_struct *task = READ_ONCE(event->ctx->task);
8902         struct perf_addr_filter *filter;
8903         struct mm_struct *mm = NULL;
8904         unsigned int count = 0;
8905         unsigned long flags;
8906
8907         /*
8908          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8909          * will stop on the parent's child_mutex that our caller is also holding
8910          */
8911         if (task == TASK_TOMBSTONE)
8912                 return;
8913
8914         if (ifh->nr_file_filters) {
8915                 mm = get_task_mm(event->ctx->task);
8916                 if (!mm)
8917                         goto restart;
8918
8919                 down_read(&mm->mmap_sem);
8920         }
8921
8922         raw_spin_lock_irqsave(&ifh->lock, flags);
8923         list_for_each_entry(filter, &ifh->list, entry) {
8924                 if (filter->path.dentry) {
8925                         /*
8926                          * Adjust base offset if the filter is associated to a
8927                          * binary that needs to be mapped:
8928                          */
8929                         event->addr_filter_ranges[count].start = 0;
8930                         event->addr_filter_ranges[count].size = 0;
8931
8932                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
8933                 } else {
8934                         event->addr_filter_ranges[count].start = filter->offset;
8935                         event->addr_filter_ranges[count].size  = filter->size;
8936                 }
8937
8938                 count++;
8939         }
8940
8941         event->addr_filters_gen++;
8942         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8943
8944         if (ifh->nr_file_filters) {
8945                 up_read(&mm->mmap_sem);
8946
8947                 mmput(mm);
8948         }
8949
8950 restart:
8951         perf_event_stop(event, 1);
8952 }
8953
8954 /*
8955  * Address range filtering: limiting the data to certain
8956  * instruction address ranges. Filters are ioctl()ed to us from
8957  * userspace as ascii strings.
8958  *
8959  * Filter string format:
8960  *
8961  * ACTION RANGE_SPEC
8962  * where ACTION is one of the
8963  *  * "filter": limit the trace to this region
8964  *  * "start": start tracing from this address
8965  *  * "stop": stop tracing at this address/region;
8966  * RANGE_SPEC is
8967  *  * for kernel addresses: <start address>[/<size>]
8968  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8969  *
8970  * if <size> is not specified or is zero, the range is treated as a single
8971  * address; not valid for ACTION=="filter".
8972  */
8973 enum {
8974         IF_ACT_NONE = -1,
8975         IF_ACT_FILTER,
8976         IF_ACT_START,
8977         IF_ACT_STOP,
8978         IF_SRC_FILE,
8979         IF_SRC_KERNEL,
8980         IF_SRC_FILEADDR,
8981         IF_SRC_KERNELADDR,
8982 };
8983
8984 enum {
8985         IF_STATE_ACTION = 0,
8986         IF_STATE_SOURCE,
8987         IF_STATE_END,
8988 };
8989
8990 static const match_table_t if_tokens = {
8991         { IF_ACT_FILTER,        "filter" },
8992         { IF_ACT_START,         "start" },
8993         { IF_ACT_STOP,          "stop" },
8994         { IF_SRC_FILE,          "%u/%u@%s" },
8995         { IF_SRC_KERNEL,        "%u/%u" },
8996         { IF_SRC_FILEADDR,      "%u@%s" },
8997         { IF_SRC_KERNELADDR,    "%u" },
8998         { IF_ACT_NONE,          NULL },
8999 };
9000
9001 /*
9002  * Address filter string parser
9003  */
9004 static int
9005 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9006                              struct list_head *filters)
9007 {
9008         struct perf_addr_filter *filter = NULL;
9009         char *start, *orig, *filename = NULL;
9010         substring_t args[MAX_OPT_ARGS];
9011         int state = IF_STATE_ACTION, token;
9012         unsigned int kernel = 0;
9013         int ret = -EINVAL;
9014
9015         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9016         if (!fstr)
9017                 return -ENOMEM;
9018
9019         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9020                 static const enum perf_addr_filter_action_t actions[] = {
9021                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9022                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9023                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9024                 };
9025                 ret = -EINVAL;
9026
9027                 if (!*start)
9028                         continue;
9029
9030                 /* filter definition begins */
9031                 if (state == IF_STATE_ACTION) {
9032                         filter = perf_addr_filter_new(event, filters);
9033                         if (!filter)
9034                                 goto fail;
9035                 }
9036
9037                 token = match_token(start, if_tokens, args);
9038                 switch (token) {
9039                 case IF_ACT_FILTER:
9040                 case IF_ACT_START:
9041                 case IF_ACT_STOP:
9042                         if (state != IF_STATE_ACTION)
9043                                 goto fail;
9044
9045                         filter->action = actions[token];
9046                         state = IF_STATE_SOURCE;
9047                         break;
9048
9049                 case IF_SRC_KERNELADDR:
9050                 case IF_SRC_KERNEL:
9051                         kernel = 1;
9052
9053                 case IF_SRC_FILEADDR:
9054                 case IF_SRC_FILE:
9055                         if (state != IF_STATE_SOURCE)
9056                                 goto fail;
9057
9058                         *args[0].to = 0;
9059                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9060                         if (ret)
9061                                 goto fail;
9062
9063                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9064                                 *args[1].to = 0;
9065                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9066                                 if (ret)
9067                                         goto fail;
9068                         }
9069
9070                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9071                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9072
9073                                 kfree(filename);
9074                                 filename = match_strdup(&args[fpos]);
9075                                 if (!filename) {
9076                                         ret = -ENOMEM;
9077                                         goto fail;
9078                                 }
9079                         }
9080
9081                         state = IF_STATE_END;
9082                         break;
9083
9084                 default:
9085                         goto fail;
9086                 }
9087
9088                 /*
9089                  * Filter definition is fully parsed, validate and install it.
9090                  * Make sure that it doesn't contradict itself or the event's
9091                  * attribute.
9092                  */
9093                 if (state == IF_STATE_END) {
9094                         ret = -EINVAL;
9095                         if (kernel && event->attr.exclude_kernel)
9096                                 goto fail;
9097
9098                         /*
9099                          * ACTION "filter" must have a non-zero length region
9100                          * specified.
9101                          */
9102                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9103                             !filter->size)
9104                                 goto fail;
9105
9106                         if (!kernel) {
9107                                 if (!filename)
9108                                         goto fail;
9109
9110                                 /*
9111                                  * For now, we only support file-based filters
9112                                  * in per-task events; doing so for CPU-wide
9113                                  * events requires additional context switching
9114                                  * trickery, since same object code will be
9115                                  * mapped at different virtual addresses in
9116                                  * different processes.
9117                                  */
9118                                 ret = -EOPNOTSUPP;
9119                                 if (!event->ctx->task)
9120                                         goto fail;
9121
9122                                 /* look up the path and grab its inode */
9123                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9124                                                 &filter->path);
9125                                 if (ret)
9126                                         goto fail;
9127
9128                                 ret = -EINVAL;
9129                                 if (!filter->path.dentry ||
9130                                     !S_ISREG(d_inode(filter->path.dentry)
9131                                              ->i_mode))
9132                                         goto fail;
9133
9134                                 event->addr_filters.nr_file_filters++;
9135                         }
9136
9137                         /* ready to consume more filters */
9138                         state = IF_STATE_ACTION;
9139                         filter = NULL;
9140                 }
9141         }
9142
9143         if (state != IF_STATE_ACTION)
9144                 goto fail;
9145
9146         kfree(filename);
9147         kfree(orig);
9148
9149         return 0;
9150
9151 fail:
9152         kfree(filename);
9153         free_filters_list(filters);
9154         kfree(orig);
9155
9156         return ret;
9157 }
9158
9159 static int
9160 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9161 {
9162         LIST_HEAD(filters);
9163         int ret;
9164
9165         /*
9166          * Since this is called in perf_ioctl() path, we're already holding
9167          * ctx::mutex.
9168          */
9169         lockdep_assert_held(&event->ctx->mutex);
9170
9171         if (WARN_ON_ONCE(event->parent))
9172                 return -EINVAL;
9173
9174         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9175         if (ret)
9176                 goto fail_clear_files;
9177
9178         ret = event->pmu->addr_filters_validate(&filters);
9179         if (ret)
9180                 goto fail_free_filters;
9181
9182         /* remove existing filters, if any */
9183         perf_addr_filters_splice(event, &filters);
9184
9185         /* install new filters */
9186         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9187
9188         return ret;
9189
9190 fail_free_filters:
9191         free_filters_list(&filters);
9192
9193 fail_clear_files:
9194         event->addr_filters.nr_file_filters = 0;
9195
9196         return ret;
9197 }
9198
9199 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9200 {
9201         int ret = -EINVAL;
9202         char *filter_str;
9203
9204         filter_str = strndup_user(arg, PAGE_SIZE);
9205         if (IS_ERR(filter_str))
9206                 return PTR_ERR(filter_str);
9207
9208 #ifdef CONFIG_EVENT_TRACING
9209         if (perf_event_is_tracing(event)) {
9210                 struct perf_event_context *ctx = event->ctx;
9211
9212                 /*
9213                  * Beware, here be dragons!!
9214                  *
9215                  * the tracepoint muck will deadlock against ctx->mutex, but
9216                  * the tracepoint stuff does not actually need it. So
9217                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9218                  * already have a reference on ctx.
9219                  *
9220                  * This can result in event getting moved to a different ctx,
9221                  * but that does not affect the tracepoint state.
9222                  */
9223                 mutex_unlock(&ctx->mutex);
9224                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9225                 mutex_lock(&ctx->mutex);
9226         } else
9227 #endif
9228         if (has_addr_filter(event))
9229                 ret = perf_event_set_addr_filter(event, filter_str);
9230
9231         kfree(filter_str);
9232         return ret;
9233 }
9234
9235 /*
9236  * hrtimer based swevent callback
9237  */
9238
9239 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9240 {
9241         enum hrtimer_restart ret = HRTIMER_RESTART;
9242         struct perf_sample_data data;
9243         struct pt_regs *regs;
9244         struct perf_event *event;
9245         u64 period;
9246
9247         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9248
9249         if (event->state != PERF_EVENT_STATE_ACTIVE)
9250                 return HRTIMER_NORESTART;
9251
9252         event->pmu->read(event);
9253
9254         perf_sample_data_init(&data, 0, event->hw.last_period);
9255         regs = get_irq_regs();
9256
9257         if (regs && !perf_exclude_event(event, regs)) {
9258                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9259                         if (__perf_event_overflow(event, 1, &data, regs))
9260                                 ret = HRTIMER_NORESTART;
9261         }
9262
9263         period = max_t(u64, 10000, event->hw.sample_period);
9264         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9265
9266         return ret;
9267 }
9268
9269 static void perf_swevent_start_hrtimer(struct perf_event *event)
9270 {
9271         struct hw_perf_event *hwc = &event->hw;
9272         s64 period;
9273
9274         if (!is_sampling_event(event))
9275                 return;
9276
9277         period = local64_read(&hwc->period_left);
9278         if (period) {
9279                 if (period < 0)
9280                         period = 10000;
9281
9282                 local64_set(&hwc->period_left, 0);
9283         } else {
9284                 period = max_t(u64, 10000, hwc->sample_period);
9285         }
9286         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9287                       HRTIMER_MODE_REL_PINNED);
9288 }
9289
9290 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9291 {
9292         struct hw_perf_event *hwc = &event->hw;
9293
9294         if (is_sampling_event(event)) {
9295                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9296                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9297
9298                 hrtimer_cancel(&hwc->hrtimer);
9299         }
9300 }
9301
9302 static void perf_swevent_init_hrtimer(struct perf_event *event)
9303 {
9304         struct hw_perf_event *hwc = &event->hw;
9305
9306         if (!is_sampling_event(event))
9307                 return;
9308
9309         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9310         hwc->hrtimer.function = perf_swevent_hrtimer;
9311
9312         /*
9313          * Since hrtimers have a fixed rate, we can do a static freq->period
9314          * mapping and avoid the whole period adjust feedback stuff.
9315          */
9316         if (event->attr.freq) {
9317                 long freq = event->attr.sample_freq;
9318
9319                 event->attr.sample_period = NSEC_PER_SEC / freq;
9320                 hwc->sample_period = event->attr.sample_period;
9321                 local64_set(&hwc->period_left, hwc->sample_period);
9322                 hwc->last_period = hwc->sample_period;
9323                 event->attr.freq = 0;
9324         }
9325 }
9326
9327 /*
9328  * Software event: cpu wall time clock
9329  */
9330
9331 static void cpu_clock_event_update(struct perf_event *event)
9332 {
9333         s64 prev;
9334         u64 now;
9335
9336         now = local_clock();
9337         prev = local64_xchg(&event->hw.prev_count, now);
9338         local64_add(now - prev, &event->count);
9339 }
9340
9341 static void cpu_clock_event_start(struct perf_event *event, int flags)
9342 {
9343         local64_set(&event->hw.prev_count, local_clock());
9344         perf_swevent_start_hrtimer(event);
9345 }
9346
9347 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9348 {
9349         perf_swevent_cancel_hrtimer(event);
9350         cpu_clock_event_update(event);
9351 }
9352
9353 static int cpu_clock_event_add(struct perf_event *event, int flags)
9354 {
9355         if (flags & PERF_EF_START)
9356                 cpu_clock_event_start(event, flags);
9357         perf_event_update_userpage(event);
9358
9359         return 0;
9360 }
9361
9362 static void cpu_clock_event_del(struct perf_event *event, int flags)
9363 {
9364         cpu_clock_event_stop(event, flags);
9365 }
9366
9367 static void cpu_clock_event_read(struct perf_event *event)
9368 {
9369         cpu_clock_event_update(event);
9370 }
9371
9372 static int cpu_clock_event_init(struct perf_event *event)
9373 {
9374         if (event->attr.type != PERF_TYPE_SOFTWARE)
9375                 return -ENOENT;
9376
9377         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9378                 return -ENOENT;
9379
9380         /*
9381          * no branch sampling for software events
9382          */
9383         if (has_branch_stack(event))
9384                 return -EOPNOTSUPP;
9385
9386         perf_swevent_init_hrtimer(event);
9387
9388         return 0;
9389 }
9390
9391 static struct pmu perf_cpu_clock = {
9392         .task_ctx_nr    = perf_sw_context,
9393
9394         .capabilities   = PERF_PMU_CAP_NO_NMI,
9395
9396         .event_init     = cpu_clock_event_init,
9397         .add            = cpu_clock_event_add,
9398         .del            = cpu_clock_event_del,
9399         .start          = cpu_clock_event_start,
9400         .stop           = cpu_clock_event_stop,
9401         .read           = cpu_clock_event_read,
9402 };
9403
9404 /*
9405  * Software event: task time clock
9406  */
9407
9408 static void task_clock_event_update(struct perf_event *event, u64 now)
9409 {
9410         u64 prev;
9411         s64 delta;
9412
9413         prev = local64_xchg(&event->hw.prev_count, now);
9414         delta = now - prev;
9415         local64_add(delta, &event->count);
9416 }
9417
9418 static void task_clock_event_start(struct perf_event *event, int flags)
9419 {
9420         local64_set(&event->hw.prev_count, event->ctx->time);
9421         perf_swevent_start_hrtimer(event);
9422 }
9423
9424 static void task_clock_event_stop(struct perf_event *event, int flags)
9425 {
9426         perf_swevent_cancel_hrtimer(event);
9427         task_clock_event_update(event, event->ctx->time);
9428 }
9429
9430 static int task_clock_event_add(struct perf_event *event, int flags)
9431 {
9432         if (flags & PERF_EF_START)
9433                 task_clock_event_start(event, flags);
9434         perf_event_update_userpage(event);
9435
9436         return 0;
9437 }
9438
9439 static void task_clock_event_del(struct perf_event *event, int flags)
9440 {
9441         task_clock_event_stop(event, PERF_EF_UPDATE);
9442 }
9443
9444 static void task_clock_event_read(struct perf_event *event)
9445 {
9446         u64 now = perf_clock();
9447         u64 delta = now - event->ctx->timestamp;
9448         u64 time = event->ctx->time + delta;
9449
9450         task_clock_event_update(event, time);
9451 }
9452
9453 static int task_clock_event_init(struct perf_event *event)
9454 {
9455         if (event->attr.type != PERF_TYPE_SOFTWARE)
9456                 return -ENOENT;
9457
9458         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9459                 return -ENOENT;
9460
9461         /*
9462          * no branch sampling for software events
9463          */
9464         if (has_branch_stack(event))
9465                 return -EOPNOTSUPP;
9466
9467         perf_swevent_init_hrtimer(event);
9468
9469         return 0;
9470 }
9471
9472 static struct pmu perf_task_clock = {
9473         .task_ctx_nr    = perf_sw_context,
9474
9475         .capabilities   = PERF_PMU_CAP_NO_NMI,
9476
9477         .event_init     = task_clock_event_init,
9478         .add            = task_clock_event_add,
9479         .del            = task_clock_event_del,
9480         .start          = task_clock_event_start,
9481         .stop           = task_clock_event_stop,
9482         .read           = task_clock_event_read,
9483 };
9484
9485 static void perf_pmu_nop_void(struct pmu *pmu)
9486 {
9487 }
9488
9489 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9490 {
9491 }
9492
9493 static int perf_pmu_nop_int(struct pmu *pmu)
9494 {
9495         return 0;
9496 }
9497
9498 static int perf_event_nop_int(struct perf_event *event, u64 value)
9499 {
9500         return 0;
9501 }
9502
9503 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9504
9505 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9506 {
9507         __this_cpu_write(nop_txn_flags, flags);
9508
9509         if (flags & ~PERF_PMU_TXN_ADD)
9510                 return;
9511
9512         perf_pmu_disable(pmu);
9513 }
9514
9515 static int perf_pmu_commit_txn(struct pmu *pmu)
9516 {
9517         unsigned int flags = __this_cpu_read(nop_txn_flags);
9518
9519         __this_cpu_write(nop_txn_flags, 0);
9520
9521         if (flags & ~PERF_PMU_TXN_ADD)
9522                 return 0;
9523
9524         perf_pmu_enable(pmu);
9525         return 0;
9526 }
9527
9528 static void perf_pmu_cancel_txn(struct pmu *pmu)
9529 {
9530         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9531
9532         __this_cpu_write(nop_txn_flags, 0);
9533
9534         if (flags & ~PERF_PMU_TXN_ADD)
9535                 return;
9536
9537         perf_pmu_enable(pmu);
9538 }
9539
9540 static int perf_event_idx_default(struct perf_event *event)
9541 {
9542         return 0;
9543 }
9544
9545 /*
9546  * Ensures all contexts with the same task_ctx_nr have the same
9547  * pmu_cpu_context too.
9548  */
9549 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9550 {
9551         struct pmu *pmu;
9552
9553         if (ctxn < 0)
9554                 return NULL;
9555
9556         list_for_each_entry(pmu, &pmus, entry) {
9557                 if (pmu->task_ctx_nr == ctxn)
9558                         return pmu->pmu_cpu_context;
9559         }
9560
9561         return NULL;
9562 }
9563
9564 static void free_pmu_context(struct pmu *pmu)
9565 {
9566         /*
9567          * Static contexts such as perf_sw_context have a global lifetime
9568          * and may be shared between different PMUs. Avoid freeing them
9569          * when a single PMU is going away.
9570          */
9571         if (pmu->task_ctx_nr > perf_invalid_context)
9572                 return;
9573
9574         free_percpu(pmu->pmu_cpu_context);
9575 }
9576
9577 /*
9578  * Let userspace know that this PMU supports address range filtering:
9579  */
9580 static ssize_t nr_addr_filters_show(struct device *dev,
9581                                     struct device_attribute *attr,
9582                                     char *page)
9583 {
9584         struct pmu *pmu = dev_get_drvdata(dev);
9585
9586         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9587 }
9588 DEVICE_ATTR_RO(nr_addr_filters);
9589
9590 static struct idr pmu_idr;
9591
9592 static ssize_t
9593 type_show(struct device *dev, struct device_attribute *attr, char *page)
9594 {
9595         struct pmu *pmu = dev_get_drvdata(dev);
9596
9597         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9598 }
9599 static DEVICE_ATTR_RO(type);
9600
9601 static ssize_t
9602 perf_event_mux_interval_ms_show(struct device *dev,
9603                                 struct device_attribute *attr,
9604                                 char *page)
9605 {
9606         struct pmu *pmu = dev_get_drvdata(dev);
9607
9608         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9609 }
9610
9611 static DEFINE_MUTEX(mux_interval_mutex);
9612
9613 static ssize_t
9614 perf_event_mux_interval_ms_store(struct device *dev,
9615                                  struct device_attribute *attr,
9616                                  const char *buf, size_t count)
9617 {
9618         struct pmu *pmu = dev_get_drvdata(dev);
9619         int timer, cpu, ret;
9620
9621         ret = kstrtoint(buf, 0, &timer);
9622         if (ret)
9623                 return ret;
9624
9625         if (timer < 1)
9626                 return -EINVAL;
9627
9628         /* same value, noting to do */
9629         if (timer == pmu->hrtimer_interval_ms)
9630                 return count;
9631
9632         mutex_lock(&mux_interval_mutex);
9633         pmu->hrtimer_interval_ms = timer;
9634
9635         /* update all cpuctx for this PMU */
9636         cpus_read_lock();
9637         for_each_online_cpu(cpu) {
9638                 struct perf_cpu_context *cpuctx;
9639                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9640                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9641
9642                 cpu_function_call(cpu,
9643                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9644         }
9645         cpus_read_unlock();
9646         mutex_unlock(&mux_interval_mutex);
9647
9648         return count;
9649 }
9650 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9651
9652 static struct attribute *pmu_dev_attrs[] = {
9653         &dev_attr_type.attr,
9654         &dev_attr_perf_event_mux_interval_ms.attr,
9655         NULL,
9656 };
9657 ATTRIBUTE_GROUPS(pmu_dev);
9658
9659 static int pmu_bus_running;
9660 static struct bus_type pmu_bus = {
9661         .name           = "event_source",
9662         .dev_groups     = pmu_dev_groups,
9663 };
9664
9665 static void pmu_dev_release(struct device *dev)
9666 {
9667         kfree(dev);
9668 }
9669
9670 static int pmu_dev_alloc(struct pmu *pmu)
9671 {
9672         int ret = -ENOMEM;
9673
9674         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9675         if (!pmu->dev)
9676                 goto out;
9677
9678         pmu->dev->groups = pmu->attr_groups;
9679         device_initialize(pmu->dev);
9680         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9681         if (ret)
9682                 goto free_dev;
9683
9684         dev_set_drvdata(pmu->dev, pmu);
9685         pmu->dev->bus = &pmu_bus;
9686         pmu->dev->release = pmu_dev_release;
9687         ret = device_add(pmu->dev);
9688         if (ret)
9689                 goto free_dev;
9690
9691         /* For PMUs with address filters, throw in an extra attribute: */
9692         if (pmu->nr_addr_filters)
9693                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9694
9695         if (ret)
9696                 goto del_dev;
9697
9698 out:
9699         return ret;
9700
9701 del_dev:
9702         device_del(pmu->dev);
9703
9704 free_dev:
9705         put_device(pmu->dev);
9706         goto out;
9707 }
9708
9709 static struct lock_class_key cpuctx_mutex;
9710 static struct lock_class_key cpuctx_lock;
9711
9712 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9713 {
9714         int cpu, ret;
9715
9716         mutex_lock(&pmus_lock);
9717         ret = -ENOMEM;
9718         pmu->pmu_disable_count = alloc_percpu(int);
9719         if (!pmu->pmu_disable_count)
9720                 goto unlock;
9721
9722         pmu->type = -1;
9723         if (!name)
9724                 goto skip_type;
9725         pmu->name = name;
9726
9727         if (type < 0) {
9728                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9729                 if (type < 0) {
9730                         ret = type;
9731                         goto free_pdc;
9732                 }
9733         }
9734         pmu->type = type;
9735
9736         if (pmu_bus_running) {
9737                 ret = pmu_dev_alloc(pmu);
9738                 if (ret)
9739                         goto free_idr;
9740         }
9741
9742 skip_type:
9743         if (pmu->task_ctx_nr == perf_hw_context) {
9744                 static int hw_context_taken = 0;
9745
9746                 /*
9747                  * Other than systems with heterogeneous CPUs, it never makes
9748                  * sense for two PMUs to share perf_hw_context. PMUs which are
9749                  * uncore must use perf_invalid_context.
9750                  */
9751                 if (WARN_ON_ONCE(hw_context_taken &&
9752                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9753                         pmu->task_ctx_nr = perf_invalid_context;
9754
9755                 hw_context_taken = 1;
9756         }
9757
9758         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9759         if (pmu->pmu_cpu_context)
9760                 goto got_cpu_context;
9761
9762         ret = -ENOMEM;
9763         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9764         if (!pmu->pmu_cpu_context)
9765                 goto free_dev;
9766
9767         for_each_possible_cpu(cpu) {
9768                 struct perf_cpu_context *cpuctx;
9769
9770                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9771                 __perf_event_init_context(&cpuctx->ctx);
9772                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9773                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9774                 cpuctx->ctx.pmu = pmu;
9775                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9776
9777                 __perf_mux_hrtimer_init(cpuctx, cpu);
9778         }
9779
9780 got_cpu_context:
9781         if (!pmu->start_txn) {
9782                 if (pmu->pmu_enable) {
9783                         /*
9784                          * If we have pmu_enable/pmu_disable calls, install
9785                          * transaction stubs that use that to try and batch
9786                          * hardware accesses.
9787                          */
9788                         pmu->start_txn  = perf_pmu_start_txn;
9789                         pmu->commit_txn = perf_pmu_commit_txn;
9790                         pmu->cancel_txn = perf_pmu_cancel_txn;
9791                 } else {
9792                         pmu->start_txn  = perf_pmu_nop_txn;
9793                         pmu->commit_txn = perf_pmu_nop_int;
9794                         pmu->cancel_txn = perf_pmu_nop_void;
9795                 }
9796         }
9797
9798         if (!pmu->pmu_enable) {
9799                 pmu->pmu_enable  = perf_pmu_nop_void;
9800                 pmu->pmu_disable = perf_pmu_nop_void;
9801         }
9802
9803         if (!pmu->check_period)
9804                 pmu->check_period = perf_event_nop_int;
9805
9806         if (!pmu->event_idx)
9807                 pmu->event_idx = perf_event_idx_default;
9808
9809         list_add_rcu(&pmu->entry, &pmus);
9810         atomic_set(&pmu->exclusive_cnt, 0);
9811         ret = 0;
9812 unlock:
9813         mutex_unlock(&pmus_lock);
9814
9815         return ret;
9816
9817 free_dev:
9818         device_del(pmu->dev);
9819         put_device(pmu->dev);
9820
9821 free_idr:
9822         if (pmu->type >= PERF_TYPE_MAX)
9823                 idr_remove(&pmu_idr, pmu->type);
9824
9825 free_pdc:
9826         free_percpu(pmu->pmu_disable_count);
9827         goto unlock;
9828 }
9829 EXPORT_SYMBOL_GPL(perf_pmu_register);
9830
9831 void perf_pmu_unregister(struct pmu *pmu)
9832 {
9833         mutex_lock(&pmus_lock);
9834         list_del_rcu(&pmu->entry);
9835
9836         /*
9837          * We dereference the pmu list under both SRCU and regular RCU, so
9838          * synchronize against both of those.
9839          */
9840         synchronize_srcu(&pmus_srcu);
9841         synchronize_rcu();
9842
9843         free_percpu(pmu->pmu_disable_count);
9844         if (pmu->type >= PERF_TYPE_MAX)
9845                 idr_remove(&pmu_idr, pmu->type);
9846         if (pmu_bus_running) {
9847                 if (pmu->nr_addr_filters)
9848                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9849                 device_del(pmu->dev);
9850                 put_device(pmu->dev);
9851         }
9852         free_pmu_context(pmu);
9853         mutex_unlock(&pmus_lock);
9854 }
9855 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9856
9857 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9858 {
9859         struct perf_event_context *ctx = NULL;
9860         int ret;
9861
9862         if (!try_module_get(pmu->module))
9863                 return -ENODEV;
9864
9865         /*
9866          * A number of pmu->event_init() methods iterate the sibling_list to,
9867          * for example, validate if the group fits on the PMU. Therefore,
9868          * if this is a sibling event, acquire the ctx->mutex to protect
9869          * the sibling_list.
9870          */
9871         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9872                 /*
9873                  * This ctx->mutex can nest when we're called through
9874                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9875                  */
9876                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9877                                                  SINGLE_DEPTH_NESTING);
9878                 BUG_ON(!ctx);
9879         }
9880
9881         event->pmu = pmu;
9882         ret = pmu->event_init(event);
9883
9884         if (ctx)
9885                 perf_event_ctx_unlock(event->group_leader, ctx);
9886
9887         if (ret)
9888                 module_put(pmu->module);
9889
9890         return ret;
9891 }
9892
9893 static struct pmu *perf_init_event(struct perf_event *event)
9894 {
9895         struct pmu *pmu;
9896         int idx;
9897         int ret;
9898
9899         idx = srcu_read_lock(&pmus_srcu);
9900
9901         /* Try parent's PMU first: */
9902         if (event->parent && event->parent->pmu) {
9903                 pmu = event->parent->pmu;
9904                 ret = perf_try_init_event(pmu, event);
9905                 if (!ret)
9906                         goto unlock;
9907         }
9908
9909         rcu_read_lock();
9910         pmu = idr_find(&pmu_idr, event->attr.type);
9911         rcu_read_unlock();
9912         if (pmu) {
9913                 ret = perf_try_init_event(pmu, event);
9914                 if (ret)
9915                         pmu = ERR_PTR(ret);
9916                 goto unlock;
9917         }
9918
9919         list_for_each_entry_rcu(pmu, &pmus, entry) {
9920                 ret = perf_try_init_event(pmu, event);
9921                 if (!ret)
9922                         goto unlock;
9923
9924                 if (ret != -ENOENT) {
9925                         pmu = ERR_PTR(ret);
9926                         goto unlock;
9927                 }
9928         }
9929         pmu = ERR_PTR(-ENOENT);
9930 unlock:
9931         srcu_read_unlock(&pmus_srcu, idx);
9932
9933         return pmu;
9934 }
9935
9936 static void attach_sb_event(struct perf_event *event)
9937 {
9938         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9939
9940         raw_spin_lock(&pel->lock);
9941         list_add_rcu(&event->sb_list, &pel->list);
9942         raw_spin_unlock(&pel->lock);
9943 }
9944
9945 /*
9946  * We keep a list of all !task (and therefore per-cpu) events
9947  * that need to receive side-band records.
9948  *
9949  * This avoids having to scan all the various PMU per-cpu contexts
9950  * looking for them.
9951  */
9952 static void account_pmu_sb_event(struct perf_event *event)
9953 {
9954         if (is_sb_event(event))
9955                 attach_sb_event(event);
9956 }
9957
9958 static void account_event_cpu(struct perf_event *event, int cpu)
9959 {
9960         if (event->parent)
9961                 return;
9962
9963         if (is_cgroup_event(event))
9964                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9965 }
9966
9967 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9968 static void account_freq_event_nohz(void)
9969 {
9970 #ifdef CONFIG_NO_HZ_FULL
9971         /* Lock so we don't race with concurrent unaccount */
9972         spin_lock(&nr_freq_lock);
9973         if (atomic_inc_return(&nr_freq_events) == 1)
9974                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9975         spin_unlock(&nr_freq_lock);
9976 #endif
9977 }
9978
9979 static void account_freq_event(void)
9980 {
9981         if (tick_nohz_full_enabled())
9982                 account_freq_event_nohz();
9983         else
9984                 atomic_inc(&nr_freq_events);
9985 }
9986
9987
9988 static void account_event(struct perf_event *event)
9989 {
9990         bool inc = false;
9991
9992         if (event->parent)
9993                 return;
9994
9995         if (event->attach_state & PERF_ATTACH_TASK)
9996                 inc = true;
9997         if (event->attr.mmap || event->attr.mmap_data)
9998                 atomic_inc(&nr_mmap_events);
9999         if (event->attr.comm)
10000                 atomic_inc(&nr_comm_events);
10001         if (event->attr.namespaces)
10002                 atomic_inc(&nr_namespaces_events);
10003         if (event->attr.task)
10004                 atomic_inc(&nr_task_events);
10005         if (event->attr.freq)
10006                 account_freq_event();
10007         if (event->attr.context_switch) {
10008                 atomic_inc(&nr_switch_events);
10009                 inc = true;
10010         }
10011         if (has_branch_stack(event))
10012                 inc = true;
10013         if (is_cgroup_event(event))
10014                 inc = true;
10015
10016         if (inc) {
10017                 /*
10018                  * We need the mutex here because static_branch_enable()
10019                  * must complete *before* the perf_sched_count increment
10020                  * becomes visible.
10021                  */
10022                 if (atomic_inc_not_zero(&perf_sched_count))
10023                         goto enabled;
10024
10025                 mutex_lock(&perf_sched_mutex);
10026                 if (!atomic_read(&perf_sched_count)) {
10027                         static_branch_enable(&perf_sched_events);
10028                         /*
10029                          * Guarantee that all CPUs observe they key change and
10030                          * call the perf scheduling hooks before proceeding to
10031                          * install events that need them.
10032                          */
10033                         synchronize_sched();
10034                 }
10035                 /*
10036                  * Now that we have waited for the sync_sched(), allow further
10037                  * increments to by-pass the mutex.
10038                  */
10039                 atomic_inc(&perf_sched_count);
10040                 mutex_unlock(&perf_sched_mutex);
10041         }
10042 enabled:
10043
10044         account_event_cpu(event, event->cpu);
10045
10046         account_pmu_sb_event(event);
10047 }
10048
10049 /*
10050  * Allocate and initialize an event structure
10051  */
10052 static struct perf_event *
10053 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10054                  struct task_struct *task,
10055                  struct perf_event *group_leader,
10056                  struct perf_event *parent_event,
10057                  perf_overflow_handler_t overflow_handler,
10058                  void *context, int cgroup_fd)
10059 {
10060         struct pmu *pmu;
10061         struct perf_event *event;
10062         struct hw_perf_event *hwc;
10063         long err = -EINVAL;
10064
10065         if ((unsigned)cpu >= nr_cpu_ids) {
10066                 if (!task || cpu != -1)
10067                         return ERR_PTR(-EINVAL);
10068         }
10069
10070         event = kzalloc(sizeof(*event), GFP_KERNEL);
10071         if (!event)
10072                 return ERR_PTR(-ENOMEM);
10073
10074         /*
10075          * Single events are their own group leaders, with an
10076          * empty sibling list:
10077          */
10078         if (!group_leader)
10079                 group_leader = event;
10080
10081         mutex_init(&event->child_mutex);
10082         INIT_LIST_HEAD(&event->child_list);
10083
10084         INIT_LIST_HEAD(&event->event_entry);
10085         INIT_LIST_HEAD(&event->sibling_list);
10086         INIT_LIST_HEAD(&event->active_list);
10087         init_event_group(event);
10088         INIT_LIST_HEAD(&event->rb_entry);
10089         INIT_LIST_HEAD(&event->active_entry);
10090         INIT_LIST_HEAD(&event->addr_filters.list);
10091         INIT_HLIST_NODE(&event->hlist_entry);
10092
10093
10094         init_waitqueue_head(&event->waitq);
10095         event->pending_disable = -1;
10096         init_irq_work(&event->pending, perf_pending_event);
10097
10098         mutex_init(&event->mmap_mutex);
10099         raw_spin_lock_init(&event->addr_filters.lock);
10100
10101         atomic_long_set(&event->refcount, 1);
10102         event->cpu              = cpu;
10103         event->attr             = *attr;
10104         event->group_leader     = group_leader;
10105         event->pmu              = NULL;
10106         event->oncpu            = -1;
10107
10108         event->parent           = parent_event;
10109
10110         event->ns               = get_pid_ns(task_active_pid_ns(current));
10111         event->id               = atomic64_inc_return(&perf_event_id);
10112
10113         event->state            = PERF_EVENT_STATE_INACTIVE;
10114
10115         if (task) {
10116                 event->attach_state = PERF_ATTACH_TASK;
10117                 /*
10118                  * XXX pmu::event_init needs to know what task to account to
10119                  * and we cannot use the ctx information because we need the
10120                  * pmu before we get a ctx.
10121                  */
10122                 get_task_struct(task);
10123                 event->hw.target = task;
10124         }
10125
10126         event->clock = &local_clock;
10127         if (parent_event)
10128                 event->clock = parent_event->clock;
10129
10130         if (!overflow_handler && parent_event) {
10131                 overflow_handler = parent_event->overflow_handler;
10132                 context = parent_event->overflow_handler_context;
10133 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10134                 if (overflow_handler == bpf_overflow_handler) {
10135                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10136
10137                         if (IS_ERR(prog)) {
10138                                 err = PTR_ERR(prog);
10139                                 goto err_ns;
10140                         }
10141                         event->prog = prog;
10142                         event->orig_overflow_handler =
10143                                 parent_event->orig_overflow_handler;
10144                 }
10145 #endif
10146         }
10147
10148         if (overflow_handler) {
10149                 event->overflow_handler = overflow_handler;
10150                 event->overflow_handler_context = context;
10151         } else if (is_write_backward(event)){
10152                 event->overflow_handler = perf_event_output_backward;
10153                 event->overflow_handler_context = NULL;
10154         } else {
10155                 event->overflow_handler = perf_event_output_forward;
10156                 event->overflow_handler_context = NULL;
10157         }
10158
10159         perf_event__state_init(event);
10160
10161         pmu = NULL;
10162
10163         hwc = &event->hw;
10164         hwc->sample_period = attr->sample_period;
10165         if (attr->freq && attr->sample_freq)
10166                 hwc->sample_period = 1;
10167         hwc->last_period = hwc->sample_period;
10168
10169         local64_set(&hwc->period_left, hwc->sample_period);
10170
10171         /*
10172          * We currently do not support PERF_SAMPLE_READ on inherited events.
10173          * See perf_output_read().
10174          */
10175         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10176                 goto err_ns;
10177
10178         if (!has_branch_stack(event))
10179                 event->attr.branch_sample_type = 0;
10180
10181         if (cgroup_fd != -1) {
10182                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10183                 if (err)
10184                         goto err_ns;
10185         }
10186
10187         pmu = perf_init_event(event);
10188         if (IS_ERR(pmu)) {
10189                 err = PTR_ERR(pmu);
10190                 goto err_ns;
10191         }
10192
10193         err = exclusive_event_init(event);
10194         if (err)
10195                 goto err_pmu;
10196
10197         if (has_addr_filter(event)) {
10198                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10199                                                     sizeof(struct perf_addr_filter_range),
10200                                                     GFP_KERNEL);
10201                 if (!event->addr_filter_ranges) {
10202                         err = -ENOMEM;
10203                         goto err_per_task;
10204                 }
10205
10206                 /*
10207                  * Clone the parent's vma offsets: they are valid until exec()
10208                  * even if the mm is not shared with the parent.
10209                  */
10210                 if (event->parent) {
10211                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10212
10213                         raw_spin_lock_irq(&ifh->lock);
10214                         memcpy(event->addr_filter_ranges,
10215                                event->parent->addr_filter_ranges,
10216                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10217                         raw_spin_unlock_irq(&ifh->lock);
10218                 }
10219
10220                 /* force hw sync on the address filters */
10221                 event->addr_filters_gen = 1;
10222         }
10223
10224         if (!event->parent) {
10225                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10226                         err = get_callchain_buffers(attr->sample_max_stack);
10227                         if (err)
10228                                 goto err_addr_filters;
10229                 }
10230         }
10231
10232         /* symmetric to unaccount_event() in _free_event() */
10233         account_event(event);
10234
10235         return event;
10236
10237 err_addr_filters:
10238         kfree(event->addr_filter_ranges);
10239
10240 err_per_task:
10241         exclusive_event_destroy(event);
10242
10243 err_pmu:
10244         if (event->destroy)
10245                 event->destroy(event);
10246         module_put(pmu->module);
10247 err_ns:
10248         if (is_cgroup_event(event))
10249                 perf_detach_cgroup(event);
10250         if (event->ns)
10251                 put_pid_ns(event->ns);
10252         if (event->hw.target)
10253                 put_task_struct(event->hw.target);
10254         kfree(event);
10255
10256         return ERR_PTR(err);
10257 }
10258
10259 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10260                           struct perf_event_attr *attr)
10261 {
10262         u32 size;
10263         int ret;
10264
10265         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10266                 return -EFAULT;
10267
10268         /*
10269          * zero the full structure, so that a short copy will be nice.
10270          */
10271         memset(attr, 0, sizeof(*attr));
10272
10273         ret = get_user(size, &uattr->size);
10274         if (ret)
10275                 return ret;
10276
10277         if (size > PAGE_SIZE)   /* silly large */
10278                 goto err_size;
10279
10280         if (!size)              /* abi compat */
10281                 size = PERF_ATTR_SIZE_VER0;
10282
10283         if (size < PERF_ATTR_SIZE_VER0)
10284                 goto err_size;
10285
10286         /*
10287          * If we're handed a bigger struct than we know of,
10288          * ensure all the unknown bits are 0 - i.e. new
10289          * user-space does not rely on any kernel feature
10290          * extensions we dont know about yet.
10291          */
10292         if (size > sizeof(*attr)) {
10293                 unsigned char __user *addr;
10294                 unsigned char __user *end;
10295                 unsigned char val;
10296
10297                 addr = (void __user *)uattr + sizeof(*attr);
10298                 end  = (void __user *)uattr + size;
10299
10300                 for (; addr < end; addr++) {
10301                         ret = get_user(val, addr);
10302                         if (ret)
10303                                 return ret;
10304                         if (val)
10305                                 goto err_size;
10306                 }
10307                 size = sizeof(*attr);
10308         }
10309
10310         ret = copy_from_user(attr, uattr, size);
10311         if (ret)
10312                 return -EFAULT;
10313
10314         attr->size = size;
10315
10316         if (attr->__reserved_1)
10317                 return -EINVAL;
10318
10319         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10320                 return -EINVAL;
10321
10322         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10323                 return -EINVAL;
10324
10325         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10326                 u64 mask = attr->branch_sample_type;
10327
10328                 /* only using defined bits */
10329                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10330                         return -EINVAL;
10331
10332                 /* at least one branch bit must be set */
10333                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10334                         return -EINVAL;
10335
10336                 /* propagate priv level, when not set for branch */
10337                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10338
10339                         /* exclude_kernel checked on syscall entry */
10340                         if (!attr->exclude_kernel)
10341                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10342
10343                         if (!attr->exclude_user)
10344                                 mask |= PERF_SAMPLE_BRANCH_USER;
10345
10346                         if (!attr->exclude_hv)
10347                                 mask |= PERF_SAMPLE_BRANCH_HV;
10348                         /*
10349                          * adjust user setting (for HW filter setup)
10350                          */
10351                         attr->branch_sample_type = mask;
10352                 }
10353                 /* privileged levels capture (kernel, hv): check permissions */
10354                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10355                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10356                         return -EACCES;
10357         }
10358
10359         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10360                 ret = perf_reg_validate(attr->sample_regs_user);
10361                 if (ret)
10362                         return ret;
10363         }
10364
10365         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10366                 if (!arch_perf_have_user_stack_dump())
10367                         return -ENOSYS;
10368
10369                 /*
10370                  * We have __u32 type for the size, but so far
10371                  * we can only use __u16 as maximum due to the
10372                  * __u16 sample size limit.
10373                  */
10374                 if (attr->sample_stack_user >= USHRT_MAX)
10375                         return -EINVAL;
10376                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10377                         return -EINVAL;
10378         }
10379
10380         if (!attr->sample_max_stack)
10381                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10382
10383         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10384                 ret = perf_reg_validate(attr->sample_regs_intr);
10385 out:
10386         return ret;
10387
10388 err_size:
10389         put_user(sizeof(*attr), &uattr->size);
10390         ret = -E2BIG;
10391         goto out;
10392 }
10393
10394 static int
10395 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10396 {
10397         struct ring_buffer *rb = NULL;
10398         int ret = -EINVAL;
10399
10400         if (!output_event)
10401                 goto set;
10402
10403         /* don't allow circular references */
10404         if (event == output_event)
10405                 goto out;
10406
10407         /*
10408          * Don't allow cross-cpu buffers
10409          */
10410         if (output_event->cpu != event->cpu)
10411                 goto out;
10412
10413         /*
10414          * If its not a per-cpu rb, it must be the same task.
10415          */
10416         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10417                 goto out;
10418
10419         /*
10420          * Mixing clocks in the same buffer is trouble you don't need.
10421          */
10422         if (output_event->clock != event->clock)
10423                 goto out;
10424
10425         /*
10426          * Either writing ring buffer from beginning or from end.
10427          * Mixing is not allowed.
10428          */
10429         if (is_write_backward(output_event) != is_write_backward(event))
10430                 goto out;
10431
10432         /*
10433          * If both events generate aux data, they must be on the same PMU
10434          */
10435         if (has_aux(event) && has_aux(output_event) &&
10436             event->pmu != output_event->pmu)
10437                 goto out;
10438
10439 set:
10440         mutex_lock(&event->mmap_mutex);
10441         /* Can't redirect output if we've got an active mmap() */
10442         if (atomic_read(&event->mmap_count))
10443                 goto unlock;
10444
10445         if (output_event) {
10446                 /* get the rb we want to redirect to */
10447                 rb = ring_buffer_get(output_event);
10448                 if (!rb)
10449                         goto unlock;
10450         }
10451
10452         ring_buffer_attach(event, rb);
10453
10454         ret = 0;
10455 unlock:
10456         mutex_unlock(&event->mmap_mutex);
10457
10458 out:
10459         return ret;
10460 }
10461
10462 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10463 {
10464         if (b < a)
10465                 swap(a, b);
10466
10467         mutex_lock(a);
10468         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10469 }
10470
10471 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10472 {
10473         bool nmi_safe = false;
10474
10475         switch (clk_id) {
10476         case CLOCK_MONOTONIC:
10477                 event->clock = &ktime_get_mono_fast_ns;
10478                 nmi_safe = true;
10479                 break;
10480
10481         case CLOCK_MONOTONIC_RAW:
10482                 event->clock = &ktime_get_raw_fast_ns;
10483                 nmi_safe = true;
10484                 break;
10485
10486         case CLOCK_REALTIME:
10487                 event->clock = &ktime_get_real_ns;
10488                 break;
10489
10490         case CLOCK_BOOTTIME:
10491                 event->clock = &ktime_get_boot_ns;
10492                 break;
10493
10494         case CLOCK_TAI:
10495                 event->clock = &ktime_get_tai_ns;
10496                 break;
10497
10498         default:
10499                 return -EINVAL;
10500         }
10501
10502         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10503                 return -EINVAL;
10504
10505         return 0;
10506 }
10507
10508 /*
10509  * Variation on perf_event_ctx_lock_nested(), except we take two context
10510  * mutexes.
10511  */
10512 static struct perf_event_context *
10513 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10514                              struct perf_event_context *ctx)
10515 {
10516         struct perf_event_context *gctx;
10517
10518 again:
10519         rcu_read_lock();
10520         gctx = READ_ONCE(group_leader->ctx);
10521         if (!atomic_inc_not_zero(&gctx->refcount)) {
10522                 rcu_read_unlock();
10523                 goto again;
10524         }
10525         rcu_read_unlock();
10526
10527         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10528
10529         if (group_leader->ctx != gctx) {
10530                 mutex_unlock(&ctx->mutex);
10531                 mutex_unlock(&gctx->mutex);
10532                 put_ctx(gctx);
10533                 goto again;
10534         }
10535
10536         return gctx;
10537 }
10538
10539 /**
10540  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10541  *
10542  * @attr_uptr:  event_id type attributes for monitoring/sampling
10543  * @pid:                target pid
10544  * @cpu:                target cpu
10545  * @group_fd:           group leader event fd
10546  */
10547 SYSCALL_DEFINE5(perf_event_open,
10548                 struct perf_event_attr __user *, attr_uptr,
10549                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10550 {
10551         struct perf_event *group_leader = NULL, *output_event = NULL;
10552         struct perf_event *event, *sibling;
10553         struct perf_event_attr attr;
10554         struct perf_event_context *ctx, *uninitialized_var(gctx);
10555         struct file *event_file = NULL;
10556         struct fd group = {NULL, 0};
10557         struct task_struct *task = NULL;
10558         struct pmu *pmu;
10559         int event_fd;
10560         int move_group = 0;
10561         int err;
10562         int f_flags = O_RDWR;
10563         int cgroup_fd = -1;
10564
10565         /* for future expandability... */
10566         if (flags & ~PERF_FLAG_ALL)
10567                 return -EINVAL;
10568
10569         err = perf_copy_attr(attr_uptr, &attr);
10570         if (err)
10571                 return err;
10572
10573         if (!attr.exclude_kernel) {
10574                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10575                         return -EACCES;
10576         }
10577
10578         if (attr.namespaces) {
10579                 if (!capable(CAP_SYS_ADMIN))
10580                         return -EACCES;
10581         }
10582
10583         if (attr.freq) {
10584                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10585                         return -EINVAL;
10586         } else {
10587                 if (attr.sample_period & (1ULL << 63))
10588                         return -EINVAL;
10589         }
10590
10591         /* Only privileged users can get physical addresses */
10592         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10593             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10594                 return -EACCES;
10595
10596         /*
10597          * In cgroup mode, the pid argument is used to pass the fd
10598          * opened to the cgroup directory in cgroupfs. The cpu argument
10599          * designates the cpu on which to monitor threads from that
10600          * cgroup.
10601          */
10602         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10603                 return -EINVAL;
10604
10605         if (flags & PERF_FLAG_FD_CLOEXEC)
10606                 f_flags |= O_CLOEXEC;
10607
10608         event_fd = get_unused_fd_flags(f_flags);
10609         if (event_fd < 0)
10610                 return event_fd;
10611
10612         if (group_fd != -1) {
10613                 err = perf_fget_light(group_fd, &group);
10614                 if (err)
10615                         goto err_fd;
10616                 group_leader = group.file->private_data;
10617                 if (flags & PERF_FLAG_FD_OUTPUT)
10618                         output_event = group_leader;
10619                 if (flags & PERF_FLAG_FD_NO_GROUP)
10620                         group_leader = NULL;
10621         }
10622
10623         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10624                 task = find_lively_task_by_vpid(pid);
10625                 if (IS_ERR(task)) {
10626                         err = PTR_ERR(task);
10627                         goto err_group_fd;
10628                 }
10629         }
10630
10631         if (task && group_leader &&
10632             group_leader->attr.inherit != attr.inherit) {
10633                 err = -EINVAL;
10634                 goto err_task;
10635         }
10636
10637         if (task) {
10638                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10639                 if (err)
10640                         goto err_task;
10641
10642                 /*
10643                  * Reuse ptrace permission checks for now.
10644                  *
10645                  * We must hold cred_guard_mutex across this and any potential
10646                  * perf_install_in_context() call for this new event to
10647                  * serialize against exec() altering our credentials (and the
10648                  * perf_event_exit_task() that could imply).
10649                  */
10650                 err = -EACCES;
10651                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10652                         goto err_cred;
10653         }
10654
10655         if (flags & PERF_FLAG_PID_CGROUP)
10656                 cgroup_fd = pid;
10657
10658         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10659                                  NULL, NULL, cgroup_fd);
10660         if (IS_ERR(event)) {
10661                 err = PTR_ERR(event);
10662                 goto err_cred;
10663         }
10664
10665         if (is_sampling_event(event)) {
10666                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10667                         err = -EOPNOTSUPP;
10668                         goto err_alloc;
10669                 }
10670         }
10671
10672         /*
10673          * Special case software events and allow them to be part of
10674          * any hardware group.
10675          */
10676         pmu = event->pmu;
10677
10678         if (attr.use_clockid) {
10679                 err = perf_event_set_clock(event, attr.clockid);
10680                 if (err)
10681                         goto err_alloc;
10682         }
10683
10684         if (pmu->task_ctx_nr == perf_sw_context)
10685                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10686
10687         if (group_leader) {
10688                 if (is_software_event(event) &&
10689                     !in_software_context(group_leader)) {
10690                         /*
10691                          * If the event is a sw event, but the group_leader
10692                          * is on hw context.
10693                          *
10694                          * Allow the addition of software events to hw
10695                          * groups, this is safe because software events
10696                          * never fail to schedule.
10697                          */
10698                         pmu = group_leader->ctx->pmu;
10699                 } else if (!is_software_event(event) &&
10700                            is_software_event(group_leader) &&
10701                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10702                         /*
10703                          * In case the group is a pure software group, and we
10704                          * try to add a hardware event, move the whole group to
10705                          * the hardware context.
10706                          */
10707                         move_group = 1;
10708                 }
10709         }
10710
10711         /*
10712          * Get the target context (task or percpu):
10713          */
10714         ctx = find_get_context(pmu, task, event);
10715         if (IS_ERR(ctx)) {
10716                 err = PTR_ERR(ctx);
10717                 goto err_alloc;
10718         }
10719
10720         /*
10721          * Look up the group leader (we will attach this event to it):
10722          */
10723         if (group_leader) {
10724                 err = -EINVAL;
10725
10726                 /*
10727                  * Do not allow a recursive hierarchy (this new sibling
10728                  * becoming part of another group-sibling):
10729                  */
10730                 if (group_leader->group_leader != group_leader)
10731                         goto err_context;
10732
10733                 /* All events in a group should have the same clock */
10734                 if (group_leader->clock != event->clock)
10735                         goto err_context;
10736
10737                 /*
10738                  * Make sure we're both events for the same CPU;
10739                  * grouping events for different CPUs is broken; since
10740                  * you can never concurrently schedule them anyhow.
10741                  */
10742                 if (group_leader->cpu != event->cpu)
10743                         goto err_context;
10744
10745                 /*
10746                  * Make sure we're both on the same task, or both
10747                  * per-CPU events.
10748                  */
10749                 if (group_leader->ctx->task != ctx->task)
10750                         goto err_context;
10751
10752                 /*
10753                  * Do not allow to attach to a group in a different task
10754                  * or CPU context. If we're moving SW events, we'll fix
10755                  * this up later, so allow that.
10756                  */
10757                 if (!move_group && group_leader->ctx != ctx)
10758                         goto err_context;
10759
10760                 /*
10761                  * Only a group leader can be exclusive or pinned
10762                  */
10763                 if (attr.exclusive || attr.pinned)
10764                         goto err_context;
10765         }
10766
10767         if (output_event) {
10768                 err = perf_event_set_output(event, output_event);
10769                 if (err)
10770                         goto err_context;
10771         }
10772
10773         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10774                                         f_flags);
10775         if (IS_ERR(event_file)) {
10776                 err = PTR_ERR(event_file);
10777                 event_file = NULL;
10778                 goto err_context;
10779         }
10780
10781         if (move_group) {
10782                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10783
10784                 if (gctx->task == TASK_TOMBSTONE) {
10785                         err = -ESRCH;
10786                         goto err_locked;
10787                 }
10788
10789                 /*
10790                  * Check if we raced against another sys_perf_event_open() call
10791                  * moving the software group underneath us.
10792                  */
10793                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10794                         /*
10795                          * If someone moved the group out from under us, check
10796                          * if this new event wound up on the same ctx, if so
10797                          * its the regular !move_group case, otherwise fail.
10798                          */
10799                         if (gctx != ctx) {
10800                                 err = -EINVAL;
10801                                 goto err_locked;
10802                         } else {
10803                                 perf_event_ctx_unlock(group_leader, gctx);
10804                                 move_group = 0;
10805                         }
10806                 }
10807
10808                 /*
10809                  * Failure to create exclusive events returns -EBUSY.
10810                  */
10811                 err = -EBUSY;
10812                 if (!exclusive_event_installable(group_leader, ctx))
10813                         goto err_locked;
10814
10815                 for_each_sibling_event(sibling, group_leader) {
10816                         if (!exclusive_event_installable(sibling, ctx))
10817                                 goto err_locked;
10818                 }
10819         } else {
10820                 mutex_lock(&ctx->mutex);
10821         }
10822
10823         if (ctx->task == TASK_TOMBSTONE) {
10824                 err = -ESRCH;
10825                 goto err_locked;
10826         }
10827
10828         if (!perf_event_validate_size(event)) {
10829                 err = -E2BIG;
10830                 goto err_locked;
10831         }
10832
10833         if (!task) {
10834                 /*
10835                  * Check if the @cpu we're creating an event for is online.
10836                  *
10837                  * We use the perf_cpu_context::ctx::mutex to serialize against
10838                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10839                  */
10840                 struct perf_cpu_context *cpuctx =
10841                         container_of(ctx, struct perf_cpu_context, ctx);
10842
10843                 if (!cpuctx->online) {
10844                         err = -ENODEV;
10845                         goto err_locked;
10846                 }
10847         }
10848
10849
10850         /*
10851          * Must be under the same ctx::mutex as perf_install_in_context(),
10852          * because we need to serialize with concurrent event creation.
10853          */
10854         if (!exclusive_event_installable(event, ctx)) {
10855                 err = -EBUSY;
10856                 goto err_locked;
10857         }
10858
10859         WARN_ON_ONCE(ctx->parent_ctx);
10860
10861         /*
10862          * This is the point on no return; we cannot fail hereafter. This is
10863          * where we start modifying current state.
10864          */
10865
10866         if (move_group) {
10867                 /*
10868                  * See perf_event_ctx_lock() for comments on the details
10869                  * of swizzling perf_event::ctx.
10870                  */
10871                 perf_remove_from_context(group_leader, 0);
10872                 put_ctx(gctx);
10873
10874                 for_each_sibling_event(sibling, group_leader) {
10875                         perf_remove_from_context(sibling, 0);
10876                         put_ctx(gctx);
10877                 }
10878
10879                 /*
10880                  * Wait for everybody to stop referencing the events through
10881                  * the old lists, before installing it on new lists.
10882                  */
10883                 synchronize_rcu();
10884
10885                 /*
10886                  * Install the group siblings before the group leader.
10887                  *
10888                  * Because a group leader will try and install the entire group
10889                  * (through the sibling list, which is still in-tact), we can
10890                  * end up with siblings installed in the wrong context.
10891                  *
10892                  * By installing siblings first we NO-OP because they're not
10893                  * reachable through the group lists.
10894                  */
10895                 for_each_sibling_event(sibling, group_leader) {
10896                         perf_event__state_init(sibling);
10897                         perf_install_in_context(ctx, sibling, sibling->cpu);
10898                         get_ctx(ctx);
10899                 }
10900
10901                 /*
10902                  * Removing from the context ends up with disabled
10903                  * event. What we want here is event in the initial
10904                  * startup state, ready to be add into new context.
10905                  */
10906                 perf_event__state_init(group_leader);
10907                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10908                 get_ctx(ctx);
10909         }
10910
10911         /*
10912          * Precalculate sample_data sizes; do while holding ctx::mutex such
10913          * that we're serialized against further additions and before
10914          * perf_install_in_context() which is the point the event is active and
10915          * can use these values.
10916          */
10917         perf_event__header_size(event);
10918         perf_event__id_header_size(event);
10919
10920         event->owner = current;
10921
10922         perf_install_in_context(ctx, event, event->cpu);
10923         perf_unpin_context(ctx);
10924
10925         if (move_group)
10926                 perf_event_ctx_unlock(group_leader, gctx);
10927         mutex_unlock(&ctx->mutex);
10928
10929         if (task) {
10930                 mutex_unlock(&task->signal->cred_guard_mutex);
10931                 put_task_struct(task);
10932         }
10933
10934         mutex_lock(&current->perf_event_mutex);
10935         list_add_tail(&event->owner_entry, &current->perf_event_list);
10936         mutex_unlock(&current->perf_event_mutex);
10937
10938         /*
10939          * Drop the reference on the group_event after placing the
10940          * new event on the sibling_list. This ensures destruction
10941          * of the group leader will find the pointer to itself in
10942          * perf_group_detach().
10943          */
10944         fdput(group);
10945         fd_install(event_fd, event_file);
10946         return event_fd;
10947
10948 err_locked:
10949         if (move_group)
10950                 perf_event_ctx_unlock(group_leader, gctx);
10951         mutex_unlock(&ctx->mutex);
10952 /* err_file: */
10953         fput(event_file);
10954 err_context:
10955         perf_unpin_context(ctx);
10956         put_ctx(ctx);
10957 err_alloc:
10958         /*
10959          * If event_file is set, the fput() above will have called ->release()
10960          * and that will take care of freeing the event.
10961          */
10962         if (!event_file)
10963                 free_event(event);
10964 err_cred:
10965         if (task)
10966                 mutex_unlock(&task->signal->cred_guard_mutex);
10967 err_task:
10968         if (task)
10969                 put_task_struct(task);
10970 err_group_fd:
10971         fdput(group);
10972 err_fd:
10973         put_unused_fd(event_fd);
10974         return err;
10975 }
10976
10977 /**
10978  * perf_event_create_kernel_counter
10979  *
10980  * @attr: attributes of the counter to create
10981  * @cpu: cpu in which the counter is bound
10982  * @task: task to profile (NULL for percpu)
10983  */
10984 struct perf_event *
10985 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10986                                  struct task_struct *task,
10987                                  perf_overflow_handler_t overflow_handler,
10988                                  void *context)
10989 {
10990         struct perf_event_context *ctx;
10991         struct perf_event *event;
10992         int err;
10993
10994         /*
10995          * Get the target context (task or percpu):
10996          */
10997
10998         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10999                                  overflow_handler, context, -1);
11000         if (IS_ERR(event)) {
11001                 err = PTR_ERR(event);
11002                 goto err;
11003         }
11004
11005         /* Mark owner so we could distinguish it from user events. */
11006         event->owner = TASK_TOMBSTONE;
11007
11008         ctx = find_get_context(event->pmu, task, event);
11009         if (IS_ERR(ctx)) {
11010                 err = PTR_ERR(ctx);
11011                 goto err_free;
11012         }
11013
11014         WARN_ON_ONCE(ctx->parent_ctx);
11015         mutex_lock(&ctx->mutex);
11016         if (ctx->task == TASK_TOMBSTONE) {
11017                 err = -ESRCH;
11018                 goto err_unlock;
11019         }
11020
11021         if (!task) {
11022                 /*
11023                  * Check if the @cpu we're creating an event for is online.
11024                  *
11025                  * We use the perf_cpu_context::ctx::mutex to serialize against
11026                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11027                  */
11028                 struct perf_cpu_context *cpuctx =
11029                         container_of(ctx, struct perf_cpu_context, ctx);
11030                 if (!cpuctx->online) {
11031                         err = -ENODEV;
11032                         goto err_unlock;
11033                 }
11034         }
11035
11036         if (!exclusive_event_installable(event, ctx)) {
11037                 err = -EBUSY;
11038                 goto err_unlock;
11039         }
11040
11041         perf_install_in_context(ctx, event, event->cpu);
11042         perf_unpin_context(ctx);
11043         mutex_unlock(&ctx->mutex);
11044
11045         return event;
11046
11047 err_unlock:
11048         mutex_unlock(&ctx->mutex);
11049         perf_unpin_context(ctx);
11050         put_ctx(ctx);
11051 err_free:
11052         free_event(event);
11053 err:
11054         return ERR_PTR(err);
11055 }
11056 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11057
11058 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11059 {
11060         struct perf_event_context *src_ctx;
11061         struct perf_event_context *dst_ctx;
11062         struct perf_event *event, *tmp;
11063         LIST_HEAD(events);
11064
11065         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11066         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11067
11068         /*
11069          * See perf_event_ctx_lock() for comments on the details
11070          * of swizzling perf_event::ctx.
11071          */
11072         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11073         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11074                                  event_entry) {
11075                 perf_remove_from_context(event, 0);
11076                 unaccount_event_cpu(event, src_cpu);
11077                 put_ctx(src_ctx);
11078                 list_add(&event->migrate_entry, &events);
11079         }
11080
11081         /*
11082          * Wait for the events to quiesce before re-instating them.
11083          */
11084         synchronize_rcu();
11085
11086         /*
11087          * Re-instate events in 2 passes.
11088          *
11089          * Skip over group leaders and only install siblings on this first
11090          * pass, siblings will not get enabled without a leader, however a
11091          * leader will enable its siblings, even if those are still on the old
11092          * context.
11093          */
11094         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11095                 if (event->group_leader == event)
11096                         continue;
11097
11098                 list_del(&event->migrate_entry);
11099                 if (event->state >= PERF_EVENT_STATE_OFF)
11100                         event->state = PERF_EVENT_STATE_INACTIVE;
11101                 account_event_cpu(event, dst_cpu);
11102                 perf_install_in_context(dst_ctx, event, dst_cpu);
11103                 get_ctx(dst_ctx);
11104         }
11105
11106         /*
11107          * Once all the siblings are setup properly, install the group leaders
11108          * to make it go.
11109          */
11110         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11111                 list_del(&event->migrate_entry);
11112                 if (event->state >= PERF_EVENT_STATE_OFF)
11113                         event->state = PERF_EVENT_STATE_INACTIVE;
11114                 account_event_cpu(event, dst_cpu);
11115                 perf_install_in_context(dst_ctx, event, dst_cpu);
11116                 get_ctx(dst_ctx);
11117         }
11118         mutex_unlock(&dst_ctx->mutex);
11119         mutex_unlock(&src_ctx->mutex);
11120 }
11121 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11122
11123 static void sync_child_event(struct perf_event *child_event,
11124                                struct task_struct *child)
11125 {
11126         struct perf_event *parent_event = child_event->parent;
11127         u64 child_val;
11128
11129         if (child_event->attr.inherit_stat)
11130                 perf_event_read_event(child_event, child);
11131
11132         child_val = perf_event_count(child_event);
11133
11134         /*
11135          * Add back the child's count to the parent's count:
11136          */
11137         atomic64_add(child_val, &parent_event->child_count);
11138         atomic64_add(child_event->total_time_enabled,
11139                      &parent_event->child_total_time_enabled);
11140         atomic64_add(child_event->total_time_running,
11141                      &parent_event->child_total_time_running);
11142 }
11143
11144 static void
11145 perf_event_exit_event(struct perf_event *child_event,
11146                       struct perf_event_context *child_ctx,
11147                       struct task_struct *child)
11148 {
11149         struct perf_event *parent_event = child_event->parent;
11150
11151         /*
11152          * Do not destroy the 'original' grouping; because of the context
11153          * switch optimization the original events could've ended up in a
11154          * random child task.
11155          *
11156          * If we were to destroy the original group, all group related
11157          * operations would cease to function properly after this random
11158          * child dies.
11159          *
11160          * Do destroy all inherited groups, we don't care about those
11161          * and being thorough is better.
11162          */
11163         raw_spin_lock_irq(&child_ctx->lock);
11164         WARN_ON_ONCE(child_ctx->is_active);
11165
11166         if (parent_event)
11167                 perf_group_detach(child_event);
11168         list_del_event(child_event, child_ctx);
11169         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11170         raw_spin_unlock_irq(&child_ctx->lock);
11171
11172         /*
11173          * Parent events are governed by their filedesc, retain them.
11174          */
11175         if (!parent_event) {
11176                 perf_event_wakeup(child_event);
11177                 return;
11178         }
11179         /*
11180          * Child events can be cleaned up.
11181          */
11182
11183         sync_child_event(child_event, child);
11184
11185         /*
11186          * Remove this event from the parent's list
11187          */
11188         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11189         mutex_lock(&parent_event->child_mutex);
11190         list_del_init(&child_event->child_list);
11191         mutex_unlock(&parent_event->child_mutex);
11192
11193         /*
11194          * Kick perf_poll() for is_event_hup().
11195          */
11196         perf_event_wakeup(parent_event);
11197         free_event(child_event);
11198         put_event(parent_event);
11199 }
11200
11201 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11202 {
11203         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11204         struct perf_event *child_event, *next;
11205
11206         WARN_ON_ONCE(child != current);
11207
11208         child_ctx = perf_pin_task_context(child, ctxn);
11209         if (!child_ctx)
11210                 return;
11211
11212         /*
11213          * In order to reduce the amount of tricky in ctx tear-down, we hold
11214          * ctx::mutex over the entire thing. This serializes against almost
11215          * everything that wants to access the ctx.
11216          *
11217          * The exception is sys_perf_event_open() /
11218          * perf_event_create_kernel_count() which does find_get_context()
11219          * without ctx::mutex (it cannot because of the move_group double mutex
11220          * lock thing). See the comments in perf_install_in_context().
11221          */
11222         mutex_lock(&child_ctx->mutex);
11223
11224         /*
11225          * In a single ctx::lock section, de-schedule the events and detach the
11226          * context from the task such that we cannot ever get it scheduled back
11227          * in.
11228          */
11229         raw_spin_lock_irq(&child_ctx->lock);
11230         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11231
11232         /*
11233          * Now that the context is inactive, destroy the task <-> ctx relation
11234          * and mark the context dead.
11235          */
11236         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11237         put_ctx(child_ctx); /* cannot be last */
11238         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11239         put_task_struct(current); /* cannot be last */
11240
11241         clone_ctx = unclone_ctx(child_ctx);
11242         raw_spin_unlock_irq(&child_ctx->lock);
11243
11244         if (clone_ctx)
11245                 put_ctx(clone_ctx);
11246
11247         /*
11248          * Report the task dead after unscheduling the events so that we
11249          * won't get any samples after PERF_RECORD_EXIT. We can however still
11250          * get a few PERF_RECORD_READ events.
11251          */
11252         perf_event_task(child, child_ctx, 0);
11253
11254         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11255                 perf_event_exit_event(child_event, child_ctx, child);
11256
11257         mutex_unlock(&child_ctx->mutex);
11258
11259         put_ctx(child_ctx);
11260 }
11261
11262 /*
11263  * When a child task exits, feed back event values to parent events.
11264  *
11265  * Can be called with cred_guard_mutex held when called from
11266  * install_exec_creds().
11267  */
11268 void perf_event_exit_task(struct task_struct *child)
11269 {
11270         struct perf_event *event, *tmp;
11271         int ctxn;
11272
11273         mutex_lock(&child->perf_event_mutex);
11274         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11275                                  owner_entry) {
11276                 list_del_init(&event->owner_entry);
11277
11278                 /*
11279                  * Ensure the list deletion is visible before we clear
11280                  * the owner, closes a race against perf_release() where
11281                  * we need to serialize on the owner->perf_event_mutex.
11282                  */
11283                 smp_store_release(&event->owner, NULL);
11284         }
11285         mutex_unlock(&child->perf_event_mutex);
11286
11287         for_each_task_context_nr(ctxn)
11288                 perf_event_exit_task_context(child, ctxn);
11289
11290         /*
11291          * The perf_event_exit_task_context calls perf_event_task
11292          * with child's task_ctx, which generates EXIT events for
11293          * child contexts and sets child->perf_event_ctxp[] to NULL.
11294          * At this point we need to send EXIT events to cpu contexts.
11295          */
11296         perf_event_task(child, NULL, 0);
11297 }
11298
11299 static void perf_free_event(struct perf_event *event,
11300                             struct perf_event_context *ctx)
11301 {
11302         struct perf_event *parent = event->parent;
11303
11304         if (WARN_ON_ONCE(!parent))
11305                 return;
11306
11307         mutex_lock(&parent->child_mutex);
11308         list_del_init(&event->child_list);
11309         mutex_unlock(&parent->child_mutex);
11310
11311         put_event(parent);
11312
11313         raw_spin_lock_irq(&ctx->lock);
11314         perf_group_detach(event);
11315         list_del_event(event, ctx);
11316         raw_spin_unlock_irq(&ctx->lock);
11317         free_event(event);
11318 }
11319
11320 /*
11321  * Free a context as created by inheritance by perf_event_init_task() below,
11322  * used by fork() in case of fail.
11323  *
11324  * Even though the task has never lived, the context and events have been
11325  * exposed through the child_list, so we must take care tearing it all down.
11326  */
11327 void perf_event_free_task(struct task_struct *task)
11328 {
11329         struct perf_event_context *ctx;
11330         struct perf_event *event, *tmp;
11331         int ctxn;
11332
11333         for_each_task_context_nr(ctxn) {
11334                 ctx = task->perf_event_ctxp[ctxn];
11335                 if (!ctx)
11336                         continue;
11337
11338                 mutex_lock(&ctx->mutex);
11339                 raw_spin_lock_irq(&ctx->lock);
11340                 /*
11341                  * Destroy the task <-> ctx relation and mark the context dead.
11342                  *
11343                  * This is important because even though the task hasn't been
11344                  * exposed yet the context has been (through child_list).
11345                  */
11346                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11347                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11348                 put_task_struct(task); /* cannot be last */
11349                 raw_spin_unlock_irq(&ctx->lock);
11350
11351                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11352                         perf_free_event(event, ctx);
11353
11354                 mutex_unlock(&ctx->mutex);
11355
11356                 /*
11357                  * perf_event_release_kernel() could've stolen some of our
11358                  * child events and still have them on its free_list. In that
11359                  * case we must wait for these events to have been freed (in
11360                  * particular all their references to this task must've been
11361                  * dropped).
11362                  *
11363                  * Without this copy_process() will unconditionally free this
11364                  * task (irrespective of its reference count) and
11365                  * _free_event()'s put_task_struct(event->hw.target) will be a
11366                  * use-after-free.
11367                  *
11368                  * Wait for all events to drop their context reference.
11369                  */
11370                 wait_var_event(&ctx->refcount, atomic_read(&ctx->refcount) == 1);
11371                 put_ctx(ctx); /* must be last */
11372         }
11373 }
11374
11375 void perf_event_delayed_put(struct task_struct *task)
11376 {
11377         int ctxn;
11378
11379         for_each_task_context_nr(ctxn)
11380                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11381 }
11382
11383 struct file *perf_event_get(unsigned int fd)
11384 {
11385         struct file *file;
11386
11387         file = fget_raw(fd);
11388         if (!file)
11389                 return ERR_PTR(-EBADF);
11390
11391         if (file->f_op != &perf_fops) {
11392                 fput(file);
11393                 return ERR_PTR(-EBADF);
11394         }
11395
11396         return file;
11397 }
11398
11399 const struct perf_event *perf_get_event(struct file *file)
11400 {
11401         if (file->f_op != &perf_fops)
11402                 return ERR_PTR(-EINVAL);
11403
11404         return file->private_data;
11405 }
11406
11407 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11408 {
11409         if (!event)
11410                 return ERR_PTR(-EINVAL);
11411
11412         return &event->attr;
11413 }
11414
11415 /*
11416  * Inherit an event from parent task to child task.
11417  *
11418  * Returns:
11419  *  - valid pointer on success
11420  *  - NULL for orphaned events
11421  *  - IS_ERR() on error
11422  */
11423 static struct perf_event *
11424 inherit_event(struct perf_event *parent_event,
11425               struct task_struct *parent,
11426               struct perf_event_context *parent_ctx,
11427               struct task_struct *child,
11428               struct perf_event *group_leader,
11429               struct perf_event_context *child_ctx)
11430 {
11431         enum perf_event_state parent_state = parent_event->state;
11432         struct perf_event *child_event;
11433         unsigned long flags;
11434
11435         /*
11436          * Instead of creating recursive hierarchies of events,
11437          * we link inherited events back to the original parent,
11438          * which has a filp for sure, which we use as the reference
11439          * count:
11440          */
11441         if (parent_event->parent)
11442                 parent_event = parent_event->parent;
11443
11444         child_event = perf_event_alloc(&parent_event->attr,
11445                                            parent_event->cpu,
11446                                            child,
11447                                            group_leader, parent_event,
11448                                            NULL, NULL, -1);
11449         if (IS_ERR(child_event))
11450                 return child_event;
11451
11452
11453         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11454             !child_ctx->task_ctx_data) {
11455                 struct pmu *pmu = child_event->pmu;
11456
11457                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11458                                                    GFP_KERNEL);
11459                 if (!child_ctx->task_ctx_data) {
11460                         free_event(child_event);
11461                         return ERR_PTR(-ENOMEM);
11462                 }
11463         }
11464
11465         /*
11466          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11467          * must be under the same lock in order to serialize against
11468          * perf_event_release_kernel(), such that either we must observe
11469          * is_orphaned_event() or they will observe us on the child_list.
11470          */
11471         mutex_lock(&parent_event->child_mutex);
11472         if (is_orphaned_event(parent_event) ||
11473             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11474                 mutex_unlock(&parent_event->child_mutex);
11475                 /* task_ctx_data is freed with child_ctx */
11476                 free_event(child_event);
11477                 return NULL;
11478         }
11479
11480         get_ctx(child_ctx);
11481
11482         /*
11483          * Make the child state follow the state of the parent event,
11484          * not its attr.disabled bit.  We hold the parent's mutex,
11485          * so we won't race with perf_event_{en, dis}able_family.
11486          */
11487         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11488                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11489         else
11490                 child_event->state = PERF_EVENT_STATE_OFF;
11491
11492         if (parent_event->attr.freq) {
11493                 u64 sample_period = parent_event->hw.sample_period;
11494                 struct hw_perf_event *hwc = &child_event->hw;
11495
11496                 hwc->sample_period = sample_period;
11497                 hwc->last_period   = sample_period;
11498
11499                 local64_set(&hwc->period_left, sample_period);
11500         }
11501
11502         child_event->ctx = child_ctx;
11503         child_event->overflow_handler = parent_event->overflow_handler;
11504         child_event->overflow_handler_context
11505                 = parent_event->overflow_handler_context;
11506
11507         /*
11508          * Precalculate sample_data sizes
11509          */
11510         perf_event__header_size(child_event);
11511         perf_event__id_header_size(child_event);
11512
11513         /*
11514          * Link it up in the child's context:
11515          */
11516         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11517         add_event_to_ctx(child_event, child_ctx);
11518         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11519
11520         /*
11521          * Link this into the parent event's child list
11522          */
11523         list_add_tail(&child_event->child_list, &parent_event->child_list);
11524         mutex_unlock(&parent_event->child_mutex);
11525
11526         return child_event;
11527 }
11528
11529 /*
11530  * Inherits an event group.
11531  *
11532  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11533  * This matches with perf_event_release_kernel() removing all child events.
11534  *
11535  * Returns:
11536  *  - 0 on success
11537  *  - <0 on error
11538  */
11539 static int inherit_group(struct perf_event *parent_event,
11540               struct task_struct *parent,
11541               struct perf_event_context *parent_ctx,
11542               struct task_struct *child,
11543               struct perf_event_context *child_ctx)
11544 {
11545         struct perf_event *leader;
11546         struct perf_event *sub;
11547         struct perf_event *child_ctr;
11548
11549         leader = inherit_event(parent_event, parent, parent_ctx,
11550                                  child, NULL, child_ctx);
11551         if (IS_ERR(leader))
11552                 return PTR_ERR(leader);
11553         /*
11554          * @leader can be NULL here because of is_orphaned_event(). In this
11555          * case inherit_event() will create individual events, similar to what
11556          * perf_group_detach() would do anyway.
11557          */
11558         for_each_sibling_event(sub, parent_event) {
11559                 child_ctr = inherit_event(sub, parent, parent_ctx,
11560                                             child, leader, child_ctx);
11561                 if (IS_ERR(child_ctr))
11562                         return PTR_ERR(child_ctr);
11563         }
11564         return 0;
11565 }
11566
11567 /*
11568  * Creates the child task context and tries to inherit the event-group.
11569  *
11570  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11571  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11572  * consistent with perf_event_release_kernel() removing all child events.
11573  *
11574  * Returns:
11575  *  - 0 on success
11576  *  - <0 on error
11577  */
11578 static int
11579 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11580                    struct perf_event_context *parent_ctx,
11581                    struct task_struct *child, int ctxn,
11582                    int *inherited_all)
11583 {
11584         int ret;
11585         struct perf_event_context *child_ctx;
11586
11587         if (!event->attr.inherit) {
11588                 *inherited_all = 0;
11589                 return 0;
11590         }
11591
11592         child_ctx = child->perf_event_ctxp[ctxn];
11593         if (!child_ctx) {
11594                 /*
11595                  * This is executed from the parent task context, so
11596                  * inherit events that have been marked for cloning.
11597                  * First allocate and initialize a context for the
11598                  * child.
11599                  */
11600                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11601                 if (!child_ctx)
11602                         return -ENOMEM;
11603
11604                 child->perf_event_ctxp[ctxn] = child_ctx;
11605         }
11606
11607         ret = inherit_group(event, parent, parent_ctx,
11608                             child, child_ctx);
11609
11610         if (ret)
11611                 *inherited_all = 0;
11612
11613         return ret;
11614 }
11615
11616 /*
11617  * Initialize the perf_event context in task_struct
11618  */
11619 static int perf_event_init_context(struct task_struct *child, int ctxn)
11620 {
11621         struct perf_event_context *child_ctx, *parent_ctx;
11622         struct perf_event_context *cloned_ctx;
11623         struct perf_event *event;
11624         struct task_struct *parent = current;
11625         int inherited_all = 1;
11626         unsigned long flags;
11627         int ret = 0;
11628
11629         if (likely(!parent->perf_event_ctxp[ctxn]))
11630                 return 0;
11631
11632         /*
11633          * If the parent's context is a clone, pin it so it won't get
11634          * swapped under us.
11635          */
11636         parent_ctx = perf_pin_task_context(parent, ctxn);
11637         if (!parent_ctx)
11638                 return 0;
11639
11640         /*
11641          * No need to check if parent_ctx != NULL here; since we saw
11642          * it non-NULL earlier, the only reason for it to become NULL
11643          * is if we exit, and since we're currently in the middle of
11644          * a fork we can't be exiting at the same time.
11645          */
11646
11647         /*
11648          * Lock the parent list. No need to lock the child - not PID
11649          * hashed yet and not running, so nobody can access it.
11650          */
11651         mutex_lock(&parent_ctx->mutex);
11652
11653         /*
11654          * We dont have to disable NMIs - we are only looking at
11655          * the list, not manipulating it:
11656          */
11657         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11658                 ret = inherit_task_group(event, parent, parent_ctx,
11659                                          child, ctxn, &inherited_all);
11660                 if (ret)
11661                         goto out_unlock;
11662         }
11663
11664         /*
11665          * We can't hold ctx->lock when iterating the ->flexible_group list due
11666          * to allocations, but we need to prevent rotation because
11667          * rotate_ctx() will change the list from interrupt context.
11668          */
11669         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11670         parent_ctx->rotate_disable = 1;
11671         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11672
11673         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11674                 ret = inherit_task_group(event, parent, parent_ctx,
11675                                          child, ctxn, &inherited_all);
11676                 if (ret)
11677                         goto out_unlock;
11678         }
11679
11680         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11681         parent_ctx->rotate_disable = 0;
11682
11683         child_ctx = child->perf_event_ctxp[ctxn];
11684
11685         if (child_ctx && inherited_all) {
11686                 /*
11687                  * Mark the child context as a clone of the parent
11688                  * context, or of whatever the parent is a clone of.
11689                  *
11690                  * Note that if the parent is a clone, the holding of
11691                  * parent_ctx->lock avoids it from being uncloned.
11692                  */
11693                 cloned_ctx = parent_ctx->parent_ctx;
11694                 if (cloned_ctx) {
11695                         child_ctx->parent_ctx = cloned_ctx;
11696                         child_ctx->parent_gen = parent_ctx->parent_gen;
11697                 } else {
11698                         child_ctx->parent_ctx = parent_ctx;
11699                         child_ctx->parent_gen = parent_ctx->generation;
11700                 }
11701                 get_ctx(child_ctx->parent_ctx);
11702         }
11703
11704         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11705 out_unlock:
11706         mutex_unlock(&parent_ctx->mutex);
11707
11708         perf_unpin_context(parent_ctx);
11709         put_ctx(parent_ctx);
11710
11711         return ret;
11712 }
11713
11714 /*
11715  * Initialize the perf_event context in task_struct
11716  */
11717 int perf_event_init_task(struct task_struct *child)
11718 {
11719         int ctxn, ret;
11720
11721         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11722         mutex_init(&child->perf_event_mutex);
11723         INIT_LIST_HEAD(&child->perf_event_list);
11724
11725         for_each_task_context_nr(ctxn) {
11726                 ret = perf_event_init_context(child, ctxn);
11727                 if (ret) {
11728                         perf_event_free_task(child);
11729                         return ret;
11730                 }
11731         }
11732
11733         return 0;
11734 }
11735
11736 static void __init perf_event_init_all_cpus(void)
11737 {
11738         struct swevent_htable *swhash;
11739         int cpu;
11740
11741         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11742
11743         for_each_possible_cpu(cpu) {
11744                 swhash = &per_cpu(swevent_htable, cpu);
11745                 mutex_init(&swhash->hlist_mutex);
11746                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11747
11748                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11749                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11750
11751 #ifdef CONFIG_CGROUP_PERF
11752                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11753 #endif
11754                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11755         }
11756 }
11757
11758 void perf_swevent_init_cpu(unsigned int cpu)
11759 {
11760         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11761
11762         mutex_lock(&swhash->hlist_mutex);
11763         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11764                 struct swevent_hlist *hlist;
11765
11766                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11767                 WARN_ON(!hlist);
11768                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11769         }
11770         mutex_unlock(&swhash->hlist_mutex);
11771 }
11772
11773 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11774 static void __perf_event_exit_context(void *__info)
11775 {
11776         struct perf_event_context *ctx = __info;
11777         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11778         struct perf_event *event;
11779
11780         raw_spin_lock(&ctx->lock);
11781         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11782         list_for_each_entry(event, &ctx->event_list, event_entry)
11783                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11784         raw_spin_unlock(&ctx->lock);
11785 }
11786
11787 static void perf_event_exit_cpu_context(int cpu)
11788 {
11789         struct perf_cpu_context *cpuctx;
11790         struct perf_event_context *ctx;
11791         struct pmu *pmu;
11792
11793         mutex_lock(&pmus_lock);
11794         list_for_each_entry(pmu, &pmus, entry) {
11795                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11796                 ctx = &cpuctx->ctx;
11797
11798                 mutex_lock(&ctx->mutex);
11799                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11800                 cpuctx->online = 0;
11801                 mutex_unlock(&ctx->mutex);
11802         }
11803         cpumask_clear_cpu(cpu, perf_online_mask);
11804         mutex_unlock(&pmus_lock);
11805 }
11806 #else
11807
11808 static void perf_event_exit_cpu_context(int cpu) { }
11809
11810 #endif
11811
11812 int perf_event_init_cpu(unsigned int cpu)
11813 {
11814         struct perf_cpu_context *cpuctx;
11815         struct perf_event_context *ctx;
11816         struct pmu *pmu;
11817
11818         perf_swevent_init_cpu(cpu);
11819
11820         mutex_lock(&pmus_lock);
11821         cpumask_set_cpu(cpu, perf_online_mask);
11822         list_for_each_entry(pmu, &pmus, entry) {
11823                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11824                 ctx = &cpuctx->ctx;
11825
11826                 mutex_lock(&ctx->mutex);
11827                 cpuctx->online = 1;
11828                 mutex_unlock(&ctx->mutex);
11829         }
11830         mutex_unlock(&pmus_lock);
11831
11832         return 0;
11833 }
11834
11835 int perf_event_exit_cpu(unsigned int cpu)
11836 {
11837         perf_event_exit_cpu_context(cpu);
11838         return 0;
11839 }
11840
11841 static int
11842 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11843 {
11844         int cpu;
11845
11846         for_each_online_cpu(cpu)
11847                 perf_event_exit_cpu(cpu);
11848
11849         return NOTIFY_OK;
11850 }
11851
11852 /*
11853  * Run the perf reboot notifier at the very last possible moment so that
11854  * the generic watchdog code runs as long as possible.
11855  */
11856 static struct notifier_block perf_reboot_notifier = {
11857         .notifier_call = perf_reboot,
11858         .priority = INT_MIN,
11859 };
11860
11861 void __init perf_event_init(void)
11862 {
11863         int ret;
11864
11865         idr_init(&pmu_idr);
11866
11867         perf_event_init_all_cpus();
11868         init_srcu_struct(&pmus_srcu);
11869         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11870         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11871         perf_pmu_register(&perf_task_clock, NULL, -1);
11872         perf_tp_register();
11873         perf_event_init_cpu(smp_processor_id());
11874         register_reboot_notifier(&perf_reboot_notifier);
11875
11876         ret = init_hw_breakpoint();
11877         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11878
11879         /*
11880          * Build time assertion that we keep the data_head at the intended
11881          * location.  IOW, validation we got the __reserved[] size right.
11882          */
11883         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11884                      != 1024);
11885 }
11886
11887 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11888                               char *page)
11889 {
11890         struct perf_pmu_events_attr *pmu_attr =
11891                 container_of(attr, struct perf_pmu_events_attr, attr);
11892
11893         if (pmu_attr->event_str)
11894                 return sprintf(page, "%s\n", pmu_attr->event_str);
11895
11896         return 0;
11897 }
11898 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11899
11900 static int __init perf_event_sysfs_init(void)
11901 {
11902         struct pmu *pmu;
11903         int ret;
11904
11905         mutex_lock(&pmus_lock);
11906
11907         ret = bus_register(&pmu_bus);
11908         if (ret)
11909                 goto unlock;
11910
11911         list_for_each_entry(pmu, &pmus, entry) {
11912                 if (!pmu->name || pmu->type < 0)
11913                         continue;
11914
11915                 ret = pmu_dev_alloc(pmu);
11916                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11917         }
11918         pmu_bus_running = 1;
11919         ret = 0;
11920
11921 unlock:
11922         mutex_unlock(&pmus_lock);
11923
11924         return ret;
11925 }
11926 device_initcall(perf_event_sysfs_init);
11927
11928 #ifdef CONFIG_CGROUP_PERF
11929 static struct cgroup_subsys_state *
11930 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11931 {
11932         struct perf_cgroup *jc;
11933
11934         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11935         if (!jc)
11936                 return ERR_PTR(-ENOMEM);
11937
11938         jc->info = alloc_percpu(struct perf_cgroup_info);
11939         if (!jc->info) {
11940                 kfree(jc);
11941                 return ERR_PTR(-ENOMEM);
11942         }
11943
11944         return &jc->css;
11945 }
11946
11947 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11948 {
11949         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11950
11951         free_percpu(jc->info);
11952         kfree(jc);
11953 }
11954
11955 static int __perf_cgroup_move(void *info)
11956 {
11957         struct task_struct *task = info;
11958         rcu_read_lock();
11959         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11960         rcu_read_unlock();
11961         return 0;
11962 }
11963
11964 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11965 {
11966         struct task_struct *task;
11967         struct cgroup_subsys_state *css;
11968
11969         cgroup_taskset_for_each(task, css, tset)
11970                 task_function_call(task, __perf_cgroup_move, task);
11971 }
11972
11973 struct cgroup_subsys perf_event_cgrp_subsys = {
11974         .css_alloc      = perf_cgroup_css_alloc,
11975         .css_free       = perf_cgroup_css_free,
11976         .attach         = perf_cgroup_attach,
11977         /*
11978          * Implicitly enable on dfl hierarchy so that perf events can
11979          * always be filtered by cgroup2 path as long as perf_event
11980          * controller is not mounted on a legacy hierarchy.
11981          */
11982         .implicit_on_dfl = true,
11983         .threaded       = true,
11984 };
11985 #endif /* CONFIG_CGROUP_PERF */