OSDN Git Service

Merge tag 'perf-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62         struct task_struct      *p;
63         remote_function_f       func;
64         void                    *info;
65         int                     ret;
66 };
67
68 static void remote_function(void *data)
69 {
70         struct remote_function_call *tfc = data;
71         struct task_struct *p = tfc->p;
72
73         if (p) {
74                 /* -EAGAIN */
75                 if (task_cpu(p) != smp_processor_id())
76                         return;
77
78                 /*
79                  * Now that we're on right CPU with IRQs disabled, we can test
80                  * if we hit the right task without races.
81                  */
82
83                 tfc->ret = -ESRCH; /* No such (running) process */
84                 if (p != current)
85                         return;
86         }
87
88         tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:          the task to evaluate
94  * @func:       the function to be called
95  * @info:       the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly.  This will
99  * retry due to any failures in smp_call_function_single(), such as if the
100  * task_cpu() goes offline concurrently.
101  *
102  * returns @func return value or -ESRCH when the process isn't running
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107         struct remote_function_call data = {
108                 .p      = p,
109                 .func   = func,
110                 .info   = info,
111                 .ret    = -EAGAIN,
112         };
113         int ret;
114
115         for (;;) {
116                 ret = smp_call_function_single(task_cpu(p), remote_function,
117                                                &data, 1);
118                 ret = !ret ? data.ret : -EAGAIN;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394 static atomic_t nr_ksymbol_events __read_mostly;
395 static atomic_t nr_bpf_events __read_mostly;
396 static atomic_t nr_cgroup_events __read_mostly;
397 static atomic_t nr_text_poke_events __read_mostly;
398
399 static LIST_HEAD(pmus);
400 static DEFINE_MUTEX(pmus_lock);
401 static struct srcu_struct pmus_srcu;
402 static cpumask_var_t perf_online_mask;
403
404 /*
405  * perf event paranoia level:
406  *  -1 - not paranoid at all
407  *   0 - disallow raw tracepoint access for unpriv
408  *   1 - disallow cpu events for unpriv
409  *   2 - disallow kernel profiling for unpriv
410  */
411 int sysctl_perf_event_paranoid __read_mostly = 2;
412
413 /* Minimum for 512 kiB + 1 user control page */
414 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
415
416 /*
417  * max perf event sample rate
418  */
419 #define DEFAULT_MAX_SAMPLE_RATE         100000
420 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
421 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
422
423 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
424
425 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
426 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
427
428 static int perf_sample_allowed_ns __read_mostly =
429         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
430
431 static void update_perf_cpu_limits(void)
432 {
433         u64 tmp = perf_sample_period_ns;
434
435         tmp *= sysctl_perf_cpu_time_max_percent;
436         tmp = div_u64(tmp, 100);
437         if (!tmp)
438                 tmp = 1;
439
440         WRITE_ONCE(perf_sample_allowed_ns, tmp);
441 }
442
443 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
444
445 int perf_proc_update_handler(struct ctl_table *table, int write,
446                 void *buffer, size_t *lenp, loff_t *ppos)
447 {
448         int ret;
449         int perf_cpu = sysctl_perf_cpu_time_max_percent;
450         /*
451          * If throttling is disabled don't allow the write:
452          */
453         if (write && (perf_cpu == 100 || perf_cpu == 0))
454                 return -EINVAL;
455
456         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
457         if (ret || !write)
458                 return ret;
459
460         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
461         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
462         update_perf_cpu_limits();
463
464         return 0;
465 }
466
467 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468
469 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
470                 void *buffer, size_t *lenp, loff_t *ppos)
471 {
472         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
473
474         if (ret || !write)
475                 return ret;
476
477         if (sysctl_perf_cpu_time_max_percent == 100 ||
478             sysctl_perf_cpu_time_max_percent == 0) {
479                 printk(KERN_WARNING
480                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
481                 WRITE_ONCE(perf_sample_allowed_ns, 0);
482         } else {
483                 update_perf_cpu_limits();
484         }
485
486         return 0;
487 }
488
489 /*
490  * perf samples are done in some very critical code paths (NMIs).
491  * If they take too much CPU time, the system can lock up and not
492  * get any real work done.  This will drop the sample rate when
493  * we detect that events are taking too long.
494  */
495 #define NR_ACCUMULATED_SAMPLES 128
496 static DEFINE_PER_CPU(u64, running_sample_length);
497
498 static u64 __report_avg;
499 static u64 __report_allowed;
500
501 static void perf_duration_warn(struct irq_work *w)
502 {
503         printk_ratelimited(KERN_INFO
504                 "perf: interrupt took too long (%lld > %lld), lowering "
505                 "kernel.perf_event_max_sample_rate to %d\n",
506                 __report_avg, __report_allowed,
507                 sysctl_perf_event_sample_rate);
508 }
509
510 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
511
512 void perf_sample_event_took(u64 sample_len_ns)
513 {
514         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
515         u64 running_len;
516         u64 avg_len;
517         u32 max;
518
519         if (max_len == 0)
520                 return;
521
522         /* Decay the counter by 1 average sample. */
523         running_len = __this_cpu_read(running_sample_length);
524         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
525         running_len += sample_len_ns;
526         __this_cpu_write(running_sample_length, running_len);
527
528         /*
529          * Note: this will be biased artifically low until we have
530          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
531          * from having to maintain a count.
532          */
533         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
534         if (avg_len <= max_len)
535                 return;
536
537         __report_avg = avg_len;
538         __report_allowed = max_len;
539
540         /*
541          * Compute a throttle threshold 25% below the current duration.
542          */
543         avg_len += avg_len / 4;
544         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
545         if (avg_len < max)
546                 max /= (u32)avg_len;
547         else
548                 max = 1;
549
550         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
551         WRITE_ONCE(max_samples_per_tick, max);
552
553         sysctl_perf_event_sample_rate = max * HZ;
554         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
555
556         if (!irq_work_queue(&perf_duration_work)) {
557                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
558                              "kernel.perf_event_max_sample_rate to %d\n",
559                              __report_avg, __report_allowed,
560                              sysctl_perf_event_sample_rate);
561         }
562 }
563
564 static atomic64_t perf_event_id;
565
566 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
567                               enum event_type_t event_type);
568
569 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
570                              enum event_type_t event_type,
571                              struct task_struct *task);
572
573 static void update_context_time(struct perf_event_context *ctx);
574 static u64 perf_event_time(struct perf_event *event);
575
576 void __weak perf_event_print_debug(void)        { }
577
578 extern __weak const char *perf_pmu_name(void)
579 {
580         return "pmu";
581 }
582
583 static inline u64 perf_clock(void)
584 {
585         return local_clock();
586 }
587
588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590         return event->clock();
591 }
592
593 /*
594  * State based event timekeeping...
595  *
596  * The basic idea is to use event->state to determine which (if any) time
597  * fields to increment with the current delta. This means we only need to
598  * update timestamps when we change state or when they are explicitly requested
599  * (read).
600  *
601  * Event groups make things a little more complicated, but not terribly so. The
602  * rules for a group are that if the group leader is OFF the entire group is
603  * OFF, irrespecive of what the group member states are. This results in
604  * __perf_effective_state().
605  *
606  * A futher ramification is that when a group leader flips between OFF and
607  * !OFF, we need to update all group member times.
608  *
609  *
610  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611  * need to make sure the relevant context time is updated before we try and
612  * update our timestamps.
613  */
614
615 static __always_inline enum perf_event_state
616 __perf_effective_state(struct perf_event *event)
617 {
618         struct perf_event *leader = event->group_leader;
619
620         if (leader->state <= PERF_EVENT_STATE_OFF)
621                 return leader->state;
622
623         return event->state;
624 }
625
626 static __always_inline void
627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629         enum perf_event_state state = __perf_effective_state(event);
630         u64 delta = now - event->tstamp;
631
632         *enabled = event->total_time_enabled;
633         if (state >= PERF_EVENT_STATE_INACTIVE)
634                 *enabled += delta;
635
636         *running = event->total_time_running;
637         if (state >= PERF_EVENT_STATE_ACTIVE)
638                 *running += delta;
639 }
640
641 static void perf_event_update_time(struct perf_event *event)
642 {
643         u64 now = perf_event_time(event);
644
645         __perf_update_times(event, now, &event->total_time_enabled,
646                                         &event->total_time_running);
647         event->tstamp = now;
648 }
649
650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652         struct perf_event *sibling;
653
654         for_each_sibling_event(sibling, leader)
655                 perf_event_update_time(sibling);
656 }
657
658 static void
659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661         if (event->state == state)
662                 return;
663
664         perf_event_update_time(event);
665         /*
666          * If a group leader gets enabled/disabled all its siblings
667          * are affected too.
668          */
669         if ((event->state < 0) ^ (state < 0))
670                 perf_event_update_sibling_time(event);
671
672         WRITE_ONCE(event->state, state);
673 }
674
675 #ifdef CONFIG_CGROUP_PERF
676
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680         struct perf_event_context *ctx = event->ctx;
681         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
682
683         /* @event doesn't care about cgroup */
684         if (!event->cgrp)
685                 return true;
686
687         /* wants specific cgroup scope but @cpuctx isn't associated with any */
688         if (!cpuctx->cgrp)
689                 return false;
690
691         /*
692          * Cgroup scoping is recursive.  An event enabled for a cgroup is
693          * also enabled for all its descendant cgroups.  If @cpuctx's
694          * cgroup is a descendant of @event's (the test covers identity
695          * case), it's a match.
696          */
697         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
698                                     event->cgrp->css.cgroup);
699 }
700
701 static inline void perf_detach_cgroup(struct perf_event *event)
702 {
703         css_put(&event->cgrp->css);
704         event->cgrp = NULL;
705 }
706
707 static inline int is_cgroup_event(struct perf_event *event)
708 {
709         return event->cgrp != NULL;
710 }
711
712 static inline u64 perf_cgroup_event_time(struct perf_event *event)
713 {
714         struct perf_cgroup_info *t;
715
716         t = per_cpu_ptr(event->cgrp->info, event->cpu);
717         return t->time;
718 }
719
720 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
721 {
722         struct perf_cgroup_info *info;
723         u64 now;
724
725         now = perf_clock();
726
727         info = this_cpu_ptr(cgrp->info);
728
729         info->time += now - info->timestamp;
730         info->timestamp = now;
731 }
732
733 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
734 {
735         struct perf_cgroup *cgrp = cpuctx->cgrp;
736         struct cgroup_subsys_state *css;
737
738         if (cgrp) {
739                 for (css = &cgrp->css; css; css = css->parent) {
740                         cgrp = container_of(css, struct perf_cgroup, css);
741                         __update_cgrp_time(cgrp);
742                 }
743         }
744 }
745
746 static inline void update_cgrp_time_from_event(struct perf_event *event)
747 {
748         struct perf_cgroup *cgrp;
749
750         /*
751          * ensure we access cgroup data only when needed and
752          * when we know the cgroup is pinned (css_get)
753          */
754         if (!is_cgroup_event(event))
755                 return;
756
757         cgrp = perf_cgroup_from_task(current, event->ctx);
758         /*
759          * Do not update time when cgroup is not active
760          */
761         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
762                 __update_cgrp_time(event->cgrp);
763 }
764
765 static inline void
766 perf_cgroup_set_timestamp(struct task_struct *task,
767                           struct perf_event_context *ctx)
768 {
769         struct perf_cgroup *cgrp;
770         struct perf_cgroup_info *info;
771         struct cgroup_subsys_state *css;
772
773         /*
774          * ctx->lock held by caller
775          * ensure we do not access cgroup data
776          * unless we have the cgroup pinned (css_get)
777          */
778         if (!task || !ctx->nr_cgroups)
779                 return;
780
781         cgrp = perf_cgroup_from_task(task, ctx);
782
783         for (css = &cgrp->css; css; css = css->parent) {
784                 cgrp = container_of(css, struct perf_cgroup, css);
785                 info = this_cpu_ptr(cgrp->info);
786                 info->timestamp = ctx->timestamp;
787         }
788 }
789
790 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
791
792 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
793 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
794
795 /*
796  * reschedule events based on the cgroup constraint of task.
797  *
798  * mode SWOUT : schedule out everything
799  * mode SWIN : schedule in based on cgroup for next
800  */
801 static void perf_cgroup_switch(struct task_struct *task, int mode)
802 {
803         struct perf_cpu_context *cpuctx;
804         struct list_head *list;
805         unsigned long flags;
806
807         /*
808          * Disable interrupts and preemption to avoid this CPU's
809          * cgrp_cpuctx_entry to change under us.
810          */
811         local_irq_save(flags);
812
813         list = this_cpu_ptr(&cgrp_cpuctx_list);
814         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
815                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
816
817                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
818                 perf_pmu_disable(cpuctx->ctx.pmu);
819
820                 if (mode & PERF_CGROUP_SWOUT) {
821                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
822                         /*
823                          * must not be done before ctxswout due
824                          * to event_filter_match() in event_sched_out()
825                          */
826                         cpuctx->cgrp = NULL;
827                 }
828
829                 if (mode & PERF_CGROUP_SWIN) {
830                         WARN_ON_ONCE(cpuctx->cgrp);
831                         /*
832                          * set cgrp before ctxsw in to allow
833                          * event_filter_match() to not have to pass
834                          * task around
835                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
836                          * because cgorup events are only per-cpu
837                          */
838                         cpuctx->cgrp = perf_cgroup_from_task(task,
839                                                              &cpuctx->ctx);
840                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
841                 }
842                 perf_pmu_enable(cpuctx->ctx.pmu);
843                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
844         }
845
846         local_irq_restore(flags);
847 }
848
849 static inline void perf_cgroup_sched_out(struct task_struct *task,
850                                          struct task_struct *next)
851 {
852         struct perf_cgroup *cgrp1;
853         struct perf_cgroup *cgrp2 = NULL;
854
855         rcu_read_lock();
856         /*
857          * we come here when we know perf_cgroup_events > 0
858          * we do not need to pass the ctx here because we know
859          * we are holding the rcu lock
860          */
861         cgrp1 = perf_cgroup_from_task(task, NULL);
862         cgrp2 = perf_cgroup_from_task(next, NULL);
863
864         /*
865          * only schedule out current cgroup events if we know
866          * that we are switching to a different cgroup. Otherwise,
867          * do no touch the cgroup events.
868          */
869         if (cgrp1 != cgrp2)
870                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
871
872         rcu_read_unlock();
873 }
874
875 static inline void perf_cgroup_sched_in(struct task_struct *prev,
876                                         struct task_struct *task)
877 {
878         struct perf_cgroup *cgrp1;
879         struct perf_cgroup *cgrp2 = NULL;
880
881         rcu_read_lock();
882         /*
883          * we come here when we know perf_cgroup_events > 0
884          * we do not need to pass the ctx here because we know
885          * we are holding the rcu lock
886          */
887         cgrp1 = perf_cgroup_from_task(task, NULL);
888         cgrp2 = perf_cgroup_from_task(prev, NULL);
889
890         /*
891          * only need to schedule in cgroup events if we are changing
892          * cgroup during ctxsw. Cgroup events were not scheduled
893          * out of ctxsw out if that was not the case.
894          */
895         if (cgrp1 != cgrp2)
896                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
897
898         rcu_read_unlock();
899 }
900
901 static int perf_cgroup_ensure_storage(struct perf_event *event,
902                                 struct cgroup_subsys_state *css)
903 {
904         struct perf_cpu_context *cpuctx;
905         struct perf_event **storage;
906         int cpu, heap_size, ret = 0;
907
908         /*
909          * Allow storage to have sufficent space for an iterator for each
910          * possibly nested cgroup plus an iterator for events with no cgroup.
911          */
912         for (heap_size = 1; css; css = css->parent)
913                 heap_size++;
914
915         for_each_possible_cpu(cpu) {
916                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
917                 if (heap_size <= cpuctx->heap_size)
918                         continue;
919
920                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
921                                        GFP_KERNEL, cpu_to_node(cpu));
922                 if (!storage) {
923                         ret = -ENOMEM;
924                         break;
925                 }
926
927                 raw_spin_lock_irq(&cpuctx->ctx.lock);
928                 if (cpuctx->heap_size < heap_size) {
929                         swap(cpuctx->heap, storage);
930                         if (storage == cpuctx->heap_default)
931                                 storage = NULL;
932                         cpuctx->heap_size = heap_size;
933                 }
934                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
935
936                 kfree(storage);
937         }
938
939         return ret;
940 }
941
942 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
943                                       struct perf_event_attr *attr,
944                                       struct perf_event *group_leader)
945 {
946         struct perf_cgroup *cgrp;
947         struct cgroup_subsys_state *css;
948         struct fd f = fdget(fd);
949         int ret = 0;
950
951         if (!f.file)
952                 return -EBADF;
953
954         css = css_tryget_online_from_dir(f.file->f_path.dentry,
955                                          &perf_event_cgrp_subsys);
956         if (IS_ERR(css)) {
957                 ret = PTR_ERR(css);
958                 goto out;
959         }
960
961         ret = perf_cgroup_ensure_storage(event, css);
962         if (ret)
963                 goto out;
964
965         cgrp = container_of(css, struct perf_cgroup, css);
966         event->cgrp = cgrp;
967
968         /*
969          * all events in a group must monitor
970          * the same cgroup because a task belongs
971          * to only one perf cgroup at a time
972          */
973         if (group_leader && group_leader->cgrp != cgrp) {
974                 perf_detach_cgroup(event);
975                 ret = -EINVAL;
976         }
977 out:
978         fdput(f);
979         return ret;
980 }
981
982 static inline void
983 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
984 {
985         struct perf_cgroup_info *t;
986         t = per_cpu_ptr(event->cgrp->info, event->cpu);
987         event->shadow_ctx_time = now - t->timestamp;
988 }
989
990 static inline void
991 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
992 {
993         struct perf_cpu_context *cpuctx;
994
995         if (!is_cgroup_event(event))
996                 return;
997
998         /*
999          * Because cgroup events are always per-cpu events,
1000          * @ctx == &cpuctx->ctx.
1001          */
1002         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1003
1004         /*
1005          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006          * matching the event's cgroup, we must do this for every new event,
1007          * because if the first would mismatch, the second would not try again
1008          * and we would leave cpuctx->cgrp unset.
1009          */
1010         if (ctx->is_active && !cpuctx->cgrp) {
1011                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012
1013                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014                         cpuctx->cgrp = cgrp;
1015         }
1016
1017         if (ctx->nr_cgroups++)
1018                 return;
1019
1020         list_add(&cpuctx->cgrp_cpuctx_entry,
1021                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1022 }
1023
1024 static inline void
1025 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1026 {
1027         struct perf_cpu_context *cpuctx;
1028
1029         if (!is_cgroup_event(event))
1030                 return;
1031
1032         /*
1033          * Because cgroup events are always per-cpu events,
1034          * @ctx == &cpuctx->ctx.
1035          */
1036         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037
1038         if (--ctx->nr_cgroups)
1039                 return;
1040
1041         if (ctx->is_active && cpuctx->cgrp)
1042                 cpuctx->cgrp = NULL;
1043
1044         list_del(&cpuctx->cgrp_cpuctx_entry);
1045 }
1046
1047 #else /* !CONFIG_CGROUP_PERF */
1048
1049 static inline bool
1050 perf_cgroup_match(struct perf_event *event)
1051 {
1052         return true;
1053 }
1054
1055 static inline void perf_detach_cgroup(struct perf_event *event)
1056 {}
1057
1058 static inline int is_cgroup_event(struct perf_event *event)
1059 {
1060         return 0;
1061 }
1062
1063 static inline void update_cgrp_time_from_event(struct perf_event *event)
1064 {
1065 }
1066
1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1068 {
1069 }
1070
1071 static inline void perf_cgroup_sched_out(struct task_struct *task,
1072                                          struct task_struct *next)
1073 {
1074 }
1075
1076 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1077                                         struct task_struct *task)
1078 {
1079 }
1080
1081 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1082                                       struct perf_event_attr *attr,
1083                                       struct perf_event *group_leader)
1084 {
1085         return -EINVAL;
1086 }
1087
1088 static inline void
1089 perf_cgroup_set_timestamp(struct task_struct *task,
1090                           struct perf_event_context *ctx)
1091 {
1092 }
1093
1094 static inline void
1095 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1096 {
1097 }
1098
1099 static inline void
1100 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1101 {
1102 }
1103
1104 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1105 {
1106         return 0;
1107 }
1108
1109 static inline void
1110 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1111 {
1112 }
1113
1114 static inline void
1115 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1116 {
1117 }
1118 #endif
1119
1120 /*
1121  * set default to be dependent on timer tick just
1122  * like original code
1123  */
1124 #define PERF_CPU_HRTIMER (1000 / HZ)
1125 /*
1126  * function must be called with interrupts disabled
1127  */
1128 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1129 {
1130         struct perf_cpu_context *cpuctx;
1131         bool rotations;
1132
1133         lockdep_assert_irqs_disabled();
1134
1135         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1136         rotations = perf_rotate_context(cpuctx);
1137
1138         raw_spin_lock(&cpuctx->hrtimer_lock);
1139         if (rotations)
1140                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1141         else
1142                 cpuctx->hrtimer_active = 0;
1143         raw_spin_unlock(&cpuctx->hrtimer_lock);
1144
1145         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1146 }
1147
1148 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1149 {
1150         struct hrtimer *timer = &cpuctx->hrtimer;
1151         struct pmu *pmu = cpuctx->ctx.pmu;
1152         u64 interval;
1153
1154         /* no multiplexing needed for SW PMU */
1155         if (pmu->task_ctx_nr == perf_sw_context)
1156                 return;
1157
1158         /*
1159          * check default is sane, if not set then force to
1160          * default interval (1/tick)
1161          */
1162         interval = pmu->hrtimer_interval_ms;
1163         if (interval < 1)
1164                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1165
1166         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1167
1168         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1169         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1170         timer->function = perf_mux_hrtimer_handler;
1171 }
1172
1173 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1174 {
1175         struct hrtimer *timer = &cpuctx->hrtimer;
1176         struct pmu *pmu = cpuctx->ctx.pmu;
1177         unsigned long flags;
1178
1179         /* not for SW PMU */
1180         if (pmu->task_ctx_nr == perf_sw_context)
1181                 return 0;
1182
1183         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1184         if (!cpuctx->hrtimer_active) {
1185                 cpuctx->hrtimer_active = 1;
1186                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1187                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1188         }
1189         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1190
1191         return 0;
1192 }
1193
1194 void perf_pmu_disable(struct pmu *pmu)
1195 {
1196         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1197         if (!(*count)++)
1198                 pmu->pmu_disable(pmu);
1199 }
1200
1201 void perf_pmu_enable(struct pmu *pmu)
1202 {
1203         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204         if (!--(*count))
1205                 pmu->pmu_enable(pmu);
1206 }
1207
1208 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1209
1210 /*
1211  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1212  * perf_event_task_tick() are fully serialized because they're strictly cpu
1213  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1214  * disabled, while perf_event_task_tick is called from IRQ context.
1215  */
1216 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1217 {
1218         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1219
1220         lockdep_assert_irqs_disabled();
1221
1222         WARN_ON(!list_empty(&ctx->active_ctx_list));
1223
1224         list_add(&ctx->active_ctx_list, head);
1225 }
1226
1227 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1228 {
1229         lockdep_assert_irqs_disabled();
1230
1231         WARN_ON(list_empty(&ctx->active_ctx_list));
1232
1233         list_del_init(&ctx->active_ctx_list);
1234 }
1235
1236 static void get_ctx(struct perf_event_context *ctx)
1237 {
1238         refcount_inc(&ctx->refcount);
1239 }
1240
1241 static void *alloc_task_ctx_data(struct pmu *pmu)
1242 {
1243         if (pmu->task_ctx_cache)
1244                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1245
1246         return NULL;
1247 }
1248
1249 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1250 {
1251         if (pmu->task_ctx_cache && task_ctx_data)
1252                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1253 }
1254
1255 static void free_ctx(struct rcu_head *head)
1256 {
1257         struct perf_event_context *ctx;
1258
1259         ctx = container_of(head, struct perf_event_context, rcu_head);
1260         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1261         kfree(ctx);
1262 }
1263
1264 static void put_ctx(struct perf_event_context *ctx)
1265 {
1266         if (refcount_dec_and_test(&ctx->refcount)) {
1267                 if (ctx->parent_ctx)
1268                         put_ctx(ctx->parent_ctx);
1269                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1270                         put_task_struct(ctx->task);
1271                 call_rcu(&ctx->rcu_head, free_ctx);
1272         }
1273 }
1274
1275 /*
1276  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1277  * perf_pmu_migrate_context() we need some magic.
1278  *
1279  * Those places that change perf_event::ctx will hold both
1280  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1281  *
1282  * Lock ordering is by mutex address. There are two other sites where
1283  * perf_event_context::mutex nests and those are:
1284  *
1285  *  - perf_event_exit_task_context()    [ child , 0 ]
1286  *      perf_event_exit_event()
1287  *        put_event()                   [ parent, 1 ]
1288  *
1289  *  - perf_event_init_context()         [ parent, 0 ]
1290  *      inherit_task_group()
1291  *        inherit_group()
1292  *          inherit_event()
1293  *            perf_event_alloc()
1294  *              perf_init_event()
1295  *                perf_try_init_event() [ child , 1 ]
1296  *
1297  * While it appears there is an obvious deadlock here -- the parent and child
1298  * nesting levels are inverted between the two. This is in fact safe because
1299  * life-time rules separate them. That is an exiting task cannot fork, and a
1300  * spawning task cannot (yet) exit.
1301  *
1302  * But remember that that these are parent<->child context relations, and
1303  * migration does not affect children, therefore these two orderings should not
1304  * interact.
1305  *
1306  * The change in perf_event::ctx does not affect children (as claimed above)
1307  * because the sys_perf_event_open() case will install a new event and break
1308  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1309  * concerned with cpuctx and that doesn't have children.
1310  *
1311  * The places that change perf_event::ctx will issue:
1312  *
1313  *   perf_remove_from_context();
1314  *   synchronize_rcu();
1315  *   perf_install_in_context();
1316  *
1317  * to affect the change. The remove_from_context() + synchronize_rcu() should
1318  * quiesce the event, after which we can install it in the new location. This
1319  * means that only external vectors (perf_fops, prctl) can perturb the event
1320  * while in transit. Therefore all such accessors should also acquire
1321  * perf_event_context::mutex to serialize against this.
1322  *
1323  * However; because event->ctx can change while we're waiting to acquire
1324  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1325  * function.
1326  *
1327  * Lock order:
1328  *    exec_update_mutex
1329  *      task_struct::perf_event_mutex
1330  *        perf_event_context::mutex
1331  *          perf_event::child_mutex;
1332  *            perf_event_context::lock
1333  *          perf_event::mmap_mutex
1334  *          mmap_lock
1335  *            perf_addr_filters_head::lock
1336  *
1337  *    cpu_hotplug_lock
1338  *      pmus_lock
1339  *        cpuctx->mutex / perf_event_context::mutex
1340  */
1341 static struct perf_event_context *
1342 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1343 {
1344         struct perf_event_context *ctx;
1345
1346 again:
1347         rcu_read_lock();
1348         ctx = READ_ONCE(event->ctx);
1349         if (!refcount_inc_not_zero(&ctx->refcount)) {
1350                 rcu_read_unlock();
1351                 goto again;
1352         }
1353         rcu_read_unlock();
1354
1355         mutex_lock_nested(&ctx->mutex, nesting);
1356         if (event->ctx != ctx) {
1357                 mutex_unlock(&ctx->mutex);
1358                 put_ctx(ctx);
1359                 goto again;
1360         }
1361
1362         return ctx;
1363 }
1364
1365 static inline struct perf_event_context *
1366 perf_event_ctx_lock(struct perf_event *event)
1367 {
1368         return perf_event_ctx_lock_nested(event, 0);
1369 }
1370
1371 static void perf_event_ctx_unlock(struct perf_event *event,
1372                                   struct perf_event_context *ctx)
1373 {
1374         mutex_unlock(&ctx->mutex);
1375         put_ctx(ctx);
1376 }
1377
1378 /*
1379  * This must be done under the ctx->lock, such as to serialize against
1380  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1381  * calling scheduler related locks and ctx->lock nests inside those.
1382  */
1383 static __must_check struct perf_event_context *
1384 unclone_ctx(struct perf_event_context *ctx)
1385 {
1386         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1387
1388         lockdep_assert_held(&ctx->lock);
1389
1390         if (parent_ctx)
1391                 ctx->parent_ctx = NULL;
1392         ctx->generation++;
1393
1394         return parent_ctx;
1395 }
1396
1397 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1398                                 enum pid_type type)
1399 {
1400         u32 nr;
1401         /*
1402          * only top level events have the pid namespace they were created in
1403          */
1404         if (event->parent)
1405                 event = event->parent;
1406
1407         nr = __task_pid_nr_ns(p, type, event->ns);
1408         /* avoid -1 if it is idle thread or runs in another ns */
1409         if (!nr && !pid_alive(p))
1410                 nr = -1;
1411         return nr;
1412 }
1413
1414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1415 {
1416         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1417 }
1418
1419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1420 {
1421         return perf_event_pid_type(event, p, PIDTYPE_PID);
1422 }
1423
1424 /*
1425  * If we inherit events we want to return the parent event id
1426  * to userspace.
1427  */
1428 static u64 primary_event_id(struct perf_event *event)
1429 {
1430         u64 id = event->id;
1431
1432         if (event->parent)
1433                 id = event->parent->id;
1434
1435         return id;
1436 }
1437
1438 /*
1439  * Get the perf_event_context for a task and lock it.
1440  *
1441  * This has to cope with with the fact that until it is locked,
1442  * the context could get moved to another task.
1443  */
1444 static struct perf_event_context *
1445 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1446 {
1447         struct perf_event_context *ctx;
1448
1449 retry:
1450         /*
1451          * One of the few rules of preemptible RCU is that one cannot do
1452          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1453          * part of the read side critical section was irqs-enabled -- see
1454          * rcu_read_unlock_special().
1455          *
1456          * Since ctx->lock nests under rq->lock we must ensure the entire read
1457          * side critical section has interrupts disabled.
1458          */
1459         local_irq_save(*flags);
1460         rcu_read_lock();
1461         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1462         if (ctx) {
1463                 /*
1464                  * If this context is a clone of another, it might
1465                  * get swapped for another underneath us by
1466                  * perf_event_task_sched_out, though the
1467                  * rcu_read_lock() protects us from any context
1468                  * getting freed.  Lock the context and check if it
1469                  * got swapped before we could get the lock, and retry
1470                  * if so.  If we locked the right context, then it
1471                  * can't get swapped on us any more.
1472                  */
1473                 raw_spin_lock(&ctx->lock);
1474                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1475                         raw_spin_unlock(&ctx->lock);
1476                         rcu_read_unlock();
1477                         local_irq_restore(*flags);
1478                         goto retry;
1479                 }
1480
1481                 if (ctx->task == TASK_TOMBSTONE ||
1482                     !refcount_inc_not_zero(&ctx->refcount)) {
1483                         raw_spin_unlock(&ctx->lock);
1484                         ctx = NULL;
1485                 } else {
1486                         WARN_ON_ONCE(ctx->task != task);
1487                 }
1488         }
1489         rcu_read_unlock();
1490         if (!ctx)
1491                 local_irq_restore(*flags);
1492         return ctx;
1493 }
1494
1495 /*
1496  * Get the context for a task and increment its pin_count so it
1497  * can't get swapped to another task.  This also increments its
1498  * reference count so that the context can't get freed.
1499  */
1500 static struct perf_event_context *
1501 perf_pin_task_context(struct task_struct *task, int ctxn)
1502 {
1503         struct perf_event_context *ctx;
1504         unsigned long flags;
1505
1506         ctx = perf_lock_task_context(task, ctxn, &flags);
1507         if (ctx) {
1508                 ++ctx->pin_count;
1509                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1510         }
1511         return ctx;
1512 }
1513
1514 static void perf_unpin_context(struct perf_event_context *ctx)
1515 {
1516         unsigned long flags;
1517
1518         raw_spin_lock_irqsave(&ctx->lock, flags);
1519         --ctx->pin_count;
1520         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1521 }
1522
1523 /*
1524  * Update the record of the current time in a context.
1525  */
1526 static void update_context_time(struct perf_event_context *ctx)
1527 {
1528         u64 now = perf_clock();
1529
1530         ctx->time += now - ctx->timestamp;
1531         ctx->timestamp = now;
1532 }
1533
1534 static u64 perf_event_time(struct perf_event *event)
1535 {
1536         struct perf_event_context *ctx = event->ctx;
1537
1538         if (is_cgroup_event(event))
1539                 return perf_cgroup_event_time(event);
1540
1541         return ctx ? ctx->time : 0;
1542 }
1543
1544 static enum event_type_t get_event_type(struct perf_event *event)
1545 {
1546         struct perf_event_context *ctx = event->ctx;
1547         enum event_type_t event_type;
1548
1549         lockdep_assert_held(&ctx->lock);
1550
1551         /*
1552          * It's 'group type', really, because if our group leader is
1553          * pinned, so are we.
1554          */
1555         if (event->group_leader != event)
1556                 event = event->group_leader;
1557
1558         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1559         if (!ctx->task)
1560                 event_type |= EVENT_CPU;
1561
1562         return event_type;
1563 }
1564
1565 /*
1566  * Helper function to initialize event group nodes.
1567  */
1568 static void init_event_group(struct perf_event *event)
1569 {
1570         RB_CLEAR_NODE(&event->group_node);
1571         event->group_index = 0;
1572 }
1573
1574 /*
1575  * Extract pinned or flexible groups from the context
1576  * based on event attrs bits.
1577  */
1578 static struct perf_event_groups *
1579 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1580 {
1581         if (event->attr.pinned)
1582                 return &ctx->pinned_groups;
1583         else
1584                 return &ctx->flexible_groups;
1585 }
1586
1587 /*
1588  * Helper function to initializes perf_event_group trees.
1589  */
1590 static void perf_event_groups_init(struct perf_event_groups *groups)
1591 {
1592         groups->tree = RB_ROOT;
1593         groups->index = 0;
1594 }
1595
1596 /*
1597  * Compare function for event groups;
1598  *
1599  * Implements complex key that first sorts by CPU and then by virtual index
1600  * which provides ordering when rotating groups for the same CPU.
1601  */
1602 static bool
1603 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1604 {
1605         if (left->cpu < right->cpu)
1606                 return true;
1607         if (left->cpu > right->cpu)
1608                 return false;
1609
1610 #ifdef CONFIG_CGROUP_PERF
1611         if (left->cgrp != right->cgrp) {
1612                 if (!left->cgrp || !left->cgrp->css.cgroup) {
1613                         /*
1614                          * Left has no cgroup but right does, no cgroups come
1615                          * first.
1616                          */
1617                         return true;
1618                 }
1619                 if (!right->cgrp || !right->cgrp->css.cgroup) {
1620                         /*
1621                          * Right has no cgroup but left does, no cgroups come
1622                          * first.
1623                          */
1624                         return false;
1625                 }
1626                 /* Two dissimilar cgroups, order by id. */
1627                 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1628                         return true;
1629
1630                 return false;
1631         }
1632 #endif
1633
1634         if (left->group_index < right->group_index)
1635                 return true;
1636         if (left->group_index > right->group_index)
1637                 return false;
1638
1639         return false;
1640 }
1641
1642 /*
1643  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1644  * key (see perf_event_groups_less). This places it last inside the CPU
1645  * subtree.
1646  */
1647 static void
1648 perf_event_groups_insert(struct perf_event_groups *groups,
1649                          struct perf_event *event)
1650 {
1651         struct perf_event *node_event;
1652         struct rb_node *parent;
1653         struct rb_node **node;
1654
1655         event->group_index = ++groups->index;
1656
1657         node = &groups->tree.rb_node;
1658         parent = *node;
1659
1660         while (*node) {
1661                 parent = *node;
1662                 node_event = container_of(*node, struct perf_event, group_node);
1663
1664                 if (perf_event_groups_less(event, node_event))
1665                         node = &parent->rb_left;
1666                 else
1667                         node = &parent->rb_right;
1668         }
1669
1670         rb_link_node(&event->group_node, parent, node);
1671         rb_insert_color(&event->group_node, &groups->tree);
1672 }
1673
1674 /*
1675  * Helper function to insert event into the pinned or flexible groups.
1676  */
1677 static void
1678 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680         struct perf_event_groups *groups;
1681
1682         groups = get_event_groups(event, ctx);
1683         perf_event_groups_insert(groups, event);
1684 }
1685
1686 /*
1687  * Delete a group from a tree.
1688  */
1689 static void
1690 perf_event_groups_delete(struct perf_event_groups *groups,
1691                          struct perf_event *event)
1692 {
1693         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1694                      RB_EMPTY_ROOT(&groups->tree));
1695
1696         rb_erase(&event->group_node, &groups->tree);
1697         init_event_group(event);
1698 }
1699
1700 /*
1701  * Helper function to delete event from its groups.
1702  */
1703 static void
1704 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1705 {
1706         struct perf_event_groups *groups;
1707
1708         groups = get_event_groups(event, ctx);
1709         perf_event_groups_delete(groups, event);
1710 }
1711
1712 /*
1713  * Get the leftmost event in the cpu/cgroup subtree.
1714  */
1715 static struct perf_event *
1716 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1717                         struct cgroup *cgrp)
1718 {
1719         struct perf_event *node_event = NULL, *match = NULL;
1720         struct rb_node *node = groups->tree.rb_node;
1721 #ifdef CONFIG_CGROUP_PERF
1722         u64 node_cgrp_id, cgrp_id = 0;
1723
1724         if (cgrp)
1725                 cgrp_id = cgrp->kn->id;
1726 #endif
1727
1728         while (node) {
1729                 node_event = container_of(node, struct perf_event, group_node);
1730
1731                 if (cpu < node_event->cpu) {
1732                         node = node->rb_left;
1733                         continue;
1734                 }
1735                 if (cpu > node_event->cpu) {
1736                         node = node->rb_right;
1737                         continue;
1738                 }
1739 #ifdef CONFIG_CGROUP_PERF
1740                 node_cgrp_id = 0;
1741                 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1742                         node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1743
1744                 if (cgrp_id < node_cgrp_id) {
1745                         node = node->rb_left;
1746                         continue;
1747                 }
1748                 if (cgrp_id > node_cgrp_id) {
1749                         node = node->rb_right;
1750                         continue;
1751                 }
1752 #endif
1753                 match = node_event;
1754                 node = node->rb_left;
1755         }
1756
1757         return match;
1758 }
1759
1760 /*
1761  * Like rb_entry_next_safe() for the @cpu subtree.
1762  */
1763 static struct perf_event *
1764 perf_event_groups_next(struct perf_event *event)
1765 {
1766         struct perf_event *next;
1767 #ifdef CONFIG_CGROUP_PERF
1768         u64 curr_cgrp_id = 0;
1769         u64 next_cgrp_id = 0;
1770 #endif
1771
1772         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1773         if (next == NULL || next->cpu != event->cpu)
1774                 return NULL;
1775
1776 #ifdef CONFIG_CGROUP_PERF
1777         if (event->cgrp && event->cgrp->css.cgroup)
1778                 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1779
1780         if (next->cgrp && next->cgrp->css.cgroup)
1781                 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1782
1783         if (curr_cgrp_id != next_cgrp_id)
1784                 return NULL;
1785 #endif
1786         return next;
1787 }
1788
1789 /*
1790  * Iterate through the whole groups tree.
1791  */
1792 #define perf_event_groups_for_each(event, groups)                       \
1793         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1794                                 typeof(*event), group_node); event;     \
1795                 event = rb_entry_safe(rb_next(&event->group_node),      \
1796                                 typeof(*event), group_node))
1797
1798 /*
1799  * Add an event from the lists for its context.
1800  * Must be called with ctx->mutex and ctx->lock held.
1801  */
1802 static void
1803 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1804 {
1805         lockdep_assert_held(&ctx->lock);
1806
1807         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1808         event->attach_state |= PERF_ATTACH_CONTEXT;
1809
1810         event->tstamp = perf_event_time(event);
1811
1812         /*
1813          * If we're a stand alone event or group leader, we go to the context
1814          * list, group events are kept attached to the group so that
1815          * perf_group_detach can, at all times, locate all siblings.
1816          */
1817         if (event->group_leader == event) {
1818                 event->group_caps = event->event_caps;
1819                 add_event_to_groups(event, ctx);
1820         }
1821
1822         list_add_rcu(&event->event_entry, &ctx->event_list);
1823         ctx->nr_events++;
1824         if (event->attr.inherit_stat)
1825                 ctx->nr_stat++;
1826
1827         if (event->state > PERF_EVENT_STATE_OFF)
1828                 perf_cgroup_event_enable(event, ctx);
1829
1830         ctx->generation++;
1831 }
1832
1833 /*
1834  * Initialize event state based on the perf_event_attr::disabled.
1835  */
1836 static inline void perf_event__state_init(struct perf_event *event)
1837 {
1838         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1839                                               PERF_EVENT_STATE_INACTIVE;
1840 }
1841
1842 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1843 {
1844         int entry = sizeof(u64); /* value */
1845         int size = 0;
1846         int nr = 1;
1847
1848         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1849                 size += sizeof(u64);
1850
1851         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1852                 size += sizeof(u64);
1853
1854         if (event->attr.read_format & PERF_FORMAT_ID)
1855                 entry += sizeof(u64);
1856
1857         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1858                 nr += nr_siblings;
1859                 size += sizeof(u64);
1860         }
1861
1862         size += entry * nr;
1863         event->read_size = size;
1864 }
1865
1866 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1867 {
1868         struct perf_sample_data *data;
1869         u16 size = 0;
1870
1871         if (sample_type & PERF_SAMPLE_IP)
1872                 size += sizeof(data->ip);
1873
1874         if (sample_type & PERF_SAMPLE_ADDR)
1875                 size += sizeof(data->addr);
1876
1877         if (sample_type & PERF_SAMPLE_PERIOD)
1878                 size += sizeof(data->period);
1879
1880         if (sample_type & PERF_SAMPLE_WEIGHT)
1881                 size += sizeof(data->weight);
1882
1883         if (sample_type & PERF_SAMPLE_READ)
1884                 size += event->read_size;
1885
1886         if (sample_type & PERF_SAMPLE_DATA_SRC)
1887                 size += sizeof(data->data_src.val);
1888
1889         if (sample_type & PERF_SAMPLE_TRANSACTION)
1890                 size += sizeof(data->txn);
1891
1892         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1893                 size += sizeof(data->phys_addr);
1894
1895         if (sample_type & PERF_SAMPLE_CGROUP)
1896                 size += sizeof(data->cgroup);
1897
1898         event->header_size = size;
1899 }
1900
1901 /*
1902  * Called at perf_event creation and when events are attached/detached from a
1903  * group.
1904  */
1905 static void perf_event__header_size(struct perf_event *event)
1906 {
1907         __perf_event_read_size(event,
1908                                event->group_leader->nr_siblings);
1909         __perf_event_header_size(event, event->attr.sample_type);
1910 }
1911
1912 static void perf_event__id_header_size(struct perf_event *event)
1913 {
1914         struct perf_sample_data *data;
1915         u64 sample_type = event->attr.sample_type;
1916         u16 size = 0;
1917
1918         if (sample_type & PERF_SAMPLE_TID)
1919                 size += sizeof(data->tid_entry);
1920
1921         if (sample_type & PERF_SAMPLE_TIME)
1922                 size += sizeof(data->time);
1923
1924         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1925                 size += sizeof(data->id);
1926
1927         if (sample_type & PERF_SAMPLE_ID)
1928                 size += sizeof(data->id);
1929
1930         if (sample_type & PERF_SAMPLE_STREAM_ID)
1931                 size += sizeof(data->stream_id);
1932
1933         if (sample_type & PERF_SAMPLE_CPU)
1934                 size += sizeof(data->cpu_entry);
1935
1936         event->id_header_size = size;
1937 }
1938
1939 static bool perf_event_validate_size(struct perf_event *event)
1940 {
1941         /*
1942          * The values computed here will be over-written when we actually
1943          * attach the event.
1944          */
1945         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1946         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1947         perf_event__id_header_size(event);
1948
1949         /*
1950          * Sum the lot; should not exceed the 64k limit we have on records.
1951          * Conservative limit to allow for callchains and other variable fields.
1952          */
1953         if (event->read_size + event->header_size +
1954             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1955                 return false;
1956
1957         return true;
1958 }
1959
1960 static void perf_group_attach(struct perf_event *event)
1961 {
1962         struct perf_event *group_leader = event->group_leader, *pos;
1963
1964         lockdep_assert_held(&event->ctx->lock);
1965
1966         /*
1967          * We can have double attach due to group movement in perf_event_open.
1968          */
1969         if (event->attach_state & PERF_ATTACH_GROUP)
1970                 return;
1971
1972         event->attach_state |= PERF_ATTACH_GROUP;
1973
1974         if (group_leader == event)
1975                 return;
1976
1977         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978
1979         group_leader->group_caps &= event->event_caps;
1980
1981         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982         group_leader->nr_siblings++;
1983
1984         perf_event__header_size(group_leader);
1985
1986         for_each_sibling_event(pos, group_leader)
1987                 perf_event__header_size(pos);
1988 }
1989
1990 /*
1991  * Remove an event from the lists for its context.
1992  * Must be called with ctx->mutex and ctx->lock held.
1993  */
1994 static void
1995 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1996 {
1997         WARN_ON_ONCE(event->ctx != ctx);
1998         lockdep_assert_held(&ctx->lock);
1999
2000         /*
2001          * We can have double detach due to exit/hot-unplug + close.
2002          */
2003         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2004                 return;
2005
2006         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2007
2008         ctx->nr_events--;
2009         if (event->attr.inherit_stat)
2010                 ctx->nr_stat--;
2011
2012         list_del_rcu(&event->event_entry);
2013
2014         if (event->group_leader == event)
2015                 del_event_from_groups(event, ctx);
2016
2017         /*
2018          * If event was in error state, then keep it
2019          * that way, otherwise bogus counts will be
2020          * returned on read(). The only way to get out
2021          * of error state is by explicit re-enabling
2022          * of the event
2023          */
2024         if (event->state > PERF_EVENT_STATE_OFF) {
2025                 perf_cgroup_event_disable(event, ctx);
2026                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2027         }
2028
2029         ctx->generation++;
2030 }
2031
2032 static int
2033 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2034 {
2035         if (!has_aux(aux_event))
2036                 return 0;
2037
2038         if (!event->pmu->aux_output_match)
2039                 return 0;
2040
2041         return event->pmu->aux_output_match(aux_event);
2042 }
2043
2044 static void put_event(struct perf_event *event);
2045 static void event_sched_out(struct perf_event *event,
2046                             struct perf_cpu_context *cpuctx,
2047                             struct perf_event_context *ctx);
2048
2049 static void perf_put_aux_event(struct perf_event *event)
2050 {
2051         struct perf_event_context *ctx = event->ctx;
2052         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2053         struct perf_event *iter;
2054
2055         /*
2056          * If event uses aux_event tear down the link
2057          */
2058         if (event->aux_event) {
2059                 iter = event->aux_event;
2060                 event->aux_event = NULL;
2061                 put_event(iter);
2062                 return;
2063         }
2064
2065         /*
2066          * If the event is an aux_event, tear down all links to
2067          * it from other events.
2068          */
2069         for_each_sibling_event(iter, event->group_leader) {
2070                 if (iter->aux_event != event)
2071                         continue;
2072
2073                 iter->aux_event = NULL;
2074                 put_event(event);
2075
2076                 /*
2077                  * If it's ACTIVE, schedule it out and put it into ERROR
2078                  * state so that we don't try to schedule it again. Note
2079                  * that perf_event_enable() will clear the ERROR status.
2080                  */
2081                 event_sched_out(iter, cpuctx, ctx);
2082                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2083         }
2084 }
2085
2086 static bool perf_need_aux_event(struct perf_event *event)
2087 {
2088         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2089 }
2090
2091 static int perf_get_aux_event(struct perf_event *event,
2092                               struct perf_event *group_leader)
2093 {
2094         /*
2095          * Our group leader must be an aux event if we want to be
2096          * an aux_output. This way, the aux event will precede its
2097          * aux_output events in the group, and therefore will always
2098          * schedule first.
2099          */
2100         if (!group_leader)
2101                 return 0;
2102
2103         /*
2104          * aux_output and aux_sample_size are mutually exclusive.
2105          */
2106         if (event->attr.aux_output && event->attr.aux_sample_size)
2107                 return 0;
2108
2109         if (event->attr.aux_output &&
2110             !perf_aux_output_match(event, group_leader))
2111                 return 0;
2112
2113         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2114                 return 0;
2115
2116         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2117                 return 0;
2118
2119         /*
2120          * Link aux_outputs to their aux event; this is undone in
2121          * perf_group_detach() by perf_put_aux_event(). When the
2122          * group in torn down, the aux_output events loose their
2123          * link to the aux_event and can't schedule any more.
2124          */
2125         event->aux_event = group_leader;
2126
2127         return 1;
2128 }
2129
2130 static inline struct list_head *get_event_list(struct perf_event *event)
2131 {
2132         struct perf_event_context *ctx = event->ctx;
2133         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2134 }
2135
2136 static void perf_group_detach(struct perf_event *event)
2137 {
2138         struct perf_event *sibling, *tmp;
2139         struct perf_event_context *ctx = event->ctx;
2140
2141         lockdep_assert_held(&ctx->lock);
2142
2143         /*
2144          * We can have double detach due to exit/hot-unplug + close.
2145          */
2146         if (!(event->attach_state & PERF_ATTACH_GROUP))
2147                 return;
2148
2149         event->attach_state &= ~PERF_ATTACH_GROUP;
2150
2151         perf_put_aux_event(event);
2152
2153         /*
2154          * If this is a sibling, remove it from its group.
2155          */
2156         if (event->group_leader != event) {
2157                 list_del_init(&event->sibling_list);
2158                 event->group_leader->nr_siblings--;
2159                 goto out;
2160         }
2161
2162         /*
2163          * If this was a group event with sibling events then
2164          * upgrade the siblings to singleton events by adding them
2165          * to whatever list we are on.
2166          */
2167         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2168
2169                 sibling->group_leader = sibling;
2170                 list_del_init(&sibling->sibling_list);
2171
2172                 /* Inherit group flags from the previous leader */
2173                 sibling->group_caps = event->group_caps;
2174
2175                 if (!RB_EMPTY_NODE(&event->group_node)) {
2176                         add_event_to_groups(sibling, event->ctx);
2177
2178                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2179                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2180                 }
2181
2182                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2183         }
2184
2185 out:
2186         perf_event__header_size(event->group_leader);
2187
2188         for_each_sibling_event(tmp, event->group_leader)
2189                 perf_event__header_size(tmp);
2190 }
2191
2192 static bool is_orphaned_event(struct perf_event *event)
2193 {
2194         return event->state == PERF_EVENT_STATE_DEAD;
2195 }
2196
2197 static inline int __pmu_filter_match(struct perf_event *event)
2198 {
2199         struct pmu *pmu = event->pmu;
2200         return pmu->filter_match ? pmu->filter_match(event) : 1;
2201 }
2202
2203 /*
2204  * Check whether we should attempt to schedule an event group based on
2205  * PMU-specific filtering. An event group can consist of HW and SW events,
2206  * potentially with a SW leader, so we must check all the filters, to
2207  * determine whether a group is schedulable:
2208  */
2209 static inline int pmu_filter_match(struct perf_event *event)
2210 {
2211         struct perf_event *sibling;
2212
2213         if (!__pmu_filter_match(event))
2214                 return 0;
2215
2216         for_each_sibling_event(sibling, event) {
2217                 if (!__pmu_filter_match(sibling))
2218                         return 0;
2219         }
2220
2221         return 1;
2222 }
2223
2224 static inline int
2225 event_filter_match(struct perf_event *event)
2226 {
2227         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2228                perf_cgroup_match(event) && pmu_filter_match(event);
2229 }
2230
2231 static void
2232 event_sched_out(struct perf_event *event,
2233                   struct perf_cpu_context *cpuctx,
2234                   struct perf_event_context *ctx)
2235 {
2236         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2237
2238         WARN_ON_ONCE(event->ctx != ctx);
2239         lockdep_assert_held(&ctx->lock);
2240
2241         if (event->state != PERF_EVENT_STATE_ACTIVE)
2242                 return;
2243
2244         /*
2245          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2246          * we can schedule events _OUT_ individually through things like
2247          * __perf_remove_from_context().
2248          */
2249         list_del_init(&event->active_list);
2250
2251         perf_pmu_disable(event->pmu);
2252
2253         event->pmu->del(event, 0);
2254         event->oncpu = -1;
2255
2256         if (READ_ONCE(event->pending_disable) >= 0) {
2257                 WRITE_ONCE(event->pending_disable, -1);
2258                 perf_cgroup_event_disable(event, ctx);
2259                 state = PERF_EVENT_STATE_OFF;
2260         }
2261         perf_event_set_state(event, state);
2262
2263         if (!is_software_event(event))
2264                 cpuctx->active_oncpu--;
2265         if (!--ctx->nr_active)
2266                 perf_event_ctx_deactivate(ctx);
2267         if (event->attr.freq && event->attr.sample_freq)
2268                 ctx->nr_freq--;
2269         if (event->attr.exclusive || !cpuctx->active_oncpu)
2270                 cpuctx->exclusive = 0;
2271
2272         perf_pmu_enable(event->pmu);
2273 }
2274
2275 static void
2276 group_sched_out(struct perf_event *group_event,
2277                 struct perf_cpu_context *cpuctx,
2278                 struct perf_event_context *ctx)
2279 {
2280         struct perf_event *event;
2281
2282         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2283                 return;
2284
2285         perf_pmu_disable(ctx->pmu);
2286
2287         event_sched_out(group_event, cpuctx, ctx);
2288
2289         /*
2290          * Schedule out siblings (if any):
2291          */
2292         for_each_sibling_event(event, group_event)
2293                 event_sched_out(event, cpuctx, ctx);
2294
2295         perf_pmu_enable(ctx->pmu);
2296
2297         if (group_event->attr.exclusive)
2298                 cpuctx->exclusive = 0;
2299 }
2300
2301 #define DETACH_GROUP    0x01UL
2302
2303 /*
2304  * Cross CPU call to remove a performance event
2305  *
2306  * We disable the event on the hardware level first. After that we
2307  * remove it from the context list.
2308  */
2309 static void
2310 __perf_remove_from_context(struct perf_event *event,
2311                            struct perf_cpu_context *cpuctx,
2312                            struct perf_event_context *ctx,
2313                            void *info)
2314 {
2315         unsigned long flags = (unsigned long)info;
2316
2317         if (ctx->is_active & EVENT_TIME) {
2318                 update_context_time(ctx);
2319                 update_cgrp_time_from_cpuctx(cpuctx);
2320         }
2321
2322         event_sched_out(event, cpuctx, ctx);
2323         if (flags & DETACH_GROUP)
2324                 perf_group_detach(event);
2325         list_del_event(event, ctx);
2326
2327         if (!ctx->nr_events && ctx->is_active) {
2328                 ctx->is_active = 0;
2329                 ctx->rotate_necessary = 0;
2330                 if (ctx->task) {
2331                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2332                         cpuctx->task_ctx = NULL;
2333                 }
2334         }
2335 }
2336
2337 /*
2338  * Remove the event from a task's (or a CPU's) list of events.
2339  *
2340  * If event->ctx is a cloned context, callers must make sure that
2341  * every task struct that event->ctx->task could possibly point to
2342  * remains valid.  This is OK when called from perf_release since
2343  * that only calls us on the top-level context, which can't be a clone.
2344  * When called from perf_event_exit_task, it's OK because the
2345  * context has been detached from its task.
2346  */
2347 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2348 {
2349         struct perf_event_context *ctx = event->ctx;
2350
2351         lockdep_assert_held(&ctx->mutex);
2352
2353         event_function_call(event, __perf_remove_from_context, (void *)flags);
2354
2355         /*
2356          * The above event_function_call() can NO-OP when it hits
2357          * TASK_TOMBSTONE. In that case we must already have been detached
2358          * from the context (by perf_event_exit_event()) but the grouping
2359          * might still be in-tact.
2360          */
2361         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2362         if ((flags & DETACH_GROUP) &&
2363             (event->attach_state & PERF_ATTACH_GROUP)) {
2364                 /*
2365                  * Since in that case we cannot possibly be scheduled, simply
2366                  * detach now.
2367                  */
2368                 raw_spin_lock_irq(&ctx->lock);
2369                 perf_group_detach(event);
2370                 raw_spin_unlock_irq(&ctx->lock);
2371         }
2372 }
2373
2374 /*
2375  * Cross CPU call to disable a performance event
2376  */
2377 static void __perf_event_disable(struct perf_event *event,
2378                                  struct perf_cpu_context *cpuctx,
2379                                  struct perf_event_context *ctx,
2380                                  void *info)
2381 {
2382         if (event->state < PERF_EVENT_STATE_INACTIVE)
2383                 return;
2384
2385         if (ctx->is_active & EVENT_TIME) {
2386                 update_context_time(ctx);
2387                 update_cgrp_time_from_event(event);
2388         }
2389
2390         if (event == event->group_leader)
2391                 group_sched_out(event, cpuctx, ctx);
2392         else
2393                 event_sched_out(event, cpuctx, ctx);
2394
2395         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2396         perf_cgroup_event_disable(event, ctx);
2397 }
2398
2399 /*
2400  * Disable an event.
2401  *
2402  * If event->ctx is a cloned context, callers must make sure that
2403  * every task struct that event->ctx->task could possibly point to
2404  * remains valid.  This condition is satisfied when called through
2405  * perf_event_for_each_child or perf_event_for_each because they
2406  * hold the top-level event's child_mutex, so any descendant that
2407  * goes to exit will block in perf_event_exit_event().
2408  *
2409  * When called from perf_pending_event it's OK because event->ctx
2410  * is the current context on this CPU and preemption is disabled,
2411  * hence we can't get into perf_event_task_sched_out for this context.
2412  */
2413 static void _perf_event_disable(struct perf_event *event)
2414 {
2415         struct perf_event_context *ctx = event->ctx;
2416
2417         raw_spin_lock_irq(&ctx->lock);
2418         if (event->state <= PERF_EVENT_STATE_OFF) {
2419                 raw_spin_unlock_irq(&ctx->lock);
2420                 return;
2421         }
2422         raw_spin_unlock_irq(&ctx->lock);
2423
2424         event_function_call(event, __perf_event_disable, NULL);
2425 }
2426
2427 void perf_event_disable_local(struct perf_event *event)
2428 {
2429         event_function_local(event, __perf_event_disable, NULL);
2430 }
2431
2432 /*
2433  * Strictly speaking kernel users cannot create groups and therefore this
2434  * interface does not need the perf_event_ctx_lock() magic.
2435  */
2436 void perf_event_disable(struct perf_event *event)
2437 {
2438         struct perf_event_context *ctx;
2439
2440         ctx = perf_event_ctx_lock(event);
2441         _perf_event_disable(event);
2442         perf_event_ctx_unlock(event, ctx);
2443 }
2444 EXPORT_SYMBOL_GPL(perf_event_disable);
2445
2446 void perf_event_disable_inatomic(struct perf_event *event)
2447 {
2448         WRITE_ONCE(event->pending_disable, smp_processor_id());
2449         /* can fail, see perf_pending_event_disable() */
2450         irq_work_queue(&event->pending);
2451 }
2452
2453 static void perf_set_shadow_time(struct perf_event *event,
2454                                  struct perf_event_context *ctx)
2455 {
2456         /*
2457          * use the correct time source for the time snapshot
2458          *
2459          * We could get by without this by leveraging the
2460          * fact that to get to this function, the caller
2461          * has most likely already called update_context_time()
2462          * and update_cgrp_time_xx() and thus both timestamp
2463          * are identical (or very close). Given that tstamp is,
2464          * already adjusted for cgroup, we could say that:
2465          *    tstamp - ctx->timestamp
2466          * is equivalent to
2467          *    tstamp - cgrp->timestamp.
2468          *
2469          * Then, in perf_output_read(), the calculation would
2470          * work with no changes because:
2471          * - event is guaranteed scheduled in
2472          * - no scheduled out in between
2473          * - thus the timestamp would be the same
2474          *
2475          * But this is a bit hairy.
2476          *
2477          * So instead, we have an explicit cgroup call to remain
2478          * within the time time source all along. We believe it
2479          * is cleaner and simpler to understand.
2480          */
2481         if (is_cgroup_event(event))
2482                 perf_cgroup_set_shadow_time(event, event->tstamp);
2483         else
2484                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2485 }
2486
2487 #define MAX_INTERRUPTS (~0ULL)
2488
2489 static void perf_log_throttle(struct perf_event *event, int enable);
2490 static void perf_log_itrace_start(struct perf_event *event);
2491
2492 static int
2493 event_sched_in(struct perf_event *event,
2494                  struct perf_cpu_context *cpuctx,
2495                  struct perf_event_context *ctx)
2496 {
2497         int ret = 0;
2498
2499         WARN_ON_ONCE(event->ctx != ctx);
2500
2501         lockdep_assert_held(&ctx->lock);
2502
2503         if (event->state <= PERF_EVENT_STATE_OFF)
2504                 return 0;
2505
2506         WRITE_ONCE(event->oncpu, smp_processor_id());
2507         /*
2508          * Order event::oncpu write to happen before the ACTIVE state is
2509          * visible. This allows perf_event_{stop,read}() to observe the correct
2510          * ->oncpu if it sees ACTIVE.
2511          */
2512         smp_wmb();
2513         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2514
2515         /*
2516          * Unthrottle events, since we scheduled we might have missed several
2517          * ticks already, also for a heavily scheduling task there is little
2518          * guarantee it'll get a tick in a timely manner.
2519          */
2520         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2521                 perf_log_throttle(event, 1);
2522                 event->hw.interrupts = 0;
2523         }
2524
2525         perf_pmu_disable(event->pmu);
2526
2527         perf_set_shadow_time(event, ctx);
2528
2529         perf_log_itrace_start(event);
2530
2531         if (event->pmu->add(event, PERF_EF_START)) {
2532                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2533                 event->oncpu = -1;
2534                 ret = -EAGAIN;
2535                 goto out;
2536         }
2537
2538         if (!is_software_event(event))
2539                 cpuctx->active_oncpu++;
2540         if (!ctx->nr_active++)
2541                 perf_event_ctx_activate(ctx);
2542         if (event->attr.freq && event->attr.sample_freq)
2543                 ctx->nr_freq++;
2544
2545         if (event->attr.exclusive)
2546                 cpuctx->exclusive = 1;
2547
2548 out:
2549         perf_pmu_enable(event->pmu);
2550
2551         return ret;
2552 }
2553
2554 static int
2555 group_sched_in(struct perf_event *group_event,
2556                struct perf_cpu_context *cpuctx,
2557                struct perf_event_context *ctx)
2558 {
2559         struct perf_event *event, *partial_group = NULL;
2560         struct pmu *pmu = ctx->pmu;
2561
2562         if (group_event->state == PERF_EVENT_STATE_OFF)
2563                 return 0;
2564
2565         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2566
2567         if (event_sched_in(group_event, cpuctx, ctx)) {
2568                 pmu->cancel_txn(pmu);
2569                 perf_mux_hrtimer_restart(cpuctx);
2570                 return -EAGAIN;
2571         }
2572
2573         /*
2574          * Schedule in siblings as one group (if any):
2575          */
2576         for_each_sibling_event(event, group_event) {
2577                 if (event_sched_in(event, cpuctx, ctx)) {
2578                         partial_group = event;
2579                         goto group_error;
2580                 }
2581         }
2582
2583         if (!pmu->commit_txn(pmu))
2584                 return 0;
2585
2586 group_error:
2587         /*
2588          * Groups can be scheduled in as one unit only, so undo any
2589          * partial group before returning:
2590          * The events up to the failed event are scheduled out normally.
2591          */
2592         for_each_sibling_event(event, group_event) {
2593                 if (event == partial_group)
2594                         break;
2595
2596                 event_sched_out(event, cpuctx, ctx);
2597         }
2598         event_sched_out(group_event, cpuctx, ctx);
2599
2600         pmu->cancel_txn(pmu);
2601
2602         perf_mux_hrtimer_restart(cpuctx);
2603
2604         return -EAGAIN;
2605 }
2606
2607 /*
2608  * Work out whether we can put this event group on the CPU now.
2609  */
2610 static int group_can_go_on(struct perf_event *event,
2611                            struct perf_cpu_context *cpuctx,
2612                            int can_add_hw)
2613 {
2614         /*
2615          * Groups consisting entirely of software events can always go on.
2616          */
2617         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2618                 return 1;
2619         /*
2620          * If an exclusive group is already on, no other hardware
2621          * events can go on.
2622          */
2623         if (cpuctx->exclusive)
2624                 return 0;
2625         /*
2626          * If this group is exclusive and there are already
2627          * events on the CPU, it can't go on.
2628          */
2629         if (event->attr.exclusive && cpuctx->active_oncpu)
2630                 return 0;
2631         /*
2632          * Otherwise, try to add it if all previous groups were able
2633          * to go on.
2634          */
2635         return can_add_hw;
2636 }
2637
2638 static void add_event_to_ctx(struct perf_event *event,
2639                                struct perf_event_context *ctx)
2640 {
2641         list_add_event(event, ctx);
2642         perf_group_attach(event);
2643 }
2644
2645 static void ctx_sched_out(struct perf_event_context *ctx,
2646                           struct perf_cpu_context *cpuctx,
2647                           enum event_type_t event_type);
2648 static void
2649 ctx_sched_in(struct perf_event_context *ctx,
2650              struct perf_cpu_context *cpuctx,
2651              enum event_type_t event_type,
2652              struct task_struct *task);
2653
2654 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2655                                struct perf_event_context *ctx,
2656                                enum event_type_t event_type)
2657 {
2658         if (!cpuctx->task_ctx)
2659                 return;
2660
2661         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2662                 return;
2663
2664         ctx_sched_out(ctx, cpuctx, event_type);
2665 }
2666
2667 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2668                                 struct perf_event_context *ctx,
2669                                 struct task_struct *task)
2670 {
2671         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2672         if (ctx)
2673                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2674         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2675         if (ctx)
2676                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2677 }
2678
2679 /*
2680  * We want to maintain the following priority of scheduling:
2681  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2682  *  - task pinned (EVENT_PINNED)
2683  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2684  *  - task flexible (EVENT_FLEXIBLE).
2685  *
2686  * In order to avoid unscheduling and scheduling back in everything every
2687  * time an event is added, only do it for the groups of equal priority and
2688  * below.
2689  *
2690  * This can be called after a batch operation on task events, in which case
2691  * event_type is a bit mask of the types of events involved. For CPU events,
2692  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2693  */
2694 static void ctx_resched(struct perf_cpu_context *cpuctx,
2695                         struct perf_event_context *task_ctx,
2696                         enum event_type_t event_type)
2697 {
2698         enum event_type_t ctx_event_type;
2699         bool cpu_event = !!(event_type & EVENT_CPU);
2700
2701         /*
2702          * If pinned groups are involved, flexible groups also need to be
2703          * scheduled out.
2704          */
2705         if (event_type & EVENT_PINNED)
2706                 event_type |= EVENT_FLEXIBLE;
2707
2708         ctx_event_type = event_type & EVENT_ALL;
2709
2710         perf_pmu_disable(cpuctx->ctx.pmu);
2711         if (task_ctx)
2712                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2713
2714         /*
2715          * Decide which cpu ctx groups to schedule out based on the types
2716          * of events that caused rescheduling:
2717          *  - EVENT_CPU: schedule out corresponding groups;
2718          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2719          *  - otherwise, do nothing more.
2720          */
2721         if (cpu_event)
2722                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2723         else if (ctx_event_type & EVENT_PINNED)
2724                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2725
2726         perf_event_sched_in(cpuctx, task_ctx, current);
2727         perf_pmu_enable(cpuctx->ctx.pmu);
2728 }
2729
2730 void perf_pmu_resched(struct pmu *pmu)
2731 {
2732         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2733         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2734
2735         perf_ctx_lock(cpuctx, task_ctx);
2736         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2737         perf_ctx_unlock(cpuctx, task_ctx);
2738 }
2739
2740 /*
2741  * Cross CPU call to install and enable a performance event
2742  *
2743  * Very similar to remote_function() + event_function() but cannot assume that
2744  * things like ctx->is_active and cpuctx->task_ctx are set.
2745  */
2746 static int  __perf_install_in_context(void *info)
2747 {
2748         struct perf_event *event = info;
2749         struct perf_event_context *ctx = event->ctx;
2750         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2751         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2752         bool reprogram = true;
2753         int ret = 0;
2754
2755         raw_spin_lock(&cpuctx->ctx.lock);
2756         if (ctx->task) {
2757                 raw_spin_lock(&ctx->lock);
2758                 task_ctx = ctx;
2759
2760                 reprogram = (ctx->task == current);
2761
2762                 /*
2763                  * If the task is running, it must be running on this CPU,
2764                  * otherwise we cannot reprogram things.
2765                  *
2766                  * If its not running, we don't care, ctx->lock will
2767                  * serialize against it becoming runnable.
2768                  */
2769                 if (task_curr(ctx->task) && !reprogram) {
2770                         ret = -ESRCH;
2771                         goto unlock;
2772                 }
2773
2774                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2775         } else if (task_ctx) {
2776                 raw_spin_lock(&task_ctx->lock);
2777         }
2778
2779 #ifdef CONFIG_CGROUP_PERF
2780         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2781                 /*
2782                  * If the current cgroup doesn't match the event's
2783                  * cgroup, we should not try to schedule it.
2784                  */
2785                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2786                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2787                                         event->cgrp->css.cgroup);
2788         }
2789 #endif
2790
2791         if (reprogram) {
2792                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2793                 add_event_to_ctx(event, ctx);
2794                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2795         } else {
2796                 add_event_to_ctx(event, ctx);
2797         }
2798
2799 unlock:
2800         perf_ctx_unlock(cpuctx, task_ctx);
2801
2802         return ret;
2803 }
2804
2805 static bool exclusive_event_installable(struct perf_event *event,
2806                                         struct perf_event_context *ctx);
2807
2808 /*
2809  * Attach a performance event to a context.
2810  *
2811  * Very similar to event_function_call, see comment there.
2812  */
2813 static void
2814 perf_install_in_context(struct perf_event_context *ctx,
2815                         struct perf_event *event,
2816                         int cpu)
2817 {
2818         struct task_struct *task = READ_ONCE(ctx->task);
2819
2820         lockdep_assert_held(&ctx->mutex);
2821
2822         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2823
2824         if (event->cpu != -1)
2825                 event->cpu = cpu;
2826
2827         /*
2828          * Ensures that if we can observe event->ctx, both the event and ctx
2829          * will be 'complete'. See perf_iterate_sb_cpu().
2830          */
2831         smp_store_release(&event->ctx, ctx);
2832
2833         /*
2834          * perf_event_attr::disabled events will not run and can be initialized
2835          * without IPI. Except when this is the first event for the context, in
2836          * that case we need the magic of the IPI to set ctx->is_active.
2837          *
2838          * The IOC_ENABLE that is sure to follow the creation of a disabled
2839          * event will issue the IPI and reprogram the hardware.
2840          */
2841         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2842                 raw_spin_lock_irq(&ctx->lock);
2843                 if (ctx->task == TASK_TOMBSTONE) {
2844                         raw_spin_unlock_irq(&ctx->lock);
2845                         return;
2846                 }
2847                 add_event_to_ctx(event, ctx);
2848                 raw_spin_unlock_irq(&ctx->lock);
2849                 return;
2850         }
2851
2852         if (!task) {
2853                 cpu_function_call(cpu, __perf_install_in_context, event);
2854                 return;
2855         }
2856
2857         /*
2858          * Should not happen, we validate the ctx is still alive before calling.
2859          */
2860         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2861                 return;
2862
2863         /*
2864          * Installing events is tricky because we cannot rely on ctx->is_active
2865          * to be set in case this is the nr_events 0 -> 1 transition.
2866          *
2867          * Instead we use task_curr(), which tells us if the task is running.
2868          * However, since we use task_curr() outside of rq::lock, we can race
2869          * against the actual state. This means the result can be wrong.
2870          *
2871          * If we get a false positive, we retry, this is harmless.
2872          *
2873          * If we get a false negative, things are complicated. If we are after
2874          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2875          * value must be correct. If we're before, it doesn't matter since
2876          * perf_event_context_sched_in() will program the counter.
2877          *
2878          * However, this hinges on the remote context switch having observed
2879          * our task->perf_event_ctxp[] store, such that it will in fact take
2880          * ctx::lock in perf_event_context_sched_in().
2881          *
2882          * We do this by task_function_call(), if the IPI fails to hit the task
2883          * we know any future context switch of task must see the
2884          * perf_event_ctpx[] store.
2885          */
2886
2887         /*
2888          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2889          * task_cpu() load, such that if the IPI then does not find the task
2890          * running, a future context switch of that task must observe the
2891          * store.
2892          */
2893         smp_mb();
2894 again:
2895         if (!task_function_call(task, __perf_install_in_context, event))
2896                 return;
2897
2898         raw_spin_lock_irq(&ctx->lock);
2899         task = ctx->task;
2900         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2901                 /*
2902                  * Cannot happen because we already checked above (which also
2903                  * cannot happen), and we hold ctx->mutex, which serializes us
2904                  * against perf_event_exit_task_context().
2905                  */
2906                 raw_spin_unlock_irq(&ctx->lock);
2907                 return;
2908         }
2909         /*
2910          * If the task is not running, ctx->lock will avoid it becoming so,
2911          * thus we can safely install the event.
2912          */
2913         if (task_curr(task)) {
2914                 raw_spin_unlock_irq(&ctx->lock);
2915                 goto again;
2916         }
2917         add_event_to_ctx(event, ctx);
2918         raw_spin_unlock_irq(&ctx->lock);
2919 }
2920
2921 /*
2922  * Cross CPU call to enable a performance event
2923  */
2924 static void __perf_event_enable(struct perf_event *event,
2925                                 struct perf_cpu_context *cpuctx,
2926                                 struct perf_event_context *ctx,
2927                                 void *info)
2928 {
2929         struct perf_event *leader = event->group_leader;
2930         struct perf_event_context *task_ctx;
2931
2932         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2933             event->state <= PERF_EVENT_STATE_ERROR)
2934                 return;
2935
2936         if (ctx->is_active)
2937                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2938
2939         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2940         perf_cgroup_event_enable(event, ctx);
2941
2942         if (!ctx->is_active)
2943                 return;
2944
2945         if (!event_filter_match(event)) {
2946                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2947                 return;
2948         }
2949
2950         /*
2951          * If the event is in a group and isn't the group leader,
2952          * then don't put it on unless the group is on.
2953          */
2954         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2955                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2956                 return;
2957         }
2958
2959         task_ctx = cpuctx->task_ctx;
2960         if (ctx->task)
2961                 WARN_ON_ONCE(task_ctx != ctx);
2962
2963         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2964 }
2965
2966 /*
2967  * Enable an event.
2968  *
2969  * If event->ctx is a cloned context, callers must make sure that
2970  * every task struct that event->ctx->task could possibly point to
2971  * remains valid.  This condition is satisfied when called through
2972  * perf_event_for_each_child or perf_event_for_each as described
2973  * for perf_event_disable.
2974  */
2975 static void _perf_event_enable(struct perf_event *event)
2976 {
2977         struct perf_event_context *ctx = event->ctx;
2978
2979         raw_spin_lock_irq(&ctx->lock);
2980         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2981             event->state <  PERF_EVENT_STATE_ERROR) {
2982                 raw_spin_unlock_irq(&ctx->lock);
2983                 return;
2984         }
2985
2986         /*
2987          * If the event is in error state, clear that first.
2988          *
2989          * That way, if we see the event in error state below, we know that it
2990          * has gone back into error state, as distinct from the task having
2991          * been scheduled away before the cross-call arrived.
2992          */
2993         if (event->state == PERF_EVENT_STATE_ERROR)
2994                 event->state = PERF_EVENT_STATE_OFF;
2995         raw_spin_unlock_irq(&ctx->lock);
2996
2997         event_function_call(event, __perf_event_enable, NULL);
2998 }
2999
3000 /*
3001  * See perf_event_disable();
3002  */
3003 void perf_event_enable(struct perf_event *event)
3004 {
3005         struct perf_event_context *ctx;
3006
3007         ctx = perf_event_ctx_lock(event);
3008         _perf_event_enable(event);
3009         perf_event_ctx_unlock(event, ctx);
3010 }
3011 EXPORT_SYMBOL_GPL(perf_event_enable);
3012
3013 struct stop_event_data {
3014         struct perf_event       *event;
3015         unsigned int            restart;
3016 };
3017
3018 static int __perf_event_stop(void *info)
3019 {
3020         struct stop_event_data *sd = info;
3021         struct perf_event *event = sd->event;
3022
3023         /* if it's already INACTIVE, do nothing */
3024         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3025                 return 0;
3026
3027         /* matches smp_wmb() in event_sched_in() */
3028         smp_rmb();
3029
3030         /*
3031          * There is a window with interrupts enabled before we get here,
3032          * so we need to check again lest we try to stop another CPU's event.
3033          */
3034         if (READ_ONCE(event->oncpu) != smp_processor_id())
3035                 return -EAGAIN;
3036
3037         event->pmu->stop(event, PERF_EF_UPDATE);
3038
3039         /*
3040          * May race with the actual stop (through perf_pmu_output_stop()),
3041          * but it is only used for events with AUX ring buffer, and such
3042          * events will refuse to restart because of rb::aux_mmap_count==0,
3043          * see comments in perf_aux_output_begin().
3044          *
3045          * Since this is happening on an event-local CPU, no trace is lost
3046          * while restarting.
3047          */
3048         if (sd->restart)
3049                 event->pmu->start(event, 0);
3050
3051         return 0;
3052 }
3053
3054 static int perf_event_stop(struct perf_event *event, int restart)
3055 {
3056         struct stop_event_data sd = {
3057                 .event          = event,
3058                 .restart        = restart,
3059         };
3060         int ret = 0;
3061
3062         do {
3063                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3064                         return 0;
3065
3066                 /* matches smp_wmb() in event_sched_in() */
3067                 smp_rmb();
3068
3069                 /*
3070                  * We only want to restart ACTIVE events, so if the event goes
3071                  * inactive here (event->oncpu==-1), there's nothing more to do;
3072                  * fall through with ret==-ENXIO.
3073                  */
3074                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3075                                         __perf_event_stop, &sd);
3076         } while (ret == -EAGAIN);
3077
3078         return ret;
3079 }
3080
3081 /*
3082  * In order to contain the amount of racy and tricky in the address filter
3083  * configuration management, it is a two part process:
3084  *
3085  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3086  *      we update the addresses of corresponding vmas in
3087  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3088  * (p2) when an event is scheduled in (pmu::add), it calls
3089  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3090  *      if the generation has changed since the previous call.
3091  *
3092  * If (p1) happens while the event is active, we restart it to force (p2).
3093  *
3094  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3095  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3096  *     ioctl;
3097  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3098  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3099  *     for reading;
3100  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3101  *     of exec.
3102  */
3103 void perf_event_addr_filters_sync(struct perf_event *event)
3104 {
3105         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3106
3107         if (!has_addr_filter(event))
3108                 return;
3109
3110         raw_spin_lock(&ifh->lock);
3111         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3112                 event->pmu->addr_filters_sync(event);
3113                 event->hw.addr_filters_gen = event->addr_filters_gen;
3114         }
3115         raw_spin_unlock(&ifh->lock);
3116 }
3117 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3118
3119 static int _perf_event_refresh(struct perf_event *event, int refresh)
3120 {
3121         /*
3122          * not supported on inherited events
3123          */
3124         if (event->attr.inherit || !is_sampling_event(event))
3125                 return -EINVAL;
3126
3127         atomic_add(refresh, &event->event_limit);
3128         _perf_event_enable(event);
3129
3130         return 0;
3131 }
3132
3133 /*
3134  * See perf_event_disable()
3135  */
3136 int perf_event_refresh(struct perf_event *event, int refresh)
3137 {
3138         struct perf_event_context *ctx;
3139         int ret;
3140
3141         ctx = perf_event_ctx_lock(event);
3142         ret = _perf_event_refresh(event, refresh);
3143         perf_event_ctx_unlock(event, ctx);
3144
3145         return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(perf_event_refresh);
3148
3149 static int perf_event_modify_breakpoint(struct perf_event *bp,
3150                                          struct perf_event_attr *attr)
3151 {
3152         int err;
3153
3154         _perf_event_disable(bp);
3155
3156         err = modify_user_hw_breakpoint_check(bp, attr, true);
3157
3158         if (!bp->attr.disabled)
3159                 _perf_event_enable(bp);
3160
3161         return err;
3162 }
3163
3164 static int perf_event_modify_attr(struct perf_event *event,
3165                                   struct perf_event_attr *attr)
3166 {
3167         if (event->attr.type != attr->type)
3168                 return -EINVAL;
3169
3170         switch (event->attr.type) {
3171         case PERF_TYPE_BREAKPOINT:
3172                 return perf_event_modify_breakpoint(event, attr);
3173         default:
3174                 /* Place holder for future additions. */
3175                 return -EOPNOTSUPP;
3176         }
3177 }
3178
3179 static void ctx_sched_out(struct perf_event_context *ctx,
3180                           struct perf_cpu_context *cpuctx,
3181                           enum event_type_t event_type)
3182 {
3183         struct perf_event *event, *tmp;
3184         int is_active = ctx->is_active;
3185
3186         lockdep_assert_held(&ctx->lock);
3187
3188         if (likely(!ctx->nr_events)) {
3189                 /*
3190                  * See __perf_remove_from_context().
3191                  */
3192                 WARN_ON_ONCE(ctx->is_active);
3193                 if (ctx->task)
3194                         WARN_ON_ONCE(cpuctx->task_ctx);
3195                 return;
3196         }
3197
3198         ctx->is_active &= ~event_type;
3199         if (!(ctx->is_active & EVENT_ALL))
3200                 ctx->is_active = 0;
3201
3202         if (ctx->task) {
3203                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3204                 if (!ctx->is_active)
3205                         cpuctx->task_ctx = NULL;
3206         }
3207
3208         /*
3209          * Always update time if it was set; not only when it changes.
3210          * Otherwise we can 'forget' to update time for any but the last
3211          * context we sched out. For example:
3212          *
3213          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3214          *   ctx_sched_out(.event_type = EVENT_PINNED)
3215          *
3216          * would only update time for the pinned events.
3217          */
3218         if (is_active & EVENT_TIME) {
3219                 /* update (and stop) ctx time */
3220                 update_context_time(ctx);
3221                 update_cgrp_time_from_cpuctx(cpuctx);
3222         }
3223
3224         is_active ^= ctx->is_active; /* changed bits */
3225
3226         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3227                 return;
3228
3229         perf_pmu_disable(ctx->pmu);
3230         if (is_active & EVENT_PINNED) {
3231                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3232                         group_sched_out(event, cpuctx, ctx);
3233         }
3234
3235         if (is_active & EVENT_FLEXIBLE) {
3236                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3237                         group_sched_out(event, cpuctx, ctx);
3238
3239                 /*
3240                  * Since we cleared EVENT_FLEXIBLE, also clear
3241                  * rotate_necessary, is will be reset by
3242                  * ctx_flexible_sched_in() when needed.
3243                  */
3244                 ctx->rotate_necessary = 0;
3245         }
3246         perf_pmu_enable(ctx->pmu);
3247 }
3248
3249 /*
3250  * Test whether two contexts are equivalent, i.e. whether they have both been
3251  * cloned from the same version of the same context.
3252  *
3253  * Equivalence is measured using a generation number in the context that is
3254  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3255  * and list_del_event().
3256  */
3257 static int context_equiv(struct perf_event_context *ctx1,
3258                          struct perf_event_context *ctx2)
3259 {
3260         lockdep_assert_held(&ctx1->lock);
3261         lockdep_assert_held(&ctx2->lock);
3262
3263         /* Pinning disables the swap optimization */
3264         if (ctx1->pin_count || ctx2->pin_count)
3265                 return 0;
3266
3267         /* If ctx1 is the parent of ctx2 */
3268         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3269                 return 1;
3270
3271         /* If ctx2 is the parent of ctx1 */
3272         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3273                 return 1;
3274
3275         /*
3276          * If ctx1 and ctx2 have the same parent; we flatten the parent
3277          * hierarchy, see perf_event_init_context().
3278          */
3279         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3280                         ctx1->parent_gen == ctx2->parent_gen)
3281                 return 1;
3282
3283         /* Unmatched */
3284         return 0;
3285 }
3286
3287 static void __perf_event_sync_stat(struct perf_event *event,
3288                                      struct perf_event *next_event)
3289 {
3290         u64 value;
3291
3292         if (!event->attr.inherit_stat)
3293                 return;
3294
3295         /*
3296          * Update the event value, we cannot use perf_event_read()
3297          * because we're in the middle of a context switch and have IRQs
3298          * disabled, which upsets smp_call_function_single(), however
3299          * we know the event must be on the current CPU, therefore we
3300          * don't need to use it.
3301          */
3302         if (event->state == PERF_EVENT_STATE_ACTIVE)
3303                 event->pmu->read(event);
3304
3305         perf_event_update_time(event);
3306
3307         /*
3308          * In order to keep per-task stats reliable we need to flip the event
3309          * values when we flip the contexts.
3310          */
3311         value = local64_read(&next_event->count);
3312         value = local64_xchg(&event->count, value);
3313         local64_set(&next_event->count, value);
3314
3315         swap(event->total_time_enabled, next_event->total_time_enabled);
3316         swap(event->total_time_running, next_event->total_time_running);
3317
3318         /*
3319          * Since we swizzled the values, update the user visible data too.
3320          */
3321         perf_event_update_userpage(event);
3322         perf_event_update_userpage(next_event);
3323 }
3324
3325 static void perf_event_sync_stat(struct perf_event_context *ctx,
3326                                    struct perf_event_context *next_ctx)
3327 {
3328         struct perf_event *event, *next_event;
3329
3330         if (!ctx->nr_stat)
3331                 return;
3332
3333         update_context_time(ctx);
3334
3335         event = list_first_entry(&ctx->event_list,
3336                                    struct perf_event, event_entry);
3337
3338         next_event = list_first_entry(&next_ctx->event_list,
3339                                         struct perf_event, event_entry);
3340
3341         while (&event->event_entry != &ctx->event_list &&
3342                &next_event->event_entry != &next_ctx->event_list) {
3343
3344                 __perf_event_sync_stat(event, next_event);
3345
3346                 event = list_next_entry(event, event_entry);
3347                 next_event = list_next_entry(next_event, event_entry);
3348         }
3349 }
3350
3351 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3352                                          struct task_struct *next)
3353 {
3354         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3355         struct perf_event_context *next_ctx;
3356         struct perf_event_context *parent, *next_parent;
3357         struct perf_cpu_context *cpuctx;
3358         int do_switch = 1;
3359
3360         if (likely(!ctx))
3361                 return;
3362
3363         cpuctx = __get_cpu_context(ctx);
3364         if (!cpuctx->task_ctx)
3365                 return;
3366
3367         rcu_read_lock();
3368         next_ctx = next->perf_event_ctxp[ctxn];
3369         if (!next_ctx)
3370                 goto unlock;
3371
3372         parent = rcu_dereference(ctx->parent_ctx);
3373         next_parent = rcu_dereference(next_ctx->parent_ctx);
3374
3375         /* If neither context have a parent context; they cannot be clones. */
3376         if (!parent && !next_parent)
3377                 goto unlock;
3378
3379         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3380                 /*
3381                  * Looks like the two contexts are clones, so we might be
3382                  * able to optimize the context switch.  We lock both
3383                  * contexts and check that they are clones under the
3384                  * lock (including re-checking that neither has been
3385                  * uncloned in the meantime).  It doesn't matter which
3386                  * order we take the locks because no other cpu could
3387                  * be trying to lock both of these tasks.
3388                  */
3389                 raw_spin_lock(&ctx->lock);
3390                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3391                 if (context_equiv(ctx, next_ctx)) {
3392                         struct pmu *pmu = ctx->pmu;
3393
3394                         WRITE_ONCE(ctx->task, next);
3395                         WRITE_ONCE(next_ctx->task, task);
3396
3397                         /*
3398                          * PMU specific parts of task perf context can require
3399                          * additional synchronization. As an example of such
3400                          * synchronization see implementation details of Intel
3401                          * LBR call stack data profiling;
3402                          */
3403                         if (pmu->swap_task_ctx)
3404                                 pmu->swap_task_ctx(ctx, next_ctx);
3405                         else
3406                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3407
3408                         /*
3409                          * RCU_INIT_POINTER here is safe because we've not
3410                          * modified the ctx and the above modification of
3411                          * ctx->task and ctx->task_ctx_data are immaterial
3412                          * since those values are always verified under
3413                          * ctx->lock which we're now holding.
3414                          */
3415                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3416                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3417
3418                         do_switch = 0;
3419
3420                         perf_event_sync_stat(ctx, next_ctx);
3421                 }
3422                 raw_spin_unlock(&next_ctx->lock);
3423                 raw_spin_unlock(&ctx->lock);
3424         }
3425 unlock:
3426         rcu_read_unlock();
3427
3428         if (do_switch) {
3429                 raw_spin_lock(&ctx->lock);
3430                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3431                 raw_spin_unlock(&ctx->lock);
3432         }
3433 }
3434
3435 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3436
3437 void perf_sched_cb_dec(struct pmu *pmu)
3438 {
3439         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3440
3441         this_cpu_dec(perf_sched_cb_usages);
3442
3443         if (!--cpuctx->sched_cb_usage)
3444                 list_del(&cpuctx->sched_cb_entry);
3445 }
3446
3447
3448 void perf_sched_cb_inc(struct pmu *pmu)
3449 {
3450         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3451
3452         if (!cpuctx->sched_cb_usage++)
3453                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3454
3455         this_cpu_inc(perf_sched_cb_usages);
3456 }
3457
3458 /*
3459  * This function provides the context switch callback to the lower code
3460  * layer. It is invoked ONLY when the context switch callback is enabled.
3461  *
3462  * This callback is relevant even to per-cpu events; for example multi event
3463  * PEBS requires this to provide PID/TID information. This requires we flush
3464  * all queued PEBS records before we context switch to a new task.
3465  */
3466 static void perf_pmu_sched_task(struct task_struct *prev,
3467                                 struct task_struct *next,
3468                                 bool sched_in)
3469 {
3470         struct perf_cpu_context *cpuctx;
3471         struct pmu *pmu;
3472
3473         if (prev == next)
3474                 return;
3475
3476         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3477                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3478
3479                 if (WARN_ON_ONCE(!pmu->sched_task))
3480                         continue;
3481
3482                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3483                 perf_pmu_disable(pmu);
3484
3485                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3486
3487                 perf_pmu_enable(pmu);
3488                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3489         }
3490 }
3491
3492 static void perf_event_switch(struct task_struct *task,
3493                               struct task_struct *next_prev, bool sched_in);
3494
3495 #define for_each_task_context_nr(ctxn)                                  \
3496         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3497
3498 /*
3499  * Called from scheduler to remove the events of the current task,
3500  * with interrupts disabled.
3501  *
3502  * We stop each event and update the event value in event->count.
3503  *
3504  * This does not protect us against NMI, but disable()
3505  * sets the disabled bit in the control field of event _before_
3506  * accessing the event control register. If a NMI hits, then it will
3507  * not restart the event.
3508  */
3509 void __perf_event_task_sched_out(struct task_struct *task,
3510                                  struct task_struct *next)
3511 {
3512         int ctxn;
3513
3514         if (__this_cpu_read(perf_sched_cb_usages))
3515                 perf_pmu_sched_task(task, next, false);
3516
3517         if (atomic_read(&nr_switch_events))
3518                 perf_event_switch(task, next, false);
3519
3520         for_each_task_context_nr(ctxn)
3521                 perf_event_context_sched_out(task, ctxn, next);
3522
3523         /*
3524          * if cgroup events exist on this CPU, then we need
3525          * to check if we have to switch out PMU state.
3526          * cgroup event are system-wide mode only
3527          */
3528         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3529                 perf_cgroup_sched_out(task, next);
3530 }
3531
3532 /*
3533  * Called with IRQs disabled
3534  */
3535 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3536                               enum event_type_t event_type)
3537 {
3538         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3539 }
3540
3541 static bool perf_less_group_idx(const void *l, const void *r)
3542 {
3543         const struct perf_event *le = *(const struct perf_event **)l;
3544         const struct perf_event *re = *(const struct perf_event **)r;
3545
3546         return le->group_index < re->group_index;
3547 }
3548
3549 static void swap_ptr(void *l, void *r)
3550 {
3551         void **lp = l, **rp = r;
3552
3553         swap(*lp, *rp);
3554 }
3555
3556 static const struct min_heap_callbacks perf_min_heap = {
3557         .elem_size = sizeof(struct perf_event *),
3558         .less = perf_less_group_idx,
3559         .swp = swap_ptr,
3560 };
3561
3562 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3563 {
3564         struct perf_event **itrs = heap->data;
3565
3566         if (event) {
3567                 itrs[heap->nr] = event;
3568                 heap->nr++;
3569         }
3570 }
3571
3572 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3573                                 struct perf_event_groups *groups, int cpu,
3574                                 int (*func)(struct perf_event *, void *),
3575                                 void *data)
3576 {
3577 #ifdef CONFIG_CGROUP_PERF
3578         struct cgroup_subsys_state *css = NULL;
3579 #endif
3580         /* Space for per CPU and/or any CPU event iterators. */
3581         struct perf_event *itrs[2];
3582         struct min_heap event_heap;
3583         struct perf_event **evt;
3584         int ret;
3585
3586         if (cpuctx) {
3587                 event_heap = (struct min_heap){
3588                         .data = cpuctx->heap,
3589                         .nr = 0,
3590                         .size = cpuctx->heap_size,
3591                 };
3592
3593                 lockdep_assert_held(&cpuctx->ctx.lock);
3594
3595 #ifdef CONFIG_CGROUP_PERF
3596                 if (cpuctx->cgrp)
3597                         css = &cpuctx->cgrp->css;
3598 #endif
3599         } else {
3600                 event_heap = (struct min_heap){
3601                         .data = itrs,
3602                         .nr = 0,
3603                         .size = ARRAY_SIZE(itrs),
3604                 };
3605                 /* Events not within a CPU context may be on any CPU. */
3606                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3607         }
3608         evt = event_heap.data;
3609
3610         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3611
3612 #ifdef CONFIG_CGROUP_PERF
3613         for (; css; css = css->parent)
3614                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3615 #endif
3616
3617         min_heapify_all(&event_heap, &perf_min_heap);
3618
3619         while (event_heap.nr) {
3620                 ret = func(*evt, data);
3621                 if (ret)
3622                         return ret;
3623
3624                 *evt = perf_event_groups_next(*evt);
3625                 if (*evt)
3626                         min_heapify(&event_heap, 0, &perf_min_heap);
3627                 else
3628                         min_heap_pop(&event_heap, &perf_min_heap);
3629         }
3630
3631         return 0;
3632 }
3633
3634 static int merge_sched_in(struct perf_event *event, void *data)
3635 {
3636         struct perf_event_context *ctx = event->ctx;
3637         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3638         int *can_add_hw = data;
3639
3640         if (event->state <= PERF_EVENT_STATE_OFF)
3641                 return 0;
3642
3643         if (!event_filter_match(event))
3644                 return 0;
3645
3646         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3647                 if (!group_sched_in(event, cpuctx, ctx))
3648                         list_add_tail(&event->active_list, get_event_list(event));
3649         }
3650
3651         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3652                 if (event->attr.pinned) {
3653                         perf_cgroup_event_disable(event, ctx);
3654                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3655                 }
3656
3657                 *can_add_hw = 0;
3658                 ctx->rotate_necessary = 1;
3659         }
3660
3661         return 0;
3662 }
3663
3664 static void
3665 ctx_pinned_sched_in(struct perf_event_context *ctx,
3666                     struct perf_cpu_context *cpuctx)
3667 {
3668         int can_add_hw = 1;
3669
3670         if (ctx != &cpuctx->ctx)
3671                 cpuctx = NULL;
3672
3673         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3674                            smp_processor_id(),
3675                            merge_sched_in, &can_add_hw);
3676 }
3677
3678 static void
3679 ctx_flexible_sched_in(struct perf_event_context *ctx,
3680                       struct perf_cpu_context *cpuctx)
3681 {
3682         int can_add_hw = 1;
3683
3684         if (ctx != &cpuctx->ctx)
3685                 cpuctx = NULL;
3686
3687         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3688                            smp_processor_id(),
3689                            merge_sched_in, &can_add_hw);
3690 }
3691
3692 static void
3693 ctx_sched_in(struct perf_event_context *ctx,
3694              struct perf_cpu_context *cpuctx,
3695              enum event_type_t event_type,
3696              struct task_struct *task)
3697 {
3698         int is_active = ctx->is_active;
3699         u64 now;
3700
3701         lockdep_assert_held(&ctx->lock);
3702
3703         if (likely(!ctx->nr_events))
3704                 return;
3705
3706         ctx->is_active |= (event_type | EVENT_TIME);
3707         if (ctx->task) {
3708                 if (!is_active)
3709                         cpuctx->task_ctx = ctx;
3710                 else
3711                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3712         }
3713
3714         is_active ^= ctx->is_active; /* changed bits */
3715
3716         if (is_active & EVENT_TIME) {
3717                 /* start ctx time */
3718                 now = perf_clock();
3719                 ctx->timestamp = now;
3720                 perf_cgroup_set_timestamp(task, ctx);
3721         }
3722
3723         /*
3724          * First go through the list and put on any pinned groups
3725          * in order to give them the best chance of going on.
3726          */
3727         if (is_active & EVENT_PINNED)
3728                 ctx_pinned_sched_in(ctx, cpuctx);
3729
3730         /* Then walk through the lower prio flexible groups */
3731         if (is_active & EVENT_FLEXIBLE)
3732                 ctx_flexible_sched_in(ctx, cpuctx);
3733 }
3734
3735 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3736                              enum event_type_t event_type,
3737                              struct task_struct *task)
3738 {
3739         struct perf_event_context *ctx = &cpuctx->ctx;
3740
3741         ctx_sched_in(ctx, cpuctx, event_type, task);
3742 }
3743
3744 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3745                                         struct task_struct *task)
3746 {
3747         struct perf_cpu_context *cpuctx;
3748
3749         cpuctx = __get_cpu_context(ctx);
3750         if (cpuctx->task_ctx == ctx)
3751                 return;
3752
3753         perf_ctx_lock(cpuctx, ctx);
3754         /*
3755          * We must check ctx->nr_events while holding ctx->lock, such
3756          * that we serialize against perf_install_in_context().
3757          */
3758         if (!ctx->nr_events)
3759                 goto unlock;
3760
3761         perf_pmu_disable(ctx->pmu);
3762         /*
3763          * We want to keep the following priority order:
3764          * cpu pinned (that don't need to move), task pinned,
3765          * cpu flexible, task flexible.
3766          *
3767          * However, if task's ctx is not carrying any pinned
3768          * events, no need to flip the cpuctx's events around.
3769          */
3770         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3771                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3772         perf_event_sched_in(cpuctx, ctx, task);
3773         perf_pmu_enable(ctx->pmu);
3774
3775 unlock:
3776         perf_ctx_unlock(cpuctx, ctx);
3777 }
3778
3779 /*
3780  * Called from scheduler to add the events of the current task
3781  * with interrupts disabled.
3782  *
3783  * We restore the event value and then enable it.
3784  *
3785  * This does not protect us against NMI, but enable()
3786  * sets the enabled bit in the control field of event _before_
3787  * accessing the event control register. If a NMI hits, then it will
3788  * keep the event running.
3789  */
3790 void __perf_event_task_sched_in(struct task_struct *prev,
3791                                 struct task_struct *task)
3792 {
3793         struct perf_event_context *ctx;
3794         int ctxn;
3795
3796         /*
3797          * If cgroup events exist on this CPU, then we need to check if we have
3798          * to switch in PMU state; cgroup event are system-wide mode only.
3799          *
3800          * Since cgroup events are CPU events, we must schedule these in before
3801          * we schedule in the task events.
3802          */
3803         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3804                 perf_cgroup_sched_in(prev, task);
3805
3806         for_each_task_context_nr(ctxn) {
3807                 ctx = task->perf_event_ctxp[ctxn];
3808                 if (likely(!ctx))
3809                         continue;
3810
3811                 perf_event_context_sched_in(ctx, task);
3812         }
3813
3814         if (atomic_read(&nr_switch_events))
3815                 perf_event_switch(task, prev, true);
3816
3817         if (__this_cpu_read(perf_sched_cb_usages))
3818                 perf_pmu_sched_task(prev, task, true);
3819 }
3820
3821 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3822 {
3823         u64 frequency = event->attr.sample_freq;
3824         u64 sec = NSEC_PER_SEC;
3825         u64 divisor, dividend;
3826
3827         int count_fls, nsec_fls, frequency_fls, sec_fls;
3828
3829         count_fls = fls64(count);
3830         nsec_fls = fls64(nsec);
3831         frequency_fls = fls64(frequency);
3832         sec_fls = 30;
3833
3834         /*
3835          * We got @count in @nsec, with a target of sample_freq HZ
3836          * the target period becomes:
3837          *
3838          *             @count * 10^9
3839          * period = -------------------
3840          *          @nsec * sample_freq
3841          *
3842          */
3843
3844         /*
3845          * Reduce accuracy by one bit such that @a and @b converge
3846          * to a similar magnitude.
3847          */
3848 #define REDUCE_FLS(a, b)                \
3849 do {                                    \
3850         if (a##_fls > b##_fls) {        \
3851                 a >>= 1;                \
3852                 a##_fls--;              \
3853         } else {                        \
3854                 b >>= 1;                \
3855                 b##_fls--;              \
3856         }                               \
3857 } while (0)
3858
3859         /*
3860          * Reduce accuracy until either term fits in a u64, then proceed with
3861          * the other, so that finally we can do a u64/u64 division.
3862          */
3863         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3864                 REDUCE_FLS(nsec, frequency);
3865                 REDUCE_FLS(sec, count);
3866         }
3867
3868         if (count_fls + sec_fls > 64) {
3869                 divisor = nsec * frequency;
3870
3871                 while (count_fls + sec_fls > 64) {
3872                         REDUCE_FLS(count, sec);
3873                         divisor >>= 1;
3874                 }
3875
3876                 dividend = count * sec;
3877         } else {
3878                 dividend = count * sec;
3879
3880                 while (nsec_fls + frequency_fls > 64) {
3881                         REDUCE_FLS(nsec, frequency);
3882                         dividend >>= 1;
3883                 }
3884
3885                 divisor = nsec * frequency;
3886         }
3887
3888         if (!divisor)
3889                 return dividend;
3890
3891         return div64_u64(dividend, divisor);
3892 }
3893
3894 static DEFINE_PER_CPU(int, perf_throttled_count);
3895 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3896
3897 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3898 {
3899         struct hw_perf_event *hwc = &event->hw;
3900         s64 period, sample_period;
3901         s64 delta;
3902
3903         period = perf_calculate_period(event, nsec, count);
3904
3905         delta = (s64)(period - hwc->sample_period);
3906         delta = (delta + 7) / 8; /* low pass filter */
3907
3908         sample_period = hwc->sample_period + delta;
3909
3910         if (!sample_period)
3911                 sample_period = 1;
3912
3913         hwc->sample_period = sample_period;
3914
3915         if (local64_read(&hwc->period_left) > 8*sample_period) {
3916                 if (disable)
3917                         event->pmu->stop(event, PERF_EF_UPDATE);
3918
3919                 local64_set(&hwc->period_left, 0);
3920
3921                 if (disable)
3922                         event->pmu->start(event, PERF_EF_RELOAD);
3923         }
3924 }
3925
3926 /*
3927  * combine freq adjustment with unthrottling to avoid two passes over the
3928  * events. At the same time, make sure, having freq events does not change
3929  * the rate of unthrottling as that would introduce bias.
3930  */
3931 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3932                                            int needs_unthr)
3933 {
3934         struct perf_event *event;
3935         struct hw_perf_event *hwc;
3936         u64 now, period = TICK_NSEC;
3937         s64 delta;
3938
3939         /*
3940          * only need to iterate over all events iff:
3941          * - context have events in frequency mode (needs freq adjust)
3942          * - there are events to unthrottle on this cpu
3943          */
3944         if (!(ctx->nr_freq || needs_unthr))
3945                 return;
3946
3947         raw_spin_lock(&ctx->lock);
3948         perf_pmu_disable(ctx->pmu);
3949
3950         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3951                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3952                         continue;
3953
3954                 if (!event_filter_match(event))
3955                         continue;
3956
3957                 perf_pmu_disable(event->pmu);
3958
3959                 hwc = &event->hw;
3960
3961                 if (hwc->interrupts == MAX_INTERRUPTS) {
3962                         hwc->interrupts = 0;
3963                         perf_log_throttle(event, 1);
3964                         event->pmu->start(event, 0);
3965                 }
3966
3967                 if (!event->attr.freq || !event->attr.sample_freq)
3968                         goto next;
3969
3970                 /*
3971                  * stop the event and update event->count
3972                  */
3973                 event->pmu->stop(event, PERF_EF_UPDATE);
3974
3975                 now = local64_read(&event->count);
3976                 delta = now - hwc->freq_count_stamp;
3977                 hwc->freq_count_stamp = now;
3978
3979                 /*
3980                  * restart the event
3981                  * reload only if value has changed
3982                  * we have stopped the event so tell that
3983                  * to perf_adjust_period() to avoid stopping it
3984                  * twice.
3985                  */
3986                 if (delta > 0)
3987                         perf_adjust_period(event, period, delta, false);
3988
3989                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3990         next:
3991                 perf_pmu_enable(event->pmu);
3992         }
3993
3994         perf_pmu_enable(ctx->pmu);
3995         raw_spin_unlock(&ctx->lock);
3996 }
3997
3998 /*
3999  * Move @event to the tail of the @ctx's elegible events.
4000  */
4001 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4002 {
4003         /*
4004          * Rotate the first entry last of non-pinned groups. Rotation might be
4005          * disabled by the inheritance code.
4006          */
4007         if (ctx->rotate_disable)
4008                 return;
4009
4010         perf_event_groups_delete(&ctx->flexible_groups, event);
4011         perf_event_groups_insert(&ctx->flexible_groups, event);
4012 }
4013
4014 /* pick an event from the flexible_groups to rotate */
4015 static inline struct perf_event *
4016 ctx_event_to_rotate(struct perf_event_context *ctx)
4017 {
4018         struct perf_event *event;
4019
4020         /* pick the first active flexible event */
4021         event = list_first_entry_or_null(&ctx->flexible_active,
4022                                          struct perf_event, active_list);
4023
4024         /* if no active flexible event, pick the first event */
4025         if (!event) {
4026                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4027                                       typeof(*event), group_node);
4028         }
4029
4030         /*
4031          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4032          * finds there are unschedulable events, it will set it again.
4033          */
4034         ctx->rotate_necessary = 0;
4035
4036         return event;
4037 }
4038
4039 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4040 {
4041         struct perf_event *cpu_event = NULL, *task_event = NULL;
4042         struct perf_event_context *task_ctx = NULL;
4043         int cpu_rotate, task_rotate;
4044
4045         /*
4046          * Since we run this from IRQ context, nobody can install new
4047          * events, thus the event count values are stable.
4048          */
4049
4050         cpu_rotate = cpuctx->ctx.rotate_necessary;
4051         task_ctx = cpuctx->task_ctx;
4052         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4053
4054         if (!(cpu_rotate || task_rotate))
4055                 return false;
4056
4057         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4058         perf_pmu_disable(cpuctx->ctx.pmu);
4059
4060         if (task_rotate)
4061                 task_event = ctx_event_to_rotate(task_ctx);
4062         if (cpu_rotate)
4063                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4064
4065         /*
4066          * As per the order given at ctx_resched() first 'pop' task flexible
4067          * and then, if needed CPU flexible.
4068          */
4069         if (task_event || (task_ctx && cpu_event))
4070                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4071         if (cpu_event)
4072                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4073
4074         if (task_event)
4075                 rotate_ctx(task_ctx, task_event);
4076         if (cpu_event)
4077                 rotate_ctx(&cpuctx->ctx, cpu_event);
4078
4079         perf_event_sched_in(cpuctx, task_ctx, current);
4080
4081         perf_pmu_enable(cpuctx->ctx.pmu);
4082         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4083
4084         return true;
4085 }
4086
4087 void perf_event_task_tick(void)
4088 {
4089         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4090         struct perf_event_context *ctx, *tmp;
4091         int throttled;
4092
4093         lockdep_assert_irqs_disabled();
4094
4095         __this_cpu_inc(perf_throttled_seq);
4096         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4097         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4098
4099         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4100                 perf_adjust_freq_unthr_context(ctx, throttled);
4101 }
4102
4103 static int event_enable_on_exec(struct perf_event *event,
4104                                 struct perf_event_context *ctx)
4105 {
4106         if (!event->attr.enable_on_exec)
4107                 return 0;
4108
4109         event->attr.enable_on_exec = 0;
4110         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4111                 return 0;
4112
4113         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4114
4115         return 1;
4116 }
4117
4118 /*
4119  * Enable all of a task's events that have been marked enable-on-exec.
4120  * This expects task == current.
4121  */
4122 static void perf_event_enable_on_exec(int ctxn)
4123 {
4124         struct perf_event_context *ctx, *clone_ctx = NULL;
4125         enum event_type_t event_type = 0;
4126         struct perf_cpu_context *cpuctx;
4127         struct perf_event *event;
4128         unsigned long flags;
4129         int enabled = 0;
4130
4131         local_irq_save(flags);
4132         ctx = current->perf_event_ctxp[ctxn];
4133         if (!ctx || !ctx->nr_events)
4134                 goto out;
4135
4136         cpuctx = __get_cpu_context(ctx);
4137         perf_ctx_lock(cpuctx, ctx);
4138         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4139         list_for_each_entry(event, &ctx->event_list, event_entry) {
4140                 enabled |= event_enable_on_exec(event, ctx);
4141                 event_type |= get_event_type(event);
4142         }
4143
4144         /*
4145          * Unclone and reschedule this context if we enabled any event.
4146          */
4147         if (enabled) {
4148                 clone_ctx = unclone_ctx(ctx);
4149                 ctx_resched(cpuctx, ctx, event_type);
4150         } else {
4151                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4152         }
4153         perf_ctx_unlock(cpuctx, ctx);
4154
4155 out:
4156         local_irq_restore(flags);
4157
4158         if (clone_ctx)
4159                 put_ctx(clone_ctx);
4160 }
4161
4162 struct perf_read_data {
4163         struct perf_event *event;
4164         bool group;
4165         int ret;
4166 };
4167
4168 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4169 {
4170         u16 local_pkg, event_pkg;
4171
4172         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4173                 int local_cpu = smp_processor_id();
4174
4175                 event_pkg = topology_physical_package_id(event_cpu);
4176                 local_pkg = topology_physical_package_id(local_cpu);
4177
4178                 if (event_pkg == local_pkg)
4179                         return local_cpu;
4180         }
4181
4182         return event_cpu;
4183 }
4184
4185 /*
4186  * Cross CPU call to read the hardware event
4187  */
4188 static void __perf_event_read(void *info)
4189 {
4190         struct perf_read_data *data = info;
4191         struct perf_event *sub, *event = data->event;
4192         struct perf_event_context *ctx = event->ctx;
4193         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4194         struct pmu *pmu = event->pmu;
4195
4196         /*
4197          * If this is a task context, we need to check whether it is
4198          * the current task context of this cpu.  If not it has been
4199          * scheduled out before the smp call arrived.  In that case
4200          * event->count would have been updated to a recent sample
4201          * when the event was scheduled out.
4202          */
4203         if (ctx->task && cpuctx->task_ctx != ctx)
4204                 return;
4205
4206         raw_spin_lock(&ctx->lock);
4207         if (ctx->is_active & EVENT_TIME) {
4208                 update_context_time(ctx);
4209                 update_cgrp_time_from_event(event);
4210         }
4211
4212         perf_event_update_time(event);
4213         if (data->group)
4214                 perf_event_update_sibling_time(event);
4215
4216         if (event->state != PERF_EVENT_STATE_ACTIVE)
4217                 goto unlock;
4218
4219         if (!data->group) {
4220                 pmu->read(event);
4221                 data->ret = 0;
4222                 goto unlock;
4223         }
4224
4225         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4226
4227         pmu->read(event);
4228
4229         for_each_sibling_event(sub, event) {
4230                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4231                         /*
4232                          * Use sibling's PMU rather than @event's since
4233                          * sibling could be on different (eg: software) PMU.
4234                          */
4235                         sub->pmu->read(sub);
4236                 }
4237         }
4238
4239         data->ret = pmu->commit_txn(pmu);
4240
4241 unlock:
4242         raw_spin_unlock(&ctx->lock);
4243 }
4244
4245 static inline u64 perf_event_count(struct perf_event *event)
4246 {
4247         return local64_read(&event->count) + atomic64_read(&event->child_count);
4248 }
4249
4250 /*
4251  * NMI-safe method to read a local event, that is an event that
4252  * is:
4253  *   - either for the current task, or for this CPU
4254  *   - does not have inherit set, for inherited task events
4255  *     will not be local and we cannot read them atomically
4256  *   - must not have a pmu::count method
4257  */
4258 int perf_event_read_local(struct perf_event *event, u64 *value,
4259                           u64 *enabled, u64 *running)
4260 {
4261         unsigned long flags;
4262         int ret = 0;
4263
4264         /*
4265          * Disabling interrupts avoids all counter scheduling (context
4266          * switches, timer based rotation and IPIs).
4267          */
4268         local_irq_save(flags);
4269
4270         /*
4271          * It must not be an event with inherit set, we cannot read
4272          * all child counters from atomic context.
4273          */
4274         if (event->attr.inherit) {
4275                 ret = -EOPNOTSUPP;
4276                 goto out;
4277         }
4278
4279         /* If this is a per-task event, it must be for current */
4280         if ((event->attach_state & PERF_ATTACH_TASK) &&
4281             event->hw.target != current) {
4282                 ret = -EINVAL;
4283                 goto out;
4284         }
4285
4286         /* If this is a per-CPU event, it must be for this CPU */
4287         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4288             event->cpu != smp_processor_id()) {
4289                 ret = -EINVAL;
4290                 goto out;
4291         }
4292
4293         /* If this is a pinned event it must be running on this CPU */
4294         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4295                 ret = -EBUSY;
4296                 goto out;
4297         }
4298
4299         /*
4300          * If the event is currently on this CPU, its either a per-task event,
4301          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4302          * oncpu == -1).
4303          */
4304         if (event->oncpu == smp_processor_id())
4305                 event->pmu->read(event);
4306
4307         *value = local64_read(&event->count);
4308         if (enabled || running) {
4309                 u64 now = event->shadow_ctx_time + perf_clock();
4310                 u64 __enabled, __running;
4311
4312                 __perf_update_times(event, now, &__enabled, &__running);
4313                 if (enabled)
4314                         *enabled = __enabled;
4315                 if (running)
4316                         *running = __running;
4317         }
4318 out:
4319         local_irq_restore(flags);
4320
4321         return ret;
4322 }
4323
4324 static int perf_event_read(struct perf_event *event, bool group)
4325 {
4326         enum perf_event_state state = READ_ONCE(event->state);
4327         int event_cpu, ret = 0;
4328
4329         /*
4330          * If event is enabled and currently active on a CPU, update the
4331          * value in the event structure:
4332          */
4333 again:
4334         if (state == PERF_EVENT_STATE_ACTIVE) {
4335                 struct perf_read_data data;
4336
4337                 /*
4338                  * Orders the ->state and ->oncpu loads such that if we see
4339                  * ACTIVE we must also see the right ->oncpu.
4340                  *
4341                  * Matches the smp_wmb() from event_sched_in().
4342                  */
4343                 smp_rmb();
4344
4345                 event_cpu = READ_ONCE(event->oncpu);
4346                 if ((unsigned)event_cpu >= nr_cpu_ids)
4347                         return 0;
4348
4349                 data = (struct perf_read_data){
4350                         .event = event,
4351                         .group = group,
4352                         .ret = 0,
4353                 };
4354
4355                 preempt_disable();
4356                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4357
4358                 /*
4359                  * Purposely ignore the smp_call_function_single() return
4360                  * value.
4361                  *
4362                  * If event_cpu isn't a valid CPU it means the event got
4363                  * scheduled out and that will have updated the event count.
4364                  *
4365                  * Therefore, either way, we'll have an up-to-date event count
4366                  * after this.
4367                  */
4368                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4369                 preempt_enable();
4370                 ret = data.ret;
4371
4372         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4373                 struct perf_event_context *ctx = event->ctx;
4374                 unsigned long flags;
4375
4376                 raw_spin_lock_irqsave(&ctx->lock, flags);
4377                 state = event->state;
4378                 if (state != PERF_EVENT_STATE_INACTIVE) {
4379                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4380                         goto again;
4381                 }
4382
4383                 /*
4384                  * May read while context is not active (e.g., thread is
4385                  * blocked), in that case we cannot update context time
4386                  */
4387                 if (ctx->is_active & EVENT_TIME) {
4388                         update_context_time(ctx);
4389                         update_cgrp_time_from_event(event);
4390                 }
4391
4392                 perf_event_update_time(event);
4393                 if (group)
4394                         perf_event_update_sibling_time(event);
4395                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4396         }
4397
4398         return ret;
4399 }
4400
4401 /*
4402  * Initialize the perf_event context in a task_struct:
4403  */
4404 static void __perf_event_init_context(struct perf_event_context *ctx)
4405 {
4406         raw_spin_lock_init(&ctx->lock);
4407         mutex_init(&ctx->mutex);
4408         INIT_LIST_HEAD(&ctx->active_ctx_list);
4409         perf_event_groups_init(&ctx->pinned_groups);
4410         perf_event_groups_init(&ctx->flexible_groups);
4411         INIT_LIST_HEAD(&ctx->event_list);
4412         INIT_LIST_HEAD(&ctx->pinned_active);
4413         INIT_LIST_HEAD(&ctx->flexible_active);
4414         refcount_set(&ctx->refcount, 1);
4415 }
4416
4417 static struct perf_event_context *
4418 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4419 {
4420         struct perf_event_context *ctx;
4421
4422         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4423         if (!ctx)
4424                 return NULL;
4425
4426         __perf_event_init_context(ctx);
4427         if (task)
4428                 ctx->task = get_task_struct(task);
4429         ctx->pmu = pmu;
4430
4431         return ctx;
4432 }
4433
4434 static struct task_struct *
4435 find_lively_task_by_vpid(pid_t vpid)
4436 {
4437         struct task_struct *task;
4438
4439         rcu_read_lock();
4440         if (!vpid)
4441                 task = current;
4442         else
4443                 task = find_task_by_vpid(vpid);
4444         if (task)
4445                 get_task_struct(task);
4446         rcu_read_unlock();
4447
4448         if (!task)
4449                 return ERR_PTR(-ESRCH);
4450
4451         return task;
4452 }
4453
4454 /*
4455  * Returns a matching context with refcount and pincount.
4456  */
4457 static struct perf_event_context *
4458 find_get_context(struct pmu *pmu, struct task_struct *task,
4459                 struct perf_event *event)
4460 {
4461         struct perf_event_context *ctx, *clone_ctx = NULL;
4462         struct perf_cpu_context *cpuctx;
4463         void *task_ctx_data = NULL;
4464         unsigned long flags;
4465         int ctxn, err;
4466         int cpu = event->cpu;
4467
4468         if (!task) {
4469                 /* Must be root to operate on a CPU event: */
4470                 err = perf_allow_cpu(&event->attr);
4471                 if (err)
4472                         return ERR_PTR(err);
4473
4474                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4475                 ctx = &cpuctx->ctx;
4476                 get_ctx(ctx);
4477                 ++ctx->pin_count;
4478
4479                 return ctx;
4480         }
4481
4482         err = -EINVAL;
4483         ctxn = pmu->task_ctx_nr;
4484         if (ctxn < 0)
4485                 goto errout;
4486
4487         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4488                 task_ctx_data = alloc_task_ctx_data(pmu);
4489                 if (!task_ctx_data) {
4490                         err = -ENOMEM;
4491                         goto errout;
4492                 }
4493         }
4494
4495 retry:
4496         ctx = perf_lock_task_context(task, ctxn, &flags);
4497         if (ctx) {
4498                 clone_ctx = unclone_ctx(ctx);
4499                 ++ctx->pin_count;
4500
4501                 if (task_ctx_data && !ctx->task_ctx_data) {
4502                         ctx->task_ctx_data = task_ctx_data;
4503                         task_ctx_data = NULL;
4504                 }
4505                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4506
4507                 if (clone_ctx)
4508                         put_ctx(clone_ctx);
4509         } else {
4510                 ctx = alloc_perf_context(pmu, task);
4511                 err = -ENOMEM;
4512                 if (!ctx)
4513                         goto errout;
4514
4515                 if (task_ctx_data) {
4516                         ctx->task_ctx_data = task_ctx_data;
4517                         task_ctx_data = NULL;
4518                 }
4519
4520                 err = 0;
4521                 mutex_lock(&task->perf_event_mutex);
4522                 /*
4523                  * If it has already passed perf_event_exit_task().
4524                  * we must see PF_EXITING, it takes this mutex too.
4525                  */
4526                 if (task->flags & PF_EXITING)
4527                         err = -ESRCH;
4528                 else if (task->perf_event_ctxp[ctxn])
4529                         err = -EAGAIN;
4530                 else {
4531                         get_ctx(ctx);
4532                         ++ctx->pin_count;
4533                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4534                 }
4535                 mutex_unlock(&task->perf_event_mutex);
4536
4537                 if (unlikely(err)) {
4538                         put_ctx(ctx);
4539
4540                         if (err == -EAGAIN)
4541                                 goto retry;
4542                         goto errout;
4543                 }
4544         }
4545
4546         free_task_ctx_data(pmu, task_ctx_data);
4547         return ctx;
4548
4549 errout:
4550         free_task_ctx_data(pmu, task_ctx_data);
4551         return ERR_PTR(err);
4552 }
4553
4554 static void perf_event_free_filter(struct perf_event *event);
4555 static void perf_event_free_bpf_prog(struct perf_event *event);
4556
4557 static void free_event_rcu(struct rcu_head *head)
4558 {
4559         struct perf_event *event;
4560
4561         event = container_of(head, struct perf_event, rcu_head);
4562         if (event->ns)
4563                 put_pid_ns(event->ns);
4564         perf_event_free_filter(event);
4565         kfree(event);
4566 }
4567
4568 static void ring_buffer_attach(struct perf_event *event,
4569                                struct perf_buffer *rb);
4570
4571 static void detach_sb_event(struct perf_event *event)
4572 {
4573         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4574
4575         raw_spin_lock(&pel->lock);
4576         list_del_rcu(&event->sb_list);
4577         raw_spin_unlock(&pel->lock);
4578 }
4579
4580 static bool is_sb_event(struct perf_event *event)
4581 {
4582         struct perf_event_attr *attr = &event->attr;
4583
4584         if (event->parent)
4585                 return false;
4586
4587         if (event->attach_state & PERF_ATTACH_TASK)
4588                 return false;
4589
4590         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4591             attr->comm || attr->comm_exec ||
4592             attr->task || attr->ksymbol ||
4593             attr->context_switch || attr->text_poke ||
4594             attr->bpf_event)
4595                 return true;
4596         return false;
4597 }
4598
4599 static void unaccount_pmu_sb_event(struct perf_event *event)
4600 {
4601         if (is_sb_event(event))
4602                 detach_sb_event(event);
4603 }
4604
4605 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4606 {
4607         if (event->parent)
4608                 return;
4609
4610         if (is_cgroup_event(event))
4611                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4612 }
4613
4614 #ifdef CONFIG_NO_HZ_FULL
4615 static DEFINE_SPINLOCK(nr_freq_lock);
4616 #endif
4617
4618 static void unaccount_freq_event_nohz(void)
4619 {
4620 #ifdef CONFIG_NO_HZ_FULL
4621         spin_lock(&nr_freq_lock);
4622         if (atomic_dec_and_test(&nr_freq_events))
4623                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4624         spin_unlock(&nr_freq_lock);
4625 #endif
4626 }
4627
4628 static void unaccount_freq_event(void)
4629 {
4630         if (tick_nohz_full_enabled())
4631                 unaccount_freq_event_nohz();
4632         else
4633                 atomic_dec(&nr_freq_events);
4634 }
4635
4636 static void unaccount_event(struct perf_event *event)
4637 {
4638         bool dec = false;
4639
4640         if (event->parent)
4641                 return;
4642
4643         if (event->attach_state & PERF_ATTACH_TASK)
4644                 dec = true;
4645         if (event->attr.mmap || event->attr.mmap_data)
4646                 atomic_dec(&nr_mmap_events);
4647         if (event->attr.comm)
4648                 atomic_dec(&nr_comm_events);
4649         if (event->attr.namespaces)
4650                 atomic_dec(&nr_namespaces_events);
4651         if (event->attr.cgroup)
4652                 atomic_dec(&nr_cgroup_events);
4653         if (event->attr.task)
4654                 atomic_dec(&nr_task_events);
4655         if (event->attr.freq)
4656                 unaccount_freq_event();
4657         if (event->attr.context_switch) {
4658                 dec = true;
4659                 atomic_dec(&nr_switch_events);
4660         }
4661         if (is_cgroup_event(event))
4662                 dec = true;
4663         if (has_branch_stack(event))
4664                 dec = true;
4665         if (event->attr.ksymbol)
4666                 atomic_dec(&nr_ksymbol_events);
4667         if (event->attr.bpf_event)
4668                 atomic_dec(&nr_bpf_events);
4669         if (event->attr.text_poke)
4670                 atomic_dec(&nr_text_poke_events);
4671
4672         if (dec) {
4673                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4674                         schedule_delayed_work(&perf_sched_work, HZ);
4675         }
4676
4677         unaccount_event_cpu(event, event->cpu);
4678
4679         unaccount_pmu_sb_event(event);
4680 }
4681
4682 static void perf_sched_delayed(struct work_struct *work)
4683 {
4684         mutex_lock(&perf_sched_mutex);
4685         if (atomic_dec_and_test(&perf_sched_count))
4686                 static_branch_disable(&perf_sched_events);
4687         mutex_unlock(&perf_sched_mutex);
4688 }
4689
4690 /*
4691  * The following implement mutual exclusion of events on "exclusive" pmus
4692  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4693  * at a time, so we disallow creating events that might conflict, namely:
4694  *
4695  *  1) cpu-wide events in the presence of per-task events,
4696  *  2) per-task events in the presence of cpu-wide events,
4697  *  3) two matching events on the same context.
4698  *
4699  * The former two cases are handled in the allocation path (perf_event_alloc(),
4700  * _free_event()), the latter -- before the first perf_install_in_context().
4701  */
4702 static int exclusive_event_init(struct perf_event *event)
4703 {
4704         struct pmu *pmu = event->pmu;
4705
4706         if (!is_exclusive_pmu(pmu))
4707                 return 0;
4708
4709         /*
4710          * Prevent co-existence of per-task and cpu-wide events on the
4711          * same exclusive pmu.
4712          *
4713          * Negative pmu::exclusive_cnt means there are cpu-wide
4714          * events on this "exclusive" pmu, positive means there are
4715          * per-task events.
4716          *
4717          * Since this is called in perf_event_alloc() path, event::ctx
4718          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4719          * to mean "per-task event", because unlike other attach states it
4720          * never gets cleared.
4721          */
4722         if (event->attach_state & PERF_ATTACH_TASK) {
4723                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4724                         return -EBUSY;
4725         } else {
4726                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4727                         return -EBUSY;
4728         }
4729
4730         return 0;
4731 }
4732
4733 static void exclusive_event_destroy(struct perf_event *event)
4734 {
4735         struct pmu *pmu = event->pmu;
4736
4737         if (!is_exclusive_pmu(pmu))
4738                 return;
4739
4740         /* see comment in exclusive_event_init() */
4741         if (event->attach_state & PERF_ATTACH_TASK)
4742                 atomic_dec(&pmu->exclusive_cnt);
4743         else
4744                 atomic_inc(&pmu->exclusive_cnt);
4745 }
4746
4747 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4748 {
4749         if ((e1->pmu == e2->pmu) &&
4750             (e1->cpu == e2->cpu ||
4751              e1->cpu == -1 ||
4752              e2->cpu == -1))
4753                 return true;
4754         return false;
4755 }
4756
4757 static bool exclusive_event_installable(struct perf_event *event,
4758                                         struct perf_event_context *ctx)
4759 {
4760         struct perf_event *iter_event;
4761         struct pmu *pmu = event->pmu;
4762
4763         lockdep_assert_held(&ctx->mutex);
4764
4765         if (!is_exclusive_pmu(pmu))
4766                 return true;
4767
4768         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4769                 if (exclusive_event_match(iter_event, event))
4770                         return false;
4771         }
4772
4773         return true;
4774 }
4775
4776 static void perf_addr_filters_splice(struct perf_event *event,
4777                                        struct list_head *head);
4778
4779 static void _free_event(struct perf_event *event)
4780 {
4781         irq_work_sync(&event->pending);
4782
4783         unaccount_event(event);
4784
4785         security_perf_event_free(event);
4786
4787         if (event->rb) {
4788                 /*
4789                  * Can happen when we close an event with re-directed output.
4790                  *
4791                  * Since we have a 0 refcount, perf_mmap_close() will skip
4792                  * over us; possibly making our ring_buffer_put() the last.
4793                  */
4794                 mutex_lock(&event->mmap_mutex);
4795                 ring_buffer_attach(event, NULL);
4796                 mutex_unlock(&event->mmap_mutex);
4797         }
4798
4799         if (is_cgroup_event(event))
4800                 perf_detach_cgroup(event);
4801
4802         if (!event->parent) {
4803                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4804                         put_callchain_buffers();
4805         }
4806
4807         perf_event_free_bpf_prog(event);
4808         perf_addr_filters_splice(event, NULL);
4809         kfree(event->addr_filter_ranges);
4810
4811         if (event->destroy)
4812                 event->destroy(event);
4813
4814         /*
4815          * Must be after ->destroy(), due to uprobe_perf_close() using
4816          * hw.target.
4817          */
4818         if (event->hw.target)
4819                 put_task_struct(event->hw.target);
4820
4821         /*
4822          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4823          * all task references must be cleaned up.
4824          */
4825         if (event->ctx)
4826                 put_ctx(event->ctx);
4827
4828         exclusive_event_destroy(event);
4829         module_put(event->pmu->module);
4830
4831         call_rcu(&event->rcu_head, free_event_rcu);
4832 }
4833
4834 /*
4835  * Used to free events which have a known refcount of 1, such as in error paths
4836  * where the event isn't exposed yet and inherited events.
4837  */
4838 static void free_event(struct perf_event *event)
4839 {
4840         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4841                                 "unexpected event refcount: %ld; ptr=%p\n",
4842                                 atomic_long_read(&event->refcount), event)) {
4843                 /* leak to avoid use-after-free */
4844                 return;
4845         }
4846
4847         _free_event(event);
4848 }
4849
4850 /*
4851  * Remove user event from the owner task.
4852  */
4853 static void perf_remove_from_owner(struct perf_event *event)
4854 {
4855         struct task_struct *owner;
4856
4857         rcu_read_lock();
4858         /*
4859          * Matches the smp_store_release() in perf_event_exit_task(). If we
4860          * observe !owner it means the list deletion is complete and we can
4861          * indeed free this event, otherwise we need to serialize on
4862          * owner->perf_event_mutex.
4863          */
4864         owner = READ_ONCE(event->owner);
4865         if (owner) {
4866                 /*
4867                  * Since delayed_put_task_struct() also drops the last
4868                  * task reference we can safely take a new reference
4869                  * while holding the rcu_read_lock().
4870                  */
4871                 get_task_struct(owner);
4872         }
4873         rcu_read_unlock();
4874
4875         if (owner) {
4876                 /*
4877                  * If we're here through perf_event_exit_task() we're already
4878                  * holding ctx->mutex which would be an inversion wrt. the
4879                  * normal lock order.
4880                  *
4881                  * However we can safely take this lock because its the child
4882                  * ctx->mutex.
4883                  */
4884                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4885
4886                 /*
4887                  * We have to re-check the event->owner field, if it is cleared
4888                  * we raced with perf_event_exit_task(), acquiring the mutex
4889                  * ensured they're done, and we can proceed with freeing the
4890                  * event.
4891                  */
4892                 if (event->owner) {
4893                         list_del_init(&event->owner_entry);
4894                         smp_store_release(&event->owner, NULL);
4895                 }
4896                 mutex_unlock(&owner->perf_event_mutex);
4897                 put_task_struct(owner);
4898         }
4899 }
4900
4901 static void put_event(struct perf_event *event)
4902 {
4903         if (!atomic_long_dec_and_test(&event->refcount))
4904                 return;
4905
4906         _free_event(event);
4907 }
4908
4909 /*
4910  * Kill an event dead; while event:refcount will preserve the event
4911  * object, it will not preserve its functionality. Once the last 'user'
4912  * gives up the object, we'll destroy the thing.
4913  */
4914 int perf_event_release_kernel(struct perf_event *event)
4915 {
4916         struct perf_event_context *ctx = event->ctx;
4917         struct perf_event *child, *tmp;
4918         LIST_HEAD(free_list);
4919
4920         /*
4921          * If we got here through err_file: fput(event_file); we will not have
4922          * attached to a context yet.
4923          */
4924         if (!ctx) {
4925                 WARN_ON_ONCE(event->attach_state &
4926                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4927                 goto no_ctx;
4928         }
4929
4930         if (!is_kernel_event(event))
4931                 perf_remove_from_owner(event);
4932
4933         ctx = perf_event_ctx_lock(event);
4934         WARN_ON_ONCE(ctx->parent_ctx);
4935         perf_remove_from_context(event, DETACH_GROUP);
4936
4937         raw_spin_lock_irq(&ctx->lock);
4938         /*
4939          * Mark this event as STATE_DEAD, there is no external reference to it
4940          * anymore.
4941          *
4942          * Anybody acquiring event->child_mutex after the below loop _must_
4943          * also see this, most importantly inherit_event() which will avoid
4944          * placing more children on the list.
4945          *
4946          * Thus this guarantees that we will in fact observe and kill _ALL_
4947          * child events.
4948          */
4949         event->state = PERF_EVENT_STATE_DEAD;
4950         raw_spin_unlock_irq(&ctx->lock);
4951
4952         perf_event_ctx_unlock(event, ctx);
4953
4954 again:
4955         mutex_lock(&event->child_mutex);
4956         list_for_each_entry(child, &event->child_list, child_list) {
4957
4958                 /*
4959                  * Cannot change, child events are not migrated, see the
4960                  * comment with perf_event_ctx_lock_nested().
4961                  */
4962                 ctx = READ_ONCE(child->ctx);
4963                 /*
4964                  * Since child_mutex nests inside ctx::mutex, we must jump
4965                  * through hoops. We start by grabbing a reference on the ctx.
4966                  *
4967                  * Since the event cannot get freed while we hold the
4968                  * child_mutex, the context must also exist and have a !0
4969                  * reference count.
4970                  */
4971                 get_ctx(ctx);
4972
4973                 /*
4974                  * Now that we have a ctx ref, we can drop child_mutex, and
4975                  * acquire ctx::mutex without fear of it going away. Then we
4976                  * can re-acquire child_mutex.
4977                  */
4978                 mutex_unlock(&event->child_mutex);
4979                 mutex_lock(&ctx->mutex);
4980                 mutex_lock(&event->child_mutex);
4981
4982                 /*
4983                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4984                  * state, if child is still the first entry, it didn't get freed
4985                  * and we can continue doing so.
4986                  */
4987                 tmp = list_first_entry_or_null(&event->child_list,
4988                                                struct perf_event, child_list);
4989                 if (tmp == child) {
4990                         perf_remove_from_context(child, DETACH_GROUP);
4991                         list_move(&child->child_list, &free_list);
4992                         /*
4993                          * This matches the refcount bump in inherit_event();
4994                          * this can't be the last reference.
4995                          */
4996                         put_event(event);
4997                 }
4998
4999                 mutex_unlock(&event->child_mutex);
5000                 mutex_unlock(&ctx->mutex);
5001                 put_ctx(ctx);
5002                 goto again;
5003         }
5004         mutex_unlock(&event->child_mutex);
5005
5006         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5007                 void *var = &child->ctx->refcount;
5008
5009                 list_del(&child->child_list);
5010                 free_event(child);
5011
5012                 /*
5013                  * Wake any perf_event_free_task() waiting for this event to be
5014                  * freed.
5015                  */
5016                 smp_mb(); /* pairs with wait_var_event() */
5017                 wake_up_var(var);
5018         }
5019
5020 no_ctx:
5021         put_event(event); /* Must be the 'last' reference */
5022         return 0;
5023 }
5024 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5025
5026 /*
5027  * Called when the last reference to the file is gone.
5028  */
5029 static int perf_release(struct inode *inode, struct file *file)
5030 {
5031         perf_event_release_kernel(file->private_data);
5032         return 0;
5033 }
5034
5035 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5036 {
5037         struct perf_event *child;
5038         u64 total = 0;
5039
5040         *enabled = 0;
5041         *running = 0;
5042
5043         mutex_lock(&event->child_mutex);
5044
5045         (void)perf_event_read(event, false);
5046         total += perf_event_count(event);
5047
5048         *enabled += event->total_time_enabled +
5049                         atomic64_read(&event->child_total_time_enabled);
5050         *running += event->total_time_running +
5051                         atomic64_read(&event->child_total_time_running);
5052
5053         list_for_each_entry(child, &event->child_list, child_list) {
5054                 (void)perf_event_read(child, false);
5055                 total += perf_event_count(child);
5056                 *enabled += child->total_time_enabled;
5057                 *running += child->total_time_running;
5058         }
5059         mutex_unlock(&event->child_mutex);
5060
5061         return total;
5062 }
5063
5064 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5065 {
5066         struct perf_event_context *ctx;
5067         u64 count;
5068
5069         ctx = perf_event_ctx_lock(event);
5070         count = __perf_event_read_value(event, enabled, running);
5071         perf_event_ctx_unlock(event, ctx);
5072
5073         return count;
5074 }
5075 EXPORT_SYMBOL_GPL(perf_event_read_value);
5076
5077 static int __perf_read_group_add(struct perf_event *leader,
5078                                         u64 read_format, u64 *values)
5079 {
5080         struct perf_event_context *ctx = leader->ctx;
5081         struct perf_event *sub;
5082         unsigned long flags;
5083         int n = 1; /* skip @nr */
5084         int ret;
5085
5086         ret = perf_event_read(leader, true);
5087         if (ret)
5088                 return ret;
5089
5090         raw_spin_lock_irqsave(&ctx->lock, flags);
5091
5092         /*
5093          * Since we co-schedule groups, {enabled,running} times of siblings
5094          * will be identical to those of the leader, so we only publish one
5095          * set.
5096          */
5097         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5098                 values[n++] += leader->total_time_enabled +
5099                         atomic64_read(&leader->child_total_time_enabled);
5100         }
5101
5102         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5103                 values[n++] += leader->total_time_running +
5104                         atomic64_read(&leader->child_total_time_running);
5105         }
5106
5107         /*
5108          * Write {count,id} tuples for every sibling.
5109          */
5110         values[n++] += perf_event_count(leader);
5111         if (read_format & PERF_FORMAT_ID)
5112                 values[n++] = primary_event_id(leader);
5113
5114         for_each_sibling_event(sub, leader) {
5115                 values[n++] += perf_event_count(sub);
5116                 if (read_format & PERF_FORMAT_ID)
5117                         values[n++] = primary_event_id(sub);
5118         }
5119
5120         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5121         return 0;
5122 }
5123
5124 static int perf_read_group(struct perf_event *event,
5125                                    u64 read_format, char __user *buf)
5126 {
5127         struct perf_event *leader = event->group_leader, *child;
5128         struct perf_event_context *ctx = leader->ctx;
5129         int ret;
5130         u64 *values;
5131
5132         lockdep_assert_held(&ctx->mutex);
5133
5134         values = kzalloc(event->read_size, GFP_KERNEL);
5135         if (!values)
5136                 return -ENOMEM;
5137
5138         values[0] = 1 + leader->nr_siblings;
5139
5140         /*
5141          * By locking the child_mutex of the leader we effectively
5142          * lock the child list of all siblings.. XXX explain how.
5143          */
5144         mutex_lock(&leader->child_mutex);
5145
5146         ret = __perf_read_group_add(leader, read_format, values);
5147         if (ret)
5148                 goto unlock;
5149
5150         list_for_each_entry(child, &leader->child_list, child_list) {
5151                 ret = __perf_read_group_add(child, read_format, values);
5152                 if (ret)
5153                         goto unlock;
5154         }
5155
5156         mutex_unlock(&leader->child_mutex);
5157
5158         ret = event->read_size;
5159         if (copy_to_user(buf, values, event->read_size))
5160                 ret = -EFAULT;
5161         goto out;
5162
5163 unlock:
5164         mutex_unlock(&leader->child_mutex);
5165 out:
5166         kfree(values);
5167         return ret;
5168 }
5169
5170 static int perf_read_one(struct perf_event *event,
5171                                  u64 read_format, char __user *buf)
5172 {
5173         u64 enabled, running;
5174         u64 values[4];
5175         int n = 0;
5176
5177         values[n++] = __perf_event_read_value(event, &enabled, &running);
5178         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5179                 values[n++] = enabled;
5180         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5181                 values[n++] = running;
5182         if (read_format & PERF_FORMAT_ID)
5183                 values[n++] = primary_event_id(event);
5184
5185         if (copy_to_user(buf, values, n * sizeof(u64)))
5186                 return -EFAULT;
5187
5188         return n * sizeof(u64);
5189 }
5190
5191 static bool is_event_hup(struct perf_event *event)
5192 {
5193         bool no_children;
5194
5195         if (event->state > PERF_EVENT_STATE_EXIT)
5196                 return false;
5197
5198         mutex_lock(&event->child_mutex);
5199         no_children = list_empty(&event->child_list);
5200         mutex_unlock(&event->child_mutex);
5201         return no_children;
5202 }
5203
5204 /*
5205  * Read the performance event - simple non blocking version for now
5206  */
5207 static ssize_t
5208 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5209 {
5210         u64 read_format = event->attr.read_format;
5211         int ret;
5212
5213         /*
5214          * Return end-of-file for a read on an event that is in
5215          * error state (i.e. because it was pinned but it couldn't be
5216          * scheduled on to the CPU at some point).
5217          */
5218         if (event->state == PERF_EVENT_STATE_ERROR)
5219                 return 0;
5220
5221         if (count < event->read_size)
5222                 return -ENOSPC;
5223
5224         WARN_ON_ONCE(event->ctx->parent_ctx);
5225         if (read_format & PERF_FORMAT_GROUP)
5226                 ret = perf_read_group(event, read_format, buf);
5227         else
5228                 ret = perf_read_one(event, read_format, buf);
5229
5230         return ret;
5231 }
5232
5233 static ssize_t
5234 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5235 {
5236         struct perf_event *event = file->private_data;
5237         struct perf_event_context *ctx;
5238         int ret;
5239
5240         ret = security_perf_event_read(event);
5241         if (ret)
5242                 return ret;
5243
5244         ctx = perf_event_ctx_lock(event);
5245         ret = __perf_read(event, buf, count);
5246         perf_event_ctx_unlock(event, ctx);
5247
5248         return ret;
5249 }
5250
5251 static __poll_t perf_poll(struct file *file, poll_table *wait)
5252 {
5253         struct perf_event *event = file->private_data;
5254         struct perf_buffer *rb;
5255         __poll_t events = EPOLLHUP;
5256
5257         poll_wait(file, &event->waitq, wait);
5258
5259         if (is_event_hup(event))
5260                 return events;
5261
5262         /*
5263          * Pin the event->rb by taking event->mmap_mutex; otherwise
5264          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5265          */
5266         mutex_lock(&event->mmap_mutex);
5267         rb = event->rb;
5268         if (rb)
5269                 events = atomic_xchg(&rb->poll, 0);
5270         mutex_unlock(&event->mmap_mutex);
5271         return events;
5272 }
5273
5274 static void _perf_event_reset(struct perf_event *event)
5275 {
5276         (void)perf_event_read(event, false);
5277         local64_set(&event->count, 0);
5278         perf_event_update_userpage(event);
5279 }
5280
5281 /* Assume it's not an event with inherit set. */
5282 u64 perf_event_pause(struct perf_event *event, bool reset)
5283 {
5284         struct perf_event_context *ctx;
5285         u64 count;
5286
5287         ctx = perf_event_ctx_lock(event);
5288         WARN_ON_ONCE(event->attr.inherit);
5289         _perf_event_disable(event);
5290         count = local64_read(&event->count);
5291         if (reset)
5292                 local64_set(&event->count, 0);
5293         perf_event_ctx_unlock(event, ctx);
5294
5295         return count;
5296 }
5297 EXPORT_SYMBOL_GPL(perf_event_pause);
5298
5299 /*
5300  * Holding the top-level event's child_mutex means that any
5301  * descendant process that has inherited this event will block
5302  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5303  * task existence requirements of perf_event_enable/disable.
5304  */
5305 static void perf_event_for_each_child(struct perf_event *event,
5306                                         void (*func)(struct perf_event *))
5307 {
5308         struct perf_event *child;
5309
5310         WARN_ON_ONCE(event->ctx->parent_ctx);
5311
5312         mutex_lock(&event->child_mutex);
5313         func(event);
5314         list_for_each_entry(child, &event->child_list, child_list)
5315                 func(child);
5316         mutex_unlock(&event->child_mutex);
5317 }
5318
5319 static void perf_event_for_each(struct perf_event *event,
5320                                   void (*func)(struct perf_event *))
5321 {
5322         struct perf_event_context *ctx = event->ctx;
5323         struct perf_event *sibling;
5324
5325         lockdep_assert_held(&ctx->mutex);
5326
5327         event = event->group_leader;
5328
5329         perf_event_for_each_child(event, func);
5330         for_each_sibling_event(sibling, event)
5331                 perf_event_for_each_child(sibling, func);
5332 }
5333
5334 static void __perf_event_period(struct perf_event *event,
5335                                 struct perf_cpu_context *cpuctx,
5336                                 struct perf_event_context *ctx,
5337                                 void *info)
5338 {
5339         u64 value = *((u64 *)info);
5340         bool active;
5341
5342         if (event->attr.freq) {
5343                 event->attr.sample_freq = value;
5344         } else {
5345                 event->attr.sample_period = value;
5346                 event->hw.sample_period = value;
5347         }
5348
5349         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5350         if (active) {
5351                 perf_pmu_disable(ctx->pmu);
5352                 /*
5353                  * We could be throttled; unthrottle now to avoid the tick
5354                  * trying to unthrottle while we already re-started the event.
5355                  */
5356                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5357                         event->hw.interrupts = 0;
5358                         perf_log_throttle(event, 1);
5359                 }
5360                 event->pmu->stop(event, PERF_EF_UPDATE);
5361         }
5362
5363         local64_set(&event->hw.period_left, 0);
5364
5365         if (active) {
5366                 event->pmu->start(event, PERF_EF_RELOAD);
5367                 perf_pmu_enable(ctx->pmu);
5368         }
5369 }
5370
5371 static int perf_event_check_period(struct perf_event *event, u64 value)
5372 {
5373         return event->pmu->check_period(event, value);
5374 }
5375
5376 static int _perf_event_period(struct perf_event *event, u64 value)
5377 {
5378         if (!is_sampling_event(event))
5379                 return -EINVAL;
5380
5381         if (!value)
5382                 return -EINVAL;
5383
5384         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5385                 return -EINVAL;
5386
5387         if (perf_event_check_period(event, value))
5388                 return -EINVAL;
5389
5390         if (!event->attr.freq && (value & (1ULL << 63)))
5391                 return -EINVAL;
5392
5393         event_function_call(event, __perf_event_period, &value);
5394
5395         return 0;
5396 }
5397
5398 int perf_event_period(struct perf_event *event, u64 value)
5399 {
5400         struct perf_event_context *ctx;
5401         int ret;
5402
5403         ctx = perf_event_ctx_lock(event);
5404         ret = _perf_event_period(event, value);
5405         perf_event_ctx_unlock(event, ctx);
5406
5407         return ret;
5408 }
5409 EXPORT_SYMBOL_GPL(perf_event_period);
5410
5411 static const struct file_operations perf_fops;
5412
5413 static inline int perf_fget_light(int fd, struct fd *p)
5414 {
5415         struct fd f = fdget(fd);
5416         if (!f.file)
5417                 return -EBADF;
5418
5419         if (f.file->f_op != &perf_fops) {
5420                 fdput(f);
5421                 return -EBADF;
5422         }
5423         *p = f;
5424         return 0;
5425 }
5426
5427 static int perf_event_set_output(struct perf_event *event,
5428                                  struct perf_event *output_event);
5429 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5430 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5431 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5432                           struct perf_event_attr *attr);
5433
5434 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5435 {
5436         void (*func)(struct perf_event *);
5437         u32 flags = arg;
5438
5439         switch (cmd) {
5440         case PERF_EVENT_IOC_ENABLE:
5441                 func = _perf_event_enable;
5442                 break;
5443         case PERF_EVENT_IOC_DISABLE:
5444                 func = _perf_event_disable;
5445                 break;
5446         case PERF_EVENT_IOC_RESET:
5447                 func = _perf_event_reset;
5448                 break;
5449
5450         case PERF_EVENT_IOC_REFRESH:
5451                 return _perf_event_refresh(event, arg);
5452
5453         case PERF_EVENT_IOC_PERIOD:
5454         {
5455                 u64 value;
5456
5457                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5458                         return -EFAULT;
5459
5460                 return _perf_event_period(event, value);
5461         }
5462         case PERF_EVENT_IOC_ID:
5463         {
5464                 u64 id = primary_event_id(event);
5465
5466                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5467                         return -EFAULT;
5468                 return 0;
5469         }
5470
5471         case PERF_EVENT_IOC_SET_OUTPUT:
5472         {
5473                 int ret;
5474                 if (arg != -1) {
5475                         struct perf_event *output_event;
5476                         struct fd output;
5477                         ret = perf_fget_light(arg, &output);
5478                         if (ret)
5479                                 return ret;
5480                         output_event = output.file->private_data;
5481                         ret = perf_event_set_output(event, output_event);
5482                         fdput(output);
5483                 } else {
5484                         ret = perf_event_set_output(event, NULL);
5485                 }
5486                 return ret;
5487         }
5488
5489         case PERF_EVENT_IOC_SET_FILTER:
5490                 return perf_event_set_filter(event, (void __user *)arg);
5491
5492         case PERF_EVENT_IOC_SET_BPF:
5493                 return perf_event_set_bpf_prog(event, arg);
5494
5495         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5496                 struct perf_buffer *rb;
5497
5498                 rcu_read_lock();
5499                 rb = rcu_dereference(event->rb);
5500                 if (!rb || !rb->nr_pages) {
5501                         rcu_read_unlock();
5502                         return -EINVAL;
5503                 }
5504                 rb_toggle_paused(rb, !!arg);
5505                 rcu_read_unlock();
5506                 return 0;
5507         }
5508
5509         case PERF_EVENT_IOC_QUERY_BPF:
5510                 return perf_event_query_prog_array(event, (void __user *)arg);
5511
5512         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5513                 struct perf_event_attr new_attr;
5514                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5515                                          &new_attr);
5516
5517                 if (err)
5518                         return err;
5519
5520                 return perf_event_modify_attr(event,  &new_attr);
5521         }
5522         default:
5523                 return -ENOTTY;
5524         }
5525
5526         if (flags & PERF_IOC_FLAG_GROUP)
5527                 perf_event_for_each(event, func);
5528         else
5529                 perf_event_for_each_child(event, func);
5530
5531         return 0;
5532 }
5533
5534 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5535 {
5536         struct perf_event *event = file->private_data;
5537         struct perf_event_context *ctx;
5538         long ret;
5539
5540         /* Treat ioctl like writes as it is likely a mutating operation. */
5541         ret = security_perf_event_write(event);
5542         if (ret)
5543                 return ret;
5544
5545         ctx = perf_event_ctx_lock(event);
5546         ret = _perf_ioctl(event, cmd, arg);
5547         perf_event_ctx_unlock(event, ctx);
5548
5549         return ret;
5550 }
5551
5552 #ifdef CONFIG_COMPAT
5553 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5554                                 unsigned long arg)
5555 {
5556         switch (_IOC_NR(cmd)) {
5557         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5558         case _IOC_NR(PERF_EVENT_IOC_ID):
5559         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5560         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5561                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5562                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5563                         cmd &= ~IOCSIZE_MASK;
5564                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5565                 }
5566                 break;
5567         }
5568         return perf_ioctl(file, cmd, arg);
5569 }
5570 #else
5571 # define perf_compat_ioctl NULL
5572 #endif
5573
5574 int perf_event_task_enable(void)
5575 {
5576         struct perf_event_context *ctx;
5577         struct perf_event *event;
5578
5579         mutex_lock(&current->perf_event_mutex);
5580         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5581                 ctx = perf_event_ctx_lock(event);
5582                 perf_event_for_each_child(event, _perf_event_enable);
5583                 perf_event_ctx_unlock(event, ctx);
5584         }
5585         mutex_unlock(&current->perf_event_mutex);
5586
5587         return 0;
5588 }
5589
5590 int perf_event_task_disable(void)
5591 {
5592         struct perf_event_context *ctx;
5593         struct perf_event *event;
5594
5595         mutex_lock(&current->perf_event_mutex);
5596         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5597                 ctx = perf_event_ctx_lock(event);
5598                 perf_event_for_each_child(event, _perf_event_disable);
5599                 perf_event_ctx_unlock(event, ctx);
5600         }
5601         mutex_unlock(&current->perf_event_mutex);
5602
5603         return 0;
5604 }
5605
5606 static int perf_event_index(struct perf_event *event)
5607 {
5608         if (event->hw.state & PERF_HES_STOPPED)
5609                 return 0;
5610
5611         if (event->state != PERF_EVENT_STATE_ACTIVE)
5612                 return 0;
5613
5614         return event->pmu->event_idx(event);
5615 }
5616
5617 static void calc_timer_values(struct perf_event *event,
5618                                 u64 *now,
5619                                 u64 *enabled,
5620                                 u64 *running)
5621 {
5622         u64 ctx_time;
5623
5624         *now = perf_clock();
5625         ctx_time = event->shadow_ctx_time + *now;
5626         __perf_update_times(event, ctx_time, enabled, running);
5627 }
5628
5629 static void perf_event_init_userpage(struct perf_event *event)
5630 {
5631         struct perf_event_mmap_page *userpg;
5632         struct perf_buffer *rb;
5633
5634         rcu_read_lock();
5635         rb = rcu_dereference(event->rb);
5636         if (!rb)
5637                 goto unlock;
5638
5639         userpg = rb->user_page;
5640
5641         /* Allow new userspace to detect that bit 0 is deprecated */
5642         userpg->cap_bit0_is_deprecated = 1;
5643         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5644         userpg->data_offset = PAGE_SIZE;
5645         userpg->data_size = perf_data_size(rb);
5646
5647 unlock:
5648         rcu_read_unlock();
5649 }
5650
5651 void __weak arch_perf_update_userpage(
5652         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5653 {
5654 }
5655
5656 /*
5657  * Callers need to ensure there can be no nesting of this function, otherwise
5658  * the seqlock logic goes bad. We can not serialize this because the arch
5659  * code calls this from NMI context.
5660  */
5661 void perf_event_update_userpage(struct perf_event *event)
5662 {
5663         struct perf_event_mmap_page *userpg;
5664         struct perf_buffer *rb;
5665         u64 enabled, running, now;
5666
5667         rcu_read_lock();
5668         rb = rcu_dereference(event->rb);
5669         if (!rb)
5670                 goto unlock;
5671
5672         /*
5673          * compute total_time_enabled, total_time_running
5674          * based on snapshot values taken when the event
5675          * was last scheduled in.
5676          *
5677          * we cannot simply called update_context_time()
5678          * because of locking issue as we can be called in
5679          * NMI context
5680          */
5681         calc_timer_values(event, &now, &enabled, &running);
5682
5683         userpg = rb->user_page;
5684         /*
5685          * Disable preemption to guarantee consistent time stamps are stored to
5686          * the user page.
5687          */
5688         preempt_disable();
5689         ++userpg->lock;
5690         barrier();
5691         userpg->index = perf_event_index(event);
5692         userpg->offset = perf_event_count(event);
5693         if (userpg->index)
5694                 userpg->offset -= local64_read(&event->hw.prev_count);
5695
5696         userpg->time_enabled = enabled +
5697                         atomic64_read(&event->child_total_time_enabled);
5698
5699         userpg->time_running = running +
5700                         atomic64_read(&event->child_total_time_running);
5701
5702         arch_perf_update_userpage(event, userpg, now);
5703
5704         barrier();
5705         ++userpg->lock;
5706         preempt_enable();
5707 unlock:
5708         rcu_read_unlock();
5709 }
5710 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5711
5712 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5713 {
5714         struct perf_event *event = vmf->vma->vm_file->private_data;
5715         struct perf_buffer *rb;
5716         vm_fault_t ret = VM_FAULT_SIGBUS;
5717
5718         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5719                 if (vmf->pgoff == 0)
5720                         ret = 0;
5721                 return ret;
5722         }
5723
5724         rcu_read_lock();
5725         rb = rcu_dereference(event->rb);
5726         if (!rb)
5727                 goto unlock;
5728
5729         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5730                 goto unlock;
5731
5732         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5733         if (!vmf->page)
5734                 goto unlock;
5735
5736         get_page(vmf->page);
5737         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5738         vmf->page->index   = vmf->pgoff;
5739
5740         ret = 0;
5741 unlock:
5742         rcu_read_unlock();
5743
5744         return ret;
5745 }
5746
5747 static void ring_buffer_attach(struct perf_event *event,
5748                                struct perf_buffer *rb)
5749 {
5750         struct perf_buffer *old_rb = NULL;
5751         unsigned long flags;
5752
5753         if (event->rb) {
5754                 /*
5755                  * Should be impossible, we set this when removing
5756                  * event->rb_entry and wait/clear when adding event->rb_entry.
5757                  */
5758                 WARN_ON_ONCE(event->rcu_pending);
5759
5760                 old_rb = event->rb;
5761                 spin_lock_irqsave(&old_rb->event_lock, flags);
5762                 list_del_rcu(&event->rb_entry);
5763                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5764
5765                 event->rcu_batches = get_state_synchronize_rcu();
5766                 event->rcu_pending = 1;
5767         }
5768
5769         if (rb) {
5770                 if (event->rcu_pending) {
5771                         cond_synchronize_rcu(event->rcu_batches);
5772                         event->rcu_pending = 0;
5773                 }
5774
5775                 spin_lock_irqsave(&rb->event_lock, flags);
5776                 list_add_rcu(&event->rb_entry, &rb->event_list);
5777                 spin_unlock_irqrestore(&rb->event_lock, flags);
5778         }
5779
5780         /*
5781          * Avoid racing with perf_mmap_close(AUX): stop the event
5782          * before swizzling the event::rb pointer; if it's getting
5783          * unmapped, its aux_mmap_count will be 0 and it won't
5784          * restart. See the comment in __perf_pmu_output_stop().
5785          *
5786          * Data will inevitably be lost when set_output is done in
5787          * mid-air, but then again, whoever does it like this is
5788          * not in for the data anyway.
5789          */
5790         if (has_aux(event))
5791                 perf_event_stop(event, 0);
5792
5793         rcu_assign_pointer(event->rb, rb);
5794
5795         if (old_rb) {
5796                 ring_buffer_put(old_rb);
5797                 /*
5798                  * Since we detached before setting the new rb, so that we
5799                  * could attach the new rb, we could have missed a wakeup.
5800                  * Provide it now.
5801                  */
5802                 wake_up_all(&event->waitq);
5803         }
5804 }
5805
5806 static void ring_buffer_wakeup(struct perf_event *event)
5807 {
5808         struct perf_buffer *rb;
5809
5810         rcu_read_lock();
5811         rb = rcu_dereference(event->rb);
5812         if (rb) {
5813                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5814                         wake_up_all(&event->waitq);
5815         }
5816         rcu_read_unlock();
5817 }
5818
5819 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5820 {
5821         struct perf_buffer *rb;
5822
5823         rcu_read_lock();
5824         rb = rcu_dereference(event->rb);
5825         if (rb) {
5826                 if (!refcount_inc_not_zero(&rb->refcount))
5827                         rb = NULL;
5828         }
5829         rcu_read_unlock();
5830
5831         return rb;
5832 }
5833
5834 void ring_buffer_put(struct perf_buffer *rb)
5835 {
5836         if (!refcount_dec_and_test(&rb->refcount))
5837                 return;
5838
5839         WARN_ON_ONCE(!list_empty(&rb->event_list));
5840
5841         call_rcu(&rb->rcu_head, rb_free_rcu);
5842 }
5843
5844 static void perf_mmap_open(struct vm_area_struct *vma)
5845 {
5846         struct perf_event *event = vma->vm_file->private_data;
5847
5848         atomic_inc(&event->mmap_count);
5849         atomic_inc(&event->rb->mmap_count);
5850
5851         if (vma->vm_pgoff)
5852                 atomic_inc(&event->rb->aux_mmap_count);
5853
5854         if (event->pmu->event_mapped)
5855                 event->pmu->event_mapped(event, vma->vm_mm);
5856 }
5857
5858 static void perf_pmu_output_stop(struct perf_event *event);
5859
5860 /*
5861  * A buffer can be mmap()ed multiple times; either directly through the same
5862  * event, or through other events by use of perf_event_set_output().
5863  *
5864  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5865  * the buffer here, where we still have a VM context. This means we need
5866  * to detach all events redirecting to us.
5867  */
5868 static void perf_mmap_close(struct vm_area_struct *vma)
5869 {
5870         struct perf_event *event = vma->vm_file->private_data;
5871
5872         struct perf_buffer *rb = ring_buffer_get(event);
5873         struct user_struct *mmap_user = rb->mmap_user;
5874         int mmap_locked = rb->mmap_locked;
5875         unsigned long size = perf_data_size(rb);
5876
5877         if (event->pmu->event_unmapped)
5878                 event->pmu->event_unmapped(event, vma->vm_mm);
5879
5880         /*
5881          * rb->aux_mmap_count will always drop before rb->mmap_count and
5882          * event->mmap_count, so it is ok to use event->mmap_mutex to
5883          * serialize with perf_mmap here.
5884          */
5885         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5886             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5887                 /*
5888                  * Stop all AUX events that are writing to this buffer,
5889                  * so that we can free its AUX pages and corresponding PMU
5890                  * data. Note that after rb::aux_mmap_count dropped to zero,
5891                  * they won't start any more (see perf_aux_output_begin()).
5892                  */
5893                 perf_pmu_output_stop(event);
5894
5895                 /* now it's safe to free the pages */
5896                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5897                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5898
5899                 /* this has to be the last one */
5900                 rb_free_aux(rb);
5901                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5902
5903                 mutex_unlock(&event->mmap_mutex);
5904         }
5905
5906         atomic_dec(&rb->mmap_count);
5907
5908         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5909                 goto out_put;
5910
5911         ring_buffer_attach(event, NULL);
5912         mutex_unlock(&event->mmap_mutex);
5913
5914         /* If there's still other mmap()s of this buffer, we're done. */
5915         if (atomic_read(&rb->mmap_count))
5916                 goto out_put;
5917
5918         /*
5919          * No other mmap()s, detach from all other events that might redirect
5920          * into the now unreachable buffer. Somewhat complicated by the
5921          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5922          */
5923 again:
5924         rcu_read_lock();
5925         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5926                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5927                         /*
5928                          * This event is en-route to free_event() which will
5929                          * detach it and remove it from the list.
5930                          */
5931                         continue;
5932                 }
5933                 rcu_read_unlock();
5934
5935                 mutex_lock(&event->mmap_mutex);
5936                 /*
5937                  * Check we didn't race with perf_event_set_output() which can
5938                  * swizzle the rb from under us while we were waiting to
5939                  * acquire mmap_mutex.
5940                  *
5941                  * If we find a different rb; ignore this event, a next
5942                  * iteration will no longer find it on the list. We have to
5943                  * still restart the iteration to make sure we're not now
5944                  * iterating the wrong list.
5945                  */
5946                 if (event->rb == rb)
5947                         ring_buffer_attach(event, NULL);
5948
5949                 mutex_unlock(&event->mmap_mutex);
5950                 put_event(event);
5951
5952                 /*
5953                  * Restart the iteration; either we're on the wrong list or
5954                  * destroyed its integrity by doing a deletion.
5955                  */
5956                 goto again;
5957         }
5958         rcu_read_unlock();
5959
5960         /*
5961          * It could be there's still a few 0-ref events on the list; they'll
5962          * get cleaned up by free_event() -- they'll also still have their
5963          * ref on the rb and will free it whenever they are done with it.
5964          *
5965          * Aside from that, this buffer is 'fully' detached and unmapped,
5966          * undo the VM accounting.
5967          */
5968
5969         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5970                         &mmap_user->locked_vm);
5971         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5972         free_uid(mmap_user);
5973
5974 out_put:
5975         ring_buffer_put(rb); /* could be last */
5976 }
5977
5978 static const struct vm_operations_struct perf_mmap_vmops = {
5979         .open           = perf_mmap_open,
5980         .close          = perf_mmap_close, /* non mergeable */
5981         .fault          = perf_mmap_fault,
5982         .page_mkwrite   = perf_mmap_fault,
5983 };
5984
5985 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5986 {
5987         struct perf_event *event = file->private_data;
5988         unsigned long user_locked, user_lock_limit;
5989         struct user_struct *user = current_user();
5990         struct perf_buffer *rb = NULL;
5991         unsigned long locked, lock_limit;
5992         unsigned long vma_size;
5993         unsigned long nr_pages;
5994         long user_extra = 0, extra = 0;
5995         int ret = 0, flags = 0;
5996
5997         /*
5998          * Don't allow mmap() of inherited per-task counters. This would
5999          * create a performance issue due to all children writing to the
6000          * same rb.
6001          */
6002         if (event->cpu == -1 && event->attr.inherit)
6003                 return -EINVAL;
6004
6005         if (!(vma->vm_flags & VM_SHARED))
6006                 return -EINVAL;
6007
6008         ret = security_perf_event_read(event);
6009         if (ret)
6010                 return ret;
6011
6012         vma_size = vma->vm_end - vma->vm_start;
6013
6014         if (vma->vm_pgoff == 0) {
6015                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6016         } else {
6017                 /*
6018                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6019                  * mapped, all subsequent mappings should have the same size
6020                  * and offset. Must be above the normal perf buffer.
6021                  */
6022                 u64 aux_offset, aux_size;
6023
6024                 if (!event->rb)
6025                         return -EINVAL;
6026
6027                 nr_pages = vma_size / PAGE_SIZE;
6028
6029                 mutex_lock(&event->mmap_mutex);
6030                 ret = -EINVAL;
6031
6032                 rb = event->rb;
6033                 if (!rb)
6034                         goto aux_unlock;
6035
6036                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6037                 aux_size = READ_ONCE(rb->user_page->aux_size);
6038
6039                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6040                         goto aux_unlock;
6041
6042                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6043                         goto aux_unlock;
6044
6045                 /* already mapped with a different offset */
6046                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6047                         goto aux_unlock;
6048
6049                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6050                         goto aux_unlock;
6051
6052                 /* already mapped with a different size */
6053                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6054                         goto aux_unlock;
6055
6056                 if (!is_power_of_2(nr_pages))
6057                         goto aux_unlock;
6058
6059                 if (!atomic_inc_not_zero(&rb->mmap_count))
6060                         goto aux_unlock;
6061
6062                 if (rb_has_aux(rb)) {
6063                         atomic_inc(&rb->aux_mmap_count);
6064                         ret = 0;
6065                         goto unlock;
6066                 }
6067
6068                 atomic_set(&rb->aux_mmap_count, 1);
6069                 user_extra = nr_pages;
6070
6071                 goto accounting;
6072         }
6073
6074         /*
6075          * If we have rb pages ensure they're a power-of-two number, so we
6076          * can do bitmasks instead of modulo.
6077          */
6078         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6079                 return -EINVAL;
6080
6081         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6082                 return -EINVAL;
6083
6084         WARN_ON_ONCE(event->ctx->parent_ctx);
6085 again:
6086         mutex_lock(&event->mmap_mutex);
6087         if (event->rb) {
6088                 if (event->rb->nr_pages != nr_pages) {
6089                         ret = -EINVAL;
6090                         goto unlock;
6091                 }
6092
6093                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6094                         /*
6095                          * Raced against perf_mmap_close() through
6096                          * perf_event_set_output(). Try again, hope for better
6097                          * luck.
6098                          */
6099                         mutex_unlock(&event->mmap_mutex);
6100                         goto again;
6101                 }
6102
6103                 goto unlock;
6104         }
6105
6106         user_extra = nr_pages + 1;
6107
6108 accounting:
6109         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6110
6111         /*
6112          * Increase the limit linearly with more CPUs:
6113          */
6114         user_lock_limit *= num_online_cpus();
6115
6116         user_locked = atomic_long_read(&user->locked_vm);
6117
6118         /*
6119          * sysctl_perf_event_mlock may have changed, so that
6120          *     user->locked_vm > user_lock_limit
6121          */
6122         if (user_locked > user_lock_limit)
6123                 user_locked = user_lock_limit;
6124         user_locked += user_extra;
6125
6126         if (user_locked > user_lock_limit) {
6127                 /*
6128                  * charge locked_vm until it hits user_lock_limit;
6129                  * charge the rest from pinned_vm
6130                  */
6131                 extra = user_locked - user_lock_limit;
6132                 user_extra -= extra;
6133         }
6134
6135         lock_limit = rlimit(RLIMIT_MEMLOCK);
6136         lock_limit >>= PAGE_SHIFT;
6137         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6138
6139         if ((locked > lock_limit) && perf_is_paranoid() &&
6140                 !capable(CAP_IPC_LOCK)) {
6141                 ret = -EPERM;
6142                 goto unlock;
6143         }
6144
6145         WARN_ON(!rb && event->rb);
6146
6147         if (vma->vm_flags & VM_WRITE)
6148                 flags |= RING_BUFFER_WRITABLE;
6149
6150         if (!rb) {
6151                 rb = rb_alloc(nr_pages,
6152                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6153                               event->cpu, flags);
6154
6155                 if (!rb) {
6156                         ret = -ENOMEM;
6157                         goto unlock;
6158                 }
6159
6160                 atomic_set(&rb->mmap_count, 1);
6161                 rb->mmap_user = get_current_user();
6162                 rb->mmap_locked = extra;
6163
6164                 ring_buffer_attach(event, rb);
6165
6166                 perf_event_init_userpage(event);
6167                 perf_event_update_userpage(event);
6168         } else {
6169                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6170                                    event->attr.aux_watermark, flags);
6171                 if (!ret)
6172                         rb->aux_mmap_locked = extra;
6173         }
6174
6175 unlock:
6176         if (!ret) {
6177                 atomic_long_add(user_extra, &user->locked_vm);
6178                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6179
6180                 atomic_inc(&event->mmap_count);
6181         } else if (rb) {
6182                 atomic_dec(&rb->mmap_count);
6183         }
6184 aux_unlock:
6185         mutex_unlock(&event->mmap_mutex);
6186
6187         /*
6188          * Since pinned accounting is per vm we cannot allow fork() to copy our
6189          * vma.
6190          */
6191         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6192         vma->vm_ops = &perf_mmap_vmops;
6193
6194         if (event->pmu->event_mapped)
6195                 event->pmu->event_mapped(event, vma->vm_mm);
6196
6197         return ret;
6198 }
6199
6200 static int perf_fasync(int fd, struct file *filp, int on)
6201 {
6202         struct inode *inode = file_inode(filp);
6203         struct perf_event *event = filp->private_data;
6204         int retval;
6205
6206         inode_lock(inode);
6207         retval = fasync_helper(fd, filp, on, &event->fasync);
6208         inode_unlock(inode);
6209
6210         if (retval < 0)
6211                 return retval;
6212
6213         return 0;
6214 }
6215
6216 static const struct file_operations perf_fops = {
6217         .llseek                 = no_llseek,
6218         .release                = perf_release,
6219         .read                   = perf_read,
6220         .poll                   = perf_poll,
6221         .unlocked_ioctl         = perf_ioctl,
6222         .compat_ioctl           = perf_compat_ioctl,
6223         .mmap                   = perf_mmap,
6224         .fasync                 = perf_fasync,
6225 };
6226
6227 /*
6228  * Perf event wakeup
6229  *
6230  * If there's data, ensure we set the poll() state and publish everything
6231  * to user-space before waking everybody up.
6232  */
6233
6234 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6235 {
6236         /* only the parent has fasync state */
6237         if (event->parent)
6238                 event = event->parent;
6239         return &event->fasync;
6240 }
6241
6242 void perf_event_wakeup(struct perf_event *event)
6243 {
6244         ring_buffer_wakeup(event);
6245
6246         if (event->pending_kill) {
6247                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6248                 event->pending_kill = 0;
6249         }
6250 }
6251
6252 static void perf_pending_event_disable(struct perf_event *event)
6253 {
6254         int cpu = READ_ONCE(event->pending_disable);
6255
6256         if (cpu < 0)
6257                 return;
6258
6259         if (cpu == smp_processor_id()) {
6260                 WRITE_ONCE(event->pending_disable, -1);
6261                 perf_event_disable_local(event);
6262                 return;
6263         }
6264
6265         /*
6266          *  CPU-A                       CPU-B
6267          *
6268          *  perf_event_disable_inatomic()
6269          *    @pending_disable = CPU-A;
6270          *    irq_work_queue();
6271          *
6272          *  sched-out
6273          *    @pending_disable = -1;
6274          *
6275          *                              sched-in
6276          *                              perf_event_disable_inatomic()
6277          *                                @pending_disable = CPU-B;
6278          *                                irq_work_queue(); // FAILS
6279          *
6280          *  irq_work_run()
6281          *    perf_pending_event()
6282          *
6283          * But the event runs on CPU-B and wants disabling there.
6284          */
6285         irq_work_queue_on(&event->pending, cpu);
6286 }
6287
6288 static void perf_pending_event(struct irq_work *entry)
6289 {
6290         struct perf_event *event = container_of(entry, struct perf_event, pending);
6291         int rctx;
6292
6293         rctx = perf_swevent_get_recursion_context();
6294         /*
6295          * If we 'fail' here, that's OK, it means recursion is already disabled
6296          * and we won't recurse 'further'.
6297          */
6298
6299         perf_pending_event_disable(event);
6300
6301         if (event->pending_wakeup) {
6302                 event->pending_wakeup = 0;
6303                 perf_event_wakeup(event);
6304         }
6305
6306         if (rctx >= 0)
6307                 perf_swevent_put_recursion_context(rctx);
6308 }
6309
6310 /*
6311  * We assume there is only KVM supporting the callbacks.
6312  * Later on, we might change it to a list if there is
6313  * another virtualization implementation supporting the callbacks.
6314  */
6315 struct perf_guest_info_callbacks *perf_guest_cbs;
6316
6317 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6318 {
6319         perf_guest_cbs = cbs;
6320         return 0;
6321 }
6322 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6323
6324 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6325 {
6326         perf_guest_cbs = NULL;
6327         return 0;
6328 }
6329 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6330
6331 static void
6332 perf_output_sample_regs(struct perf_output_handle *handle,
6333                         struct pt_regs *regs, u64 mask)
6334 {
6335         int bit;
6336         DECLARE_BITMAP(_mask, 64);
6337
6338         bitmap_from_u64(_mask, mask);
6339         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6340                 u64 val;
6341
6342                 val = perf_reg_value(regs, bit);
6343                 perf_output_put(handle, val);
6344         }
6345 }
6346
6347 static void perf_sample_regs_user(struct perf_regs *regs_user,
6348                                   struct pt_regs *regs,
6349                                   struct pt_regs *regs_user_copy)
6350 {
6351         if (user_mode(regs)) {
6352                 regs_user->abi = perf_reg_abi(current);
6353                 regs_user->regs = regs;
6354         } else if (!(current->flags & PF_KTHREAD)) {
6355                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6356         } else {
6357                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6358                 regs_user->regs = NULL;
6359         }
6360 }
6361
6362 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6363                                   struct pt_regs *regs)
6364 {
6365         regs_intr->regs = regs;
6366         regs_intr->abi  = perf_reg_abi(current);
6367 }
6368
6369
6370 /*
6371  * Get remaining task size from user stack pointer.
6372  *
6373  * It'd be better to take stack vma map and limit this more
6374  * precisely, but there's no way to get it safely under interrupt,
6375  * so using TASK_SIZE as limit.
6376  */
6377 static u64 perf_ustack_task_size(struct pt_regs *regs)
6378 {
6379         unsigned long addr = perf_user_stack_pointer(regs);
6380
6381         if (!addr || addr >= TASK_SIZE)
6382                 return 0;
6383
6384         return TASK_SIZE - addr;
6385 }
6386
6387 static u16
6388 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6389                         struct pt_regs *regs)
6390 {
6391         u64 task_size;
6392
6393         /* No regs, no stack pointer, no dump. */
6394         if (!regs)
6395                 return 0;
6396
6397         /*
6398          * Check if we fit in with the requested stack size into the:
6399          * - TASK_SIZE
6400          *   If we don't, we limit the size to the TASK_SIZE.
6401          *
6402          * - remaining sample size
6403          *   If we don't, we customize the stack size to
6404          *   fit in to the remaining sample size.
6405          */
6406
6407         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6408         stack_size = min(stack_size, (u16) task_size);
6409
6410         /* Current header size plus static size and dynamic size. */
6411         header_size += 2 * sizeof(u64);
6412
6413         /* Do we fit in with the current stack dump size? */
6414         if ((u16) (header_size + stack_size) < header_size) {
6415                 /*
6416                  * If we overflow the maximum size for the sample,
6417                  * we customize the stack dump size to fit in.
6418                  */
6419                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6420                 stack_size = round_up(stack_size, sizeof(u64));
6421         }
6422
6423         return stack_size;
6424 }
6425
6426 static void
6427 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6428                           struct pt_regs *regs)
6429 {
6430         /* Case of a kernel thread, nothing to dump */
6431         if (!regs) {
6432                 u64 size = 0;
6433                 perf_output_put(handle, size);
6434         } else {
6435                 unsigned long sp;
6436                 unsigned int rem;
6437                 u64 dyn_size;
6438                 mm_segment_t fs;
6439
6440                 /*
6441                  * We dump:
6442                  * static size
6443                  *   - the size requested by user or the best one we can fit
6444                  *     in to the sample max size
6445                  * data
6446                  *   - user stack dump data
6447                  * dynamic size
6448                  *   - the actual dumped size
6449                  */
6450
6451                 /* Static size. */
6452                 perf_output_put(handle, dump_size);
6453
6454                 /* Data. */
6455                 sp = perf_user_stack_pointer(regs);
6456                 fs = force_uaccess_begin();
6457                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6458                 force_uaccess_end(fs);
6459                 dyn_size = dump_size - rem;
6460
6461                 perf_output_skip(handle, rem);
6462
6463                 /* Dynamic size. */
6464                 perf_output_put(handle, dyn_size);
6465         }
6466 }
6467
6468 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6469                                           struct perf_sample_data *data,
6470                                           size_t size)
6471 {
6472         struct perf_event *sampler = event->aux_event;
6473         struct perf_buffer *rb;
6474
6475         data->aux_size = 0;
6476
6477         if (!sampler)
6478                 goto out;
6479
6480         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6481                 goto out;
6482
6483         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6484                 goto out;
6485
6486         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6487         if (!rb)
6488                 goto out;
6489
6490         /*
6491          * If this is an NMI hit inside sampling code, don't take
6492          * the sample. See also perf_aux_sample_output().
6493          */
6494         if (READ_ONCE(rb->aux_in_sampling)) {
6495                 data->aux_size = 0;
6496         } else {
6497                 size = min_t(size_t, size, perf_aux_size(rb));
6498                 data->aux_size = ALIGN(size, sizeof(u64));
6499         }
6500         ring_buffer_put(rb);
6501
6502 out:
6503         return data->aux_size;
6504 }
6505
6506 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6507                            struct perf_event *event,
6508                            struct perf_output_handle *handle,
6509                            unsigned long size)
6510 {
6511         unsigned long flags;
6512         long ret;
6513
6514         /*
6515          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6516          * paths. If we start calling them in NMI context, they may race with
6517          * the IRQ ones, that is, for example, re-starting an event that's just
6518          * been stopped, which is why we're using a separate callback that
6519          * doesn't change the event state.
6520          *
6521          * IRQs need to be disabled to prevent IPIs from racing with us.
6522          */
6523         local_irq_save(flags);
6524         /*
6525          * Guard against NMI hits inside the critical section;
6526          * see also perf_prepare_sample_aux().
6527          */
6528         WRITE_ONCE(rb->aux_in_sampling, 1);
6529         barrier();
6530
6531         ret = event->pmu->snapshot_aux(event, handle, size);
6532
6533         barrier();
6534         WRITE_ONCE(rb->aux_in_sampling, 0);
6535         local_irq_restore(flags);
6536
6537         return ret;
6538 }
6539
6540 static void perf_aux_sample_output(struct perf_event *event,
6541                                    struct perf_output_handle *handle,
6542                                    struct perf_sample_data *data)
6543 {
6544         struct perf_event *sampler = event->aux_event;
6545         struct perf_buffer *rb;
6546         unsigned long pad;
6547         long size;
6548
6549         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6550                 return;
6551
6552         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6553         if (!rb)
6554                 return;
6555
6556         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6557
6558         /*
6559          * An error here means that perf_output_copy() failed (returned a
6560          * non-zero surplus that it didn't copy), which in its current
6561          * enlightened implementation is not possible. If that changes, we'd
6562          * like to know.
6563          */
6564         if (WARN_ON_ONCE(size < 0))
6565                 goto out_put;
6566
6567         /*
6568          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6569          * perf_prepare_sample_aux(), so should not be more than that.
6570          */
6571         pad = data->aux_size - size;
6572         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6573                 pad = 8;
6574
6575         if (pad) {
6576                 u64 zero = 0;
6577                 perf_output_copy(handle, &zero, pad);
6578         }
6579
6580 out_put:
6581         ring_buffer_put(rb);
6582 }
6583
6584 static void __perf_event_header__init_id(struct perf_event_header *header,
6585                                          struct perf_sample_data *data,
6586                                          struct perf_event *event)
6587 {
6588         u64 sample_type = event->attr.sample_type;
6589
6590         data->type = sample_type;
6591         header->size += event->id_header_size;
6592
6593         if (sample_type & PERF_SAMPLE_TID) {
6594                 /* namespace issues */
6595                 data->tid_entry.pid = perf_event_pid(event, current);
6596                 data->tid_entry.tid = perf_event_tid(event, current);
6597         }
6598
6599         if (sample_type & PERF_SAMPLE_TIME)
6600                 data->time = perf_event_clock(event);
6601
6602         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6603                 data->id = primary_event_id(event);
6604
6605         if (sample_type & PERF_SAMPLE_STREAM_ID)
6606                 data->stream_id = event->id;
6607
6608         if (sample_type & PERF_SAMPLE_CPU) {
6609                 data->cpu_entry.cpu      = raw_smp_processor_id();
6610                 data->cpu_entry.reserved = 0;
6611         }
6612 }
6613
6614 void perf_event_header__init_id(struct perf_event_header *header,
6615                                 struct perf_sample_data *data,
6616                                 struct perf_event *event)
6617 {
6618         if (event->attr.sample_id_all)
6619                 __perf_event_header__init_id(header, data, event);
6620 }
6621
6622 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6623                                            struct perf_sample_data *data)
6624 {
6625         u64 sample_type = data->type;
6626
6627         if (sample_type & PERF_SAMPLE_TID)
6628                 perf_output_put(handle, data->tid_entry);
6629
6630         if (sample_type & PERF_SAMPLE_TIME)
6631                 perf_output_put(handle, data->time);
6632
6633         if (sample_type & PERF_SAMPLE_ID)
6634                 perf_output_put(handle, data->id);
6635
6636         if (sample_type & PERF_SAMPLE_STREAM_ID)
6637                 perf_output_put(handle, data->stream_id);
6638
6639         if (sample_type & PERF_SAMPLE_CPU)
6640                 perf_output_put(handle, data->cpu_entry);
6641
6642         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6643                 perf_output_put(handle, data->id);
6644 }
6645
6646 void perf_event__output_id_sample(struct perf_event *event,
6647                                   struct perf_output_handle *handle,
6648                                   struct perf_sample_data *sample)
6649 {
6650         if (event->attr.sample_id_all)
6651                 __perf_event__output_id_sample(handle, sample);
6652 }
6653
6654 static void perf_output_read_one(struct perf_output_handle *handle,
6655                                  struct perf_event *event,
6656                                  u64 enabled, u64 running)
6657 {
6658         u64 read_format = event->attr.read_format;
6659         u64 values[4];
6660         int n = 0;
6661
6662         values[n++] = perf_event_count(event);
6663         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6664                 values[n++] = enabled +
6665                         atomic64_read(&event->child_total_time_enabled);
6666         }
6667         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6668                 values[n++] = running +
6669                         atomic64_read(&event->child_total_time_running);
6670         }
6671         if (read_format & PERF_FORMAT_ID)
6672                 values[n++] = primary_event_id(event);
6673
6674         __output_copy(handle, values, n * sizeof(u64));
6675 }
6676
6677 static void perf_output_read_group(struct perf_output_handle *handle,
6678                             struct perf_event *event,
6679                             u64 enabled, u64 running)
6680 {
6681         struct perf_event *leader = event->group_leader, *sub;
6682         u64 read_format = event->attr.read_format;
6683         u64 values[5];
6684         int n = 0;
6685
6686         values[n++] = 1 + leader->nr_siblings;
6687
6688         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6689                 values[n++] = enabled;
6690
6691         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6692                 values[n++] = running;
6693
6694         if ((leader != event) &&
6695             (leader->state == PERF_EVENT_STATE_ACTIVE))
6696                 leader->pmu->read(leader);
6697
6698         values[n++] = perf_event_count(leader);
6699         if (read_format & PERF_FORMAT_ID)
6700                 values[n++] = primary_event_id(leader);
6701
6702         __output_copy(handle, values, n * sizeof(u64));
6703
6704         for_each_sibling_event(sub, leader) {
6705                 n = 0;
6706
6707                 if ((sub != event) &&
6708                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6709                         sub->pmu->read(sub);
6710
6711                 values[n++] = perf_event_count(sub);
6712                 if (read_format & PERF_FORMAT_ID)
6713                         values[n++] = primary_event_id(sub);
6714
6715                 __output_copy(handle, values, n * sizeof(u64));
6716         }
6717 }
6718
6719 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6720                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6721
6722 /*
6723  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6724  *
6725  * The problem is that its both hard and excessively expensive to iterate the
6726  * child list, not to mention that its impossible to IPI the children running
6727  * on another CPU, from interrupt/NMI context.
6728  */
6729 static void perf_output_read(struct perf_output_handle *handle,
6730                              struct perf_event *event)
6731 {
6732         u64 enabled = 0, running = 0, now;
6733         u64 read_format = event->attr.read_format;
6734
6735         /*
6736          * compute total_time_enabled, total_time_running
6737          * based on snapshot values taken when the event
6738          * was last scheduled in.
6739          *
6740          * we cannot simply called update_context_time()
6741          * because of locking issue as we are called in
6742          * NMI context
6743          */
6744         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6745                 calc_timer_values(event, &now, &enabled, &running);
6746
6747         if (event->attr.read_format & PERF_FORMAT_GROUP)
6748                 perf_output_read_group(handle, event, enabled, running);
6749         else
6750                 perf_output_read_one(handle, event, enabled, running);
6751 }
6752
6753 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6754 {
6755         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6756 }
6757
6758 void perf_output_sample(struct perf_output_handle *handle,
6759                         struct perf_event_header *header,
6760                         struct perf_sample_data *data,
6761                         struct perf_event *event)
6762 {
6763         u64 sample_type = data->type;
6764
6765         perf_output_put(handle, *header);
6766
6767         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6768                 perf_output_put(handle, data->id);
6769
6770         if (sample_type & PERF_SAMPLE_IP)
6771                 perf_output_put(handle, data->ip);
6772
6773         if (sample_type & PERF_SAMPLE_TID)
6774                 perf_output_put(handle, data->tid_entry);
6775
6776         if (sample_type & PERF_SAMPLE_TIME)
6777                 perf_output_put(handle, data->time);
6778
6779         if (sample_type & PERF_SAMPLE_ADDR)
6780                 perf_output_put(handle, data->addr);
6781
6782         if (sample_type & PERF_SAMPLE_ID)
6783                 perf_output_put(handle, data->id);
6784
6785         if (sample_type & PERF_SAMPLE_STREAM_ID)
6786                 perf_output_put(handle, data->stream_id);
6787
6788         if (sample_type & PERF_SAMPLE_CPU)
6789                 perf_output_put(handle, data->cpu_entry);
6790
6791         if (sample_type & PERF_SAMPLE_PERIOD)
6792                 perf_output_put(handle, data->period);
6793
6794         if (sample_type & PERF_SAMPLE_READ)
6795                 perf_output_read(handle, event);
6796
6797         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6798                 int size = 1;
6799
6800                 size += data->callchain->nr;
6801                 size *= sizeof(u64);
6802                 __output_copy(handle, data->callchain, size);
6803         }
6804
6805         if (sample_type & PERF_SAMPLE_RAW) {
6806                 struct perf_raw_record *raw = data->raw;
6807
6808                 if (raw) {
6809                         struct perf_raw_frag *frag = &raw->frag;
6810
6811                         perf_output_put(handle, raw->size);
6812                         do {
6813                                 if (frag->copy) {
6814                                         __output_custom(handle, frag->copy,
6815                                                         frag->data, frag->size);
6816                                 } else {
6817                                         __output_copy(handle, frag->data,
6818                                                       frag->size);
6819                                 }
6820                                 if (perf_raw_frag_last(frag))
6821                                         break;
6822                                 frag = frag->next;
6823                         } while (1);
6824                         if (frag->pad)
6825                                 __output_skip(handle, NULL, frag->pad);
6826                 } else {
6827                         struct {
6828                                 u32     size;
6829                                 u32     data;
6830                         } raw = {
6831                                 .size = sizeof(u32),
6832                                 .data = 0,
6833                         };
6834                         perf_output_put(handle, raw);
6835                 }
6836         }
6837
6838         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6839                 if (data->br_stack) {
6840                         size_t size;
6841
6842                         size = data->br_stack->nr
6843                              * sizeof(struct perf_branch_entry);
6844
6845                         perf_output_put(handle, data->br_stack->nr);
6846                         if (perf_sample_save_hw_index(event))
6847                                 perf_output_put(handle, data->br_stack->hw_idx);
6848                         perf_output_copy(handle, data->br_stack->entries, size);
6849                 } else {
6850                         /*
6851                          * we always store at least the value of nr
6852                          */
6853                         u64 nr = 0;
6854                         perf_output_put(handle, nr);
6855                 }
6856         }
6857
6858         if (sample_type & PERF_SAMPLE_REGS_USER) {
6859                 u64 abi = data->regs_user.abi;
6860
6861                 /*
6862                  * If there are no regs to dump, notice it through
6863                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6864                  */
6865                 perf_output_put(handle, abi);
6866
6867                 if (abi) {
6868                         u64 mask = event->attr.sample_regs_user;
6869                         perf_output_sample_regs(handle,
6870                                                 data->regs_user.regs,
6871                                                 mask);
6872                 }
6873         }
6874
6875         if (sample_type & PERF_SAMPLE_STACK_USER) {
6876                 perf_output_sample_ustack(handle,
6877                                           data->stack_user_size,
6878                                           data->regs_user.regs);
6879         }
6880
6881         if (sample_type & PERF_SAMPLE_WEIGHT)
6882                 perf_output_put(handle, data->weight);
6883
6884         if (sample_type & PERF_SAMPLE_DATA_SRC)
6885                 perf_output_put(handle, data->data_src.val);
6886
6887         if (sample_type & PERF_SAMPLE_TRANSACTION)
6888                 perf_output_put(handle, data->txn);
6889
6890         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6891                 u64 abi = data->regs_intr.abi;
6892                 /*
6893                  * If there are no regs to dump, notice it through
6894                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6895                  */
6896                 perf_output_put(handle, abi);
6897
6898                 if (abi) {
6899                         u64 mask = event->attr.sample_regs_intr;
6900
6901                         perf_output_sample_regs(handle,
6902                                                 data->regs_intr.regs,
6903                                                 mask);
6904                 }
6905         }
6906
6907         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6908                 perf_output_put(handle, data->phys_addr);
6909
6910         if (sample_type & PERF_SAMPLE_CGROUP)
6911                 perf_output_put(handle, data->cgroup);
6912
6913         if (sample_type & PERF_SAMPLE_AUX) {
6914                 perf_output_put(handle, data->aux_size);
6915
6916                 if (data->aux_size)
6917                         perf_aux_sample_output(event, handle, data);
6918         }
6919
6920         if (!event->attr.watermark) {
6921                 int wakeup_events = event->attr.wakeup_events;
6922
6923                 if (wakeup_events) {
6924                         struct perf_buffer *rb = handle->rb;
6925                         int events = local_inc_return(&rb->events);
6926
6927                         if (events >= wakeup_events) {
6928                                 local_sub(wakeup_events, &rb->events);
6929                                 local_inc(&rb->wakeup);
6930                         }
6931                 }
6932         }
6933 }
6934
6935 static u64 perf_virt_to_phys(u64 virt)
6936 {
6937         u64 phys_addr = 0;
6938         struct page *p = NULL;
6939
6940         if (!virt)
6941                 return 0;
6942
6943         if (virt >= TASK_SIZE) {
6944                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6945                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6946                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6947                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6948         } else {
6949                 /*
6950                  * Walking the pages tables for user address.
6951                  * Interrupts are disabled, so it prevents any tear down
6952                  * of the page tables.
6953                  * Try IRQ-safe get_user_page_fast_only first.
6954                  * If failed, leave phys_addr as 0.
6955                  */
6956                 if (current->mm != NULL) {
6957                         pagefault_disable();
6958                         if (get_user_page_fast_only(virt, 0, &p))
6959                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6960                         pagefault_enable();
6961                 }
6962
6963                 if (p)
6964                         put_page(p);
6965         }
6966
6967         return phys_addr;
6968 }
6969
6970 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6971
6972 struct perf_callchain_entry *
6973 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6974 {
6975         bool kernel = !event->attr.exclude_callchain_kernel;
6976         bool user   = !event->attr.exclude_callchain_user;
6977         /* Disallow cross-task user callchains. */
6978         bool crosstask = event->ctx->task && event->ctx->task != current;
6979         const u32 max_stack = event->attr.sample_max_stack;
6980         struct perf_callchain_entry *callchain;
6981
6982         if (!kernel && !user)
6983                 return &__empty_callchain;
6984
6985         callchain = get_perf_callchain(regs, 0, kernel, user,
6986                                        max_stack, crosstask, true);
6987         return callchain ?: &__empty_callchain;
6988 }
6989
6990 void perf_prepare_sample(struct perf_event_header *header,
6991                          struct perf_sample_data *data,
6992                          struct perf_event *event,
6993                          struct pt_regs *regs)
6994 {
6995         u64 sample_type = event->attr.sample_type;
6996
6997         header->type = PERF_RECORD_SAMPLE;
6998         header->size = sizeof(*header) + event->header_size;
6999
7000         header->misc = 0;
7001         header->misc |= perf_misc_flags(regs);
7002
7003         __perf_event_header__init_id(header, data, event);
7004
7005         if (sample_type & PERF_SAMPLE_IP)
7006                 data->ip = perf_instruction_pointer(regs);
7007
7008         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7009                 int size = 1;
7010
7011                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7012                         data->callchain = perf_callchain(event, regs);
7013
7014                 size += data->callchain->nr;
7015
7016                 header->size += size * sizeof(u64);
7017         }
7018
7019         if (sample_type & PERF_SAMPLE_RAW) {
7020                 struct perf_raw_record *raw = data->raw;
7021                 int size;
7022
7023                 if (raw) {
7024                         struct perf_raw_frag *frag = &raw->frag;
7025                         u32 sum = 0;
7026
7027                         do {
7028                                 sum += frag->size;
7029                                 if (perf_raw_frag_last(frag))
7030                                         break;
7031                                 frag = frag->next;
7032                         } while (1);
7033
7034                         size = round_up(sum + sizeof(u32), sizeof(u64));
7035                         raw->size = size - sizeof(u32);
7036                         frag->pad = raw->size - sum;
7037                 } else {
7038                         size = sizeof(u64);
7039                 }
7040
7041                 header->size += size;
7042         }
7043
7044         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7045                 int size = sizeof(u64); /* nr */
7046                 if (data->br_stack) {
7047                         if (perf_sample_save_hw_index(event))
7048                                 size += sizeof(u64);
7049
7050                         size += data->br_stack->nr
7051                               * sizeof(struct perf_branch_entry);
7052                 }
7053                 header->size += size;
7054         }
7055
7056         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7057                 perf_sample_regs_user(&data->regs_user, regs,
7058                                       &data->regs_user_copy);
7059
7060         if (sample_type & PERF_SAMPLE_REGS_USER) {
7061                 /* regs dump ABI info */
7062                 int size = sizeof(u64);
7063
7064                 if (data->regs_user.regs) {
7065                         u64 mask = event->attr.sample_regs_user;
7066                         size += hweight64(mask) * sizeof(u64);
7067                 }
7068
7069                 header->size += size;
7070         }
7071
7072         if (sample_type & PERF_SAMPLE_STACK_USER) {
7073                 /*
7074                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7075                  * processed as the last one or have additional check added
7076                  * in case new sample type is added, because we could eat
7077                  * up the rest of the sample size.
7078                  */
7079                 u16 stack_size = event->attr.sample_stack_user;
7080                 u16 size = sizeof(u64);
7081
7082                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7083                                                      data->regs_user.regs);
7084
7085                 /*
7086                  * If there is something to dump, add space for the dump
7087                  * itself and for the field that tells the dynamic size,
7088                  * which is how many have been actually dumped.
7089                  */
7090                 if (stack_size)
7091                         size += sizeof(u64) + stack_size;
7092
7093                 data->stack_user_size = stack_size;
7094                 header->size += size;
7095         }
7096
7097         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7098                 /* regs dump ABI info */
7099                 int size = sizeof(u64);
7100
7101                 perf_sample_regs_intr(&data->regs_intr, regs);
7102
7103                 if (data->regs_intr.regs) {
7104                         u64 mask = event->attr.sample_regs_intr;
7105
7106                         size += hweight64(mask) * sizeof(u64);
7107                 }
7108
7109                 header->size += size;
7110         }
7111
7112         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7113                 data->phys_addr = perf_virt_to_phys(data->addr);
7114
7115 #ifdef CONFIG_CGROUP_PERF
7116         if (sample_type & PERF_SAMPLE_CGROUP) {
7117                 struct cgroup *cgrp;
7118
7119                 /* protected by RCU */
7120                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7121                 data->cgroup = cgroup_id(cgrp);
7122         }
7123 #endif
7124
7125         if (sample_type & PERF_SAMPLE_AUX) {
7126                 u64 size;
7127
7128                 header->size += sizeof(u64); /* size */
7129
7130                 /*
7131                  * Given the 16bit nature of header::size, an AUX sample can
7132                  * easily overflow it, what with all the preceding sample bits.
7133                  * Make sure this doesn't happen by using up to U16_MAX bytes
7134                  * per sample in total (rounded down to 8 byte boundary).
7135                  */
7136                 size = min_t(size_t, U16_MAX - header->size,
7137                              event->attr.aux_sample_size);
7138                 size = rounddown(size, 8);
7139                 size = perf_prepare_sample_aux(event, data, size);
7140
7141                 WARN_ON_ONCE(size + header->size > U16_MAX);
7142                 header->size += size;
7143         }
7144         /*
7145          * If you're adding more sample types here, you likely need to do
7146          * something about the overflowing header::size, like repurpose the
7147          * lowest 3 bits of size, which should be always zero at the moment.
7148          * This raises a more important question, do we really need 512k sized
7149          * samples and why, so good argumentation is in order for whatever you
7150          * do here next.
7151          */
7152         WARN_ON_ONCE(header->size & 7);
7153 }
7154
7155 static __always_inline int
7156 __perf_event_output(struct perf_event *event,
7157                     struct perf_sample_data *data,
7158                     struct pt_regs *regs,
7159                     int (*output_begin)(struct perf_output_handle *,
7160                                         struct perf_event *,
7161                                         unsigned int))
7162 {
7163         struct perf_output_handle handle;
7164         struct perf_event_header header;
7165         int err;
7166
7167         /* protect the callchain buffers */
7168         rcu_read_lock();
7169
7170         perf_prepare_sample(&header, data, event, regs);
7171
7172         err = output_begin(&handle, event, header.size);
7173         if (err)
7174                 goto exit;
7175
7176         perf_output_sample(&handle, &header, data, event);
7177
7178         perf_output_end(&handle);
7179
7180 exit:
7181         rcu_read_unlock();
7182         return err;
7183 }
7184
7185 void
7186 perf_event_output_forward(struct perf_event *event,
7187                          struct perf_sample_data *data,
7188                          struct pt_regs *regs)
7189 {
7190         __perf_event_output(event, data, regs, perf_output_begin_forward);
7191 }
7192
7193 void
7194 perf_event_output_backward(struct perf_event *event,
7195                            struct perf_sample_data *data,
7196                            struct pt_regs *regs)
7197 {
7198         __perf_event_output(event, data, regs, perf_output_begin_backward);
7199 }
7200
7201 int
7202 perf_event_output(struct perf_event *event,
7203                   struct perf_sample_data *data,
7204                   struct pt_regs *regs)
7205 {
7206         return __perf_event_output(event, data, regs, perf_output_begin);
7207 }
7208
7209 /*
7210  * read event_id
7211  */
7212
7213 struct perf_read_event {
7214         struct perf_event_header        header;
7215
7216         u32                             pid;
7217         u32                             tid;
7218 };
7219
7220 static void
7221 perf_event_read_event(struct perf_event *event,
7222                         struct task_struct *task)
7223 {
7224         struct perf_output_handle handle;
7225         struct perf_sample_data sample;
7226         struct perf_read_event read_event = {
7227                 .header = {
7228                         .type = PERF_RECORD_READ,
7229                         .misc = 0,
7230                         .size = sizeof(read_event) + event->read_size,
7231                 },
7232                 .pid = perf_event_pid(event, task),
7233                 .tid = perf_event_tid(event, task),
7234         };
7235         int ret;
7236
7237         perf_event_header__init_id(&read_event.header, &sample, event);
7238         ret = perf_output_begin(&handle, event, read_event.header.size);
7239         if (ret)
7240                 return;
7241
7242         perf_output_put(&handle, read_event);
7243         perf_output_read(&handle, event);
7244         perf_event__output_id_sample(event, &handle, &sample);
7245
7246         perf_output_end(&handle);
7247 }
7248
7249 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7250
7251 static void
7252 perf_iterate_ctx(struct perf_event_context *ctx,
7253                    perf_iterate_f output,
7254                    void *data, bool all)
7255 {
7256         struct perf_event *event;
7257
7258         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7259                 if (!all) {
7260                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7261                                 continue;
7262                         if (!event_filter_match(event))
7263                                 continue;
7264                 }
7265
7266                 output(event, data);
7267         }
7268 }
7269
7270 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7271 {
7272         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7273         struct perf_event *event;
7274
7275         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7276                 /*
7277                  * Skip events that are not fully formed yet; ensure that
7278                  * if we observe event->ctx, both event and ctx will be
7279                  * complete enough. See perf_install_in_context().
7280                  */
7281                 if (!smp_load_acquire(&event->ctx))
7282                         continue;
7283
7284                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7285                         continue;
7286                 if (!event_filter_match(event))
7287                         continue;
7288                 output(event, data);
7289         }
7290 }
7291
7292 /*
7293  * Iterate all events that need to receive side-band events.
7294  *
7295  * For new callers; ensure that account_pmu_sb_event() includes
7296  * your event, otherwise it might not get delivered.
7297  */
7298 static void
7299 perf_iterate_sb(perf_iterate_f output, void *data,
7300                struct perf_event_context *task_ctx)
7301 {
7302         struct perf_event_context *ctx;
7303         int ctxn;
7304
7305         rcu_read_lock();
7306         preempt_disable();
7307
7308         /*
7309          * If we have task_ctx != NULL we only notify the task context itself.
7310          * The task_ctx is set only for EXIT events before releasing task
7311          * context.
7312          */
7313         if (task_ctx) {
7314                 perf_iterate_ctx(task_ctx, output, data, false);
7315                 goto done;
7316         }
7317
7318         perf_iterate_sb_cpu(output, data);
7319
7320         for_each_task_context_nr(ctxn) {
7321                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7322                 if (ctx)
7323                         perf_iterate_ctx(ctx, output, data, false);
7324         }
7325 done:
7326         preempt_enable();
7327         rcu_read_unlock();
7328 }
7329
7330 /*
7331  * Clear all file-based filters at exec, they'll have to be
7332  * re-instated when/if these objects are mmapped again.
7333  */
7334 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7335 {
7336         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7337         struct perf_addr_filter *filter;
7338         unsigned int restart = 0, count = 0;
7339         unsigned long flags;
7340
7341         if (!has_addr_filter(event))
7342                 return;
7343
7344         raw_spin_lock_irqsave(&ifh->lock, flags);
7345         list_for_each_entry(filter, &ifh->list, entry) {
7346                 if (filter->path.dentry) {
7347                         event->addr_filter_ranges[count].start = 0;
7348                         event->addr_filter_ranges[count].size = 0;
7349                         restart++;
7350                 }
7351
7352                 count++;
7353         }
7354
7355         if (restart)
7356                 event->addr_filters_gen++;
7357         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7358
7359         if (restart)
7360                 perf_event_stop(event, 1);
7361 }
7362
7363 void perf_event_exec(void)
7364 {
7365         struct perf_event_context *ctx;
7366         int ctxn;
7367
7368         rcu_read_lock();
7369         for_each_task_context_nr(ctxn) {
7370                 ctx = current->perf_event_ctxp[ctxn];
7371                 if (!ctx)
7372                         continue;
7373
7374                 perf_event_enable_on_exec(ctxn);
7375
7376                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7377                                    true);
7378         }
7379         rcu_read_unlock();
7380 }
7381
7382 struct remote_output {
7383         struct perf_buffer      *rb;
7384         int                     err;
7385 };
7386
7387 static void __perf_event_output_stop(struct perf_event *event, void *data)
7388 {
7389         struct perf_event *parent = event->parent;
7390         struct remote_output *ro = data;
7391         struct perf_buffer *rb = ro->rb;
7392         struct stop_event_data sd = {
7393                 .event  = event,
7394         };
7395
7396         if (!has_aux(event))
7397                 return;
7398
7399         if (!parent)
7400                 parent = event;
7401
7402         /*
7403          * In case of inheritance, it will be the parent that links to the
7404          * ring-buffer, but it will be the child that's actually using it.
7405          *
7406          * We are using event::rb to determine if the event should be stopped,
7407          * however this may race with ring_buffer_attach() (through set_output),
7408          * which will make us skip the event that actually needs to be stopped.
7409          * So ring_buffer_attach() has to stop an aux event before re-assigning
7410          * its rb pointer.
7411          */
7412         if (rcu_dereference(parent->rb) == rb)
7413                 ro->err = __perf_event_stop(&sd);
7414 }
7415
7416 static int __perf_pmu_output_stop(void *info)
7417 {
7418         struct perf_event *event = info;
7419         struct pmu *pmu = event->ctx->pmu;
7420         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7421         struct remote_output ro = {
7422                 .rb     = event->rb,
7423         };
7424
7425         rcu_read_lock();
7426         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7427         if (cpuctx->task_ctx)
7428                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7429                                    &ro, false);
7430         rcu_read_unlock();
7431
7432         return ro.err;
7433 }
7434
7435 static void perf_pmu_output_stop(struct perf_event *event)
7436 {
7437         struct perf_event *iter;
7438         int err, cpu;
7439
7440 restart:
7441         rcu_read_lock();
7442         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7443                 /*
7444                  * For per-CPU events, we need to make sure that neither they
7445                  * nor their children are running; for cpu==-1 events it's
7446                  * sufficient to stop the event itself if it's active, since
7447                  * it can't have children.
7448                  */
7449                 cpu = iter->cpu;
7450                 if (cpu == -1)
7451                         cpu = READ_ONCE(iter->oncpu);
7452
7453                 if (cpu == -1)
7454                         continue;
7455
7456                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7457                 if (err == -EAGAIN) {
7458                         rcu_read_unlock();
7459                         goto restart;
7460                 }
7461         }
7462         rcu_read_unlock();
7463 }
7464
7465 /*
7466  * task tracking -- fork/exit
7467  *
7468  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7469  */
7470
7471 struct perf_task_event {
7472         struct task_struct              *task;
7473         struct perf_event_context       *task_ctx;
7474
7475         struct {
7476                 struct perf_event_header        header;
7477
7478                 u32                             pid;
7479                 u32                             ppid;
7480                 u32                             tid;
7481                 u32                             ptid;
7482                 u64                             time;
7483         } event_id;
7484 };
7485
7486 static int perf_event_task_match(struct perf_event *event)
7487 {
7488         return event->attr.comm  || event->attr.mmap ||
7489                event->attr.mmap2 || event->attr.mmap_data ||
7490                event->attr.task;
7491 }
7492
7493 static void perf_event_task_output(struct perf_event *event,
7494                                    void *data)
7495 {
7496         struct perf_task_event *task_event = data;
7497         struct perf_output_handle handle;
7498         struct perf_sample_data sample;
7499         struct task_struct *task = task_event->task;
7500         int ret, size = task_event->event_id.header.size;
7501
7502         if (!perf_event_task_match(event))
7503                 return;
7504
7505         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7506
7507         ret = perf_output_begin(&handle, event,
7508                                 task_event->event_id.header.size);
7509         if (ret)
7510                 goto out;
7511
7512         task_event->event_id.pid = perf_event_pid(event, task);
7513         task_event->event_id.tid = perf_event_tid(event, task);
7514
7515         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7516                 task_event->event_id.ppid = perf_event_pid(event,
7517                                                         task->real_parent);
7518                 task_event->event_id.ptid = perf_event_pid(event,
7519                                                         task->real_parent);
7520         } else {  /* PERF_RECORD_FORK */
7521                 task_event->event_id.ppid = perf_event_pid(event, current);
7522                 task_event->event_id.ptid = perf_event_tid(event, current);
7523         }
7524
7525         task_event->event_id.time = perf_event_clock(event);
7526
7527         perf_output_put(&handle, task_event->event_id);
7528
7529         perf_event__output_id_sample(event, &handle, &sample);
7530
7531         perf_output_end(&handle);
7532 out:
7533         task_event->event_id.header.size = size;
7534 }
7535
7536 static void perf_event_task(struct task_struct *task,
7537                               struct perf_event_context *task_ctx,
7538                               int new)
7539 {
7540         struct perf_task_event task_event;
7541
7542         if (!atomic_read(&nr_comm_events) &&
7543             !atomic_read(&nr_mmap_events) &&
7544             !atomic_read(&nr_task_events))
7545                 return;
7546
7547         task_event = (struct perf_task_event){
7548                 .task     = task,
7549                 .task_ctx = task_ctx,
7550                 .event_id    = {
7551                         .header = {
7552                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7553                                 .misc = 0,
7554                                 .size = sizeof(task_event.event_id),
7555                         },
7556                         /* .pid  */
7557                         /* .ppid */
7558                         /* .tid  */
7559                         /* .ptid */
7560                         /* .time */
7561                 },
7562         };
7563
7564         perf_iterate_sb(perf_event_task_output,
7565                        &task_event,
7566                        task_ctx);
7567 }
7568
7569 void perf_event_fork(struct task_struct *task)
7570 {
7571         perf_event_task(task, NULL, 1);
7572         perf_event_namespaces(task);
7573 }
7574
7575 /*
7576  * comm tracking
7577  */
7578
7579 struct perf_comm_event {
7580         struct task_struct      *task;
7581         char                    *comm;
7582         int                     comm_size;
7583
7584         struct {
7585                 struct perf_event_header        header;
7586
7587                 u32                             pid;
7588                 u32                             tid;
7589         } event_id;
7590 };
7591
7592 static int perf_event_comm_match(struct perf_event *event)
7593 {
7594         return event->attr.comm;
7595 }
7596
7597 static void perf_event_comm_output(struct perf_event *event,
7598                                    void *data)
7599 {
7600         struct perf_comm_event *comm_event = data;
7601         struct perf_output_handle handle;
7602         struct perf_sample_data sample;
7603         int size = comm_event->event_id.header.size;
7604         int ret;
7605
7606         if (!perf_event_comm_match(event))
7607                 return;
7608
7609         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7610         ret = perf_output_begin(&handle, event,
7611                                 comm_event->event_id.header.size);
7612
7613         if (ret)
7614                 goto out;
7615
7616         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7617         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7618
7619         perf_output_put(&handle, comm_event->event_id);
7620         __output_copy(&handle, comm_event->comm,
7621                                    comm_event->comm_size);
7622
7623         perf_event__output_id_sample(event, &handle, &sample);
7624
7625         perf_output_end(&handle);
7626 out:
7627         comm_event->event_id.header.size = size;
7628 }
7629
7630 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7631 {
7632         char comm[TASK_COMM_LEN];
7633         unsigned int size;
7634
7635         memset(comm, 0, sizeof(comm));
7636         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7637         size = ALIGN(strlen(comm)+1, sizeof(u64));
7638
7639         comm_event->comm = comm;
7640         comm_event->comm_size = size;
7641
7642         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7643
7644         perf_iterate_sb(perf_event_comm_output,
7645                        comm_event,
7646                        NULL);
7647 }
7648
7649 void perf_event_comm(struct task_struct *task, bool exec)
7650 {
7651         struct perf_comm_event comm_event;
7652
7653         if (!atomic_read(&nr_comm_events))
7654                 return;
7655
7656         comm_event = (struct perf_comm_event){
7657                 .task   = task,
7658                 /* .comm      */
7659                 /* .comm_size */
7660                 .event_id  = {
7661                         .header = {
7662                                 .type = PERF_RECORD_COMM,
7663                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7664                                 /* .size */
7665                         },
7666                         /* .pid */
7667                         /* .tid */
7668                 },
7669         };
7670
7671         perf_event_comm_event(&comm_event);
7672 }
7673
7674 /*
7675  * namespaces tracking
7676  */
7677
7678 struct perf_namespaces_event {
7679         struct task_struct              *task;
7680
7681         struct {
7682                 struct perf_event_header        header;
7683
7684                 u32                             pid;
7685                 u32                             tid;
7686                 u64                             nr_namespaces;
7687                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7688         } event_id;
7689 };
7690
7691 static int perf_event_namespaces_match(struct perf_event *event)
7692 {
7693         return event->attr.namespaces;
7694 }
7695
7696 static void perf_event_namespaces_output(struct perf_event *event,
7697                                          void *data)
7698 {
7699         struct perf_namespaces_event *namespaces_event = data;
7700         struct perf_output_handle handle;
7701         struct perf_sample_data sample;
7702         u16 header_size = namespaces_event->event_id.header.size;
7703         int ret;
7704
7705         if (!perf_event_namespaces_match(event))
7706                 return;
7707
7708         perf_event_header__init_id(&namespaces_event->event_id.header,
7709                                    &sample, event);
7710         ret = perf_output_begin(&handle, event,
7711                                 namespaces_event->event_id.header.size);
7712         if (ret)
7713                 goto out;
7714
7715         namespaces_event->event_id.pid = perf_event_pid(event,
7716                                                         namespaces_event->task);
7717         namespaces_event->event_id.tid = perf_event_tid(event,
7718                                                         namespaces_event->task);
7719
7720         perf_output_put(&handle, namespaces_event->event_id);
7721
7722         perf_event__output_id_sample(event, &handle, &sample);
7723
7724         perf_output_end(&handle);
7725 out:
7726         namespaces_event->event_id.header.size = header_size;
7727 }
7728
7729 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7730                                    struct task_struct *task,
7731                                    const struct proc_ns_operations *ns_ops)
7732 {
7733         struct path ns_path;
7734         struct inode *ns_inode;
7735         int error;
7736
7737         error = ns_get_path(&ns_path, task, ns_ops);
7738         if (!error) {
7739                 ns_inode = ns_path.dentry->d_inode;
7740                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7741                 ns_link_info->ino = ns_inode->i_ino;
7742                 path_put(&ns_path);
7743         }
7744 }
7745
7746 void perf_event_namespaces(struct task_struct *task)
7747 {
7748         struct perf_namespaces_event namespaces_event;
7749         struct perf_ns_link_info *ns_link_info;
7750
7751         if (!atomic_read(&nr_namespaces_events))
7752                 return;
7753
7754         namespaces_event = (struct perf_namespaces_event){
7755                 .task   = task,
7756                 .event_id  = {
7757                         .header = {
7758                                 .type = PERF_RECORD_NAMESPACES,
7759                                 .misc = 0,
7760                                 .size = sizeof(namespaces_event.event_id),
7761                         },
7762                         /* .pid */
7763                         /* .tid */
7764                         .nr_namespaces = NR_NAMESPACES,
7765                         /* .link_info[NR_NAMESPACES] */
7766                 },
7767         };
7768
7769         ns_link_info = namespaces_event.event_id.link_info;
7770
7771         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7772                                task, &mntns_operations);
7773
7774 #ifdef CONFIG_USER_NS
7775         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7776                                task, &userns_operations);
7777 #endif
7778 #ifdef CONFIG_NET_NS
7779         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7780                                task, &netns_operations);
7781 #endif
7782 #ifdef CONFIG_UTS_NS
7783         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7784                                task, &utsns_operations);
7785 #endif
7786 #ifdef CONFIG_IPC_NS
7787         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7788                                task, &ipcns_operations);
7789 #endif
7790 #ifdef CONFIG_PID_NS
7791         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7792                                task, &pidns_operations);
7793 #endif
7794 #ifdef CONFIG_CGROUPS
7795         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7796                                task, &cgroupns_operations);
7797 #endif
7798
7799         perf_iterate_sb(perf_event_namespaces_output,
7800                         &namespaces_event,
7801                         NULL);
7802 }
7803
7804 /*
7805  * cgroup tracking
7806  */
7807 #ifdef CONFIG_CGROUP_PERF
7808
7809 struct perf_cgroup_event {
7810         char                            *path;
7811         int                             path_size;
7812         struct {
7813                 struct perf_event_header        header;
7814                 u64                             id;
7815                 char                            path[];
7816         } event_id;
7817 };
7818
7819 static int perf_event_cgroup_match(struct perf_event *event)
7820 {
7821         return event->attr.cgroup;
7822 }
7823
7824 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7825 {
7826         struct perf_cgroup_event *cgroup_event = data;
7827         struct perf_output_handle handle;
7828         struct perf_sample_data sample;
7829         u16 header_size = cgroup_event->event_id.header.size;
7830         int ret;
7831
7832         if (!perf_event_cgroup_match(event))
7833                 return;
7834
7835         perf_event_header__init_id(&cgroup_event->event_id.header,
7836                                    &sample, event);
7837         ret = perf_output_begin(&handle, event,
7838                                 cgroup_event->event_id.header.size);
7839         if (ret)
7840                 goto out;
7841
7842         perf_output_put(&handle, cgroup_event->event_id);
7843         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7844
7845         perf_event__output_id_sample(event, &handle, &sample);
7846
7847         perf_output_end(&handle);
7848 out:
7849         cgroup_event->event_id.header.size = header_size;
7850 }
7851
7852 static void perf_event_cgroup(struct cgroup *cgrp)
7853 {
7854         struct perf_cgroup_event cgroup_event;
7855         char path_enomem[16] = "//enomem";
7856         char *pathname;
7857         size_t size;
7858
7859         if (!atomic_read(&nr_cgroup_events))
7860                 return;
7861
7862         cgroup_event = (struct perf_cgroup_event){
7863                 .event_id  = {
7864                         .header = {
7865                                 .type = PERF_RECORD_CGROUP,
7866                                 .misc = 0,
7867                                 .size = sizeof(cgroup_event.event_id),
7868                         },
7869                         .id = cgroup_id(cgrp),
7870                 },
7871         };
7872
7873         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7874         if (pathname == NULL) {
7875                 cgroup_event.path = path_enomem;
7876         } else {
7877                 /* just to be sure to have enough space for alignment */
7878                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7879                 cgroup_event.path = pathname;
7880         }
7881
7882         /*
7883          * Since our buffer works in 8 byte units we need to align our string
7884          * size to a multiple of 8. However, we must guarantee the tail end is
7885          * zero'd out to avoid leaking random bits to userspace.
7886          */
7887         size = strlen(cgroup_event.path) + 1;
7888         while (!IS_ALIGNED(size, sizeof(u64)))
7889                 cgroup_event.path[size++] = '\0';
7890
7891         cgroup_event.event_id.header.size += size;
7892         cgroup_event.path_size = size;
7893
7894         perf_iterate_sb(perf_event_cgroup_output,
7895                         &cgroup_event,
7896                         NULL);
7897
7898         kfree(pathname);
7899 }
7900
7901 #endif
7902
7903 /*
7904  * mmap tracking
7905  */
7906
7907 struct perf_mmap_event {
7908         struct vm_area_struct   *vma;
7909
7910         const char              *file_name;
7911         int                     file_size;
7912         int                     maj, min;
7913         u64                     ino;
7914         u64                     ino_generation;
7915         u32                     prot, flags;
7916
7917         struct {
7918                 struct perf_event_header        header;
7919
7920                 u32                             pid;
7921                 u32                             tid;
7922                 u64                             start;
7923                 u64                             len;
7924                 u64                             pgoff;
7925         } event_id;
7926 };
7927
7928 static int perf_event_mmap_match(struct perf_event *event,
7929                                  void *data)
7930 {
7931         struct perf_mmap_event *mmap_event = data;
7932         struct vm_area_struct *vma = mmap_event->vma;
7933         int executable = vma->vm_flags & VM_EXEC;
7934
7935         return (!executable && event->attr.mmap_data) ||
7936                (executable && (event->attr.mmap || event->attr.mmap2));
7937 }
7938
7939 static void perf_event_mmap_output(struct perf_event *event,
7940                                    void *data)
7941 {
7942         struct perf_mmap_event *mmap_event = data;
7943         struct perf_output_handle handle;
7944         struct perf_sample_data sample;
7945         int size = mmap_event->event_id.header.size;
7946         u32 type = mmap_event->event_id.header.type;
7947         int ret;
7948
7949         if (!perf_event_mmap_match(event, data))
7950                 return;
7951
7952         if (event->attr.mmap2) {
7953                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7954                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7955                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7956                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7957                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7958                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7959                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7960         }
7961
7962         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7963         ret = perf_output_begin(&handle, event,
7964                                 mmap_event->event_id.header.size);
7965         if (ret)
7966                 goto out;
7967
7968         mmap_event->event_id.pid = perf_event_pid(event, current);
7969         mmap_event->event_id.tid = perf_event_tid(event, current);
7970
7971         perf_output_put(&handle, mmap_event->event_id);
7972
7973         if (event->attr.mmap2) {
7974                 perf_output_put(&handle, mmap_event->maj);
7975                 perf_output_put(&handle, mmap_event->min);
7976                 perf_output_put(&handle, mmap_event->ino);
7977                 perf_output_put(&handle, mmap_event->ino_generation);
7978                 perf_output_put(&handle, mmap_event->prot);
7979                 perf_output_put(&handle, mmap_event->flags);
7980         }
7981
7982         __output_copy(&handle, mmap_event->file_name,
7983                                    mmap_event->file_size);
7984
7985         perf_event__output_id_sample(event, &handle, &sample);
7986
7987         perf_output_end(&handle);
7988 out:
7989         mmap_event->event_id.header.size = size;
7990         mmap_event->event_id.header.type = type;
7991 }
7992
7993 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7994 {
7995         struct vm_area_struct *vma = mmap_event->vma;
7996         struct file *file = vma->vm_file;
7997         int maj = 0, min = 0;
7998         u64 ino = 0, gen = 0;
7999         u32 prot = 0, flags = 0;
8000         unsigned int size;
8001         char tmp[16];
8002         char *buf = NULL;
8003         char *name;
8004
8005         if (vma->vm_flags & VM_READ)
8006                 prot |= PROT_READ;
8007         if (vma->vm_flags & VM_WRITE)
8008                 prot |= PROT_WRITE;
8009         if (vma->vm_flags & VM_EXEC)
8010                 prot |= PROT_EXEC;
8011
8012         if (vma->vm_flags & VM_MAYSHARE)
8013                 flags = MAP_SHARED;
8014         else
8015                 flags = MAP_PRIVATE;
8016
8017         if (vma->vm_flags & VM_DENYWRITE)
8018                 flags |= MAP_DENYWRITE;
8019         if (vma->vm_flags & VM_MAYEXEC)
8020                 flags |= MAP_EXECUTABLE;
8021         if (vma->vm_flags & VM_LOCKED)
8022                 flags |= MAP_LOCKED;
8023         if (is_vm_hugetlb_page(vma))
8024                 flags |= MAP_HUGETLB;
8025
8026         if (file) {
8027                 struct inode *inode;
8028                 dev_t dev;
8029
8030                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8031                 if (!buf) {
8032                         name = "//enomem";
8033                         goto cpy_name;
8034                 }
8035                 /*
8036                  * d_path() works from the end of the rb backwards, so we
8037                  * need to add enough zero bytes after the string to handle
8038                  * the 64bit alignment we do later.
8039                  */
8040                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8041                 if (IS_ERR(name)) {
8042                         name = "//toolong";
8043                         goto cpy_name;
8044                 }
8045                 inode = file_inode(vma->vm_file);
8046                 dev = inode->i_sb->s_dev;
8047                 ino = inode->i_ino;
8048                 gen = inode->i_generation;
8049                 maj = MAJOR(dev);
8050                 min = MINOR(dev);
8051
8052                 goto got_name;
8053         } else {
8054                 if (vma->vm_ops && vma->vm_ops->name) {
8055                         name = (char *) vma->vm_ops->name(vma);
8056                         if (name)
8057                                 goto cpy_name;
8058                 }
8059
8060                 name = (char *)arch_vma_name(vma);
8061                 if (name)
8062                         goto cpy_name;
8063
8064                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8065                                 vma->vm_end >= vma->vm_mm->brk) {
8066                         name = "[heap]";
8067                         goto cpy_name;
8068                 }
8069                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8070                                 vma->vm_end >= vma->vm_mm->start_stack) {
8071                         name = "[stack]";
8072                         goto cpy_name;
8073                 }
8074
8075                 name = "//anon";
8076                 goto cpy_name;
8077         }
8078
8079 cpy_name:
8080         strlcpy(tmp, name, sizeof(tmp));
8081         name = tmp;
8082 got_name:
8083         /*
8084          * Since our buffer works in 8 byte units we need to align our string
8085          * size to a multiple of 8. However, we must guarantee the tail end is
8086          * zero'd out to avoid leaking random bits to userspace.
8087          */
8088         size = strlen(name)+1;
8089         while (!IS_ALIGNED(size, sizeof(u64)))
8090                 name[size++] = '\0';
8091
8092         mmap_event->file_name = name;
8093         mmap_event->file_size = size;
8094         mmap_event->maj = maj;
8095         mmap_event->min = min;
8096         mmap_event->ino = ino;
8097         mmap_event->ino_generation = gen;
8098         mmap_event->prot = prot;
8099         mmap_event->flags = flags;
8100
8101         if (!(vma->vm_flags & VM_EXEC))
8102                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8103
8104         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8105
8106         perf_iterate_sb(perf_event_mmap_output,
8107                        mmap_event,
8108                        NULL);
8109
8110         kfree(buf);
8111 }
8112
8113 /*
8114  * Check whether inode and address range match filter criteria.
8115  */
8116 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8117                                      struct file *file, unsigned long offset,
8118                                      unsigned long size)
8119 {
8120         /* d_inode(NULL) won't be equal to any mapped user-space file */
8121         if (!filter->path.dentry)
8122                 return false;
8123
8124         if (d_inode(filter->path.dentry) != file_inode(file))
8125                 return false;
8126
8127         if (filter->offset > offset + size)
8128                 return false;
8129
8130         if (filter->offset + filter->size < offset)
8131                 return false;
8132
8133         return true;
8134 }
8135
8136 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8137                                         struct vm_area_struct *vma,
8138                                         struct perf_addr_filter_range *fr)
8139 {
8140         unsigned long vma_size = vma->vm_end - vma->vm_start;
8141         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8142         struct file *file = vma->vm_file;
8143
8144         if (!perf_addr_filter_match(filter, file, off, vma_size))
8145                 return false;
8146
8147         if (filter->offset < off) {
8148                 fr->start = vma->vm_start;
8149                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8150         } else {
8151                 fr->start = vma->vm_start + filter->offset - off;
8152                 fr->size = min(vma->vm_end - fr->start, filter->size);
8153         }
8154
8155         return true;
8156 }
8157
8158 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8159 {
8160         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8161         struct vm_area_struct *vma = data;
8162         struct perf_addr_filter *filter;
8163         unsigned int restart = 0, count = 0;
8164         unsigned long flags;
8165
8166         if (!has_addr_filter(event))
8167                 return;
8168
8169         if (!vma->vm_file)
8170                 return;
8171
8172         raw_spin_lock_irqsave(&ifh->lock, flags);
8173         list_for_each_entry(filter, &ifh->list, entry) {
8174                 if (perf_addr_filter_vma_adjust(filter, vma,
8175                                                 &event->addr_filter_ranges[count]))
8176                         restart++;
8177
8178                 count++;
8179         }
8180
8181         if (restart)
8182                 event->addr_filters_gen++;
8183         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8184
8185         if (restart)
8186                 perf_event_stop(event, 1);
8187 }
8188
8189 /*
8190  * Adjust all task's events' filters to the new vma
8191  */
8192 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8193 {
8194         struct perf_event_context *ctx;
8195         int ctxn;
8196
8197         /*
8198          * Data tracing isn't supported yet and as such there is no need
8199          * to keep track of anything that isn't related to executable code:
8200          */
8201         if (!(vma->vm_flags & VM_EXEC))
8202                 return;
8203
8204         rcu_read_lock();
8205         for_each_task_context_nr(ctxn) {
8206                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8207                 if (!ctx)
8208                         continue;
8209
8210                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8211         }
8212         rcu_read_unlock();
8213 }
8214
8215 void perf_event_mmap(struct vm_area_struct *vma)
8216 {
8217         struct perf_mmap_event mmap_event;
8218
8219         if (!atomic_read(&nr_mmap_events))
8220                 return;
8221
8222         mmap_event = (struct perf_mmap_event){
8223                 .vma    = vma,
8224                 /* .file_name */
8225                 /* .file_size */
8226                 .event_id  = {
8227                         .header = {
8228                                 .type = PERF_RECORD_MMAP,
8229                                 .misc = PERF_RECORD_MISC_USER,
8230                                 /* .size */
8231                         },
8232                         /* .pid */
8233                         /* .tid */
8234                         .start  = vma->vm_start,
8235                         .len    = vma->vm_end - vma->vm_start,
8236                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8237                 },
8238                 /* .maj (attr_mmap2 only) */
8239                 /* .min (attr_mmap2 only) */
8240                 /* .ino (attr_mmap2 only) */
8241                 /* .ino_generation (attr_mmap2 only) */
8242                 /* .prot (attr_mmap2 only) */
8243                 /* .flags (attr_mmap2 only) */
8244         };
8245
8246         perf_addr_filters_adjust(vma);
8247         perf_event_mmap_event(&mmap_event);
8248 }
8249
8250 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8251                           unsigned long size, u64 flags)
8252 {
8253         struct perf_output_handle handle;
8254         struct perf_sample_data sample;
8255         struct perf_aux_event {
8256                 struct perf_event_header        header;
8257                 u64                             offset;
8258                 u64                             size;
8259                 u64                             flags;
8260         } rec = {
8261                 .header = {
8262                         .type = PERF_RECORD_AUX,
8263                         .misc = 0,
8264                         .size = sizeof(rec),
8265                 },
8266                 .offset         = head,
8267                 .size           = size,
8268                 .flags          = flags,
8269         };
8270         int ret;
8271
8272         perf_event_header__init_id(&rec.header, &sample, event);
8273         ret = perf_output_begin(&handle, event, rec.header.size);
8274
8275         if (ret)
8276                 return;
8277
8278         perf_output_put(&handle, rec);
8279         perf_event__output_id_sample(event, &handle, &sample);
8280
8281         perf_output_end(&handle);
8282 }
8283
8284 /*
8285  * Lost/dropped samples logging
8286  */
8287 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8288 {
8289         struct perf_output_handle handle;
8290         struct perf_sample_data sample;
8291         int ret;
8292
8293         struct {
8294                 struct perf_event_header        header;
8295                 u64                             lost;
8296         } lost_samples_event = {
8297                 .header = {
8298                         .type = PERF_RECORD_LOST_SAMPLES,
8299                         .misc = 0,
8300                         .size = sizeof(lost_samples_event),
8301                 },
8302                 .lost           = lost,
8303         };
8304
8305         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8306
8307         ret = perf_output_begin(&handle, event,
8308                                 lost_samples_event.header.size);
8309         if (ret)
8310                 return;
8311
8312         perf_output_put(&handle, lost_samples_event);
8313         perf_event__output_id_sample(event, &handle, &sample);
8314         perf_output_end(&handle);
8315 }
8316
8317 /*
8318  * context_switch tracking
8319  */
8320
8321 struct perf_switch_event {
8322         struct task_struct      *task;
8323         struct task_struct      *next_prev;
8324
8325         struct {
8326                 struct perf_event_header        header;
8327                 u32                             next_prev_pid;
8328                 u32                             next_prev_tid;
8329         } event_id;
8330 };
8331
8332 static int perf_event_switch_match(struct perf_event *event)
8333 {
8334         return event->attr.context_switch;
8335 }
8336
8337 static void perf_event_switch_output(struct perf_event *event, void *data)
8338 {
8339         struct perf_switch_event *se = data;
8340         struct perf_output_handle handle;
8341         struct perf_sample_data sample;
8342         int ret;
8343
8344         if (!perf_event_switch_match(event))
8345                 return;
8346
8347         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8348         if (event->ctx->task) {
8349                 se->event_id.header.type = PERF_RECORD_SWITCH;
8350                 se->event_id.header.size = sizeof(se->event_id.header);
8351         } else {
8352                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8353                 se->event_id.header.size = sizeof(se->event_id);
8354                 se->event_id.next_prev_pid =
8355                                         perf_event_pid(event, se->next_prev);
8356                 se->event_id.next_prev_tid =
8357                                         perf_event_tid(event, se->next_prev);
8358         }
8359
8360         perf_event_header__init_id(&se->event_id.header, &sample, event);
8361
8362         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8363         if (ret)
8364                 return;
8365
8366         if (event->ctx->task)
8367                 perf_output_put(&handle, se->event_id.header);
8368         else
8369                 perf_output_put(&handle, se->event_id);
8370
8371         perf_event__output_id_sample(event, &handle, &sample);
8372
8373         perf_output_end(&handle);
8374 }
8375
8376 static void perf_event_switch(struct task_struct *task,
8377                               struct task_struct *next_prev, bool sched_in)
8378 {
8379         struct perf_switch_event switch_event;
8380
8381         /* N.B. caller checks nr_switch_events != 0 */
8382
8383         switch_event = (struct perf_switch_event){
8384                 .task           = task,
8385                 .next_prev      = next_prev,
8386                 .event_id       = {
8387                         .header = {
8388                                 /* .type */
8389                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8390                                 /* .size */
8391                         },
8392                         /* .next_prev_pid */
8393                         /* .next_prev_tid */
8394                 },
8395         };
8396
8397         if (!sched_in && task->state == TASK_RUNNING)
8398                 switch_event.event_id.header.misc |=
8399                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8400
8401         perf_iterate_sb(perf_event_switch_output,
8402                        &switch_event,
8403                        NULL);
8404 }
8405
8406 /*
8407  * IRQ throttle logging
8408  */
8409
8410 static void perf_log_throttle(struct perf_event *event, int enable)
8411 {
8412         struct perf_output_handle handle;
8413         struct perf_sample_data sample;
8414         int ret;
8415
8416         struct {
8417                 struct perf_event_header        header;
8418                 u64                             time;
8419                 u64                             id;
8420                 u64                             stream_id;
8421         } throttle_event = {
8422                 .header = {
8423                         .type = PERF_RECORD_THROTTLE,
8424                         .misc = 0,
8425                         .size = sizeof(throttle_event),
8426                 },
8427                 .time           = perf_event_clock(event),
8428                 .id             = primary_event_id(event),
8429                 .stream_id      = event->id,
8430         };
8431
8432         if (enable)
8433                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8434
8435         perf_event_header__init_id(&throttle_event.header, &sample, event);
8436
8437         ret = perf_output_begin(&handle, event,
8438                                 throttle_event.header.size);
8439         if (ret)
8440                 return;
8441
8442         perf_output_put(&handle, throttle_event);
8443         perf_event__output_id_sample(event, &handle, &sample);
8444         perf_output_end(&handle);
8445 }
8446
8447 /*
8448  * ksymbol register/unregister tracking
8449  */
8450
8451 struct perf_ksymbol_event {
8452         const char      *name;
8453         int             name_len;
8454         struct {
8455                 struct perf_event_header        header;
8456                 u64                             addr;
8457                 u32                             len;
8458                 u16                             ksym_type;
8459                 u16                             flags;
8460         } event_id;
8461 };
8462
8463 static int perf_event_ksymbol_match(struct perf_event *event)
8464 {
8465         return event->attr.ksymbol;
8466 }
8467
8468 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8469 {
8470         struct perf_ksymbol_event *ksymbol_event = data;
8471         struct perf_output_handle handle;
8472         struct perf_sample_data sample;
8473         int ret;
8474
8475         if (!perf_event_ksymbol_match(event))
8476                 return;
8477
8478         perf_event_header__init_id(&ksymbol_event->event_id.header,
8479                                    &sample, event);
8480         ret = perf_output_begin(&handle, event,
8481                                 ksymbol_event->event_id.header.size);
8482         if (ret)
8483                 return;
8484
8485         perf_output_put(&handle, ksymbol_event->event_id);
8486         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8487         perf_event__output_id_sample(event, &handle, &sample);
8488
8489         perf_output_end(&handle);
8490 }
8491
8492 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8493                         const char *sym)
8494 {
8495         struct perf_ksymbol_event ksymbol_event;
8496         char name[KSYM_NAME_LEN];
8497         u16 flags = 0;
8498         int name_len;
8499
8500         if (!atomic_read(&nr_ksymbol_events))
8501                 return;
8502
8503         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8504             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8505                 goto err;
8506
8507         strlcpy(name, sym, KSYM_NAME_LEN);
8508         name_len = strlen(name) + 1;
8509         while (!IS_ALIGNED(name_len, sizeof(u64)))
8510                 name[name_len++] = '\0';
8511         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8512
8513         if (unregister)
8514                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8515
8516         ksymbol_event = (struct perf_ksymbol_event){
8517                 .name = name,
8518                 .name_len = name_len,
8519                 .event_id = {
8520                         .header = {
8521                                 .type = PERF_RECORD_KSYMBOL,
8522                                 .size = sizeof(ksymbol_event.event_id) +
8523                                         name_len,
8524                         },
8525                         .addr = addr,
8526                         .len = len,
8527                         .ksym_type = ksym_type,
8528                         .flags = flags,
8529                 },
8530         };
8531
8532         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8533         return;
8534 err:
8535         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8536 }
8537
8538 /*
8539  * bpf program load/unload tracking
8540  */
8541
8542 struct perf_bpf_event {
8543         struct bpf_prog *prog;
8544         struct {
8545                 struct perf_event_header        header;
8546                 u16                             type;
8547                 u16                             flags;
8548                 u32                             id;
8549                 u8                              tag[BPF_TAG_SIZE];
8550         } event_id;
8551 };
8552
8553 static int perf_event_bpf_match(struct perf_event *event)
8554 {
8555         return event->attr.bpf_event;
8556 }
8557
8558 static void perf_event_bpf_output(struct perf_event *event, void *data)
8559 {
8560         struct perf_bpf_event *bpf_event = data;
8561         struct perf_output_handle handle;
8562         struct perf_sample_data sample;
8563         int ret;
8564
8565         if (!perf_event_bpf_match(event))
8566                 return;
8567
8568         perf_event_header__init_id(&bpf_event->event_id.header,
8569                                    &sample, event);
8570         ret = perf_output_begin(&handle, event,
8571                                 bpf_event->event_id.header.size);
8572         if (ret)
8573                 return;
8574
8575         perf_output_put(&handle, bpf_event->event_id);
8576         perf_event__output_id_sample(event, &handle, &sample);
8577
8578         perf_output_end(&handle);
8579 }
8580
8581 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8582                                          enum perf_bpf_event_type type)
8583 {
8584         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8585         int i;
8586
8587         if (prog->aux->func_cnt == 0) {
8588                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8589                                    (u64)(unsigned long)prog->bpf_func,
8590                                    prog->jited_len, unregister,
8591                                    prog->aux->ksym.name);
8592         } else {
8593                 for (i = 0; i < prog->aux->func_cnt; i++) {
8594                         struct bpf_prog *subprog = prog->aux->func[i];
8595
8596                         perf_event_ksymbol(
8597                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8598                                 (u64)(unsigned long)subprog->bpf_func,
8599                                 subprog->jited_len, unregister,
8600                                 prog->aux->ksym.name);
8601                 }
8602         }
8603 }
8604
8605 void perf_event_bpf_event(struct bpf_prog *prog,
8606                           enum perf_bpf_event_type type,
8607                           u16 flags)
8608 {
8609         struct perf_bpf_event bpf_event;
8610
8611         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8612             type >= PERF_BPF_EVENT_MAX)
8613                 return;
8614
8615         switch (type) {
8616         case PERF_BPF_EVENT_PROG_LOAD:
8617         case PERF_BPF_EVENT_PROG_UNLOAD:
8618                 if (atomic_read(&nr_ksymbol_events))
8619                         perf_event_bpf_emit_ksymbols(prog, type);
8620                 break;
8621         default:
8622                 break;
8623         }
8624
8625         if (!atomic_read(&nr_bpf_events))
8626                 return;
8627
8628         bpf_event = (struct perf_bpf_event){
8629                 .prog = prog,
8630                 .event_id = {
8631                         .header = {
8632                                 .type = PERF_RECORD_BPF_EVENT,
8633                                 .size = sizeof(bpf_event.event_id),
8634                         },
8635                         .type = type,
8636                         .flags = flags,
8637                         .id = prog->aux->id,
8638                 },
8639         };
8640
8641         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8642
8643         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8644         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8645 }
8646
8647 struct perf_text_poke_event {
8648         const void              *old_bytes;
8649         const void              *new_bytes;
8650         size_t                  pad;
8651         u16                     old_len;
8652         u16                     new_len;
8653
8654         struct {
8655                 struct perf_event_header        header;
8656
8657                 u64                             addr;
8658         } event_id;
8659 };
8660
8661 static int perf_event_text_poke_match(struct perf_event *event)
8662 {
8663         return event->attr.text_poke;
8664 }
8665
8666 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8667 {
8668         struct perf_text_poke_event *text_poke_event = data;
8669         struct perf_output_handle handle;
8670         struct perf_sample_data sample;
8671         u64 padding = 0;
8672         int ret;
8673
8674         if (!perf_event_text_poke_match(event))
8675                 return;
8676
8677         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8678
8679         ret = perf_output_begin(&handle, event, text_poke_event->event_id.header.size);
8680         if (ret)
8681                 return;
8682
8683         perf_output_put(&handle, text_poke_event->event_id);
8684         perf_output_put(&handle, text_poke_event->old_len);
8685         perf_output_put(&handle, text_poke_event->new_len);
8686
8687         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8688         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8689
8690         if (text_poke_event->pad)
8691                 __output_copy(&handle, &padding, text_poke_event->pad);
8692
8693         perf_event__output_id_sample(event, &handle, &sample);
8694
8695         perf_output_end(&handle);
8696 }
8697
8698 void perf_event_text_poke(const void *addr, const void *old_bytes,
8699                           size_t old_len, const void *new_bytes, size_t new_len)
8700 {
8701         struct perf_text_poke_event text_poke_event;
8702         size_t tot, pad;
8703
8704         if (!atomic_read(&nr_text_poke_events))
8705                 return;
8706
8707         tot  = sizeof(text_poke_event.old_len) + old_len;
8708         tot += sizeof(text_poke_event.new_len) + new_len;
8709         pad  = ALIGN(tot, sizeof(u64)) - tot;
8710
8711         text_poke_event = (struct perf_text_poke_event){
8712                 .old_bytes    = old_bytes,
8713                 .new_bytes    = new_bytes,
8714                 .pad          = pad,
8715                 .old_len      = old_len,
8716                 .new_len      = new_len,
8717                 .event_id  = {
8718                         .header = {
8719                                 .type = PERF_RECORD_TEXT_POKE,
8720                                 .misc = PERF_RECORD_MISC_KERNEL,
8721                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
8722                         },
8723                         .addr = (unsigned long)addr,
8724                 },
8725         };
8726
8727         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8728 }
8729
8730 void perf_event_itrace_started(struct perf_event *event)
8731 {
8732         event->attach_state |= PERF_ATTACH_ITRACE;
8733 }
8734
8735 static void perf_log_itrace_start(struct perf_event *event)
8736 {
8737         struct perf_output_handle handle;
8738         struct perf_sample_data sample;
8739         struct perf_aux_event {
8740                 struct perf_event_header        header;
8741                 u32                             pid;
8742                 u32                             tid;
8743         } rec;
8744         int ret;
8745
8746         if (event->parent)
8747                 event = event->parent;
8748
8749         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8750             event->attach_state & PERF_ATTACH_ITRACE)
8751                 return;
8752
8753         rec.header.type = PERF_RECORD_ITRACE_START;
8754         rec.header.misc = 0;
8755         rec.header.size = sizeof(rec);
8756         rec.pid = perf_event_pid(event, current);
8757         rec.tid = perf_event_tid(event, current);
8758
8759         perf_event_header__init_id(&rec.header, &sample, event);
8760         ret = perf_output_begin(&handle, event, rec.header.size);
8761
8762         if (ret)
8763                 return;
8764
8765         perf_output_put(&handle, rec);
8766         perf_event__output_id_sample(event, &handle, &sample);
8767
8768         perf_output_end(&handle);
8769 }
8770
8771 static int
8772 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8773 {
8774         struct hw_perf_event *hwc = &event->hw;
8775         int ret = 0;
8776         u64 seq;
8777
8778         seq = __this_cpu_read(perf_throttled_seq);
8779         if (seq != hwc->interrupts_seq) {
8780                 hwc->interrupts_seq = seq;
8781                 hwc->interrupts = 1;
8782         } else {
8783                 hwc->interrupts++;
8784                 if (unlikely(throttle
8785                              && hwc->interrupts >= max_samples_per_tick)) {
8786                         __this_cpu_inc(perf_throttled_count);
8787                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8788                         hwc->interrupts = MAX_INTERRUPTS;
8789                         perf_log_throttle(event, 0);
8790                         ret = 1;
8791                 }
8792         }
8793
8794         if (event->attr.freq) {
8795                 u64 now = perf_clock();
8796                 s64 delta = now - hwc->freq_time_stamp;
8797
8798                 hwc->freq_time_stamp = now;
8799
8800                 if (delta > 0 && delta < 2*TICK_NSEC)
8801                         perf_adjust_period(event, delta, hwc->last_period, true);
8802         }
8803
8804         return ret;
8805 }
8806
8807 int perf_event_account_interrupt(struct perf_event *event)
8808 {
8809         return __perf_event_account_interrupt(event, 1);
8810 }
8811
8812 /*
8813  * Generic event overflow handling, sampling.
8814  */
8815
8816 static int __perf_event_overflow(struct perf_event *event,
8817                                    int throttle, struct perf_sample_data *data,
8818                                    struct pt_regs *regs)
8819 {
8820         int events = atomic_read(&event->event_limit);
8821         int ret = 0;
8822
8823         /*
8824          * Non-sampling counters might still use the PMI to fold short
8825          * hardware counters, ignore those.
8826          */
8827         if (unlikely(!is_sampling_event(event)))
8828                 return 0;
8829
8830         ret = __perf_event_account_interrupt(event, throttle);
8831
8832         /*
8833          * XXX event_limit might not quite work as expected on inherited
8834          * events
8835          */
8836
8837         event->pending_kill = POLL_IN;
8838         if (events && atomic_dec_and_test(&event->event_limit)) {
8839                 ret = 1;
8840                 event->pending_kill = POLL_HUP;
8841
8842                 perf_event_disable_inatomic(event);
8843         }
8844
8845         READ_ONCE(event->overflow_handler)(event, data, regs);
8846
8847         if (*perf_event_fasync(event) && event->pending_kill) {
8848                 event->pending_wakeup = 1;
8849                 irq_work_queue(&event->pending);
8850         }
8851
8852         return ret;
8853 }
8854
8855 int perf_event_overflow(struct perf_event *event,
8856                           struct perf_sample_data *data,
8857                           struct pt_regs *regs)
8858 {
8859         return __perf_event_overflow(event, 1, data, regs);
8860 }
8861
8862 /*
8863  * Generic software event infrastructure
8864  */
8865
8866 struct swevent_htable {
8867         struct swevent_hlist            *swevent_hlist;
8868         struct mutex                    hlist_mutex;
8869         int                             hlist_refcount;
8870
8871         /* Recursion avoidance in each contexts */
8872         int                             recursion[PERF_NR_CONTEXTS];
8873 };
8874
8875 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8876
8877 /*
8878  * We directly increment event->count and keep a second value in
8879  * event->hw.period_left to count intervals. This period event
8880  * is kept in the range [-sample_period, 0] so that we can use the
8881  * sign as trigger.
8882  */
8883
8884 u64 perf_swevent_set_period(struct perf_event *event)
8885 {
8886         struct hw_perf_event *hwc = &event->hw;
8887         u64 period = hwc->last_period;
8888         u64 nr, offset;
8889         s64 old, val;
8890
8891         hwc->last_period = hwc->sample_period;
8892
8893 again:
8894         old = val = local64_read(&hwc->period_left);
8895         if (val < 0)
8896                 return 0;
8897
8898         nr = div64_u64(period + val, period);
8899         offset = nr * period;
8900         val -= offset;
8901         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8902                 goto again;
8903
8904         return nr;
8905 }
8906
8907 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8908                                     struct perf_sample_data *data,
8909                                     struct pt_regs *regs)
8910 {
8911         struct hw_perf_event *hwc = &event->hw;
8912         int throttle = 0;
8913
8914         if (!overflow)
8915                 overflow = perf_swevent_set_period(event);
8916
8917         if (hwc->interrupts == MAX_INTERRUPTS)
8918                 return;
8919
8920         for (; overflow; overflow--) {
8921                 if (__perf_event_overflow(event, throttle,
8922                                             data, regs)) {
8923                         /*
8924                          * We inhibit the overflow from happening when
8925                          * hwc->interrupts == MAX_INTERRUPTS.
8926                          */
8927                         break;
8928                 }
8929                 throttle = 1;
8930         }
8931 }
8932
8933 static void perf_swevent_event(struct perf_event *event, u64 nr,
8934                                struct perf_sample_data *data,
8935                                struct pt_regs *regs)
8936 {
8937         struct hw_perf_event *hwc = &event->hw;
8938
8939         local64_add(nr, &event->count);
8940
8941         if (!regs)
8942                 return;
8943
8944         if (!is_sampling_event(event))
8945                 return;
8946
8947         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8948                 data->period = nr;
8949                 return perf_swevent_overflow(event, 1, data, regs);
8950         } else
8951                 data->period = event->hw.last_period;
8952
8953         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8954                 return perf_swevent_overflow(event, 1, data, regs);
8955
8956         if (local64_add_negative(nr, &hwc->period_left))
8957                 return;
8958
8959         perf_swevent_overflow(event, 0, data, regs);
8960 }
8961
8962 static int perf_exclude_event(struct perf_event *event,
8963                               struct pt_regs *regs)
8964 {
8965         if (event->hw.state & PERF_HES_STOPPED)
8966                 return 1;
8967
8968         if (regs) {
8969                 if (event->attr.exclude_user && user_mode(regs))
8970                         return 1;
8971
8972                 if (event->attr.exclude_kernel && !user_mode(regs))
8973                         return 1;
8974         }
8975
8976         return 0;
8977 }
8978
8979 static int perf_swevent_match(struct perf_event *event,
8980                                 enum perf_type_id type,
8981                                 u32 event_id,
8982                                 struct perf_sample_data *data,
8983                                 struct pt_regs *regs)
8984 {
8985         if (event->attr.type != type)
8986                 return 0;
8987
8988         if (event->attr.config != event_id)
8989                 return 0;
8990
8991         if (perf_exclude_event(event, regs))
8992                 return 0;
8993
8994         return 1;
8995 }
8996
8997 static inline u64 swevent_hash(u64 type, u32 event_id)
8998 {
8999         u64 val = event_id | (type << 32);
9000
9001         return hash_64(val, SWEVENT_HLIST_BITS);
9002 }
9003
9004 static inline struct hlist_head *
9005 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9006 {
9007         u64 hash = swevent_hash(type, event_id);
9008
9009         return &hlist->heads[hash];
9010 }
9011
9012 /* For the read side: events when they trigger */
9013 static inline struct hlist_head *
9014 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9015 {
9016         struct swevent_hlist *hlist;
9017
9018         hlist = rcu_dereference(swhash->swevent_hlist);
9019         if (!hlist)
9020                 return NULL;
9021
9022         return __find_swevent_head(hlist, type, event_id);
9023 }
9024
9025 /* For the event head insertion and removal in the hlist */
9026 static inline struct hlist_head *
9027 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9028 {
9029         struct swevent_hlist *hlist;
9030         u32 event_id = event->attr.config;
9031         u64 type = event->attr.type;
9032
9033         /*
9034          * Event scheduling is always serialized against hlist allocation
9035          * and release. Which makes the protected version suitable here.
9036          * The context lock guarantees that.
9037          */
9038         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9039                                           lockdep_is_held(&event->ctx->lock));
9040         if (!hlist)
9041                 return NULL;
9042
9043         return __find_swevent_head(hlist, type, event_id);
9044 }
9045
9046 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9047                                     u64 nr,
9048                                     struct perf_sample_data *data,
9049                                     struct pt_regs *regs)
9050 {
9051         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9052         struct perf_event *event;
9053         struct hlist_head *head;
9054
9055         rcu_read_lock();
9056         head = find_swevent_head_rcu(swhash, type, event_id);
9057         if (!head)
9058                 goto end;
9059
9060         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9061                 if (perf_swevent_match(event, type, event_id, data, regs))
9062                         perf_swevent_event(event, nr, data, regs);
9063         }
9064 end:
9065         rcu_read_unlock();
9066 }
9067
9068 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9069
9070 int perf_swevent_get_recursion_context(void)
9071 {
9072         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9073
9074         return get_recursion_context(swhash->recursion);
9075 }
9076 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9077
9078 void perf_swevent_put_recursion_context(int rctx)
9079 {
9080         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9081
9082         put_recursion_context(swhash->recursion, rctx);
9083 }
9084
9085 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9086 {
9087         struct perf_sample_data data;
9088
9089         if (WARN_ON_ONCE(!regs))
9090                 return;
9091
9092         perf_sample_data_init(&data, addr, 0);
9093         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9094 }
9095
9096 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9097 {
9098         int rctx;
9099
9100         preempt_disable_notrace();
9101         rctx = perf_swevent_get_recursion_context();
9102         if (unlikely(rctx < 0))
9103                 goto fail;
9104
9105         ___perf_sw_event(event_id, nr, regs, addr);
9106
9107         perf_swevent_put_recursion_context(rctx);
9108 fail:
9109         preempt_enable_notrace();
9110 }
9111
9112 static void perf_swevent_read(struct perf_event *event)
9113 {
9114 }
9115
9116 static int perf_swevent_add(struct perf_event *event, int flags)
9117 {
9118         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9119         struct hw_perf_event *hwc = &event->hw;
9120         struct hlist_head *head;
9121
9122         if (is_sampling_event(event)) {
9123                 hwc->last_period = hwc->sample_period;
9124                 perf_swevent_set_period(event);
9125         }
9126
9127         hwc->state = !(flags & PERF_EF_START);
9128
9129         head = find_swevent_head(swhash, event);
9130         if (WARN_ON_ONCE(!head))
9131                 return -EINVAL;
9132
9133         hlist_add_head_rcu(&event->hlist_entry, head);
9134         perf_event_update_userpage(event);
9135
9136         return 0;
9137 }
9138
9139 static void perf_swevent_del(struct perf_event *event, int flags)
9140 {
9141         hlist_del_rcu(&event->hlist_entry);
9142 }
9143
9144 static void perf_swevent_start(struct perf_event *event, int flags)
9145 {
9146         event->hw.state = 0;
9147 }
9148
9149 static void perf_swevent_stop(struct perf_event *event, int flags)
9150 {
9151         event->hw.state = PERF_HES_STOPPED;
9152 }
9153
9154 /* Deref the hlist from the update side */
9155 static inline struct swevent_hlist *
9156 swevent_hlist_deref(struct swevent_htable *swhash)
9157 {
9158         return rcu_dereference_protected(swhash->swevent_hlist,
9159                                          lockdep_is_held(&swhash->hlist_mutex));
9160 }
9161
9162 static void swevent_hlist_release(struct swevent_htable *swhash)
9163 {
9164         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9165
9166         if (!hlist)
9167                 return;
9168
9169         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9170         kfree_rcu(hlist, rcu_head);
9171 }
9172
9173 static void swevent_hlist_put_cpu(int cpu)
9174 {
9175         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9176
9177         mutex_lock(&swhash->hlist_mutex);
9178
9179         if (!--swhash->hlist_refcount)
9180                 swevent_hlist_release(swhash);
9181
9182         mutex_unlock(&swhash->hlist_mutex);
9183 }
9184
9185 static void swevent_hlist_put(void)
9186 {
9187         int cpu;
9188
9189         for_each_possible_cpu(cpu)
9190                 swevent_hlist_put_cpu(cpu);
9191 }
9192
9193 static int swevent_hlist_get_cpu(int cpu)
9194 {
9195         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9196         int err = 0;
9197
9198         mutex_lock(&swhash->hlist_mutex);
9199         if (!swevent_hlist_deref(swhash) &&
9200             cpumask_test_cpu(cpu, perf_online_mask)) {
9201                 struct swevent_hlist *hlist;
9202
9203                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9204                 if (!hlist) {
9205                         err = -ENOMEM;
9206                         goto exit;
9207                 }
9208                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9209         }
9210         swhash->hlist_refcount++;
9211 exit:
9212         mutex_unlock(&swhash->hlist_mutex);
9213
9214         return err;
9215 }
9216
9217 static int swevent_hlist_get(void)
9218 {
9219         int err, cpu, failed_cpu;
9220
9221         mutex_lock(&pmus_lock);
9222         for_each_possible_cpu(cpu) {
9223                 err = swevent_hlist_get_cpu(cpu);
9224                 if (err) {
9225                         failed_cpu = cpu;
9226                         goto fail;
9227                 }
9228         }
9229         mutex_unlock(&pmus_lock);
9230         return 0;
9231 fail:
9232         for_each_possible_cpu(cpu) {
9233                 if (cpu == failed_cpu)
9234                         break;
9235                 swevent_hlist_put_cpu(cpu);
9236         }
9237         mutex_unlock(&pmus_lock);
9238         return err;
9239 }
9240
9241 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9242
9243 static void sw_perf_event_destroy(struct perf_event *event)
9244 {
9245         u64 event_id = event->attr.config;
9246
9247         WARN_ON(event->parent);
9248
9249         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9250         swevent_hlist_put();
9251 }
9252
9253 static int perf_swevent_init(struct perf_event *event)
9254 {
9255         u64 event_id = event->attr.config;
9256
9257         if (event->attr.type != PERF_TYPE_SOFTWARE)
9258                 return -ENOENT;
9259
9260         /*
9261          * no branch sampling for software events
9262          */
9263         if (has_branch_stack(event))
9264                 return -EOPNOTSUPP;
9265
9266         switch (event_id) {
9267         case PERF_COUNT_SW_CPU_CLOCK:
9268         case PERF_COUNT_SW_TASK_CLOCK:
9269                 return -ENOENT;
9270
9271         default:
9272                 break;
9273         }
9274
9275         if (event_id >= PERF_COUNT_SW_MAX)
9276                 return -ENOENT;
9277
9278         if (!event->parent) {
9279                 int err;
9280
9281                 err = swevent_hlist_get();
9282                 if (err)
9283                         return err;
9284
9285                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9286                 event->destroy = sw_perf_event_destroy;
9287         }
9288
9289         return 0;
9290 }
9291
9292 static struct pmu perf_swevent = {
9293         .task_ctx_nr    = perf_sw_context,
9294
9295         .capabilities   = PERF_PMU_CAP_NO_NMI,
9296
9297         .event_init     = perf_swevent_init,
9298         .add            = perf_swevent_add,
9299         .del            = perf_swevent_del,
9300         .start          = perf_swevent_start,
9301         .stop           = perf_swevent_stop,
9302         .read           = perf_swevent_read,
9303 };
9304
9305 #ifdef CONFIG_EVENT_TRACING
9306
9307 static int perf_tp_filter_match(struct perf_event *event,
9308                                 struct perf_sample_data *data)
9309 {
9310         void *record = data->raw->frag.data;
9311
9312         /* only top level events have filters set */
9313         if (event->parent)
9314                 event = event->parent;
9315
9316         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9317                 return 1;
9318         return 0;
9319 }
9320
9321 static int perf_tp_event_match(struct perf_event *event,
9322                                 struct perf_sample_data *data,
9323                                 struct pt_regs *regs)
9324 {
9325         if (event->hw.state & PERF_HES_STOPPED)
9326                 return 0;
9327         /*
9328          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9329          */
9330         if (event->attr.exclude_kernel && !user_mode(regs))
9331                 return 0;
9332
9333         if (!perf_tp_filter_match(event, data))
9334                 return 0;
9335
9336         return 1;
9337 }
9338
9339 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9340                                struct trace_event_call *call, u64 count,
9341                                struct pt_regs *regs, struct hlist_head *head,
9342                                struct task_struct *task)
9343 {
9344         if (bpf_prog_array_valid(call)) {
9345                 *(struct pt_regs **)raw_data = regs;
9346                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9347                         perf_swevent_put_recursion_context(rctx);
9348                         return;
9349                 }
9350         }
9351         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9352                       rctx, task);
9353 }
9354 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9355
9356 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9357                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9358                    struct task_struct *task)
9359 {
9360         struct perf_sample_data data;
9361         struct perf_event *event;
9362
9363         struct perf_raw_record raw = {
9364                 .frag = {
9365                         .size = entry_size,
9366                         .data = record,
9367                 },
9368         };
9369
9370         perf_sample_data_init(&data, 0, 0);
9371         data.raw = &raw;
9372
9373         perf_trace_buf_update(record, event_type);
9374
9375         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9376                 if (perf_tp_event_match(event, &data, regs))
9377                         perf_swevent_event(event, count, &data, regs);
9378         }
9379
9380         /*
9381          * If we got specified a target task, also iterate its context and
9382          * deliver this event there too.
9383          */
9384         if (task && task != current) {
9385                 struct perf_event_context *ctx;
9386                 struct trace_entry *entry = record;
9387
9388                 rcu_read_lock();
9389                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9390                 if (!ctx)
9391                         goto unlock;
9392
9393                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9394                         if (event->cpu != smp_processor_id())
9395                                 continue;
9396                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9397                                 continue;
9398                         if (event->attr.config != entry->type)
9399                                 continue;
9400                         if (perf_tp_event_match(event, &data, regs))
9401                                 perf_swevent_event(event, count, &data, regs);
9402                 }
9403 unlock:
9404                 rcu_read_unlock();
9405         }
9406
9407         perf_swevent_put_recursion_context(rctx);
9408 }
9409 EXPORT_SYMBOL_GPL(perf_tp_event);
9410
9411 static void tp_perf_event_destroy(struct perf_event *event)
9412 {
9413         perf_trace_destroy(event);
9414 }
9415
9416 static int perf_tp_event_init(struct perf_event *event)
9417 {
9418         int err;
9419
9420         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9421                 return -ENOENT;
9422
9423         /*
9424          * no branch sampling for tracepoint events
9425          */
9426         if (has_branch_stack(event))
9427                 return -EOPNOTSUPP;
9428
9429         err = perf_trace_init(event);
9430         if (err)
9431                 return err;
9432
9433         event->destroy = tp_perf_event_destroy;
9434
9435         return 0;
9436 }
9437
9438 static struct pmu perf_tracepoint = {
9439         .task_ctx_nr    = perf_sw_context,
9440
9441         .event_init     = perf_tp_event_init,
9442         .add            = perf_trace_add,
9443         .del            = perf_trace_del,
9444         .start          = perf_swevent_start,
9445         .stop           = perf_swevent_stop,
9446         .read           = perf_swevent_read,
9447 };
9448
9449 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9450 /*
9451  * Flags in config, used by dynamic PMU kprobe and uprobe
9452  * The flags should match following PMU_FORMAT_ATTR().
9453  *
9454  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9455  *                               if not set, create kprobe/uprobe
9456  *
9457  * The following values specify a reference counter (or semaphore in the
9458  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9459  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9460  *
9461  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9462  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9463  */
9464 enum perf_probe_config {
9465         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9466         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9467         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9468 };
9469
9470 PMU_FORMAT_ATTR(retprobe, "config:0");
9471 #endif
9472
9473 #ifdef CONFIG_KPROBE_EVENTS
9474 static struct attribute *kprobe_attrs[] = {
9475         &format_attr_retprobe.attr,
9476         NULL,
9477 };
9478
9479 static struct attribute_group kprobe_format_group = {
9480         .name = "format",
9481         .attrs = kprobe_attrs,
9482 };
9483
9484 static const struct attribute_group *kprobe_attr_groups[] = {
9485         &kprobe_format_group,
9486         NULL,
9487 };
9488
9489 static int perf_kprobe_event_init(struct perf_event *event);
9490 static struct pmu perf_kprobe = {
9491         .task_ctx_nr    = perf_sw_context,
9492         .event_init     = perf_kprobe_event_init,
9493         .add            = perf_trace_add,
9494         .del            = perf_trace_del,
9495         .start          = perf_swevent_start,
9496         .stop           = perf_swevent_stop,
9497         .read           = perf_swevent_read,
9498         .attr_groups    = kprobe_attr_groups,
9499 };
9500
9501 static int perf_kprobe_event_init(struct perf_event *event)
9502 {
9503         int err;
9504         bool is_retprobe;
9505
9506         if (event->attr.type != perf_kprobe.type)
9507                 return -ENOENT;
9508
9509         if (!perfmon_capable())
9510                 return -EACCES;
9511
9512         /*
9513          * no branch sampling for probe events
9514          */
9515         if (has_branch_stack(event))
9516                 return -EOPNOTSUPP;
9517
9518         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9519         err = perf_kprobe_init(event, is_retprobe);
9520         if (err)
9521                 return err;
9522
9523         event->destroy = perf_kprobe_destroy;
9524
9525         return 0;
9526 }
9527 #endif /* CONFIG_KPROBE_EVENTS */
9528
9529 #ifdef CONFIG_UPROBE_EVENTS
9530 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9531
9532 static struct attribute *uprobe_attrs[] = {
9533         &format_attr_retprobe.attr,
9534         &format_attr_ref_ctr_offset.attr,
9535         NULL,
9536 };
9537
9538 static struct attribute_group uprobe_format_group = {
9539         .name = "format",
9540         .attrs = uprobe_attrs,
9541 };
9542
9543 static const struct attribute_group *uprobe_attr_groups[] = {
9544         &uprobe_format_group,
9545         NULL,
9546 };
9547
9548 static int perf_uprobe_event_init(struct perf_event *event);
9549 static struct pmu perf_uprobe = {
9550         .task_ctx_nr    = perf_sw_context,
9551         .event_init     = perf_uprobe_event_init,
9552         .add            = perf_trace_add,
9553         .del            = perf_trace_del,
9554         .start          = perf_swevent_start,
9555         .stop           = perf_swevent_stop,
9556         .read           = perf_swevent_read,
9557         .attr_groups    = uprobe_attr_groups,
9558 };
9559
9560 static int perf_uprobe_event_init(struct perf_event *event)
9561 {
9562         int err;
9563         unsigned long ref_ctr_offset;
9564         bool is_retprobe;
9565
9566         if (event->attr.type != perf_uprobe.type)
9567                 return -ENOENT;
9568
9569         if (!perfmon_capable())
9570                 return -EACCES;
9571
9572         /*
9573          * no branch sampling for probe events
9574          */
9575         if (has_branch_stack(event))
9576                 return -EOPNOTSUPP;
9577
9578         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9579         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9580         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9581         if (err)
9582                 return err;
9583
9584         event->destroy = perf_uprobe_destroy;
9585
9586         return 0;
9587 }
9588 #endif /* CONFIG_UPROBE_EVENTS */
9589
9590 static inline void perf_tp_register(void)
9591 {
9592         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9593 #ifdef CONFIG_KPROBE_EVENTS
9594         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9595 #endif
9596 #ifdef CONFIG_UPROBE_EVENTS
9597         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9598 #endif
9599 }
9600
9601 static void perf_event_free_filter(struct perf_event *event)
9602 {
9603         ftrace_profile_free_filter(event);
9604 }
9605
9606 #ifdef CONFIG_BPF_SYSCALL
9607 static void bpf_overflow_handler(struct perf_event *event,
9608                                  struct perf_sample_data *data,
9609                                  struct pt_regs *regs)
9610 {
9611         struct bpf_perf_event_data_kern ctx = {
9612                 .data = data,
9613                 .event = event,
9614         };
9615         int ret = 0;
9616
9617         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9618         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9619                 goto out;
9620         rcu_read_lock();
9621         ret = BPF_PROG_RUN(event->prog, &ctx);
9622         rcu_read_unlock();
9623 out:
9624         __this_cpu_dec(bpf_prog_active);
9625         if (!ret)
9626                 return;
9627
9628         event->orig_overflow_handler(event, data, regs);
9629 }
9630
9631 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9632 {
9633         struct bpf_prog *prog;
9634
9635         if (event->overflow_handler_context)
9636                 /* hw breakpoint or kernel counter */
9637                 return -EINVAL;
9638
9639         if (event->prog)
9640                 return -EEXIST;
9641
9642         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9643         if (IS_ERR(prog))
9644                 return PTR_ERR(prog);
9645
9646         if (event->attr.precise_ip &&
9647             prog->call_get_stack &&
9648             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9649              event->attr.exclude_callchain_kernel ||
9650              event->attr.exclude_callchain_user)) {
9651                 /*
9652                  * On perf_event with precise_ip, calling bpf_get_stack()
9653                  * may trigger unwinder warnings and occasional crashes.
9654                  * bpf_get_[stack|stackid] works around this issue by using
9655                  * callchain attached to perf_sample_data. If the
9656                  * perf_event does not full (kernel and user) callchain
9657                  * attached to perf_sample_data, do not allow attaching BPF
9658                  * program that calls bpf_get_[stack|stackid].
9659                  */
9660                 bpf_prog_put(prog);
9661                 return -EPROTO;
9662         }
9663
9664         event->prog = prog;
9665         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9666         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9667         return 0;
9668 }
9669
9670 static void perf_event_free_bpf_handler(struct perf_event *event)
9671 {
9672         struct bpf_prog *prog = event->prog;
9673
9674         if (!prog)
9675                 return;
9676
9677         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9678         event->prog = NULL;
9679         bpf_prog_put(prog);
9680 }
9681 #else
9682 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9683 {
9684         return -EOPNOTSUPP;
9685 }
9686 static void perf_event_free_bpf_handler(struct perf_event *event)
9687 {
9688 }
9689 #endif
9690
9691 /*
9692  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9693  * with perf_event_open()
9694  */
9695 static inline bool perf_event_is_tracing(struct perf_event *event)
9696 {
9697         if (event->pmu == &perf_tracepoint)
9698                 return true;
9699 #ifdef CONFIG_KPROBE_EVENTS
9700         if (event->pmu == &perf_kprobe)
9701                 return true;
9702 #endif
9703 #ifdef CONFIG_UPROBE_EVENTS
9704         if (event->pmu == &perf_uprobe)
9705                 return true;
9706 #endif
9707         return false;
9708 }
9709
9710 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9711 {
9712         bool is_kprobe, is_tracepoint, is_syscall_tp;
9713         struct bpf_prog *prog;
9714         int ret;
9715
9716         if (!perf_event_is_tracing(event))
9717                 return perf_event_set_bpf_handler(event, prog_fd);
9718
9719         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9720         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9721         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9722         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9723                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9724                 return -EINVAL;
9725
9726         prog = bpf_prog_get(prog_fd);
9727         if (IS_ERR(prog))
9728                 return PTR_ERR(prog);
9729
9730         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9731             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9732             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9733                 /* valid fd, but invalid bpf program type */
9734                 bpf_prog_put(prog);
9735                 return -EINVAL;
9736         }
9737
9738         /* Kprobe override only works for kprobes, not uprobes. */
9739         if (prog->kprobe_override &&
9740             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9741                 bpf_prog_put(prog);
9742                 return -EINVAL;
9743         }
9744
9745         if (is_tracepoint || is_syscall_tp) {
9746                 int off = trace_event_get_offsets(event->tp_event);
9747
9748                 if (prog->aux->max_ctx_offset > off) {
9749                         bpf_prog_put(prog);
9750                         return -EACCES;
9751                 }
9752         }
9753
9754         ret = perf_event_attach_bpf_prog(event, prog);
9755         if (ret)
9756                 bpf_prog_put(prog);
9757         return ret;
9758 }
9759
9760 static void perf_event_free_bpf_prog(struct perf_event *event)
9761 {
9762         if (!perf_event_is_tracing(event)) {
9763                 perf_event_free_bpf_handler(event);
9764                 return;
9765         }
9766         perf_event_detach_bpf_prog(event);
9767 }
9768
9769 #else
9770
9771 static inline void perf_tp_register(void)
9772 {
9773 }
9774
9775 static void perf_event_free_filter(struct perf_event *event)
9776 {
9777 }
9778
9779 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9780 {
9781         return -ENOENT;
9782 }
9783
9784 static void perf_event_free_bpf_prog(struct perf_event *event)
9785 {
9786 }
9787 #endif /* CONFIG_EVENT_TRACING */
9788
9789 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9790 void perf_bp_event(struct perf_event *bp, void *data)
9791 {
9792         struct perf_sample_data sample;
9793         struct pt_regs *regs = data;
9794
9795         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9796
9797         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9798                 perf_swevent_event(bp, 1, &sample, regs);
9799 }
9800 #endif
9801
9802 /*
9803  * Allocate a new address filter
9804  */
9805 static struct perf_addr_filter *
9806 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9807 {
9808         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9809         struct perf_addr_filter *filter;
9810
9811         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9812         if (!filter)
9813                 return NULL;
9814
9815         INIT_LIST_HEAD(&filter->entry);
9816         list_add_tail(&filter->entry, filters);
9817
9818         return filter;
9819 }
9820
9821 static void free_filters_list(struct list_head *filters)
9822 {
9823         struct perf_addr_filter *filter, *iter;
9824
9825         list_for_each_entry_safe(filter, iter, filters, entry) {
9826                 path_put(&filter->path);
9827                 list_del(&filter->entry);
9828                 kfree(filter);
9829         }
9830 }
9831
9832 /*
9833  * Free existing address filters and optionally install new ones
9834  */
9835 static void perf_addr_filters_splice(struct perf_event *event,
9836                                      struct list_head *head)
9837 {
9838         unsigned long flags;
9839         LIST_HEAD(list);
9840
9841         if (!has_addr_filter(event))
9842                 return;
9843
9844         /* don't bother with children, they don't have their own filters */
9845         if (event->parent)
9846                 return;
9847
9848         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9849
9850         list_splice_init(&event->addr_filters.list, &list);
9851         if (head)
9852                 list_splice(head, &event->addr_filters.list);
9853
9854         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9855
9856         free_filters_list(&list);
9857 }
9858
9859 /*
9860  * Scan through mm's vmas and see if one of them matches the
9861  * @filter; if so, adjust filter's address range.
9862  * Called with mm::mmap_lock down for reading.
9863  */
9864 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9865                                    struct mm_struct *mm,
9866                                    struct perf_addr_filter_range *fr)
9867 {
9868         struct vm_area_struct *vma;
9869
9870         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9871                 if (!vma->vm_file)
9872                         continue;
9873
9874                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9875                         return;
9876         }
9877 }
9878
9879 /*
9880  * Update event's address range filters based on the
9881  * task's existing mappings, if any.
9882  */
9883 static void perf_event_addr_filters_apply(struct perf_event *event)
9884 {
9885         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9886         struct task_struct *task = READ_ONCE(event->ctx->task);
9887         struct perf_addr_filter *filter;
9888         struct mm_struct *mm = NULL;
9889         unsigned int count = 0;
9890         unsigned long flags;
9891
9892         /*
9893          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9894          * will stop on the parent's child_mutex that our caller is also holding
9895          */
9896         if (task == TASK_TOMBSTONE)
9897                 return;
9898
9899         if (ifh->nr_file_filters) {
9900                 mm = get_task_mm(event->ctx->task);
9901                 if (!mm)
9902                         goto restart;
9903
9904                 mmap_read_lock(mm);
9905         }
9906
9907         raw_spin_lock_irqsave(&ifh->lock, flags);
9908         list_for_each_entry(filter, &ifh->list, entry) {
9909                 if (filter->path.dentry) {
9910                         /*
9911                          * Adjust base offset if the filter is associated to a
9912                          * binary that needs to be mapped:
9913                          */
9914                         event->addr_filter_ranges[count].start = 0;
9915                         event->addr_filter_ranges[count].size = 0;
9916
9917                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9918                 } else {
9919                         event->addr_filter_ranges[count].start = filter->offset;
9920                         event->addr_filter_ranges[count].size  = filter->size;
9921                 }
9922
9923                 count++;
9924         }
9925
9926         event->addr_filters_gen++;
9927         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9928
9929         if (ifh->nr_file_filters) {
9930                 mmap_read_unlock(mm);
9931
9932                 mmput(mm);
9933         }
9934
9935 restart:
9936         perf_event_stop(event, 1);
9937 }
9938
9939 /*
9940  * Address range filtering: limiting the data to certain
9941  * instruction address ranges. Filters are ioctl()ed to us from
9942  * userspace as ascii strings.
9943  *
9944  * Filter string format:
9945  *
9946  * ACTION RANGE_SPEC
9947  * where ACTION is one of the
9948  *  * "filter": limit the trace to this region
9949  *  * "start": start tracing from this address
9950  *  * "stop": stop tracing at this address/region;
9951  * RANGE_SPEC is
9952  *  * for kernel addresses: <start address>[/<size>]
9953  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9954  *
9955  * if <size> is not specified or is zero, the range is treated as a single
9956  * address; not valid for ACTION=="filter".
9957  */
9958 enum {
9959         IF_ACT_NONE = -1,
9960         IF_ACT_FILTER,
9961         IF_ACT_START,
9962         IF_ACT_STOP,
9963         IF_SRC_FILE,
9964         IF_SRC_KERNEL,
9965         IF_SRC_FILEADDR,
9966         IF_SRC_KERNELADDR,
9967 };
9968
9969 enum {
9970         IF_STATE_ACTION = 0,
9971         IF_STATE_SOURCE,
9972         IF_STATE_END,
9973 };
9974
9975 static const match_table_t if_tokens = {
9976         { IF_ACT_FILTER,        "filter" },
9977         { IF_ACT_START,         "start" },
9978         { IF_ACT_STOP,          "stop" },
9979         { IF_SRC_FILE,          "%u/%u@%s" },
9980         { IF_SRC_KERNEL,        "%u/%u" },
9981         { IF_SRC_FILEADDR,      "%u@%s" },
9982         { IF_SRC_KERNELADDR,    "%u" },
9983         { IF_ACT_NONE,          NULL },
9984 };
9985
9986 /*
9987  * Address filter string parser
9988  */
9989 static int
9990 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9991                              struct list_head *filters)
9992 {
9993         struct perf_addr_filter *filter = NULL;
9994         char *start, *orig, *filename = NULL;
9995         substring_t args[MAX_OPT_ARGS];
9996         int state = IF_STATE_ACTION, token;
9997         unsigned int kernel = 0;
9998         int ret = -EINVAL;
9999
10000         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10001         if (!fstr)
10002                 return -ENOMEM;
10003
10004         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10005                 static const enum perf_addr_filter_action_t actions[] = {
10006                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10007                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10008                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10009                 };
10010                 ret = -EINVAL;
10011
10012                 if (!*start)
10013                         continue;
10014
10015                 /* filter definition begins */
10016                 if (state == IF_STATE_ACTION) {
10017                         filter = perf_addr_filter_new(event, filters);
10018                         if (!filter)
10019                                 goto fail;
10020                 }
10021
10022                 token = match_token(start, if_tokens, args);
10023                 switch (token) {
10024                 case IF_ACT_FILTER:
10025                 case IF_ACT_START:
10026                 case IF_ACT_STOP:
10027                         if (state != IF_STATE_ACTION)
10028                                 goto fail;
10029
10030                         filter->action = actions[token];
10031                         state = IF_STATE_SOURCE;
10032                         break;
10033
10034                 case IF_SRC_KERNELADDR:
10035                 case IF_SRC_KERNEL:
10036                         kernel = 1;
10037                         /* fall through */
10038
10039                 case IF_SRC_FILEADDR:
10040                 case IF_SRC_FILE:
10041                         if (state != IF_STATE_SOURCE)
10042                                 goto fail;
10043
10044                         *args[0].to = 0;
10045                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10046                         if (ret)
10047                                 goto fail;
10048
10049                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10050                                 *args[1].to = 0;
10051                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10052                                 if (ret)
10053                                         goto fail;
10054                         }
10055
10056                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10057                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10058
10059                                 filename = match_strdup(&args[fpos]);
10060                                 if (!filename) {
10061                                         ret = -ENOMEM;
10062                                         goto fail;
10063                                 }
10064                         }
10065
10066                         state = IF_STATE_END;
10067                         break;
10068
10069                 default:
10070                         goto fail;
10071                 }
10072
10073                 /*
10074                  * Filter definition is fully parsed, validate and install it.
10075                  * Make sure that it doesn't contradict itself or the event's
10076                  * attribute.
10077                  */
10078                 if (state == IF_STATE_END) {
10079                         ret = -EINVAL;
10080                         if (kernel && event->attr.exclude_kernel)
10081                                 goto fail;
10082
10083                         /*
10084                          * ACTION "filter" must have a non-zero length region
10085                          * specified.
10086                          */
10087                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10088                             !filter->size)
10089                                 goto fail;
10090
10091                         if (!kernel) {
10092                                 if (!filename)
10093                                         goto fail;
10094
10095                                 /*
10096                                  * For now, we only support file-based filters
10097                                  * in per-task events; doing so for CPU-wide
10098                                  * events requires additional context switching
10099                                  * trickery, since same object code will be
10100                                  * mapped at different virtual addresses in
10101                                  * different processes.
10102                                  */
10103                                 ret = -EOPNOTSUPP;
10104                                 if (!event->ctx->task)
10105                                         goto fail_free_name;
10106
10107                                 /* look up the path and grab its inode */
10108                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10109                                                 &filter->path);
10110                                 if (ret)
10111                                         goto fail_free_name;
10112
10113                                 kfree(filename);
10114                                 filename = NULL;
10115
10116                                 ret = -EINVAL;
10117                                 if (!filter->path.dentry ||
10118                                     !S_ISREG(d_inode(filter->path.dentry)
10119                                              ->i_mode))
10120                                         goto fail;
10121
10122                                 event->addr_filters.nr_file_filters++;
10123                         }
10124
10125                         /* ready to consume more filters */
10126                         state = IF_STATE_ACTION;
10127                         filter = NULL;
10128                 }
10129         }
10130
10131         if (state != IF_STATE_ACTION)
10132                 goto fail;
10133
10134         kfree(orig);
10135
10136         return 0;
10137
10138 fail_free_name:
10139         kfree(filename);
10140 fail:
10141         free_filters_list(filters);
10142         kfree(orig);
10143
10144         return ret;
10145 }
10146
10147 static int
10148 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10149 {
10150         LIST_HEAD(filters);
10151         int ret;
10152
10153         /*
10154          * Since this is called in perf_ioctl() path, we're already holding
10155          * ctx::mutex.
10156          */
10157         lockdep_assert_held(&event->ctx->mutex);
10158
10159         if (WARN_ON_ONCE(event->parent))
10160                 return -EINVAL;
10161
10162         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10163         if (ret)
10164                 goto fail_clear_files;
10165
10166         ret = event->pmu->addr_filters_validate(&filters);
10167         if (ret)
10168                 goto fail_free_filters;
10169
10170         /* remove existing filters, if any */
10171         perf_addr_filters_splice(event, &filters);
10172
10173         /* install new filters */
10174         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10175
10176         return ret;
10177
10178 fail_free_filters:
10179         free_filters_list(&filters);
10180
10181 fail_clear_files:
10182         event->addr_filters.nr_file_filters = 0;
10183
10184         return ret;
10185 }
10186
10187 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10188 {
10189         int ret = -EINVAL;
10190         char *filter_str;
10191
10192         filter_str = strndup_user(arg, PAGE_SIZE);
10193         if (IS_ERR(filter_str))
10194                 return PTR_ERR(filter_str);
10195
10196 #ifdef CONFIG_EVENT_TRACING
10197         if (perf_event_is_tracing(event)) {
10198                 struct perf_event_context *ctx = event->ctx;
10199
10200                 /*
10201                  * Beware, here be dragons!!
10202                  *
10203                  * the tracepoint muck will deadlock against ctx->mutex, but
10204                  * the tracepoint stuff does not actually need it. So
10205                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10206                  * already have a reference on ctx.
10207                  *
10208                  * This can result in event getting moved to a different ctx,
10209                  * but that does not affect the tracepoint state.
10210                  */
10211                 mutex_unlock(&ctx->mutex);
10212                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10213                 mutex_lock(&ctx->mutex);
10214         } else
10215 #endif
10216         if (has_addr_filter(event))
10217                 ret = perf_event_set_addr_filter(event, filter_str);
10218
10219         kfree(filter_str);
10220         return ret;
10221 }
10222
10223 /*
10224  * hrtimer based swevent callback
10225  */
10226
10227 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10228 {
10229         enum hrtimer_restart ret = HRTIMER_RESTART;
10230         struct perf_sample_data data;
10231         struct pt_regs *regs;
10232         struct perf_event *event;
10233         u64 period;
10234
10235         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10236
10237         if (event->state != PERF_EVENT_STATE_ACTIVE)
10238                 return HRTIMER_NORESTART;
10239
10240         event->pmu->read(event);
10241
10242         perf_sample_data_init(&data, 0, event->hw.last_period);
10243         regs = get_irq_regs();
10244
10245         if (regs && !perf_exclude_event(event, regs)) {
10246                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10247                         if (__perf_event_overflow(event, 1, &data, regs))
10248                                 ret = HRTIMER_NORESTART;
10249         }
10250
10251         period = max_t(u64, 10000, event->hw.sample_period);
10252         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10253
10254         return ret;
10255 }
10256
10257 static void perf_swevent_start_hrtimer(struct perf_event *event)
10258 {
10259         struct hw_perf_event *hwc = &event->hw;
10260         s64 period;
10261
10262         if (!is_sampling_event(event))
10263                 return;
10264
10265         period = local64_read(&hwc->period_left);
10266         if (period) {
10267                 if (period < 0)
10268                         period = 10000;
10269
10270                 local64_set(&hwc->period_left, 0);
10271         } else {
10272                 period = max_t(u64, 10000, hwc->sample_period);
10273         }
10274         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10275                       HRTIMER_MODE_REL_PINNED_HARD);
10276 }
10277
10278 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10279 {
10280         struct hw_perf_event *hwc = &event->hw;
10281
10282         if (is_sampling_event(event)) {
10283                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10284                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10285
10286                 hrtimer_cancel(&hwc->hrtimer);
10287         }
10288 }
10289
10290 static void perf_swevent_init_hrtimer(struct perf_event *event)
10291 {
10292         struct hw_perf_event *hwc = &event->hw;
10293
10294         if (!is_sampling_event(event))
10295                 return;
10296
10297         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10298         hwc->hrtimer.function = perf_swevent_hrtimer;
10299
10300         /*
10301          * Since hrtimers have a fixed rate, we can do a static freq->period
10302          * mapping and avoid the whole period adjust feedback stuff.
10303          */
10304         if (event->attr.freq) {
10305                 long freq = event->attr.sample_freq;
10306
10307                 event->attr.sample_period = NSEC_PER_SEC / freq;
10308                 hwc->sample_period = event->attr.sample_period;
10309                 local64_set(&hwc->period_left, hwc->sample_period);
10310                 hwc->last_period = hwc->sample_period;
10311                 event->attr.freq = 0;
10312         }
10313 }
10314
10315 /*
10316  * Software event: cpu wall time clock
10317  */
10318
10319 static void cpu_clock_event_update(struct perf_event *event)
10320 {
10321         s64 prev;
10322         u64 now;
10323
10324         now = local_clock();
10325         prev = local64_xchg(&event->hw.prev_count, now);
10326         local64_add(now - prev, &event->count);
10327 }
10328
10329 static void cpu_clock_event_start(struct perf_event *event, int flags)
10330 {
10331         local64_set(&event->hw.prev_count, local_clock());
10332         perf_swevent_start_hrtimer(event);
10333 }
10334
10335 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10336 {
10337         perf_swevent_cancel_hrtimer(event);
10338         cpu_clock_event_update(event);
10339 }
10340
10341 static int cpu_clock_event_add(struct perf_event *event, int flags)
10342 {
10343         if (flags & PERF_EF_START)
10344                 cpu_clock_event_start(event, flags);
10345         perf_event_update_userpage(event);
10346
10347         return 0;
10348 }
10349
10350 static void cpu_clock_event_del(struct perf_event *event, int flags)
10351 {
10352         cpu_clock_event_stop(event, flags);
10353 }
10354
10355 static void cpu_clock_event_read(struct perf_event *event)
10356 {
10357         cpu_clock_event_update(event);
10358 }
10359
10360 static int cpu_clock_event_init(struct perf_event *event)
10361 {
10362         if (event->attr.type != PERF_TYPE_SOFTWARE)
10363                 return -ENOENT;
10364
10365         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10366                 return -ENOENT;
10367
10368         /*
10369          * no branch sampling for software events
10370          */
10371         if (has_branch_stack(event))
10372                 return -EOPNOTSUPP;
10373
10374         perf_swevent_init_hrtimer(event);
10375
10376         return 0;
10377 }
10378
10379 static struct pmu perf_cpu_clock = {
10380         .task_ctx_nr    = perf_sw_context,
10381
10382         .capabilities   = PERF_PMU_CAP_NO_NMI,
10383
10384         .event_init     = cpu_clock_event_init,
10385         .add            = cpu_clock_event_add,
10386         .del            = cpu_clock_event_del,
10387         .start          = cpu_clock_event_start,
10388         .stop           = cpu_clock_event_stop,
10389         .read           = cpu_clock_event_read,
10390 };
10391
10392 /*
10393  * Software event: task time clock
10394  */
10395
10396 static void task_clock_event_update(struct perf_event *event, u64 now)
10397 {
10398         u64 prev;
10399         s64 delta;
10400
10401         prev = local64_xchg(&event->hw.prev_count, now);
10402         delta = now - prev;
10403         local64_add(delta, &event->count);
10404 }
10405
10406 static void task_clock_event_start(struct perf_event *event, int flags)
10407 {
10408         local64_set(&event->hw.prev_count, event->ctx->time);
10409         perf_swevent_start_hrtimer(event);
10410 }
10411
10412 static void task_clock_event_stop(struct perf_event *event, int flags)
10413 {
10414         perf_swevent_cancel_hrtimer(event);
10415         task_clock_event_update(event, event->ctx->time);
10416 }
10417
10418 static int task_clock_event_add(struct perf_event *event, int flags)
10419 {
10420         if (flags & PERF_EF_START)
10421                 task_clock_event_start(event, flags);
10422         perf_event_update_userpage(event);
10423
10424         return 0;
10425 }
10426
10427 static void task_clock_event_del(struct perf_event *event, int flags)
10428 {
10429         task_clock_event_stop(event, PERF_EF_UPDATE);
10430 }
10431
10432 static void task_clock_event_read(struct perf_event *event)
10433 {
10434         u64 now = perf_clock();
10435         u64 delta = now - event->ctx->timestamp;
10436         u64 time = event->ctx->time + delta;
10437
10438         task_clock_event_update(event, time);
10439 }
10440
10441 static int task_clock_event_init(struct perf_event *event)
10442 {
10443         if (event->attr.type != PERF_TYPE_SOFTWARE)
10444                 return -ENOENT;
10445
10446         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10447                 return -ENOENT;
10448
10449         /*
10450          * no branch sampling for software events
10451          */
10452         if (has_branch_stack(event))
10453                 return -EOPNOTSUPP;
10454
10455         perf_swevent_init_hrtimer(event);
10456
10457         return 0;
10458 }
10459
10460 static struct pmu perf_task_clock = {
10461         .task_ctx_nr    = perf_sw_context,
10462
10463         .capabilities   = PERF_PMU_CAP_NO_NMI,
10464
10465         .event_init     = task_clock_event_init,
10466         .add            = task_clock_event_add,
10467         .del            = task_clock_event_del,
10468         .start          = task_clock_event_start,
10469         .stop           = task_clock_event_stop,
10470         .read           = task_clock_event_read,
10471 };
10472
10473 static void perf_pmu_nop_void(struct pmu *pmu)
10474 {
10475 }
10476
10477 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10478 {
10479 }
10480
10481 static int perf_pmu_nop_int(struct pmu *pmu)
10482 {
10483         return 0;
10484 }
10485
10486 static int perf_event_nop_int(struct perf_event *event, u64 value)
10487 {
10488         return 0;
10489 }
10490
10491 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10492
10493 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10494 {
10495         __this_cpu_write(nop_txn_flags, flags);
10496
10497         if (flags & ~PERF_PMU_TXN_ADD)
10498                 return;
10499
10500         perf_pmu_disable(pmu);
10501 }
10502
10503 static int perf_pmu_commit_txn(struct pmu *pmu)
10504 {
10505         unsigned int flags = __this_cpu_read(nop_txn_flags);
10506
10507         __this_cpu_write(nop_txn_flags, 0);
10508
10509         if (flags & ~PERF_PMU_TXN_ADD)
10510                 return 0;
10511
10512         perf_pmu_enable(pmu);
10513         return 0;
10514 }
10515
10516 static void perf_pmu_cancel_txn(struct pmu *pmu)
10517 {
10518         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10519
10520         __this_cpu_write(nop_txn_flags, 0);
10521
10522         if (flags & ~PERF_PMU_TXN_ADD)
10523                 return;
10524
10525         perf_pmu_enable(pmu);
10526 }
10527
10528 static int perf_event_idx_default(struct perf_event *event)
10529 {
10530         return 0;
10531 }
10532
10533 /*
10534  * Ensures all contexts with the same task_ctx_nr have the same
10535  * pmu_cpu_context too.
10536  */
10537 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10538 {
10539         struct pmu *pmu;
10540
10541         if (ctxn < 0)
10542                 return NULL;
10543
10544         list_for_each_entry(pmu, &pmus, entry) {
10545                 if (pmu->task_ctx_nr == ctxn)
10546                         return pmu->pmu_cpu_context;
10547         }
10548
10549         return NULL;
10550 }
10551
10552 static void free_pmu_context(struct pmu *pmu)
10553 {
10554         /*
10555          * Static contexts such as perf_sw_context have a global lifetime
10556          * and may be shared between different PMUs. Avoid freeing them
10557          * when a single PMU is going away.
10558          */
10559         if (pmu->task_ctx_nr > perf_invalid_context)
10560                 return;
10561
10562         free_percpu(pmu->pmu_cpu_context);
10563 }
10564
10565 /*
10566  * Let userspace know that this PMU supports address range filtering:
10567  */
10568 static ssize_t nr_addr_filters_show(struct device *dev,
10569                                     struct device_attribute *attr,
10570                                     char *page)
10571 {
10572         struct pmu *pmu = dev_get_drvdata(dev);
10573
10574         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10575 }
10576 DEVICE_ATTR_RO(nr_addr_filters);
10577
10578 static struct idr pmu_idr;
10579
10580 static ssize_t
10581 type_show(struct device *dev, struct device_attribute *attr, char *page)
10582 {
10583         struct pmu *pmu = dev_get_drvdata(dev);
10584
10585         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10586 }
10587 static DEVICE_ATTR_RO(type);
10588
10589 static ssize_t
10590 perf_event_mux_interval_ms_show(struct device *dev,
10591                                 struct device_attribute *attr,
10592                                 char *page)
10593 {
10594         struct pmu *pmu = dev_get_drvdata(dev);
10595
10596         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10597 }
10598
10599 static DEFINE_MUTEX(mux_interval_mutex);
10600
10601 static ssize_t
10602 perf_event_mux_interval_ms_store(struct device *dev,
10603                                  struct device_attribute *attr,
10604                                  const char *buf, size_t count)
10605 {
10606         struct pmu *pmu = dev_get_drvdata(dev);
10607         int timer, cpu, ret;
10608
10609         ret = kstrtoint(buf, 0, &timer);
10610         if (ret)
10611                 return ret;
10612
10613         if (timer < 1)
10614                 return -EINVAL;
10615
10616         /* same value, noting to do */
10617         if (timer == pmu->hrtimer_interval_ms)
10618                 return count;
10619
10620         mutex_lock(&mux_interval_mutex);
10621         pmu->hrtimer_interval_ms = timer;
10622
10623         /* update all cpuctx for this PMU */
10624         cpus_read_lock();
10625         for_each_online_cpu(cpu) {
10626                 struct perf_cpu_context *cpuctx;
10627                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10628                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10629
10630                 cpu_function_call(cpu,
10631                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10632         }
10633         cpus_read_unlock();
10634         mutex_unlock(&mux_interval_mutex);
10635
10636         return count;
10637 }
10638 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10639
10640 static struct attribute *pmu_dev_attrs[] = {
10641         &dev_attr_type.attr,
10642         &dev_attr_perf_event_mux_interval_ms.attr,
10643         NULL,
10644 };
10645 ATTRIBUTE_GROUPS(pmu_dev);
10646
10647 static int pmu_bus_running;
10648 static struct bus_type pmu_bus = {
10649         .name           = "event_source",
10650         .dev_groups     = pmu_dev_groups,
10651 };
10652
10653 static void pmu_dev_release(struct device *dev)
10654 {
10655         kfree(dev);
10656 }
10657
10658 static int pmu_dev_alloc(struct pmu *pmu)
10659 {
10660         int ret = -ENOMEM;
10661
10662         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10663         if (!pmu->dev)
10664                 goto out;
10665
10666         pmu->dev->groups = pmu->attr_groups;
10667         device_initialize(pmu->dev);
10668         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10669         if (ret)
10670                 goto free_dev;
10671
10672         dev_set_drvdata(pmu->dev, pmu);
10673         pmu->dev->bus = &pmu_bus;
10674         pmu->dev->release = pmu_dev_release;
10675         ret = device_add(pmu->dev);
10676         if (ret)
10677                 goto free_dev;
10678
10679         /* For PMUs with address filters, throw in an extra attribute: */
10680         if (pmu->nr_addr_filters)
10681                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10682
10683         if (ret)
10684                 goto del_dev;
10685
10686         if (pmu->attr_update)
10687                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10688
10689         if (ret)
10690                 goto del_dev;
10691
10692 out:
10693         return ret;
10694
10695 del_dev:
10696         device_del(pmu->dev);
10697
10698 free_dev:
10699         put_device(pmu->dev);
10700         goto out;
10701 }
10702
10703 static struct lock_class_key cpuctx_mutex;
10704 static struct lock_class_key cpuctx_lock;
10705
10706 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10707 {
10708         int cpu, ret, max = PERF_TYPE_MAX;
10709
10710         mutex_lock(&pmus_lock);
10711         ret = -ENOMEM;
10712         pmu->pmu_disable_count = alloc_percpu(int);
10713         if (!pmu->pmu_disable_count)
10714                 goto unlock;
10715
10716         pmu->type = -1;
10717         if (!name)
10718                 goto skip_type;
10719         pmu->name = name;
10720
10721         if (type != PERF_TYPE_SOFTWARE) {
10722                 if (type >= 0)
10723                         max = type;
10724
10725                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10726                 if (ret < 0)
10727                         goto free_pdc;
10728
10729                 WARN_ON(type >= 0 && ret != type);
10730
10731                 type = ret;
10732         }
10733         pmu->type = type;
10734
10735         if (pmu_bus_running) {
10736                 ret = pmu_dev_alloc(pmu);
10737                 if (ret)
10738                         goto free_idr;
10739         }
10740
10741 skip_type:
10742         if (pmu->task_ctx_nr == perf_hw_context) {
10743                 static int hw_context_taken = 0;
10744
10745                 /*
10746                  * Other than systems with heterogeneous CPUs, it never makes
10747                  * sense for two PMUs to share perf_hw_context. PMUs which are
10748                  * uncore must use perf_invalid_context.
10749                  */
10750                 if (WARN_ON_ONCE(hw_context_taken &&
10751                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10752                         pmu->task_ctx_nr = perf_invalid_context;
10753
10754                 hw_context_taken = 1;
10755         }
10756
10757         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10758         if (pmu->pmu_cpu_context)
10759                 goto got_cpu_context;
10760
10761         ret = -ENOMEM;
10762         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10763         if (!pmu->pmu_cpu_context)
10764                 goto free_dev;
10765
10766         for_each_possible_cpu(cpu) {
10767                 struct perf_cpu_context *cpuctx;
10768
10769                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10770                 __perf_event_init_context(&cpuctx->ctx);
10771                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10772                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10773                 cpuctx->ctx.pmu = pmu;
10774                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10775
10776                 __perf_mux_hrtimer_init(cpuctx, cpu);
10777
10778                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10779                 cpuctx->heap = cpuctx->heap_default;
10780         }
10781
10782 got_cpu_context:
10783         if (!pmu->start_txn) {
10784                 if (pmu->pmu_enable) {
10785                         /*
10786                          * If we have pmu_enable/pmu_disable calls, install
10787                          * transaction stubs that use that to try and batch
10788                          * hardware accesses.
10789                          */
10790                         pmu->start_txn  = perf_pmu_start_txn;
10791                         pmu->commit_txn = perf_pmu_commit_txn;
10792                         pmu->cancel_txn = perf_pmu_cancel_txn;
10793                 } else {
10794                         pmu->start_txn  = perf_pmu_nop_txn;
10795                         pmu->commit_txn = perf_pmu_nop_int;
10796                         pmu->cancel_txn = perf_pmu_nop_void;
10797                 }
10798         }
10799
10800         if (!pmu->pmu_enable) {
10801                 pmu->pmu_enable  = perf_pmu_nop_void;
10802                 pmu->pmu_disable = perf_pmu_nop_void;
10803         }
10804
10805         if (!pmu->check_period)
10806                 pmu->check_period = perf_event_nop_int;
10807
10808         if (!pmu->event_idx)
10809                 pmu->event_idx = perf_event_idx_default;
10810
10811         /*
10812          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10813          * since these cannot be in the IDR. This way the linear search
10814          * is fast, provided a valid software event is provided.
10815          */
10816         if (type == PERF_TYPE_SOFTWARE || !name)
10817                 list_add_rcu(&pmu->entry, &pmus);
10818         else
10819                 list_add_tail_rcu(&pmu->entry, &pmus);
10820
10821         atomic_set(&pmu->exclusive_cnt, 0);
10822         ret = 0;
10823 unlock:
10824         mutex_unlock(&pmus_lock);
10825
10826         return ret;
10827
10828 free_dev:
10829         device_del(pmu->dev);
10830         put_device(pmu->dev);
10831
10832 free_idr:
10833         if (pmu->type != PERF_TYPE_SOFTWARE)
10834                 idr_remove(&pmu_idr, pmu->type);
10835
10836 free_pdc:
10837         free_percpu(pmu->pmu_disable_count);
10838         goto unlock;
10839 }
10840 EXPORT_SYMBOL_GPL(perf_pmu_register);
10841
10842 void perf_pmu_unregister(struct pmu *pmu)
10843 {
10844         mutex_lock(&pmus_lock);
10845         list_del_rcu(&pmu->entry);
10846
10847         /*
10848          * We dereference the pmu list under both SRCU and regular RCU, so
10849          * synchronize against both of those.
10850          */
10851         synchronize_srcu(&pmus_srcu);
10852         synchronize_rcu();
10853
10854         free_percpu(pmu->pmu_disable_count);
10855         if (pmu->type != PERF_TYPE_SOFTWARE)
10856                 idr_remove(&pmu_idr, pmu->type);
10857         if (pmu_bus_running) {
10858                 if (pmu->nr_addr_filters)
10859                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10860                 device_del(pmu->dev);
10861                 put_device(pmu->dev);
10862         }
10863         free_pmu_context(pmu);
10864         mutex_unlock(&pmus_lock);
10865 }
10866 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10867
10868 static inline bool has_extended_regs(struct perf_event *event)
10869 {
10870         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10871                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10872 }
10873
10874 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10875 {
10876         struct perf_event_context *ctx = NULL;
10877         int ret;
10878
10879         if (!try_module_get(pmu->module))
10880                 return -ENODEV;
10881
10882         /*
10883          * A number of pmu->event_init() methods iterate the sibling_list to,
10884          * for example, validate if the group fits on the PMU. Therefore,
10885          * if this is a sibling event, acquire the ctx->mutex to protect
10886          * the sibling_list.
10887          */
10888         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10889                 /*
10890                  * This ctx->mutex can nest when we're called through
10891                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10892                  */
10893                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10894                                                  SINGLE_DEPTH_NESTING);
10895                 BUG_ON(!ctx);
10896         }
10897
10898         event->pmu = pmu;
10899         ret = pmu->event_init(event);
10900
10901         if (ctx)
10902                 perf_event_ctx_unlock(event->group_leader, ctx);
10903
10904         if (!ret) {
10905                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10906                     has_extended_regs(event))
10907                         ret = -EOPNOTSUPP;
10908
10909                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10910                     event_has_any_exclude_flag(event))
10911                         ret = -EINVAL;
10912
10913                 if (ret && event->destroy)
10914                         event->destroy(event);
10915         }
10916
10917         if (ret)
10918                 module_put(pmu->module);
10919
10920         return ret;
10921 }
10922
10923 static struct pmu *perf_init_event(struct perf_event *event)
10924 {
10925         int idx, type, ret;
10926         struct pmu *pmu;
10927
10928         idx = srcu_read_lock(&pmus_srcu);
10929
10930         /* Try parent's PMU first: */
10931         if (event->parent && event->parent->pmu) {
10932                 pmu = event->parent->pmu;
10933                 ret = perf_try_init_event(pmu, event);
10934                 if (!ret)
10935                         goto unlock;
10936         }
10937
10938         /*
10939          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10940          * are often aliases for PERF_TYPE_RAW.
10941          */
10942         type = event->attr.type;
10943         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10944                 type = PERF_TYPE_RAW;
10945
10946 again:
10947         rcu_read_lock();
10948         pmu = idr_find(&pmu_idr, type);
10949         rcu_read_unlock();
10950         if (pmu) {
10951                 ret = perf_try_init_event(pmu, event);
10952                 if (ret == -ENOENT && event->attr.type != type) {
10953                         type = event->attr.type;
10954                         goto again;
10955                 }
10956
10957                 if (ret)
10958                         pmu = ERR_PTR(ret);
10959
10960                 goto unlock;
10961         }
10962
10963         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10964                 ret = perf_try_init_event(pmu, event);
10965                 if (!ret)
10966                         goto unlock;
10967
10968                 if (ret != -ENOENT) {
10969                         pmu = ERR_PTR(ret);
10970                         goto unlock;
10971                 }
10972         }
10973         pmu = ERR_PTR(-ENOENT);
10974 unlock:
10975         srcu_read_unlock(&pmus_srcu, idx);
10976
10977         return pmu;
10978 }
10979
10980 static void attach_sb_event(struct perf_event *event)
10981 {
10982         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10983
10984         raw_spin_lock(&pel->lock);
10985         list_add_rcu(&event->sb_list, &pel->list);
10986         raw_spin_unlock(&pel->lock);
10987 }
10988
10989 /*
10990  * We keep a list of all !task (and therefore per-cpu) events
10991  * that need to receive side-band records.
10992  *
10993  * This avoids having to scan all the various PMU per-cpu contexts
10994  * looking for them.
10995  */
10996 static void account_pmu_sb_event(struct perf_event *event)
10997 {
10998         if (is_sb_event(event))
10999                 attach_sb_event(event);
11000 }
11001
11002 static void account_event_cpu(struct perf_event *event, int cpu)
11003 {
11004         if (event->parent)
11005                 return;
11006
11007         if (is_cgroup_event(event))
11008                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11009 }
11010
11011 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11012 static void account_freq_event_nohz(void)
11013 {
11014 #ifdef CONFIG_NO_HZ_FULL
11015         /* Lock so we don't race with concurrent unaccount */
11016         spin_lock(&nr_freq_lock);
11017         if (atomic_inc_return(&nr_freq_events) == 1)
11018                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11019         spin_unlock(&nr_freq_lock);
11020 #endif
11021 }
11022
11023 static void account_freq_event(void)
11024 {
11025         if (tick_nohz_full_enabled())
11026                 account_freq_event_nohz();
11027         else
11028                 atomic_inc(&nr_freq_events);
11029 }
11030
11031
11032 static void account_event(struct perf_event *event)
11033 {
11034         bool inc = false;
11035
11036         if (event->parent)
11037                 return;
11038
11039         if (event->attach_state & PERF_ATTACH_TASK)
11040                 inc = true;
11041         if (event->attr.mmap || event->attr.mmap_data)
11042                 atomic_inc(&nr_mmap_events);
11043         if (event->attr.comm)
11044                 atomic_inc(&nr_comm_events);
11045         if (event->attr.namespaces)
11046                 atomic_inc(&nr_namespaces_events);
11047         if (event->attr.cgroup)
11048                 atomic_inc(&nr_cgroup_events);
11049         if (event->attr.task)
11050                 atomic_inc(&nr_task_events);
11051         if (event->attr.freq)
11052                 account_freq_event();
11053         if (event->attr.context_switch) {
11054                 atomic_inc(&nr_switch_events);
11055                 inc = true;
11056         }
11057         if (has_branch_stack(event))
11058                 inc = true;
11059         if (is_cgroup_event(event))
11060                 inc = true;
11061         if (event->attr.ksymbol)
11062                 atomic_inc(&nr_ksymbol_events);
11063         if (event->attr.bpf_event)
11064                 atomic_inc(&nr_bpf_events);
11065         if (event->attr.text_poke)
11066                 atomic_inc(&nr_text_poke_events);
11067
11068         if (inc) {
11069                 /*
11070                  * We need the mutex here because static_branch_enable()
11071                  * must complete *before* the perf_sched_count increment
11072                  * becomes visible.
11073                  */
11074                 if (atomic_inc_not_zero(&perf_sched_count))
11075                         goto enabled;
11076
11077                 mutex_lock(&perf_sched_mutex);
11078                 if (!atomic_read(&perf_sched_count)) {
11079                         static_branch_enable(&perf_sched_events);
11080                         /*
11081                          * Guarantee that all CPUs observe they key change and
11082                          * call the perf scheduling hooks before proceeding to
11083                          * install events that need them.
11084                          */
11085                         synchronize_rcu();
11086                 }
11087                 /*
11088                  * Now that we have waited for the sync_sched(), allow further
11089                  * increments to by-pass the mutex.
11090                  */
11091                 atomic_inc(&perf_sched_count);
11092                 mutex_unlock(&perf_sched_mutex);
11093         }
11094 enabled:
11095
11096         account_event_cpu(event, event->cpu);
11097
11098         account_pmu_sb_event(event);
11099 }
11100
11101 /*
11102  * Allocate and initialize an event structure
11103  */
11104 static struct perf_event *
11105 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11106                  struct task_struct *task,
11107                  struct perf_event *group_leader,
11108                  struct perf_event *parent_event,
11109                  perf_overflow_handler_t overflow_handler,
11110                  void *context, int cgroup_fd)
11111 {
11112         struct pmu *pmu;
11113         struct perf_event *event;
11114         struct hw_perf_event *hwc;
11115         long err = -EINVAL;
11116
11117         if ((unsigned)cpu >= nr_cpu_ids) {
11118                 if (!task || cpu != -1)
11119                         return ERR_PTR(-EINVAL);
11120         }
11121
11122         event = kzalloc(sizeof(*event), GFP_KERNEL);
11123         if (!event)
11124                 return ERR_PTR(-ENOMEM);
11125
11126         /*
11127          * Single events are their own group leaders, with an
11128          * empty sibling list:
11129          */
11130         if (!group_leader)
11131                 group_leader = event;
11132
11133         mutex_init(&event->child_mutex);
11134         INIT_LIST_HEAD(&event->child_list);
11135
11136         INIT_LIST_HEAD(&event->event_entry);
11137         INIT_LIST_HEAD(&event->sibling_list);
11138         INIT_LIST_HEAD(&event->active_list);
11139         init_event_group(event);
11140         INIT_LIST_HEAD(&event->rb_entry);
11141         INIT_LIST_HEAD(&event->active_entry);
11142         INIT_LIST_HEAD(&event->addr_filters.list);
11143         INIT_HLIST_NODE(&event->hlist_entry);
11144
11145
11146         init_waitqueue_head(&event->waitq);
11147         event->pending_disable = -1;
11148         init_irq_work(&event->pending, perf_pending_event);
11149
11150         mutex_init(&event->mmap_mutex);
11151         raw_spin_lock_init(&event->addr_filters.lock);
11152
11153         atomic_long_set(&event->refcount, 1);
11154         event->cpu              = cpu;
11155         event->attr             = *attr;
11156         event->group_leader     = group_leader;
11157         event->pmu              = NULL;
11158         event->oncpu            = -1;
11159
11160         event->parent           = parent_event;
11161
11162         event->ns               = get_pid_ns(task_active_pid_ns(current));
11163         event->id               = atomic64_inc_return(&perf_event_id);
11164
11165         event->state            = PERF_EVENT_STATE_INACTIVE;
11166
11167         if (task) {
11168                 event->attach_state = PERF_ATTACH_TASK;
11169                 /*
11170                  * XXX pmu::event_init needs to know what task to account to
11171                  * and we cannot use the ctx information because we need the
11172                  * pmu before we get a ctx.
11173                  */
11174                 event->hw.target = get_task_struct(task);
11175         }
11176
11177         event->clock = &local_clock;
11178         if (parent_event)
11179                 event->clock = parent_event->clock;
11180
11181         if (!overflow_handler && parent_event) {
11182                 overflow_handler = parent_event->overflow_handler;
11183                 context = parent_event->overflow_handler_context;
11184 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11185                 if (overflow_handler == bpf_overflow_handler) {
11186                         struct bpf_prog *prog = parent_event->prog;
11187
11188                         bpf_prog_inc(prog);
11189                         event->prog = prog;
11190                         event->orig_overflow_handler =
11191                                 parent_event->orig_overflow_handler;
11192                 }
11193 #endif
11194         }
11195
11196         if (overflow_handler) {
11197                 event->overflow_handler = overflow_handler;
11198                 event->overflow_handler_context = context;
11199         } else if (is_write_backward(event)){
11200                 event->overflow_handler = perf_event_output_backward;
11201                 event->overflow_handler_context = NULL;
11202         } else {
11203                 event->overflow_handler = perf_event_output_forward;
11204                 event->overflow_handler_context = NULL;
11205         }
11206
11207         perf_event__state_init(event);
11208
11209         pmu = NULL;
11210
11211         hwc = &event->hw;
11212         hwc->sample_period = attr->sample_period;
11213         if (attr->freq && attr->sample_freq)
11214                 hwc->sample_period = 1;
11215         hwc->last_period = hwc->sample_period;
11216
11217         local64_set(&hwc->period_left, hwc->sample_period);
11218
11219         /*
11220          * We currently do not support PERF_SAMPLE_READ on inherited events.
11221          * See perf_output_read().
11222          */
11223         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11224                 goto err_ns;
11225
11226         if (!has_branch_stack(event))
11227                 event->attr.branch_sample_type = 0;
11228
11229         pmu = perf_init_event(event);
11230         if (IS_ERR(pmu)) {
11231                 err = PTR_ERR(pmu);
11232                 goto err_ns;
11233         }
11234
11235         /*
11236          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11237          * be different on other CPUs in the uncore mask.
11238          */
11239         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11240                 err = -EINVAL;
11241                 goto err_pmu;
11242         }
11243
11244         if (event->attr.aux_output &&
11245             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11246                 err = -EOPNOTSUPP;
11247                 goto err_pmu;
11248         }
11249
11250         if (cgroup_fd != -1) {
11251                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11252                 if (err)
11253                         goto err_pmu;
11254         }
11255
11256         err = exclusive_event_init(event);
11257         if (err)
11258                 goto err_pmu;
11259
11260         if (has_addr_filter(event)) {
11261                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11262                                                     sizeof(struct perf_addr_filter_range),
11263                                                     GFP_KERNEL);
11264                 if (!event->addr_filter_ranges) {
11265                         err = -ENOMEM;
11266                         goto err_per_task;
11267                 }
11268
11269                 /*
11270                  * Clone the parent's vma offsets: they are valid until exec()
11271                  * even if the mm is not shared with the parent.
11272                  */
11273                 if (event->parent) {
11274                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11275
11276                         raw_spin_lock_irq(&ifh->lock);
11277                         memcpy(event->addr_filter_ranges,
11278                                event->parent->addr_filter_ranges,
11279                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11280                         raw_spin_unlock_irq(&ifh->lock);
11281                 }
11282
11283                 /* force hw sync on the address filters */
11284                 event->addr_filters_gen = 1;
11285         }
11286
11287         if (!event->parent) {
11288                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11289                         err = get_callchain_buffers(attr->sample_max_stack);
11290                         if (err)
11291                                 goto err_addr_filters;
11292                 }
11293         }
11294
11295         err = security_perf_event_alloc(event);
11296         if (err)
11297                 goto err_callchain_buffer;
11298
11299         /* symmetric to unaccount_event() in _free_event() */
11300         account_event(event);
11301
11302         return event;
11303
11304 err_callchain_buffer:
11305         if (!event->parent) {
11306                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11307                         put_callchain_buffers();
11308         }
11309 err_addr_filters:
11310         kfree(event->addr_filter_ranges);
11311
11312 err_per_task:
11313         exclusive_event_destroy(event);
11314
11315 err_pmu:
11316         if (is_cgroup_event(event))
11317                 perf_detach_cgroup(event);
11318         if (event->destroy)
11319                 event->destroy(event);
11320         module_put(pmu->module);
11321 err_ns:
11322         if (event->ns)
11323                 put_pid_ns(event->ns);
11324         if (event->hw.target)
11325                 put_task_struct(event->hw.target);
11326         kfree(event);
11327
11328         return ERR_PTR(err);
11329 }
11330
11331 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11332                           struct perf_event_attr *attr)
11333 {
11334         u32 size;
11335         int ret;
11336
11337         /* Zero the full structure, so that a short copy will be nice. */
11338         memset(attr, 0, sizeof(*attr));
11339
11340         ret = get_user(size, &uattr->size);
11341         if (ret)
11342                 return ret;
11343
11344         /* ABI compatibility quirk: */
11345         if (!size)
11346                 size = PERF_ATTR_SIZE_VER0;
11347         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11348                 goto err_size;
11349
11350         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11351         if (ret) {
11352                 if (ret == -E2BIG)
11353                         goto err_size;
11354                 return ret;
11355         }
11356
11357         attr->size = size;
11358
11359         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11360                 return -EINVAL;
11361
11362         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11363                 return -EINVAL;
11364
11365         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11366                 return -EINVAL;
11367
11368         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11369                 u64 mask = attr->branch_sample_type;
11370
11371                 /* only using defined bits */
11372                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11373                         return -EINVAL;
11374
11375                 /* at least one branch bit must be set */
11376                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11377                         return -EINVAL;
11378
11379                 /* propagate priv level, when not set for branch */
11380                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11381
11382                         /* exclude_kernel checked on syscall entry */
11383                         if (!attr->exclude_kernel)
11384                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11385
11386                         if (!attr->exclude_user)
11387                                 mask |= PERF_SAMPLE_BRANCH_USER;
11388
11389                         if (!attr->exclude_hv)
11390                                 mask |= PERF_SAMPLE_BRANCH_HV;
11391                         /*
11392                          * adjust user setting (for HW filter setup)
11393                          */
11394                         attr->branch_sample_type = mask;
11395                 }
11396                 /* privileged levels capture (kernel, hv): check permissions */
11397                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11398                         ret = perf_allow_kernel(attr);
11399                         if (ret)
11400                                 return ret;
11401                 }
11402         }
11403
11404         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11405                 ret = perf_reg_validate(attr->sample_regs_user);
11406                 if (ret)
11407                         return ret;
11408         }
11409
11410         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11411                 if (!arch_perf_have_user_stack_dump())
11412                         return -ENOSYS;
11413
11414                 /*
11415                  * We have __u32 type for the size, but so far
11416                  * we can only use __u16 as maximum due to the
11417                  * __u16 sample size limit.
11418                  */
11419                 if (attr->sample_stack_user >= USHRT_MAX)
11420                         return -EINVAL;
11421                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11422                         return -EINVAL;
11423         }
11424
11425         if (!attr->sample_max_stack)
11426                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11427
11428         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11429                 ret = perf_reg_validate(attr->sample_regs_intr);
11430
11431 #ifndef CONFIG_CGROUP_PERF
11432         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11433                 return -EINVAL;
11434 #endif
11435
11436 out:
11437         return ret;
11438
11439 err_size:
11440         put_user(sizeof(*attr), &uattr->size);
11441         ret = -E2BIG;
11442         goto out;
11443 }
11444
11445 static int
11446 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11447 {
11448         struct perf_buffer *rb = NULL;
11449         int ret = -EINVAL;
11450
11451         if (!output_event)
11452                 goto set;
11453
11454         /* don't allow circular references */
11455         if (event == output_event)
11456                 goto out;
11457
11458         /*
11459          * Don't allow cross-cpu buffers
11460          */
11461         if (output_event->cpu != event->cpu)
11462                 goto out;
11463
11464         /*
11465          * If its not a per-cpu rb, it must be the same task.
11466          */
11467         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11468                 goto out;
11469
11470         /*
11471          * Mixing clocks in the same buffer is trouble you don't need.
11472          */
11473         if (output_event->clock != event->clock)
11474                 goto out;
11475
11476         /*
11477          * Either writing ring buffer from beginning or from end.
11478          * Mixing is not allowed.
11479          */
11480         if (is_write_backward(output_event) != is_write_backward(event))
11481                 goto out;
11482
11483         /*
11484          * If both events generate aux data, they must be on the same PMU
11485          */
11486         if (has_aux(event) && has_aux(output_event) &&
11487             event->pmu != output_event->pmu)
11488                 goto out;
11489
11490 set:
11491         mutex_lock(&event->mmap_mutex);
11492         /* Can't redirect output if we've got an active mmap() */
11493         if (atomic_read(&event->mmap_count))
11494                 goto unlock;
11495
11496         if (output_event) {
11497                 /* get the rb we want to redirect to */
11498                 rb = ring_buffer_get(output_event);
11499                 if (!rb)
11500                         goto unlock;
11501         }
11502
11503         ring_buffer_attach(event, rb);
11504
11505         ret = 0;
11506 unlock:
11507         mutex_unlock(&event->mmap_mutex);
11508
11509 out:
11510         return ret;
11511 }
11512
11513 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11514 {
11515         if (b < a)
11516                 swap(a, b);
11517
11518         mutex_lock(a);
11519         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11520 }
11521
11522 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11523 {
11524         bool nmi_safe = false;
11525
11526         switch (clk_id) {
11527         case CLOCK_MONOTONIC:
11528                 event->clock = &ktime_get_mono_fast_ns;
11529                 nmi_safe = true;
11530                 break;
11531
11532         case CLOCK_MONOTONIC_RAW:
11533                 event->clock = &ktime_get_raw_fast_ns;
11534                 nmi_safe = true;
11535                 break;
11536
11537         case CLOCK_REALTIME:
11538                 event->clock = &ktime_get_real_ns;
11539                 break;
11540
11541         case CLOCK_BOOTTIME:
11542                 event->clock = &ktime_get_boottime_ns;
11543                 break;
11544
11545         case CLOCK_TAI:
11546                 event->clock = &ktime_get_clocktai_ns;
11547                 break;
11548
11549         default:
11550                 return -EINVAL;
11551         }
11552
11553         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11554                 return -EINVAL;
11555
11556         return 0;
11557 }
11558
11559 /*
11560  * Variation on perf_event_ctx_lock_nested(), except we take two context
11561  * mutexes.
11562  */
11563 static struct perf_event_context *
11564 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11565                              struct perf_event_context *ctx)
11566 {
11567         struct perf_event_context *gctx;
11568
11569 again:
11570         rcu_read_lock();
11571         gctx = READ_ONCE(group_leader->ctx);
11572         if (!refcount_inc_not_zero(&gctx->refcount)) {
11573                 rcu_read_unlock();
11574                 goto again;
11575         }
11576         rcu_read_unlock();
11577
11578         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11579
11580         if (group_leader->ctx != gctx) {
11581                 mutex_unlock(&ctx->mutex);
11582                 mutex_unlock(&gctx->mutex);
11583                 put_ctx(gctx);
11584                 goto again;
11585         }
11586
11587         return gctx;
11588 }
11589
11590 /**
11591  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11592  *
11593  * @attr_uptr:  event_id type attributes for monitoring/sampling
11594  * @pid:                target pid
11595  * @cpu:                target cpu
11596  * @group_fd:           group leader event fd
11597  */
11598 SYSCALL_DEFINE5(perf_event_open,
11599                 struct perf_event_attr __user *, attr_uptr,
11600                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11601 {
11602         struct perf_event *group_leader = NULL, *output_event = NULL;
11603         struct perf_event *event, *sibling;
11604         struct perf_event_attr attr;
11605         struct perf_event_context *ctx, *gctx;
11606         struct file *event_file = NULL;
11607         struct fd group = {NULL, 0};
11608         struct task_struct *task = NULL;
11609         struct pmu *pmu;
11610         int event_fd;
11611         int move_group = 0;
11612         int err;
11613         int f_flags = O_RDWR;
11614         int cgroup_fd = -1;
11615
11616         /* for future expandability... */
11617         if (flags & ~PERF_FLAG_ALL)
11618                 return -EINVAL;
11619
11620         /* Do we allow access to perf_event_open(2) ? */
11621         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11622         if (err)
11623                 return err;
11624
11625         err = perf_copy_attr(attr_uptr, &attr);
11626         if (err)
11627                 return err;
11628
11629         if (!attr.exclude_kernel) {
11630                 err = perf_allow_kernel(&attr);
11631                 if (err)
11632                         return err;
11633         }
11634
11635         if (attr.namespaces) {
11636                 if (!perfmon_capable())
11637                         return -EACCES;
11638         }
11639
11640         if (attr.freq) {
11641                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11642                         return -EINVAL;
11643         } else {
11644                 if (attr.sample_period & (1ULL << 63))
11645                         return -EINVAL;
11646         }
11647
11648         /* Only privileged users can get physical addresses */
11649         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11650                 err = perf_allow_kernel(&attr);
11651                 if (err)
11652                         return err;
11653         }
11654
11655         err = security_locked_down(LOCKDOWN_PERF);
11656         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11657                 /* REGS_INTR can leak data, lockdown must prevent this */
11658                 return err;
11659
11660         err = 0;
11661
11662         /*
11663          * In cgroup mode, the pid argument is used to pass the fd
11664          * opened to the cgroup directory in cgroupfs. The cpu argument
11665          * designates the cpu on which to monitor threads from that
11666          * cgroup.
11667          */
11668         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11669                 return -EINVAL;
11670
11671         if (flags & PERF_FLAG_FD_CLOEXEC)
11672                 f_flags |= O_CLOEXEC;
11673
11674         event_fd = get_unused_fd_flags(f_flags);
11675         if (event_fd < 0)
11676                 return event_fd;
11677
11678         if (group_fd != -1) {
11679                 err = perf_fget_light(group_fd, &group);
11680                 if (err)
11681                         goto err_fd;
11682                 group_leader = group.file->private_data;
11683                 if (flags & PERF_FLAG_FD_OUTPUT)
11684                         output_event = group_leader;
11685                 if (flags & PERF_FLAG_FD_NO_GROUP)
11686                         group_leader = NULL;
11687         }
11688
11689         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11690                 task = find_lively_task_by_vpid(pid);
11691                 if (IS_ERR(task)) {
11692                         err = PTR_ERR(task);
11693                         goto err_group_fd;
11694                 }
11695         }
11696
11697         if (task && group_leader &&
11698             group_leader->attr.inherit != attr.inherit) {
11699                 err = -EINVAL;
11700                 goto err_task;
11701         }
11702
11703         if (task) {
11704                 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11705                 if (err)
11706                         goto err_task;
11707
11708                 /*
11709                  * Preserve ptrace permission check for backwards compatibility.
11710                  *
11711                  * We must hold exec_update_mutex across this and any potential
11712                  * perf_install_in_context() call for this new event to
11713                  * serialize against exec() altering our credentials (and the
11714                  * perf_event_exit_task() that could imply).
11715                  */
11716                 err = -EACCES;
11717                 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11718                         goto err_cred;
11719         }
11720
11721         if (flags & PERF_FLAG_PID_CGROUP)
11722                 cgroup_fd = pid;
11723
11724         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11725                                  NULL, NULL, cgroup_fd);
11726         if (IS_ERR(event)) {
11727                 err = PTR_ERR(event);
11728                 goto err_cred;
11729         }
11730
11731         if (is_sampling_event(event)) {
11732                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11733                         err = -EOPNOTSUPP;
11734                         goto err_alloc;
11735                 }
11736         }
11737
11738         /*
11739          * Special case software events and allow them to be part of
11740          * any hardware group.
11741          */
11742         pmu = event->pmu;
11743
11744         if (attr.use_clockid) {
11745                 err = perf_event_set_clock(event, attr.clockid);
11746                 if (err)
11747                         goto err_alloc;
11748         }
11749
11750         if (pmu->task_ctx_nr == perf_sw_context)
11751                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11752
11753         if (group_leader) {
11754                 if (is_software_event(event) &&
11755                     !in_software_context(group_leader)) {
11756                         /*
11757                          * If the event is a sw event, but the group_leader
11758                          * is on hw context.
11759                          *
11760                          * Allow the addition of software events to hw
11761                          * groups, this is safe because software events
11762                          * never fail to schedule.
11763                          */
11764                         pmu = group_leader->ctx->pmu;
11765                 } else if (!is_software_event(event) &&
11766                            is_software_event(group_leader) &&
11767                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11768                         /*
11769                          * In case the group is a pure software group, and we
11770                          * try to add a hardware event, move the whole group to
11771                          * the hardware context.
11772                          */
11773                         move_group = 1;
11774                 }
11775         }
11776
11777         /*
11778          * Get the target context (task or percpu):
11779          */
11780         ctx = find_get_context(pmu, task, event);
11781         if (IS_ERR(ctx)) {
11782                 err = PTR_ERR(ctx);
11783                 goto err_alloc;
11784         }
11785
11786         /*
11787          * Look up the group leader (we will attach this event to it):
11788          */
11789         if (group_leader) {
11790                 err = -EINVAL;
11791
11792                 /*
11793                  * Do not allow a recursive hierarchy (this new sibling
11794                  * becoming part of another group-sibling):
11795                  */
11796                 if (group_leader->group_leader != group_leader)
11797                         goto err_context;
11798
11799                 /* All events in a group should have the same clock */
11800                 if (group_leader->clock != event->clock)
11801                         goto err_context;
11802
11803                 /*
11804                  * Make sure we're both events for the same CPU;
11805                  * grouping events for different CPUs is broken; since
11806                  * you can never concurrently schedule them anyhow.
11807                  */
11808                 if (group_leader->cpu != event->cpu)
11809                         goto err_context;
11810
11811                 /*
11812                  * Make sure we're both on the same task, or both
11813                  * per-CPU events.
11814                  */
11815                 if (group_leader->ctx->task != ctx->task)
11816                         goto err_context;
11817
11818                 /*
11819                  * Do not allow to attach to a group in a different task
11820                  * or CPU context. If we're moving SW events, we'll fix
11821                  * this up later, so allow that.
11822                  */
11823                 if (!move_group && group_leader->ctx != ctx)
11824                         goto err_context;
11825
11826                 /*
11827                  * Only a group leader can be exclusive or pinned
11828                  */
11829                 if (attr.exclusive || attr.pinned)
11830                         goto err_context;
11831         }
11832
11833         if (output_event) {
11834                 err = perf_event_set_output(event, output_event);
11835                 if (err)
11836                         goto err_context;
11837         }
11838
11839         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11840                                         f_flags);
11841         if (IS_ERR(event_file)) {
11842                 err = PTR_ERR(event_file);
11843                 event_file = NULL;
11844                 goto err_context;
11845         }
11846
11847         if (move_group) {
11848                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11849
11850                 if (gctx->task == TASK_TOMBSTONE) {
11851                         err = -ESRCH;
11852                         goto err_locked;
11853                 }
11854
11855                 /*
11856                  * Check if we raced against another sys_perf_event_open() call
11857                  * moving the software group underneath us.
11858                  */
11859                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11860                         /*
11861                          * If someone moved the group out from under us, check
11862                          * if this new event wound up on the same ctx, if so
11863                          * its the regular !move_group case, otherwise fail.
11864                          */
11865                         if (gctx != ctx) {
11866                                 err = -EINVAL;
11867                                 goto err_locked;
11868                         } else {
11869                                 perf_event_ctx_unlock(group_leader, gctx);
11870                                 move_group = 0;
11871                         }
11872                 }
11873
11874                 /*
11875                  * Failure to create exclusive events returns -EBUSY.
11876                  */
11877                 err = -EBUSY;
11878                 if (!exclusive_event_installable(group_leader, ctx))
11879                         goto err_locked;
11880
11881                 for_each_sibling_event(sibling, group_leader) {
11882                         if (!exclusive_event_installable(sibling, ctx))
11883                                 goto err_locked;
11884                 }
11885         } else {
11886                 mutex_lock(&ctx->mutex);
11887         }
11888
11889         if (ctx->task == TASK_TOMBSTONE) {
11890                 err = -ESRCH;
11891                 goto err_locked;
11892         }
11893
11894         if (!perf_event_validate_size(event)) {
11895                 err = -E2BIG;
11896                 goto err_locked;
11897         }
11898
11899         if (!task) {
11900                 /*
11901                  * Check if the @cpu we're creating an event for is online.
11902                  *
11903                  * We use the perf_cpu_context::ctx::mutex to serialize against
11904                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11905                  */
11906                 struct perf_cpu_context *cpuctx =
11907                         container_of(ctx, struct perf_cpu_context, ctx);
11908
11909                 if (!cpuctx->online) {
11910                         err = -ENODEV;
11911                         goto err_locked;
11912                 }
11913         }
11914
11915         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11916                 err = -EINVAL;
11917                 goto err_locked;
11918         }
11919
11920         /*
11921          * Must be under the same ctx::mutex as perf_install_in_context(),
11922          * because we need to serialize with concurrent event creation.
11923          */
11924         if (!exclusive_event_installable(event, ctx)) {
11925                 err = -EBUSY;
11926                 goto err_locked;
11927         }
11928
11929         WARN_ON_ONCE(ctx->parent_ctx);
11930
11931         /*
11932          * This is the point on no return; we cannot fail hereafter. This is
11933          * where we start modifying current state.
11934          */
11935
11936         if (move_group) {
11937                 /*
11938                  * See perf_event_ctx_lock() for comments on the details
11939                  * of swizzling perf_event::ctx.
11940                  */
11941                 perf_remove_from_context(group_leader, 0);
11942                 put_ctx(gctx);
11943
11944                 for_each_sibling_event(sibling, group_leader) {
11945                         perf_remove_from_context(sibling, 0);
11946                         put_ctx(gctx);
11947                 }
11948
11949                 /*
11950                  * Wait for everybody to stop referencing the events through
11951                  * the old lists, before installing it on new lists.
11952                  */
11953                 synchronize_rcu();
11954
11955                 /*
11956                  * Install the group siblings before the group leader.
11957                  *
11958                  * Because a group leader will try and install the entire group
11959                  * (through the sibling list, which is still in-tact), we can
11960                  * end up with siblings installed in the wrong context.
11961                  *
11962                  * By installing siblings first we NO-OP because they're not
11963                  * reachable through the group lists.
11964                  */
11965                 for_each_sibling_event(sibling, group_leader) {
11966                         perf_event__state_init(sibling);
11967                         perf_install_in_context(ctx, sibling, sibling->cpu);
11968                         get_ctx(ctx);
11969                 }
11970
11971                 /*
11972                  * Removing from the context ends up with disabled
11973                  * event. What we want here is event in the initial
11974                  * startup state, ready to be add into new context.
11975                  */
11976                 perf_event__state_init(group_leader);
11977                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11978                 get_ctx(ctx);
11979         }
11980
11981         /*
11982          * Precalculate sample_data sizes; do while holding ctx::mutex such
11983          * that we're serialized against further additions and before
11984          * perf_install_in_context() which is the point the event is active and
11985          * can use these values.
11986          */
11987         perf_event__header_size(event);
11988         perf_event__id_header_size(event);
11989
11990         event->owner = current;
11991
11992         perf_install_in_context(ctx, event, event->cpu);
11993         perf_unpin_context(ctx);
11994
11995         if (move_group)
11996                 perf_event_ctx_unlock(group_leader, gctx);
11997         mutex_unlock(&ctx->mutex);
11998
11999         if (task) {
12000                 mutex_unlock(&task->signal->exec_update_mutex);
12001                 put_task_struct(task);
12002         }
12003
12004         mutex_lock(&current->perf_event_mutex);
12005         list_add_tail(&event->owner_entry, &current->perf_event_list);
12006         mutex_unlock(&current->perf_event_mutex);
12007
12008         /*
12009          * Drop the reference on the group_event after placing the
12010          * new event on the sibling_list. This ensures destruction
12011          * of the group leader will find the pointer to itself in
12012          * perf_group_detach().
12013          */
12014         fdput(group);
12015         fd_install(event_fd, event_file);
12016         return event_fd;
12017
12018 err_locked:
12019         if (move_group)
12020                 perf_event_ctx_unlock(group_leader, gctx);
12021         mutex_unlock(&ctx->mutex);
12022 /* err_file: */
12023         fput(event_file);
12024 err_context:
12025         perf_unpin_context(ctx);
12026         put_ctx(ctx);
12027 err_alloc:
12028         /*
12029          * If event_file is set, the fput() above will have called ->release()
12030          * and that will take care of freeing the event.
12031          */
12032         if (!event_file)
12033                 free_event(event);
12034 err_cred:
12035         if (task)
12036                 mutex_unlock(&task->signal->exec_update_mutex);
12037 err_task:
12038         if (task)
12039                 put_task_struct(task);
12040 err_group_fd:
12041         fdput(group);
12042 err_fd:
12043         put_unused_fd(event_fd);
12044         return err;
12045 }
12046
12047 /**
12048  * perf_event_create_kernel_counter
12049  *
12050  * @attr: attributes of the counter to create
12051  * @cpu: cpu in which the counter is bound
12052  * @task: task to profile (NULL for percpu)
12053  */
12054 struct perf_event *
12055 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12056                                  struct task_struct *task,
12057                                  perf_overflow_handler_t overflow_handler,
12058                                  void *context)
12059 {
12060         struct perf_event_context *ctx;
12061         struct perf_event *event;
12062         int err;
12063
12064         /*
12065          * Grouping is not supported for kernel events, neither is 'AUX',
12066          * make sure the caller's intentions are adjusted.
12067          */
12068         if (attr->aux_output)
12069                 return ERR_PTR(-EINVAL);
12070
12071         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12072                                  overflow_handler, context, -1);
12073         if (IS_ERR(event)) {
12074                 err = PTR_ERR(event);
12075                 goto err;
12076         }
12077
12078         /* Mark owner so we could distinguish it from user events. */
12079         event->owner = TASK_TOMBSTONE;
12080
12081         /*
12082          * Get the target context (task or percpu):
12083          */
12084         ctx = find_get_context(event->pmu, task, event);
12085         if (IS_ERR(ctx)) {
12086                 err = PTR_ERR(ctx);
12087                 goto err_free;
12088         }
12089
12090         WARN_ON_ONCE(ctx->parent_ctx);
12091         mutex_lock(&ctx->mutex);
12092         if (ctx->task == TASK_TOMBSTONE) {
12093                 err = -ESRCH;
12094                 goto err_unlock;
12095         }
12096
12097         if (!task) {
12098                 /*
12099                  * Check if the @cpu we're creating an event for is online.
12100                  *
12101                  * We use the perf_cpu_context::ctx::mutex to serialize against
12102                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12103                  */
12104                 struct perf_cpu_context *cpuctx =
12105                         container_of(ctx, struct perf_cpu_context, ctx);
12106                 if (!cpuctx->online) {
12107                         err = -ENODEV;
12108                         goto err_unlock;
12109                 }
12110         }
12111
12112         if (!exclusive_event_installable(event, ctx)) {
12113                 err = -EBUSY;
12114                 goto err_unlock;
12115         }
12116
12117         perf_install_in_context(ctx, event, event->cpu);
12118         perf_unpin_context(ctx);
12119         mutex_unlock(&ctx->mutex);
12120
12121         return event;
12122
12123 err_unlock:
12124         mutex_unlock(&ctx->mutex);
12125         perf_unpin_context(ctx);
12126         put_ctx(ctx);
12127 err_free:
12128         free_event(event);
12129 err:
12130         return ERR_PTR(err);
12131 }
12132 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12133
12134 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12135 {
12136         struct perf_event_context *src_ctx;
12137         struct perf_event_context *dst_ctx;
12138         struct perf_event *event, *tmp;
12139         LIST_HEAD(events);
12140
12141         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12142         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12143
12144         /*
12145          * See perf_event_ctx_lock() for comments on the details
12146          * of swizzling perf_event::ctx.
12147          */
12148         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12149         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12150                                  event_entry) {
12151                 perf_remove_from_context(event, 0);
12152                 unaccount_event_cpu(event, src_cpu);
12153                 put_ctx(src_ctx);
12154                 list_add(&event->migrate_entry, &events);
12155         }
12156
12157         /*
12158          * Wait for the events to quiesce before re-instating them.
12159          */
12160         synchronize_rcu();
12161
12162         /*
12163          * Re-instate events in 2 passes.
12164          *
12165          * Skip over group leaders and only install siblings on this first
12166          * pass, siblings will not get enabled without a leader, however a
12167          * leader will enable its siblings, even if those are still on the old
12168          * context.
12169          */
12170         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12171                 if (event->group_leader == event)
12172                         continue;
12173
12174                 list_del(&event->migrate_entry);
12175                 if (event->state >= PERF_EVENT_STATE_OFF)
12176                         event->state = PERF_EVENT_STATE_INACTIVE;
12177                 account_event_cpu(event, dst_cpu);
12178                 perf_install_in_context(dst_ctx, event, dst_cpu);
12179                 get_ctx(dst_ctx);
12180         }
12181
12182         /*
12183          * Once all the siblings are setup properly, install the group leaders
12184          * to make it go.
12185          */
12186         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12187                 list_del(&event->migrate_entry);
12188                 if (event->state >= PERF_EVENT_STATE_OFF)
12189                         event->state = PERF_EVENT_STATE_INACTIVE;
12190                 account_event_cpu(event, dst_cpu);
12191                 perf_install_in_context(dst_ctx, event, dst_cpu);
12192                 get_ctx(dst_ctx);
12193         }
12194         mutex_unlock(&dst_ctx->mutex);
12195         mutex_unlock(&src_ctx->mutex);
12196 }
12197 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12198
12199 static void sync_child_event(struct perf_event *child_event,
12200                                struct task_struct *child)
12201 {
12202         struct perf_event *parent_event = child_event->parent;
12203         u64 child_val;
12204
12205         if (child_event->attr.inherit_stat)
12206                 perf_event_read_event(child_event, child);
12207
12208         child_val = perf_event_count(child_event);
12209
12210         /*
12211          * Add back the child's count to the parent's count:
12212          */
12213         atomic64_add(child_val, &parent_event->child_count);
12214         atomic64_add(child_event->total_time_enabled,
12215                      &parent_event->child_total_time_enabled);
12216         atomic64_add(child_event->total_time_running,
12217                      &parent_event->child_total_time_running);
12218 }
12219
12220 static void
12221 perf_event_exit_event(struct perf_event *child_event,
12222                       struct perf_event_context *child_ctx,
12223                       struct task_struct *child)
12224 {
12225         struct perf_event *parent_event = child_event->parent;
12226
12227         /*
12228          * Do not destroy the 'original' grouping; because of the context
12229          * switch optimization the original events could've ended up in a
12230          * random child task.
12231          *
12232          * If we were to destroy the original group, all group related
12233          * operations would cease to function properly after this random
12234          * child dies.
12235          *
12236          * Do destroy all inherited groups, we don't care about those
12237          * and being thorough is better.
12238          */
12239         raw_spin_lock_irq(&child_ctx->lock);
12240         WARN_ON_ONCE(child_ctx->is_active);
12241
12242         if (parent_event)
12243                 perf_group_detach(child_event);
12244         list_del_event(child_event, child_ctx);
12245         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12246         raw_spin_unlock_irq(&child_ctx->lock);
12247
12248         /*
12249          * Parent events are governed by their filedesc, retain them.
12250          */
12251         if (!parent_event) {
12252                 perf_event_wakeup(child_event);
12253                 return;
12254         }
12255         /*
12256          * Child events can be cleaned up.
12257          */
12258
12259         sync_child_event(child_event, child);
12260
12261         /*
12262          * Remove this event from the parent's list
12263          */
12264         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12265         mutex_lock(&parent_event->child_mutex);
12266         list_del_init(&child_event->child_list);
12267         mutex_unlock(&parent_event->child_mutex);
12268
12269         /*
12270          * Kick perf_poll() for is_event_hup().
12271          */
12272         perf_event_wakeup(parent_event);
12273         free_event(child_event);
12274         put_event(parent_event);
12275 }
12276
12277 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12278 {
12279         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12280         struct perf_event *child_event, *next;
12281
12282         WARN_ON_ONCE(child != current);
12283
12284         child_ctx = perf_pin_task_context(child, ctxn);
12285         if (!child_ctx)
12286                 return;
12287
12288         /*
12289          * In order to reduce the amount of tricky in ctx tear-down, we hold
12290          * ctx::mutex over the entire thing. This serializes against almost
12291          * everything that wants to access the ctx.
12292          *
12293          * The exception is sys_perf_event_open() /
12294          * perf_event_create_kernel_count() which does find_get_context()
12295          * without ctx::mutex (it cannot because of the move_group double mutex
12296          * lock thing). See the comments in perf_install_in_context().
12297          */
12298         mutex_lock(&child_ctx->mutex);
12299
12300         /*
12301          * In a single ctx::lock section, de-schedule the events and detach the
12302          * context from the task such that we cannot ever get it scheduled back
12303          * in.
12304          */
12305         raw_spin_lock_irq(&child_ctx->lock);
12306         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12307
12308         /*
12309          * Now that the context is inactive, destroy the task <-> ctx relation
12310          * and mark the context dead.
12311          */
12312         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12313         put_ctx(child_ctx); /* cannot be last */
12314         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12315         put_task_struct(current); /* cannot be last */
12316
12317         clone_ctx = unclone_ctx(child_ctx);
12318         raw_spin_unlock_irq(&child_ctx->lock);
12319
12320         if (clone_ctx)
12321                 put_ctx(clone_ctx);
12322
12323         /*
12324          * Report the task dead after unscheduling the events so that we
12325          * won't get any samples after PERF_RECORD_EXIT. We can however still
12326          * get a few PERF_RECORD_READ events.
12327          */
12328         perf_event_task(child, child_ctx, 0);
12329
12330         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12331                 perf_event_exit_event(child_event, child_ctx, child);
12332
12333         mutex_unlock(&child_ctx->mutex);
12334
12335         put_ctx(child_ctx);
12336 }
12337
12338 /*
12339  * When a child task exits, feed back event values to parent events.
12340  *
12341  * Can be called with exec_update_mutex held when called from
12342  * setup_new_exec().
12343  */
12344 void perf_event_exit_task(struct task_struct *child)
12345 {
12346         struct perf_event *event, *tmp;
12347         int ctxn;
12348
12349         mutex_lock(&child->perf_event_mutex);
12350         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12351                                  owner_entry) {
12352                 list_del_init(&event->owner_entry);
12353
12354                 /*
12355                  * Ensure the list deletion is visible before we clear
12356                  * the owner, closes a race against perf_release() where
12357                  * we need to serialize on the owner->perf_event_mutex.
12358                  */
12359                 smp_store_release(&event->owner, NULL);
12360         }
12361         mutex_unlock(&child->perf_event_mutex);
12362
12363         for_each_task_context_nr(ctxn)
12364                 perf_event_exit_task_context(child, ctxn);
12365
12366         /*
12367          * The perf_event_exit_task_context calls perf_event_task
12368          * with child's task_ctx, which generates EXIT events for
12369          * child contexts and sets child->perf_event_ctxp[] to NULL.
12370          * At this point we need to send EXIT events to cpu contexts.
12371          */
12372         perf_event_task(child, NULL, 0);
12373 }
12374
12375 static void perf_free_event(struct perf_event *event,
12376                             struct perf_event_context *ctx)
12377 {
12378         struct perf_event *parent = event->parent;
12379
12380         if (WARN_ON_ONCE(!parent))
12381                 return;
12382
12383         mutex_lock(&parent->child_mutex);
12384         list_del_init(&event->child_list);
12385         mutex_unlock(&parent->child_mutex);
12386
12387         put_event(parent);
12388
12389         raw_spin_lock_irq(&ctx->lock);
12390         perf_group_detach(event);
12391         list_del_event(event, ctx);
12392         raw_spin_unlock_irq(&ctx->lock);
12393         free_event(event);
12394 }
12395
12396 /*
12397  * Free a context as created by inheritance by perf_event_init_task() below,
12398  * used by fork() in case of fail.
12399  *
12400  * Even though the task has never lived, the context and events have been
12401  * exposed through the child_list, so we must take care tearing it all down.
12402  */
12403 void perf_event_free_task(struct task_struct *task)
12404 {
12405         struct perf_event_context *ctx;
12406         struct perf_event *event, *tmp;
12407         int ctxn;
12408
12409         for_each_task_context_nr(ctxn) {
12410                 ctx = task->perf_event_ctxp[ctxn];
12411                 if (!ctx)
12412                         continue;
12413
12414                 mutex_lock(&ctx->mutex);
12415                 raw_spin_lock_irq(&ctx->lock);
12416                 /*
12417                  * Destroy the task <-> ctx relation and mark the context dead.
12418                  *
12419                  * This is important because even though the task hasn't been
12420                  * exposed yet the context has been (through child_list).
12421                  */
12422                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12423                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12424                 put_task_struct(task); /* cannot be last */
12425                 raw_spin_unlock_irq(&ctx->lock);
12426
12427                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12428                         perf_free_event(event, ctx);
12429
12430                 mutex_unlock(&ctx->mutex);
12431
12432                 /*
12433                  * perf_event_release_kernel() could've stolen some of our
12434                  * child events and still have them on its free_list. In that
12435                  * case we must wait for these events to have been freed (in
12436                  * particular all their references to this task must've been
12437                  * dropped).
12438                  *
12439                  * Without this copy_process() will unconditionally free this
12440                  * task (irrespective of its reference count) and
12441                  * _free_event()'s put_task_struct(event->hw.target) will be a
12442                  * use-after-free.
12443                  *
12444                  * Wait for all events to drop their context reference.
12445                  */
12446                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12447                 put_ctx(ctx); /* must be last */
12448         }
12449 }
12450
12451 void perf_event_delayed_put(struct task_struct *task)
12452 {
12453         int ctxn;
12454
12455         for_each_task_context_nr(ctxn)
12456                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12457 }
12458
12459 struct file *perf_event_get(unsigned int fd)
12460 {
12461         struct file *file = fget(fd);
12462         if (!file)
12463                 return ERR_PTR(-EBADF);
12464
12465         if (file->f_op != &perf_fops) {
12466                 fput(file);
12467                 return ERR_PTR(-EBADF);
12468         }
12469
12470         return file;
12471 }
12472
12473 const struct perf_event *perf_get_event(struct file *file)
12474 {
12475         if (file->f_op != &perf_fops)
12476                 return ERR_PTR(-EINVAL);
12477
12478         return file->private_data;
12479 }
12480
12481 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12482 {
12483         if (!event)
12484                 return ERR_PTR(-EINVAL);
12485
12486         return &event->attr;
12487 }
12488
12489 /*
12490  * Inherit an event from parent task to child task.
12491  *
12492  * Returns:
12493  *  - valid pointer on success
12494  *  - NULL for orphaned events
12495  *  - IS_ERR() on error
12496  */
12497 static struct perf_event *
12498 inherit_event(struct perf_event *parent_event,
12499               struct task_struct *parent,
12500               struct perf_event_context *parent_ctx,
12501               struct task_struct *child,
12502               struct perf_event *group_leader,
12503               struct perf_event_context *child_ctx)
12504 {
12505         enum perf_event_state parent_state = parent_event->state;
12506         struct perf_event *child_event;
12507         unsigned long flags;
12508
12509         /*
12510          * Instead of creating recursive hierarchies of events,
12511          * we link inherited events back to the original parent,
12512          * which has a filp for sure, which we use as the reference
12513          * count:
12514          */
12515         if (parent_event->parent)
12516                 parent_event = parent_event->parent;
12517
12518         child_event = perf_event_alloc(&parent_event->attr,
12519                                            parent_event->cpu,
12520                                            child,
12521                                            group_leader, parent_event,
12522                                            NULL, NULL, -1);
12523         if (IS_ERR(child_event))
12524                 return child_event;
12525
12526
12527         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12528             !child_ctx->task_ctx_data) {
12529                 struct pmu *pmu = child_event->pmu;
12530
12531                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12532                 if (!child_ctx->task_ctx_data) {
12533                         free_event(child_event);
12534                         return ERR_PTR(-ENOMEM);
12535                 }
12536         }
12537
12538         /*
12539          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12540          * must be under the same lock in order to serialize against
12541          * perf_event_release_kernel(), such that either we must observe
12542          * is_orphaned_event() or they will observe us on the child_list.
12543          */
12544         mutex_lock(&parent_event->child_mutex);
12545         if (is_orphaned_event(parent_event) ||
12546             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12547                 mutex_unlock(&parent_event->child_mutex);
12548                 /* task_ctx_data is freed with child_ctx */
12549                 free_event(child_event);
12550                 return NULL;
12551         }
12552
12553         get_ctx(child_ctx);
12554
12555         /*
12556          * Make the child state follow the state of the parent event,
12557          * not its attr.disabled bit.  We hold the parent's mutex,
12558          * so we won't race with perf_event_{en, dis}able_family.
12559          */
12560         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12561                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12562         else
12563                 child_event->state = PERF_EVENT_STATE_OFF;
12564
12565         if (parent_event->attr.freq) {
12566                 u64 sample_period = parent_event->hw.sample_period;
12567                 struct hw_perf_event *hwc = &child_event->hw;
12568
12569                 hwc->sample_period = sample_period;
12570                 hwc->last_period   = sample_period;
12571
12572                 local64_set(&hwc->period_left, sample_period);
12573         }
12574
12575         child_event->ctx = child_ctx;
12576         child_event->overflow_handler = parent_event->overflow_handler;
12577         child_event->overflow_handler_context
12578                 = parent_event->overflow_handler_context;
12579
12580         /*
12581          * Precalculate sample_data sizes
12582          */
12583         perf_event__header_size(child_event);
12584         perf_event__id_header_size(child_event);
12585
12586         /*
12587          * Link it up in the child's context:
12588          */
12589         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12590         add_event_to_ctx(child_event, child_ctx);
12591         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12592
12593         /*
12594          * Link this into the parent event's child list
12595          */
12596         list_add_tail(&child_event->child_list, &parent_event->child_list);
12597         mutex_unlock(&parent_event->child_mutex);
12598
12599         return child_event;
12600 }
12601
12602 /*
12603  * Inherits an event group.
12604  *
12605  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12606  * This matches with perf_event_release_kernel() removing all child events.
12607  *
12608  * Returns:
12609  *  - 0 on success
12610  *  - <0 on error
12611  */
12612 static int inherit_group(struct perf_event *parent_event,
12613               struct task_struct *parent,
12614               struct perf_event_context *parent_ctx,
12615               struct task_struct *child,
12616               struct perf_event_context *child_ctx)
12617 {
12618         struct perf_event *leader;
12619         struct perf_event *sub;
12620         struct perf_event *child_ctr;
12621
12622         leader = inherit_event(parent_event, parent, parent_ctx,
12623                                  child, NULL, child_ctx);
12624         if (IS_ERR(leader))
12625                 return PTR_ERR(leader);
12626         /*
12627          * @leader can be NULL here because of is_orphaned_event(). In this
12628          * case inherit_event() will create individual events, similar to what
12629          * perf_group_detach() would do anyway.
12630          */
12631         for_each_sibling_event(sub, parent_event) {
12632                 child_ctr = inherit_event(sub, parent, parent_ctx,
12633                                             child, leader, child_ctx);
12634                 if (IS_ERR(child_ctr))
12635                         return PTR_ERR(child_ctr);
12636
12637                 if (sub->aux_event == parent_event && child_ctr &&
12638                     !perf_get_aux_event(child_ctr, leader))
12639                         return -EINVAL;
12640         }
12641         return 0;
12642 }
12643
12644 /*
12645  * Creates the child task context and tries to inherit the event-group.
12646  *
12647  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12648  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12649  * consistent with perf_event_release_kernel() removing all child events.
12650  *
12651  * Returns:
12652  *  - 0 on success
12653  *  - <0 on error
12654  */
12655 static int
12656 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12657                    struct perf_event_context *parent_ctx,
12658                    struct task_struct *child, int ctxn,
12659                    int *inherited_all)
12660 {
12661         int ret;
12662         struct perf_event_context *child_ctx;
12663
12664         if (!event->attr.inherit) {
12665                 *inherited_all = 0;
12666                 return 0;
12667         }
12668
12669         child_ctx = child->perf_event_ctxp[ctxn];
12670         if (!child_ctx) {
12671                 /*
12672                  * This is executed from the parent task context, so
12673                  * inherit events that have been marked for cloning.
12674                  * First allocate and initialize a context for the
12675                  * child.
12676                  */
12677                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12678                 if (!child_ctx)
12679                         return -ENOMEM;
12680
12681                 child->perf_event_ctxp[ctxn] = child_ctx;
12682         }
12683
12684         ret = inherit_group(event, parent, parent_ctx,
12685                             child, child_ctx);
12686
12687         if (ret)
12688                 *inherited_all = 0;
12689
12690         return ret;
12691 }
12692
12693 /*
12694  * Initialize the perf_event context in task_struct
12695  */
12696 static int perf_event_init_context(struct task_struct *child, int ctxn)
12697 {
12698         struct perf_event_context *child_ctx, *parent_ctx;
12699         struct perf_event_context *cloned_ctx;
12700         struct perf_event *event;
12701         struct task_struct *parent = current;
12702         int inherited_all = 1;
12703         unsigned long flags;
12704         int ret = 0;
12705
12706         if (likely(!parent->perf_event_ctxp[ctxn]))
12707                 return 0;
12708
12709         /*
12710          * If the parent's context is a clone, pin it so it won't get
12711          * swapped under us.
12712          */
12713         parent_ctx = perf_pin_task_context(parent, ctxn);
12714         if (!parent_ctx)
12715                 return 0;
12716
12717         /*
12718          * No need to check if parent_ctx != NULL here; since we saw
12719          * it non-NULL earlier, the only reason for it to become NULL
12720          * is if we exit, and since we're currently in the middle of
12721          * a fork we can't be exiting at the same time.
12722          */
12723
12724         /*
12725          * Lock the parent list. No need to lock the child - not PID
12726          * hashed yet and not running, so nobody can access it.
12727          */
12728         mutex_lock(&parent_ctx->mutex);
12729
12730         /*
12731          * We dont have to disable NMIs - we are only looking at
12732          * the list, not manipulating it:
12733          */
12734         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12735                 ret = inherit_task_group(event, parent, parent_ctx,
12736                                          child, ctxn, &inherited_all);
12737                 if (ret)
12738                         goto out_unlock;
12739         }
12740
12741         /*
12742          * We can't hold ctx->lock when iterating the ->flexible_group list due
12743          * to allocations, but we need to prevent rotation because
12744          * rotate_ctx() will change the list from interrupt context.
12745          */
12746         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12747         parent_ctx->rotate_disable = 1;
12748         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12749
12750         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12751                 ret = inherit_task_group(event, parent, parent_ctx,
12752                                          child, ctxn, &inherited_all);
12753                 if (ret)
12754                         goto out_unlock;
12755         }
12756
12757         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12758         parent_ctx->rotate_disable = 0;
12759
12760         child_ctx = child->perf_event_ctxp[ctxn];
12761
12762         if (child_ctx && inherited_all) {
12763                 /*
12764                  * Mark the child context as a clone of the parent
12765                  * context, or of whatever the parent is a clone of.
12766                  *
12767                  * Note that if the parent is a clone, the holding of
12768                  * parent_ctx->lock avoids it from being uncloned.
12769                  */
12770                 cloned_ctx = parent_ctx->parent_ctx;
12771                 if (cloned_ctx) {
12772                         child_ctx->parent_ctx = cloned_ctx;
12773                         child_ctx->parent_gen = parent_ctx->parent_gen;
12774                 } else {
12775                         child_ctx->parent_ctx = parent_ctx;
12776                         child_ctx->parent_gen = parent_ctx->generation;
12777                 }
12778                 get_ctx(child_ctx->parent_ctx);
12779         }
12780
12781         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12782 out_unlock:
12783         mutex_unlock(&parent_ctx->mutex);
12784
12785         perf_unpin_context(parent_ctx);
12786         put_ctx(parent_ctx);
12787
12788         return ret;
12789 }
12790
12791 /*
12792  * Initialize the perf_event context in task_struct
12793  */
12794 int perf_event_init_task(struct task_struct *child)
12795 {
12796         int ctxn, ret;
12797
12798         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12799         mutex_init(&child->perf_event_mutex);
12800         INIT_LIST_HEAD(&child->perf_event_list);
12801
12802         for_each_task_context_nr(ctxn) {
12803                 ret = perf_event_init_context(child, ctxn);
12804                 if (ret) {
12805                         perf_event_free_task(child);
12806                         return ret;
12807                 }
12808         }
12809
12810         return 0;
12811 }
12812
12813 static void __init perf_event_init_all_cpus(void)
12814 {
12815         struct swevent_htable *swhash;
12816         int cpu;
12817
12818         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12819
12820         for_each_possible_cpu(cpu) {
12821                 swhash = &per_cpu(swevent_htable, cpu);
12822                 mutex_init(&swhash->hlist_mutex);
12823                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12824
12825                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12826                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12827
12828 #ifdef CONFIG_CGROUP_PERF
12829                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12830 #endif
12831                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12832         }
12833 }
12834
12835 static void perf_swevent_init_cpu(unsigned int cpu)
12836 {
12837         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12838
12839         mutex_lock(&swhash->hlist_mutex);
12840         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12841                 struct swevent_hlist *hlist;
12842
12843                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12844                 WARN_ON(!hlist);
12845                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12846         }
12847         mutex_unlock(&swhash->hlist_mutex);
12848 }
12849
12850 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12851 static void __perf_event_exit_context(void *__info)
12852 {
12853         struct perf_event_context *ctx = __info;
12854         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12855         struct perf_event *event;
12856
12857         raw_spin_lock(&ctx->lock);
12858         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12859         list_for_each_entry(event, &ctx->event_list, event_entry)
12860                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12861         raw_spin_unlock(&ctx->lock);
12862 }
12863
12864 static void perf_event_exit_cpu_context(int cpu)
12865 {
12866         struct perf_cpu_context *cpuctx;
12867         struct perf_event_context *ctx;
12868         struct pmu *pmu;
12869
12870         mutex_lock(&pmus_lock);
12871         list_for_each_entry(pmu, &pmus, entry) {
12872                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12873                 ctx = &cpuctx->ctx;
12874
12875                 mutex_lock(&ctx->mutex);
12876                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12877                 cpuctx->online = 0;
12878                 mutex_unlock(&ctx->mutex);
12879         }
12880         cpumask_clear_cpu(cpu, perf_online_mask);
12881         mutex_unlock(&pmus_lock);
12882 }
12883 #else
12884
12885 static void perf_event_exit_cpu_context(int cpu) { }
12886
12887 #endif
12888
12889 int perf_event_init_cpu(unsigned int cpu)
12890 {
12891         struct perf_cpu_context *cpuctx;
12892         struct perf_event_context *ctx;
12893         struct pmu *pmu;
12894
12895         perf_swevent_init_cpu(cpu);
12896
12897         mutex_lock(&pmus_lock);
12898         cpumask_set_cpu(cpu, perf_online_mask);
12899         list_for_each_entry(pmu, &pmus, entry) {
12900                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12901                 ctx = &cpuctx->ctx;
12902
12903                 mutex_lock(&ctx->mutex);
12904                 cpuctx->online = 1;
12905                 mutex_unlock(&ctx->mutex);
12906         }
12907         mutex_unlock(&pmus_lock);
12908
12909         return 0;
12910 }
12911
12912 int perf_event_exit_cpu(unsigned int cpu)
12913 {
12914         perf_event_exit_cpu_context(cpu);
12915         return 0;
12916 }
12917
12918 static int
12919 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12920 {
12921         int cpu;
12922
12923         for_each_online_cpu(cpu)
12924                 perf_event_exit_cpu(cpu);
12925
12926         return NOTIFY_OK;
12927 }
12928
12929 /*
12930  * Run the perf reboot notifier at the very last possible moment so that
12931  * the generic watchdog code runs as long as possible.
12932  */
12933 static struct notifier_block perf_reboot_notifier = {
12934         .notifier_call = perf_reboot,
12935         .priority = INT_MIN,
12936 };
12937
12938 void __init perf_event_init(void)
12939 {
12940         int ret;
12941
12942         idr_init(&pmu_idr);
12943
12944         perf_event_init_all_cpus();
12945         init_srcu_struct(&pmus_srcu);
12946         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12947         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12948         perf_pmu_register(&perf_task_clock, NULL, -1);
12949         perf_tp_register();
12950         perf_event_init_cpu(smp_processor_id());
12951         register_reboot_notifier(&perf_reboot_notifier);
12952
12953         ret = init_hw_breakpoint();
12954         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12955
12956         /*
12957          * Build time assertion that we keep the data_head at the intended
12958          * location.  IOW, validation we got the __reserved[] size right.
12959          */
12960         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12961                      != 1024);
12962 }
12963
12964 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12965                               char *page)
12966 {
12967         struct perf_pmu_events_attr *pmu_attr =
12968                 container_of(attr, struct perf_pmu_events_attr, attr);
12969
12970         if (pmu_attr->event_str)
12971                 return sprintf(page, "%s\n", pmu_attr->event_str);
12972
12973         return 0;
12974 }
12975 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12976
12977 static int __init perf_event_sysfs_init(void)
12978 {
12979         struct pmu *pmu;
12980         int ret;
12981
12982         mutex_lock(&pmus_lock);
12983
12984         ret = bus_register(&pmu_bus);
12985         if (ret)
12986                 goto unlock;
12987
12988         list_for_each_entry(pmu, &pmus, entry) {
12989                 if (!pmu->name || pmu->type < 0)
12990                         continue;
12991
12992                 ret = pmu_dev_alloc(pmu);
12993                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12994         }
12995         pmu_bus_running = 1;
12996         ret = 0;
12997
12998 unlock:
12999         mutex_unlock(&pmus_lock);
13000
13001         return ret;
13002 }
13003 device_initcall(perf_event_sysfs_init);
13004
13005 #ifdef CONFIG_CGROUP_PERF
13006 static struct cgroup_subsys_state *
13007 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13008 {
13009         struct perf_cgroup *jc;
13010
13011         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13012         if (!jc)
13013                 return ERR_PTR(-ENOMEM);
13014
13015         jc->info = alloc_percpu(struct perf_cgroup_info);
13016         if (!jc->info) {
13017                 kfree(jc);
13018                 return ERR_PTR(-ENOMEM);
13019         }
13020
13021         return &jc->css;
13022 }
13023
13024 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13025 {
13026         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13027
13028         free_percpu(jc->info);
13029         kfree(jc);
13030 }
13031
13032 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13033 {
13034         perf_event_cgroup(css->cgroup);
13035         return 0;
13036 }
13037
13038 static int __perf_cgroup_move(void *info)
13039 {
13040         struct task_struct *task = info;
13041         rcu_read_lock();
13042         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13043         rcu_read_unlock();
13044         return 0;
13045 }
13046
13047 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13048 {
13049         struct task_struct *task;
13050         struct cgroup_subsys_state *css;
13051
13052         cgroup_taskset_for_each(task, css, tset)
13053                 task_function_call(task, __perf_cgroup_move, task);
13054 }
13055
13056 struct cgroup_subsys perf_event_cgrp_subsys = {
13057         .css_alloc      = perf_cgroup_css_alloc,
13058         .css_free       = perf_cgroup_css_free,
13059         .css_online     = perf_cgroup_css_online,
13060         .attach         = perf_cgroup_attach,
13061         /*
13062          * Implicitly enable on dfl hierarchy so that perf events can
13063          * always be filtered by cgroup2 path as long as perf_event
13064          * controller is not mounted on a legacy hierarchy.
13065          */
13066         .implicit_on_dfl = true,
13067         .threaded       = true,
13068 };
13069 #endif /* CONFIG_CGROUP_PERF */