OSDN Git Service

Merge tag 'asm-generic-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd...
[uclinux-h8/linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 /*
678  * UP store-release, load-acquire
679  */
680
681 #define __store_release(ptr, val)                                       \
682 do {                                                                    \
683         barrier();                                                      \
684         WRITE_ONCE(*(ptr), (val));                                      \
685 } while (0)
686
687 #define __load_acquire(ptr)                                             \
688 ({                                                                      \
689         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
690         barrier();                                                      \
691         ___p;                                                           \
692 })
693
694 #ifdef CONFIG_CGROUP_PERF
695
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699         struct perf_event_context *ctx = event->ctx;
700         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701
702         /* @event doesn't care about cgroup */
703         if (!event->cgrp)
704                 return true;
705
706         /* wants specific cgroup scope but @cpuctx isn't associated with any */
707         if (!cpuctx->cgrp)
708                 return false;
709
710         /*
711          * Cgroup scoping is recursive.  An event enabled for a cgroup is
712          * also enabled for all its descendant cgroups.  If @cpuctx's
713          * cgroup is a descendant of @event's (the test covers identity
714          * case), it's a match.
715          */
716         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717                                     event->cgrp->css.cgroup);
718 }
719
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722         css_put(&event->cgrp->css);
723         event->cgrp = NULL;
724 }
725
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728         return event->cgrp != NULL;
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733         struct perf_cgroup_info *t;
734
735         t = per_cpu_ptr(event->cgrp->info, event->cpu);
736         return t->time;
737 }
738
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741         struct perf_cgroup_info *t;
742
743         t = per_cpu_ptr(event->cgrp->info, event->cpu);
744         if (!__load_acquire(&t->active))
745                 return t->time;
746         now += READ_ONCE(t->timeoffset);
747         return now;
748 }
749
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752         if (adv)
753                 info->time += now - info->timestamp;
754         info->timestamp = now;
755         /*
756          * see update_context_time()
757          */
758         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763         struct perf_cgroup *cgrp = cpuctx->cgrp;
764         struct cgroup_subsys_state *css;
765         struct perf_cgroup_info *info;
766
767         if (cgrp) {
768                 u64 now = perf_clock();
769
770                 for (css = &cgrp->css; css; css = css->parent) {
771                         cgrp = container_of(css, struct perf_cgroup, css);
772                         info = this_cpu_ptr(cgrp->info);
773
774                         __update_cgrp_time(info, now, true);
775                         if (final)
776                                 __store_release(&info->active, 0);
777                 }
778         }
779 }
780
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783         struct perf_cgroup_info *info;
784         struct perf_cgroup *cgrp;
785
786         /*
787          * ensure we access cgroup data only when needed and
788          * when we know the cgroup is pinned (css_get)
789          */
790         if (!is_cgroup_event(event))
791                 return;
792
793         cgrp = perf_cgroup_from_task(current, event->ctx);
794         /*
795          * Do not update time when cgroup is not active
796          */
797         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798                 info = this_cpu_ptr(event->cgrp->info);
799                 __update_cgrp_time(info, perf_clock(), true);
800         }
801 }
802
803 static inline void
804 perf_cgroup_set_timestamp(struct task_struct *task,
805                           struct perf_event_context *ctx)
806 {
807         struct perf_cgroup *cgrp;
808         struct perf_cgroup_info *info;
809         struct cgroup_subsys_state *css;
810
811         /*
812          * ctx->lock held by caller
813          * ensure we do not access cgroup data
814          * unless we have the cgroup pinned (css_get)
815          */
816         if (!task || !ctx->nr_cgroups)
817                 return;
818
819         cgrp = perf_cgroup_from_task(task, ctx);
820
821         for (css = &cgrp->css; css; css = css->parent) {
822                 cgrp = container_of(css, struct perf_cgroup, css);
823                 info = this_cpu_ptr(cgrp->info);
824                 __update_cgrp_time(info, ctx->timestamp, false);
825                 __store_release(&info->active, 1);
826         }
827 }
828
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830
831 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
833
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842         struct perf_cpu_context *cpuctx, *tmp;
843         struct list_head *list;
844         unsigned long flags;
845
846         /*
847          * Disable interrupts and preemption to avoid this CPU's
848          * cgrp_cpuctx_entry to change under us.
849          */
850         local_irq_save(flags);
851
852         list = this_cpu_ptr(&cgrp_cpuctx_list);
853         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
854                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855
856                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857                 perf_pmu_disable(cpuctx->ctx.pmu);
858
859                 if (mode & PERF_CGROUP_SWOUT) {
860                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861                         /*
862                          * must not be done before ctxswout due
863                          * to event_filter_match() in event_sched_out()
864                          */
865                         cpuctx->cgrp = NULL;
866                 }
867
868                 if (mode & PERF_CGROUP_SWIN) {
869                         WARN_ON_ONCE(cpuctx->cgrp);
870                         /*
871                          * set cgrp before ctxsw in to allow
872                          * event_filter_match() to not have to pass
873                          * task around
874                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
875                          * because cgorup events are only per-cpu
876                          */
877                         cpuctx->cgrp = perf_cgroup_from_task(task,
878                                                              &cpuctx->ctx);
879                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880                 }
881                 perf_pmu_enable(cpuctx->ctx.pmu);
882                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883         }
884
885         local_irq_restore(flags);
886 }
887
888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889                                          struct task_struct *next)
890 {
891         struct perf_cgroup *cgrp1;
892         struct perf_cgroup *cgrp2 = NULL;
893
894         rcu_read_lock();
895         /*
896          * we come here when we know perf_cgroup_events > 0
897          * we do not need to pass the ctx here because we know
898          * we are holding the rcu lock
899          */
900         cgrp1 = perf_cgroup_from_task(task, NULL);
901         cgrp2 = perf_cgroup_from_task(next, NULL);
902
903         /*
904          * only schedule out current cgroup events if we know
905          * that we are switching to a different cgroup. Otherwise,
906          * do no touch the cgroup events.
907          */
908         if (cgrp1 != cgrp2)
909                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910
911         rcu_read_unlock();
912 }
913
914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915                                         struct task_struct *task)
916 {
917         struct perf_cgroup *cgrp1;
918         struct perf_cgroup *cgrp2 = NULL;
919
920         rcu_read_lock();
921         /*
922          * we come here when we know perf_cgroup_events > 0
923          * we do not need to pass the ctx here because we know
924          * we are holding the rcu lock
925          */
926         cgrp1 = perf_cgroup_from_task(task, NULL);
927         cgrp2 = perf_cgroup_from_task(prev, NULL);
928
929         /*
930          * only need to schedule in cgroup events if we are changing
931          * cgroup during ctxsw. Cgroup events were not scheduled
932          * out of ctxsw out if that was not the case.
933          */
934         if (cgrp1 != cgrp2)
935                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936
937         rcu_read_unlock();
938 }
939
940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941                                 struct cgroup_subsys_state *css)
942 {
943         struct perf_cpu_context *cpuctx;
944         struct perf_event **storage;
945         int cpu, heap_size, ret = 0;
946
947         /*
948          * Allow storage to have sufficent space for an iterator for each
949          * possibly nested cgroup plus an iterator for events with no cgroup.
950          */
951         for (heap_size = 1; css; css = css->parent)
952                 heap_size++;
953
954         for_each_possible_cpu(cpu) {
955                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956                 if (heap_size <= cpuctx->heap_size)
957                         continue;
958
959                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960                                        GFP_KERNEL, cpu_to_node(cpu));
961                 if (!storage) {
962                         ret = -ENOMEM;
963                         break;
964                 }
965
966                 raw_spin_lock_irq(&cpuctx->ctx.lock);
967                 if (cpuctx->heap_size < heap_size) {
968                         swap(cpuctx->heap, storage);
969                         if (storage == cpuctx->heap_default)
970                                 storage = NULL;
971                         cpuctx->heap_size = heap_size;
972                 }
973                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
974
975                 kfree(storage);
976         }
977
978         return ret;
979 }
980
981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982                                       struct perf_event_attr *attr,
983                                       struct perf_event *group_leader)
984 {
985         struct perf_cgroup *cgrp;
986         struct cgroup_subsys_state *css;
987         struct fd f = fdget(fd);
988         int ret = 0;
989
990         if (!f.file)
991                 return -EBADF;
992
993         css = css_tryget_online_from_dir(f.file->f_path.dentry,
994                                          &perf_event_cgrp_subsys);
995         if (IS_ERR(css)) {
996                 ret = PTR_ERR(css);
997                 goto out;
998         }
999
1000         ret = perf_cgroup_ensure_storage(event, css);
1001         if (ret)
1002                 goto out;
1003
1004         cgrp = container_of(css, struct perf_cgroup, css);
1005         event->cgrp = cgrp;
1006
1007         /*
1008          * all events in a group must monitor
1009          * the same cgroup because a task belongs
1010          * to only one perf cgroup at a time
1011          */
1012         if (group_leader && group_leader->cgrp != cgrp) {
1013                 perf_detach_cgroup(event);
1014                 ret = -EINVAL;
1015         }
1016 out:
1017         fdput(f);
1018         return ret;
1019 }
1020
1021 static inline void
1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024         struct perf_cpu_context *cpuctx;
1025
1026         if (!is_cgroup_event(event))
1027                 return;
1028
1029         /*
1030          * Because cgroup events are always per-cpu events,
1031          * @ctx == &cpuctx->ctx.
1032          */
1033         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034
1035         /*
1036          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037          * matching the event's cgroup, we must do this for every new event,
1038          * because if the first would mismatch, the second would not try again
1039          * and we would leave cpuctx->cgrp unset.
1040          */
1041         if (ctx->is_active && !cpuctx->cgrp) {
1042                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043
1044                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045                         cpuctx->cgrp = cgrp;
1046         }
1047
1048         if (ctx->nr_cgroups++)
1049                 return;
1050
1051         list_add(&cpuctx->cgrp_cpuctx_entry,
1052                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054
1055 static inline void
1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058         struct perf_cpu_context *cpuctx;
1059
1060         if (!is_cgroup_event(event))
1061                 return;
1062
1063         /*
1064          * Because cgroup events are always per-cpu events,
1065          * @ctx == &cpuctx->ctx.
1066          */
1067         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068
1069         if (--ctx->nr_cgroups)
1070                 return;
1071
1072         if (ctx->is_active && cpuctx->cgrp)
1073                 cpuctx->cgrp = NULL;
1074
1075         list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077
1078 #else /* !CONFIG_CGROUP_PERF */
1079
1080 static inline bool
1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083         return true;
1084 }
1085
1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088
1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091         return 0;
1092 }
1093
1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097
1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099                                                 bool final)
1100 {
1101 }
1102
1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104                                          struct task_struct *next)
1105 {
1106 }
1107
1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109                                         struct task_struct *task)
1110 {
1111 }
1112
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114                                       struct perf_event_attr *attr,
1115                                       struct perf_event *group_leader)
1116 {
1117         return -EINVAL;
1118 }
1119
1120 static inline void
1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122                           struct perf_event_context *ctx)
1123 {
1124 }
1125
1126 static inline void
1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130
1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133         return 0;
1134 }
1135
1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138         return 0;
1139 }
1140
1141 static inline void
1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145
1146 static inline void
1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162         struct perf_cpu_context *cpuctx;
1163         bool rotations;
1164
1165         lockdep_assert_irqs_disabled();
1166
1167         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168         rotations = perf_rotate_context(cpuctx);
1169
1170         raw_spin_lock(&cpuctx->hrtimer_lock);
1171         if (rotations)
1172                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173         else
1174                 cpuctx->hrtimer_active = 0;
1175         raw_spin_unlock(&cpuctx->hrtimer_lock);
1176
1177         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179
1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182         struct hrtimer *timer = &cpuctx->hrtimer;
1183         struct pmu *pmu = cpuctx->ctx.pmu;
1184         u64 interval;
1185
1186         /* no multiplexing needed for SW PMU */
1187         if (pmu->task_ctx_nr == perf_sw_context)
1188                 return;
1189
1190         /*
1191          * check default is sane, if not set then force to
1192          * default interval (1/tick)
1193          */
1194         interval = pmu->hrtimer_interval_ms;
1195         if (interval < 1)
1196                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197
1198         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199
1200         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202         timer->function = perf_mux_hrtimer_handler;
1203 }
1204
1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207         struct hrtimer *timer = &cpuctx->hrtimer;
1208         struct pmu *pmu = cpuctx->ctx.pmu;
1209         unsigned long flags;
1210
1211         /* not for SW PMU */
1212         if (pmu->task_ctx_nr == perf_sw_context)
1213                 return 0;
1214
1215         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216         if (!cpuctx->hrtimer_active) {
1217                 cpuctx->hrtimer_active = 1;
1218                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220         }
1221         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222
1223         return 0;
1224 }
1225
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1229         if (!(*count)++)
1230                 pmu->pmu_disable(pmu);
1231 }
1232
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1236         if (!--(*count))
1237                 pmu->pmu_enable(pmu);
1238 }
1239
1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1241
1242 /*
1243  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1244  * perf_event_task_tick() are fully serialized because they're strictly cpu
1245  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1246  * disabled, while perf_event_task_tick is called from IRQ context.
1247  */
1248 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1249 {
1250         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1251
1252         lockdep_assert_irqs_disabled();
1253
1254         WARN_ON(!list_empty(&ctx->active_ctx_list));
1255
1256         list_add(&ctx->active_ctx_list, head);
1257 }
1258
1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1260 {
1261         lockdep_assert_irqs_disabled();
1262
1263         WARN_ON(list_empty(&ctx->active_ctx_list));
1264
1265         list_del_init(&ctx->active_ctx_list);
1266 }
1267
1268 static void get_ctx(struct perf_event_context *ctx)
1269 {
1270         refcount_inc(&ctx->refcount);
1271 }
1272
1273 static void *alloc_task_ctx_data(struct pmu *pmu)
1274 {
1275         if (pmu->task_ctx_cache)
1276                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1277
1278         return NULL;
1279 }
1280
1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1282 {
1283         if (pmu->task_ctx_cache && task_ctx_data)
1284                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1285 }
1286
1287 static void free_ctx(struct rcu_head *head)
1288 {
1289         struct perf_event_context *ctx;
1290
1291         ctx = container_of(head, struct perf_event_context, rcu_head);
1292         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1293         kfree(ctx);
1294 }
1295
1296 static void put_ctx(struct perf_event_context *ctx)
1297 {
1298         if (refcount_dec_and_test(&ctx->refcount)) {
1299                 if (ctx->parent_ctx)
1300                         put_ctx(ctx->parent_ctx);
1301                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1302                         put_task_struct(ctx->task);
1303                 call_rcu(&ctx->rcu_head, free_ctx);
1304         }
1305 }
1306
1307 /*
1308  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1309  * perf_pmu_migrate_context() we need some magic.
1310  *
1311  * Those places that change perf_event::ctx will hold both
1312  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1313  *
1314  * Lock ordering is by mutex address. There are two other sites where
1315  * perf_event_context::mutex nests and those are:
1316  *
1317  *  - perf_event_exit_task_context()    [ child , 0 ]
1318  *      perf_event_exit_event()
1319  *        put_event()                   [ parent, 1 ]
1320  *
1321  *  - perf_event_init_context()         [ parent, 0 ]
1322  *      inherit_task_group()
1323  *        inherit_group()
1324  *          inherit_event()
1325  *            perf_event_alloc()
1326  *              perf_init_event()
1327  *                perf_try_init_event() [ child , 1 ]
1328  *
1329  * While it appears there is an obvious deadlock here -- the parent and child
1330  * nesting levels are inverted between the two. This is in fact safe because
1331  * life-time rules separate them. That is an exiting task cannot fork, and a
1332  * spawning task cannot (yet) exit.
1333  *
1334  * But remember that these are parent<->child context relations, and
1335  * migration does not affect children, therefore these two orderings should not
1336  * interact.
1337  *
1338  * The change in perf_event::ctx does not affect children (as claimed above)
1339  * because the sys_perf_event_open() case will install a new event and break
1340  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1341  * concerned with cpuctx and that doesn't have children.
1342  *
1343  * The places that change perf_event::ctx will issue:
1344  *
1345  *   perf_remove_from_context();
1346  *   synchronize_rcu();
1347  *   perf_install_in_context();
1348  *
1349  * to affect the change. The remove_from_context() + synchronize_rcu() should
1350  * quiesce the event, after which we can install it in the new location. This
1351  * means that only external vectors (perf_fops, prctl) can perturb the event
1352  * while in transit. Therefore all such accessors should also acquire
1353  * perf_event_context::mutex to serialize against this.
1354  *
1355  * However; because event->ctx can change while we're waiting to acquire
1356  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1357  * function.
1358  *
1359  * Lock order:
1360  *    exec_update_lock
1361  *      task_struct::perf_event_mutex
1362  *        perf_event_context::mutex
1363  *          perf_event::child_mutex;
1364  *            perf_event_context::lock
1365  *          perf_event::mmap_mutex
1366  *          mmap_lock
1367  *            perf_addr_filters_head::lock
1368  *
1369  *    cpu_hotplug_lock
1370  *      pmus_lock
1371  *        cpuctx->mutex / perf_event_context::mutex
1372  */
1373 static struct perf_event_context *
1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1375 {
1376         struct perf_event_context *ctx;
1377
1378 again:
1379         rcu_read_lock();
1380         ctx = READ_ONCE(event->ctx);
1381         if (!refcount_inc_not_zero(&ctx->refcount)) {
1382                 rcu_read_unlock();
1383                 goto again;
1384         }
1385         rcu_read_unlock();
1386
1387         mutex_lock_nested(&ctx->mutex, nesting);
1388         if (event->ctx != ctx) {
1389                 mutex_unlock(&ctx->mutex);
1390                 put_ctx(ctx);
1391                 goto again;
1392         }
1393
1394         return ctx;
1395 }
1396
1397 static inline struct perf_event_context *
1398 perf_event_ctx_lock(struct perf_event *event)
1399 {
1400         return perf_event_ctx_lock_nested(event, 0);
1401 }
1402
1403 static void perf_event_ctx_unlock(struct perf_event *event,
1404                                   struct perf_event_context *ctx)
1405 {
1406         mutex_unlock(&ctx->mutex);
1407         put_ctx(ctx);
1408 }
1409
1410 /*
1411  * This must be done under the ctx->lock, such as to serialize against
1412  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1413  * calling scheduler related locks and ctx->lock nests inside those.
1414  */
1415 static __must_check struct perf_event_context *
1416 unclone_ctx(struct perf_event_context *ctx)
1417 {
1418         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1419
1420         lockdep_assert_held(&ctx->lock);
1421
1422         if (parent_ctx)
1423                 ctx->parent_ctx = NULL;
1424         ctx->generation++;
1425
1426         return parent_ctx;
1427 }
1428
1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1430                                 enum pid_type type)
1431 {
1432         u32 nr;
1433         /*
1434          * only top level events have the pid namespace they were created in
1435          */
1436         if (event->parent)
1437                 event = event->parent;
1438
1439         nr = __task_pid_nr_ns(p, type, event->ns);
1440         /* avoid -1 if it is idle thread or runs in another ns */
1441         if (!nr && !pid_alive(p))
1442                 nr = -1;
1443         return nr;
1444 }
1445
1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1447 {
1448         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1449 }
1450
1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1452 {
1453         return perf_event_pid_type(event, p, PIDTYPE_PID);
1454 }
1455
1456 /*
1457  * If we inherit events we want to return the parent event id
1458  * to userspace.
1459  */
1460 static u64 primary_event_id(struct perf_event *event)
1461 {
1462         u64 id = event->id;
1463
1464         if (event->parent)
1465                 id = event->parent->id;
1466
1467         return id;
1468 }
1469
1470 /*
1471  * Get the perf_event_context for a task and lock it.
1472  *
1473  * This has to cope with the fact that until it is locked,
1474  * the context could get moved to another task.
1475  */
1476 static struct perf_event_context *
1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1478 {
1479         struct perf_event_context *ctx;
1480
1481 retry:
1482         /*
1483          * One of the few rules of preemptible RCU is that one cannot do
1484          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1485          * part of the read side critical section was irqs-enabled -- see
1486          * rcu_read_unlock_special().
1487          *
1488          * Since ctx->lock nests under rq->lock we must ensure the entire read
1489          * side critical section has interrupts disabled.
1490          */
1491         local_irq_save(*flags);
1492         rcu_read_lock();
1493         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1494         if (ctx) {
1495                 /*
1496                  * If this context is a clone of another, it might
1497                  * get swapped for another underneath us by
1498                  * perf_event_task_sched_out, though the
1499                  * rcu_read_lock() protects us from any context
1500                  * getting freed.  Lock the context and check if it
1501                  * got swapped before we could get the lock, and retry
1502                  * if so.  If we locked the right context, then it
1503                  * can't get swapped on us any more.
1504                  */
1505                 raw_spin_lock(&ctx->lock);
1506                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1507                         raw_spin_unlock(&ctx->lock);
1508                         rcu_read_unlock();
1509                         local_irq_restore(*flags);
1510                         goto retry;
1511                 }
1512
1513                 if (ctx->task == TASK_TOMBSTONE ||
1514                     !refcount_inc_not_zero(&ctx->refcount)) {
1515                         raw_spin_unlock(&ctx->lock);
1516                         ctx = NULL;
1517                 } else {
1518                         WARN_ON_ONCE(ctx->task != task);
1519                 }
1520         }
1521         rcu_read_unlock();
1522         if (!ctx)
1523                 local_irq_restore(*flags);
1524         return ctx;
1525 }
1526
1527 /*
1528  * Get the context for a task and increment its pin_count so it
1529  * can't get swapped to another task.  This also increments its
1530  * reference count so that the context can't get freed.
1531  */
1532 static struct perf_event_context *
1533 perf_pin_task_context(struct task_struct *task, int ctxn)
1534 {
1535         struct perf_event_context *ctx;
1536         unsigned long flags;
1537
1538         ctx = perf_lock_task_context(task, ctxn, &flags);
1539         if (ctx) {
1540                 ++ctx->pin_count;
1541                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1542         }
1543         return ctx;
1544 }
1545
1546 static void perf_unpin_context(struct perf_event_context *ctx)
1547 {
1548         unsigned long flags;
1549
1550         raw_spin_lock_irqsave(&ctx->lock, flags);
1551         --ctx->pin_count;
1552         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1553 }
1554
1555 /*
1556  * Update the record of the current time in a context.
1557  */
1558 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1559 {
1560         u64 now = perf_clock();
1561
1562         if (adv)
1563                 ctx->time += now - ctx->timestamp;
1564         ctx->timestamp = now;
1565
1566         /*
1567          * The above: time' = time + (now - timestamp), can be re-arranged
1568          * into: time` = now + (time - timestamp), which gives a single value
1569          * offset to compute future time without locks on.
1570          *
1571          * See perf_event_time_now(), which can be used from NMI context where
1572          * it's (obviously) not possible to acquire ctx->lock in order to read
1573          * both the above values in a consistent manner.
1574          */
1575         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1576 }
1577
1578 static void update_context_time(struct perf_event_context *ctx)
1579 {
1580         __update_context_time(ctx, true);
1581 }
1582
1583 static u64 perf_event_time(struct perf_event *event)
1584 {
1585         struct perf_event_context *ctx = event->ctx;
1586
1587         if (unlikely(!ctx))
1588                 return 0;
1589
1590         if (is_cgroup_event(event))
1591                 return perf_cgroup_event_time(event);
1592
1593         return ctx->time;
1594 }
1595
1596 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1597 {
1598         struct perf_event_context *ctx = event->ctx;
1599
1600         if (unlikely(!ctx))
1601                 return 0;
1602
1603         if (is_cgroup_event(event))
1604                 return perf_cgroup_event_time_now(event, now);
1605
1606         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1607                 return ctx->time;
1608
1609         now += READ_ONCE(ctx->timeoffset);
1610         return now;
1611 }
1612
1613 static enum event_type_t get_event_type(struct perf_event *event)
1614 {
1615         struct perf_event_context *ctx = event->ctx;
1616         enum event_type_t event_type;
1617
1618         lockdep_assert_held(&ctx->lock);
1619
1620         /*
1621          * It's 'group type', really, because if our group leader is
1622          * pinned, so are we.
1623          */
1624         if (event->group_leader != event)
1625                 event = event->group_leader;
1626
1627         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1628         if (!ctx->task)
1629                 event_type |= EVENT_CPU;
1630
1631         return event_type;
1632 }
1633
1634 /*
1635  * Helper function to initialize event group nodes.
1636  */
1637 static void init_event_group(struct perf_event *event)
1638 {
1639         RB_CLEAR_NODE(&event->group_node);
1640         event->group_index = 0;
1641 }
1642
1643 /*
1644  * Extract pinned or flexible groups from the context
1645  * based on event attrs bits.
1646  */
1647 static struct perf_event_groups *
1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650         if (event->attr.pinned)
1651                 return &ctx->pinned_groups;
1652         else
1653                 return &ctx->flexible_groups;
1654 }
1655
1656 /*
1657  * Helper function to initializes perf_event_group trees.
1658  */
1659 static void perf_event_groups_init(struct perf_event_groups *groups)
1660 {
1661         groups->tree = RB_ROOT;
1662         groups->index = 0;
1663 }
1664
1665 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1666 {
1667         struct cgroup *cgroup = NULL;
1668
1669 #ifdef CONFIG_CGROUP_PERF
1670         if (event->cgrp)
1671                 cgroup = event->cgrp->css.cgroup;
1672 #endif
1673
1674         return cgroup;
1675 }
1676
1677 /*
1678  * Compare function for event groups;
1679  *
1680  * Implements complex key that first sorts by CPU and then by virtual index
1681  * which provides ordering when rotating groups for the same CPU.
1682  */
1683 static __always_inline int
1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1685                       const u64 left_group_index, const struct perf_event *right)
1686 {
1687         if (left_cpu < right->cpu)
1688                 return -1;
1689         if (left_cpu > right->cpu)
1690                 return 1;
1691
1692 #ifdef CONFIG_CGROUP_PERF
1693         {
1694                 const struct cgroup *right_cgroup = event_cgroup(right);
1695
1696                 if (left_cgroup != right_cgroup) {
1697                         if (!left_cgroup) {
1698                                 /*
1699                                  * Left has no cgroup but right does, no
1700                                  * cgroups come first.
1701                                  */
1702                                 return -1;
1703                         }
1704                         if (!right_cgroup) {
1705                                 /*
1706                                  * Right has no cgroup but left does, no
1707                                  * cgroups come first.
1708                                  */
1709                                 return 1;
1710                         }
1711                         /* Two dissimilar cgroups, order by id. */
1712                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1713                                 return -1;
1714
1715                         return 1;
1716                 }
1717         }
1718 #endif
1719
1720         if (left_group_index < right->group_index)
1721                 return -1;
1722         if (left_group_index > right->group_index)
1723                 return 1;
1724
1725         return 0;
1726 }
1727
1728 #define __node_2_pe(node) \
1729         rb_entry((node), struct perf_event, group_node)
1730
1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1732 {
1733         struct perf_event *e = __node_2_pe(a);
1734         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1735                                      __node_2_pe(b)) < 0;
1736 }
1737
1738 struct __group_key {
1739         int cpu;
1740         struct cgroup *cgroup;
1741 };
1742
1743 static inline int __group_cmp(const void *key, const struct rb_node *node)
1744 {
1745         const struct __group_key *a = key;
1746         const struct perf_event *b = __node_2_pe(node);
1747
1748         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1749         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1750 }
1751
1752 /*
1753  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1754  * key (see perf_event_groups_less). This places it last inside the CPU
1755  * subtree.
1756  */
1757 static void
1758 perf_event_groups_insert(struct perf_event_groups *groups,
1759                          struct perf_event *event)
1760 {
1761         event->group_index = ++groups->index;
1762
1763         rb_add(&event->group_node, &groups->tree, __group_less);
1764 }
1765
1766 /*
1767  * Helper function to insert event into the pinned or flexible groups.
1768  */
1769 static void
1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1771 {
1772         struct perf_event_groups *groups;
1773
1774         groups = get_event_groups(event, ctx);
1775         perf_event_groups_insert(groups, event);
1776 }
1777
1778 /*
1779  * Delete a group from a tree.
1780  */
1781 static void
1782 perf_event_groups_delete(struct perf_event_groups *groups,
1783                          struct perf_event *event)
1784 {
1785         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1786                      RB_EMPTY_ROOT(&groups->tree));
1787
1788         rb_erase(&event->group_node, &groups->tree);
1789         init_event_group(event);
1790 }
1791
1792 /*
1793  * Helper function to delete event from its groups.
1794  */
1795 static void
1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1797 {
1798         struct perf_event_groups *groups;
1799
1800         groups = get_event_groups(event, ctx);
1801         perf_event_groups_delete(groups, event);
1802 }
1803
1804 /*
1805  * Get the leftmost event in the cpu/cgroup subtree.
1806  */
1807 static struct perf_event *
1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1809                         struct cgroup *cgrp)
1810 {
1811         struct __group_key key = {
1812                 .cpu = cpu,
1813                 .cgroup = cgrp,
1814         };
1815         struct rb_node *node;
1816
1817         node = rb_find_first(&key, &groups->tree, __group_cmp);
1818         if (node)
1819                 return __node_2_pe(node);
1820
1821         return NULL;
1822 }
1823
1824 /*
1825  * Like rb_entry_next_safe() for the @cpu subtree.
1826  */
1827 static struct perf_event *
1828 perf_event_groups_next(struct perf_event *event)
1829 {
1830         struct __group_key key = {
1831                 .cpu = event->cpu,
1832                 .cgroup = event_cgroup(event),
1833         };
1834         struct rb_node *next;
1835
1836         next = rb_next_match(&key, &event->group_node, __group_cmp);
1837         if (next)
1838                 return __node_2_pe(next);
1839
1840         return NULL;
1841 }
1842
1843 /*
1844  * Iterate through the whole groups tree.
1845  */
1846 #define perf_event_groups_for_each(event, groups)                       \
1847         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1848                                 typeof(*event), group_node); event;     \
1849                 event = rb_entry_safe(rb_next(&event->group_node),      \
1850                                 typeof(*event), group_node))
1851
1852 /*
1853  * Add an event from the lists for its context.
1854  * Must be called with ctx->mutex and ctx->lock held.
1855  */
1856 static void
1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1858 {
1859         lockdep_assert_held(&ctx->lock);
1860
1861         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1862         event->attach_state |= PERF_ATTACH_CONTEXT;
1863
1864         event->tstamp = perf_event_time(event);
1865
1866         /*
1867          * If we're a stand alone event or group leader, we go to the context
1868          * list, group events are kept attached to the group so that
1869          * perf_group_detach can, at all times, locate all siblings.
1870          */
1871         if (event->group_leader == event) {
1872                 event->group_caps = event->event_caps;
1873                 add_event_to_groups(event, ctx);
1874         }
1875
1876         list_add_rcu(&event->event_entry, &ctx->event_list);
1877         ctx->nr_events++;
1878         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1879                 ctx->nr_user++;
1880         if (event->attr.inherit_stat)
1881                 ctx->nr_stat++;
1882
1883         if (event->state > PERF_EVENT_STATE_OFF)
1884                 perf_cgroup_event_enable(event, ctx);
1885
1886         ctx->generation++;
1887 }
1888
1889 /*
1890  * Initialize event state based on the perf_event_attr::disabled.
1891  */
1892 static inline void perf_event__state_init(struct perf_event *event)
1893 {
1894         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1895                                               PERF_EVENT_STATE_INACTIVE;
1896 }
1897
1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1899 {
1900         int entry = sizeof(u64); /* value */
1901         int size = 0;
1902         int nr = 1;
1903
1904         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1905                 size += sizeof(u64);
1906
1907         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1908                 size += sizeof(u64);
1909
1910         if (event->attr.read_format & PERF_FORMAT_ID)
1911                 entry += sizeof(u64);
1912
1913         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1914                 nr += nr_siblings;
1915                 size += sizeof(u64);
1916         }
1917
1918         size += entry * nr;
1919         event->read_size = size;
1920 }
1921
1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1923 {
1924         struct perf_sample_data *data;
1925         u16 size = 0;
1926
1927         if (sample_type & PERF_SAMPLE_IP)
1928                 size += sizeof(data->ip);
1929
1930         if (sample_type & PERF_SAMPLE_ADDR)
1931                 size += sizeof(data->addr);
1932
1933         if (sample_type & PERF_SAMPLE_PERIOD)
1934                 size += sizeof(data->period);
1935
1936         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1937                 size += sizeof(data->weight.full);
1938
1939         if (sample_type & PERF_SAMPLE_READ)
1940                 size += event->read_size;
1941
1942         if (sample_type & PERF_SAMPLE_DATA_SRC)
1943                 size += sizeof(data->data_src.val);
1944
1945         if (sample_type & PERF_SAMPLE_TRANSACTION)
1946                 size += sizeof(data->txn);
1947
1948         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1949                 size += sizeof(data->phys_addr);
1950
1951         if (sample_type & PERF_SAMPLE_CGROUP)
1952                 size += sizeof(data->cgroup);
1953
1954         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1955                 size += sizeof(data->data_page_size);
1956
1957         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1958                 size += sizeof(data->code_page_size);
1959
1960         event->header_size = size;
1961 }
1962
1963 /*
1964  * Called at perf_event creation and when events are attached/detached from a
1965  * group.
1966  */
1967 static void perf_event__header_size(struct perf_event *event)
1968 {
1969         __perf_event_read_size(event,
1970                                event->group_leader->nr_siblings);
1971         __perf_event_header_size(event, event->attr.sample_type);
1972 }
1973
1974 static void perf_event__id_header_size(struct perf_event *event)
1975 {
1976         struct perf_sample_data *data;
1977         u64 sample_type = event->attr.sample_type;
1978         u16 size = 0;
1979
1980         if (sample_type & PERF_SAMPLE_TID)
1981                 size += sizeof(data->tid_entry);
1982
1983         if (sample_type & PERF_SAMPLE_TIME)
1984                 size += sizeof(data->time);
1985
1986         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1987                 size += sizeof(data->id);
1988
1989         if (sample_type & PERF_SAMPLE_ID)
1990                 size += sizeof(data->id);
1991
1992         if (sample_type & PERF_SAMPLE_STREAM_ID)
1993                 size += sizeof(data->stream_id);
1994
1995         if (sample_type & PERF_SAMPLE_CPU)
1996                 size += sizeof(data->cpu_entry);
1997
1998         event->id_header_size = size;
1999 }
2000
2001 static bool perf_event_validate_size(struct perf_event *event)
2002 {
2003         /*
2004          * The values computed here will be over-written when we actually
2005          * attach the event.
2006          */
2007         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2008         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2009         perf_event__id_header_size(event);
2010
2011         /*
2012          * Sum the lot; should not exceed the 64k limit we have on records.
2013          * Conservative limit to allow for callchains and other variable fields.
2014          */
2015         if (event->read_size + event->header_size +
2016             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2017                 return false;
2018
2019         return true;
2020 }
2021
2022 static void perf_group_attach(struct perf_event *event)
2023 {
2024         struct perf_event *group_leader = event->group_leader, *pos;
2025
2026         lockdep_assert_held(&event->ctx->lock);
2027
2028         /*
2029          * We can have double attach due to group movement in perf_event_open.
2030          */
2031         if (event->attach_state & PERF_ATTACH_GROUP)
2032                 return;
2033
2034         event->attach_state |= PERF_ATTACH_GROUP;
2035
2036         if (group_leader == event)
2037                 return;
2038
2039         WARN_ON_ONCE(group_leader->ctx != event->ctx);
2040
2041         group_leader->group_caps &= event->event_caps;
2042
2043         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2044         group_leader->nr_siblings++;
2045
2046         perf_event__header_size(group_leader);
2047
2048         for_each_sibling_event(pos, group_leader)
2049                 perf_event__header_size(pos);
2050 }
2051
2052 /*
2053  * Remove an event from the lists for its context.
2054  * Must be called with ctx->mutex and ctx->lock held.
2055  */
2056 static void
2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2058 {
2059         WARN_ON_ONCE(event->ctx != ctx);
2060         lockdep_assert_held(&ctx->lock);
2061
2062         /*
2063          * We can have double detach due to exit/hot-unplug + close.
2064          */
2065         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2066                 return;
2067
2068         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2069
2070         ctx->nr_events--;
2071         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2072                 ctx->nr_user--;
2073         if (event->attr.inherit_stat)
2074                 ctx->nr_stat--;
2075
2076         list_del_rcu(&event->event_entry);
2077
2078         if (event->group_leader == event)
2079                 del_event_from_groups(event, ctx);
2080
2081         /*
2082          * If event was in error state, then keep it
2083          * that way, otherwise bogus counts will be
2084          * returned on read(). The only way to get out
2085          * of error state is by explicit re-enabling
2086          * of the event
2087          */
2088         if (event->state > PERF_EVENT_STATE_OFF) {
2089                 perf_cgroup_event_disable(event, ctx);
2090                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2091         }
2092
2093         ctx->generation++;
2094 }
2095
2096 static int
2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2098 {
2099         if (!has_aux(aux_event))
2100                 return 0;
2101
2102         if (!event->pmu->aux_output_match)
2103                 return 0;
2104
2105         return event->pmu->aux_output_match(aux_event);
2106 }
2107
2108 static void put_event(struct perf_event *event);
2109 static void event_sched_out(struct perf_event *event,
2110                             struct perf_cpu_context *cpuctx,
2111                             struct perf_event_context *ctx);
2112
2113 static void perf_put_aux_event(struct perf_event *event)
2114 {
2115         struct perf_event_context *ctx = event->ctx;
2116         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2117         struct perf_event *iter;
2118
2119         /*
2120          * If event uses aux_event tear down the link
2121          */
2122         if (event->aux_event) {
2123                 iter = event->aux_event;
2124                 event->aux_event = NULL;
2125                 put_event(iter);
2126                 return;
2127         }
2128
2129         /*
2130          * If the event is an aux_event, tear down all links to
2131          * it from other events.
2132          */
2133         for_each_sibling_event(iter, event->group_leader) {
2134                 if (iter->aux_event != event)
2135                         continue;
2136
2137                 iter->aux_event = NULL;
2138                 put_event(event);
2139
2140                 /*
2141                  * If it's ACTIVE, schedule it out and put it into ERROR
2142                  * state so that we don't try to schedule it again. Note
2143                  * that perf_event_enable() will clear the ERROR status.
2144                  */
2145                 event_sched_out(iter, cpuctx, ctx);
2146                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2147         }
2148 }
2149
2150 static bool perf_need_aux_event(struct perf_event *event)
2151 {
2152         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2153 }
2154
2155 static int perf_get_aux_event(struct perf_event *event,
2156                               struct perf_event *group_leader)
2157 {
2158         /*
2159          * Our group leader must be an aux event if we want to be
2160          * an aux_output. This way, the aux event will precede its
2161          * aux_output events in the group, and therefore will always
2162          * schedule first.
2163          */
2164         if (!group_leader)
2165                 return 0;
2166
2167         /*
2168          * aux_output and aux_sample_size are mutually exclusive.
2169          */
2170         if (event->attr.aux_output && event->attr.aux_sample_size)
2171                 return 0;
2172
2173         if (event->attr.aux_output &&
2174             !perf_aux_output_match(event, group_leader))
2175                 return 0;
2176
2177         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2178                 return 0;
2179
2180         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2181                 return 0;
2182
2183         /*
2184          * Link aux_outputs to their aux event; this is undone in
2185          * perf_group_detach() by perf_put_aux_event(). When the
2186          * group in torn down, the aux_output events loose their
2187          * link to the aux_event and can't schedule any more.
2188          */
2189         event->aux_event = group_leader;
2190
2191         return 1;
2192 }
2193
2194 static inline struct list_head *get_event_list(struct perf_event *event)
2195 {
2196         struct perf_event_context *ctx = event->ctx;
2197         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2198 }
2199
2200 /*
2201  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2202  * cannot exist on their own, schedule them out and move them into the ERROR
2203  * state. Also see _perf_event_enable(), it will not be able to recover
2204  * this ERROR state.
2205  */
2206 static inline void perf_remove_sibling_event(struct perf_event *event)
2207 {
2208         struct perf_event_context *ctx = event->ctx;
2209         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210
2211         event_sched_out(event, cpuctx, ctx);
2212         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2213 }
2214
2215 static void perf_group_detach(struct perf_event *event)
2216 {
2217         struct perf_event *leader = event->group_leader;
2218         struct perf_event *sibling, *tmp;
2219         struct perf_event_context *ctx = event->ctx;
2220
2221         lockdep_assert_held(&ctx->lock);
2222
2223         /*
2224          * We can have double detach due to exit/hot-unplug + close.
2225          */
2226         if (!(event->attach_state & PERF_ATTACH_GROUP))
2227                 return;
2228
2229         event->attach_state &= ~PERF_ATTACH_GROUP;
2230
2231         perf_put_aux_event(event);
2232
2233         /*
2234          * If this is a sibling, remove it from its group.
2235          */
2236         if (leader != event) {
2237                 list_del_init(&event->sibling_list);
2238                 event->group_leader->nr_siblings--;
2239                 goto out;
2240         }
2241
2242         /*
2243          * If this was a group event with sibling events then
2244          * upgrade the siblings to singleton events by adding them
2245          * to whatever list we are on.
2246          */
2247         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2248
2249                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2250                         perf_remove_sibling_event(sibling);
2251
2252                 sibling->group_leader = sibling;
2253                 list_del_init(&sibling->sibling_list);
2254
2255                 /* Inherit group flags from the previous leader */
2256                 sibling->group_caps = event->group_caps;
2257
2258                 if (!RB_EMPTY_NODE(&event->group_node)) {
2259                         add_event_to_groups(sibling, event->ctx);
2260
2261                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2262                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2263                 }
2264
2265                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2266         }
2267
2268 out:
2269         for_each_sibling_event(tmp, leader)
2270                 perf_event__header_size(tmp);
2271
2272         perf_event__header_size(leader);
2273 }
2274
2275 static void sync_child_event(struct perf_event *child_event);
2276
2277 static void perf_child_detach(struct perf_event *event)
2278 {
2279         struct perf_event *parent_event = event->parent;
2280
2281         if (!(event->attach_state & PERF_ATTACH_CHILD))
2282                 return;
2283
2284         event->attach_state &= ~PERF_ATTACH_CHILD;
2285
2286         if (WARN_ON_ONCE(!parent_event))
2287                 return;
2288
2289         lockdep_assert_held(&parent_event->child_mutex);
2290
2291         sync_child_event(event);
2292         list_del_init(&event->child_list);
2293 }
2294
2295 static bool is_orphaned_event(struct perf_event *event)
2296 {
2297         return event->state == PERF_EVENT_STATE_DEAD;
2298 }
2299
2300 static inline int __pmu_filter_match(struct perf_event *event)
2301 {
2302         struct pmu *pmu = event->pmu;
2303         return pmu->filter_match ? pmu->filter_match(event) : 1;
2304 }
2305
2306 /*
2307  * Check whether we should attempt to schedule an event group based on
2308  * PMU-specific filtering. An event group can consist of HW and SW events,
2309  * potentially with a SW leader, so we must check all the filters, to
2310  * determine whether a group is schedulable:
2311  */
2312 static inline int pmu_filter_match(struct perf_event *event)
2313 {
2314         struct perf_event *sibling;
2315
2316         if (!__pmu_filter_match(event))
2317                 return 0;
2318
2319         for_each_sibling_event(sibling, event) {
2320                 if (!__pmu_filter_match(sibling))
2321                         return 0;
2322         }
2323
2324         return 1;
2325 }
2326
2327 static inline int
2328 event_filter_match(struct perf_event *event)
2329 {
2330         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2331                perf_cgroup_match(event) && pmu_filter_match(event);
2332 }
2333
2334 static void
2335 event_sched_out(struct perf_event *event,
2336                   struct perf_cpu_context *cpuctx,
2337                   struct perf_event_context *ctx)
2338 {
2339         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2340
2341         WARN_ON_ONCE(event->ctx != ctx);
2342         lockdep_assert_held(&ctx->lock);
2343
2344         if (event->state != PERF_EVENT_STATE_ACTIVE)
2345                 return;
2346
2347         /*
2348          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2349          * we can schedule events _OUT_ individually through things like
2350          * __perf_remove_from_context().
2351          */
2352         list_del_init(&event->active_list);
2353
2354         perf_pmu_disable(event->pmu);
2355
2356         event->pmu->del(event, 0);
2357         event->oncpu = -1;
2358
2359         if (READ_ONCE(event->pending_disable) >= 0) {
2360                 WRITE_ONCE(event->pending_disable, -1);
2361                 perf_cgroup_event_disable(event, ctx);
2362                 state = PERF_EVENT_STATE_OFF;
2363         }
2364         perf_event_set_state(event, state);
2365
2366         if (!is_software_event(event))
2367                 cpuctx->active_oncpu--;
2368         if (!--ctx->nr_active)
2369                 perf_event_ctx_deactivate(ctx);
2370         if (event->attr.freq && event->attr.sample_freq)
2371                 ctx->nr_freq--;
2372         if (event->attr.exclusive || !cpuctx->active_oncpu)
2373                 cpuctx->exclusive = 0;
2374
2375         perf_pmu_enable(event->pmu);
2376 }
2377
2378 static void
2379 group_sched_out(struct perf_event *group_event,
2380                 struct perf_cpu_context *cpuctx,
2381                 struct perf_event_context *ctx)
2382 {
2383         struct perf_event *event;
2384
2385         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2386                 return;
2387
2388         perf_pmu_disable(ctx->pmu);
2389
2390         event_sched_out(group_event, cpuctx, ctx);
2391
2392         /*
2393          * Schedule out siblings (if any):
2394          */
2395         for_each_sibling_event(event, group_event)
2396                 event_sched_out(event, cpuctx, ctx);
2397
2398         perf_pmu_enable(ctx->pmu);
2399 }
2400
2401 #define DETACH_GROUP    0x01UL
2402 #define DETACH_CHILD    0x02UL
2403
2404 /*
2405  * Cross CPU call to remove a performance event
2406  *
2407  * We disable the event on the hardware level first. After that we
2408  * remove it from the context list.
2409  */
2410 static void
2411 __perf_remove_from_context(struct perf_event *event,
2412                            struct perf_cpu_context *cpuctx,
2413                            struct perf_event_context *ctx,
2414                            void *info)
2415 {
2416         unsigned long flags = (unsigned long)info;
2417
2418         if (ctx->is_active & EVENT_TIME) {
2419                 update_context_time(ctx);
2420                 update_cgrp_time_from_cpuctx(cpuctx, false);
2421         }
2422
2423         event_sched_out(event, cpuctx, ctx);
2424         if (flags & DETACH_GROUP)
2425                 perf_group_detach(event);
2426         if (flags & DETACH_CHILD)
2427                 perf_child_detach(event);
2428         list_del_event(event, ctx);
2429
2430         if (!ctx->nr_events && ctx->is_active) {
2431                 if (ctx == &cpuctx->ctx)
2432                         update_cgrp_time_from_cpuctx(cpuctx, true);
2433
2434                 ctx->is_active = 0;
2435                 ctx->rotate_necessary = 0;
2436                 if (ctx->task) {
2437                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2438                         cpuctx->task_ctx = NULL;
2439                 }
2440         }
2441 }
2442
2443 /*
2444  * Remove the event from a task's (or a CPU's) list of events.
2445  *
2446  * If event->ctx is a cloned context, callers must make sure that
2447  * every task struct that event->ctx->task could possibly point to
2448  * remains valid.  This is OK when called from perf_release since
2449  * that only calls us on the top-level context, which can't be a clone.
2450  * When called from perf_event_exit_task, it's OK because the
2451  * context has been detached from its task.
2452  */
2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2454 {
2455         struct perf_event_context *ctx = event->ctx;
2456
2457         lockdep_assert_held(&ctx->mutex);
2458
2459         /*
2460          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2461          * to work in the face of TASK_TOMBSTONE, unlike every other
2462          * event_function_call() user.
2463          */
2464         raw_spin_lock_irq(&ctx->lock);
2465         /*
2466          * Cgroup events are per-cpu events, and must IPI because of
2467          * cgrp_cpuctx_list.
2468          */
2469         if (!ctx->is_active && !is_cgroup_event(event)) {
2470                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2471                                            ctx, (void *)flags);
2472                 raw_spin_unlock_irq(&ctx->lock);
2473                 return;
2474         }
2475         raw_spin_unlock_irq(&ctx->lock);
2476
2477         event_function_call(event, __perf_remove_from_context, (void *)flags);
2478 }
2479
2480 /*
2481  * Cross CPU call to disable a performance event
2482  */
2483 static void __perf_event_disable(struct perf_event *event,
2484                                  struct perf_cpu_context *cpuctx,
2485                                  struct perf_event_context *ctx,
2486                                  void *info)
2487 {
2488         if (event->state < PERF_EVENT_STATE_INACTIVE)
2489                 return;
2490
2491         if (ctx->is_active & EVENT_TIME) {
2492                 update_context_time(ctx);
2493                 update_cgrp_time_from_event(event);
2494         }
2495
2496         if (event == event->group_leader)
2497                 group_sched_out(event, cpuctx, ctx);
2498         else
2499                 event_sched_out(event, cpuctx, ctx);
2500
2501         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2502         perf_cgroup_event_disable(event, ctx);
2503 }
2504
2505 /*
2506  * Disable an event.
2507  *
2508  * If event->ctx is a cloned context, callers must make sure that
2509  * every task struct that event->ctx->task could possibly point to
2510  * remains valid.  This condition is satisfied when called through
2511  * perf_event_for_each_child or perf_event_for_each because they
2512  * hold the top-level event's child_mutex, so any descendant that
2513  * goes to exit will block in perf_event_exit_event().
2514  *
2515  * When called from perf_pending_event it's OK because event->ctx
2516  * is the current context on this CPU and preemption is disabled,
2517  * hence we can't get into perf_event_task_sched_out for this context.
2518  */
2519 static void _perf_event_disable(struct perf_event *event)
2520 {
2521         struct perf_event_context *ctx = event->ctx;
2522
2523         raw_spin_lock_irq(&ctx->lock);
2524         if (event->state <= PERF_EVENT_STATE_OFF) {
2525                 raw_spin_unlock_irq(&ctx->lock);
2526                 return;
2527         }
2528         raw_spin_unlock_irq(&ctx->lock);
2529
2530         event_function_call(event, __perf_event_disable, NULL);
2531 }
2532
2533 void perf_event_disable_local(struct perf_event *event)
2534 {
2535         event_function_local(event, __perf_event_disable, NULL);
2536 }
2537
2538 /*
2539  * Strictly speaking kernel users cannot create groups and therefore this
2540  * interface does not need the perf_event_ctx_lock() magic.
2541  */
2542 void perf_event_disable(struct perf_event *event)
2543 {
2544         struct perf_event_context *ctx;
2545
2546         ctx = perf_event_ctx_lock(event);
2547         _perf_event_disable(event);
2548         perf_event_ctx_unlock(event, ctx);
2549 }
2550 EXPORT_SYMBOL_GPL(perf_event_disable);
2551
2552 void perf_event_disable_inatomic(struct perf_event *event)
2553 {
2554         WRITE_ONCE(event->pending_disable, smp_processor_id());
2555         /* can fail, see perf_pending_event_disable() */
2556         irq_work_queue(&event->pending);
2557 }
2558
2559 #define MAX_INTERRUPTS (~0ULL)
2560
2561 static void perf_log_throttle(struct perf_event *event, int enable);
2562 static void perf_log_itrace_start(struct perf_event *event);
2563
2564 static int
2565 event_sched_in(struct perf_event *event,
2566                  struct perf_cpu_context *cpuctx,
2567                  struct perf_event_context *ctx)
2568 {
2569         int ret = 0;
2570
2571         WARN_ON_ONCE(event->ctx != ctx);
2572
2573         lockdep_assert_held(&ctx->lock);
2574
2575         if (event->state <= PERF_EVENT_STATE_OFF)
2576                 return 0;
2577
2578         WRITE_ONCE(event->oncpu, smp_processor_id());
2579         /*
2580          * Order event::oncpu write to happen before the ACTIVE state is
2581          * visible. This allows perf_event_{stop,read}() to observe the correct
2582          * ->oncpu if it sees ACTIVE.
2583          */
2584         smp_wmb();
2585         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2586
2587         /*
2588          * Unthrottle events, since we scheduled we might have missed several
2589          * ticks already, also for a heavily scheduling task there is little
2590          * guarantee it'll get a tick in a timely manner.
2591          */
2592         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2593                 perf_log_throttle(event, 1);
2594                 event->hw.interrupts = 0;
2595         }
2596
2597         perf_pmu_disable(event->pmu);
2598
2599         perf_log_itrace_start(event);
2600
2601         if (event->pmu->add(event, PERF_EF_START)) {
2602                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2603                 event->oncpu = -1;
2604                 ret = -EAGAIN;
2605                 goto out;
2606         }
2607
2608         if (!is_software_event(event))
2609                 cpuctx->active_oncpu++;
2610         if (!ctx->nr_active++)
2611                 perf_event_ctx_activate(ctx);
2612         if (event->attr.freq && event->attr.sample_freq)
2613                 ctx->nr_freq++;
2614
2615         if (event->attr.exclusive)
2616                 cpuctx->exclusive = 1;
2617
2618 out:
2619         perf_pmu_enable(event->pmu);
2620
2621         return ret;
2622 }
2623
2624 static int
2625 group_sched_in(struct perf_event *group_event,
2626                struct perf_cpu_context *cpuctx,
2627                struct perf_event_context *ctx)
2628 {
2629         struct perf_event *event, *partial_group = NULL;
2630         struct pmu *pmu = ctx->pmu;
2631
2632         if (group_event->state == PERF_EVENT_STATE_OFF)
2633                 return 0;
2634
2635         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2636
2637         if (event_sched_in(group_event, cpuctx, ctx))
2638                 goto error;
2639
2640         /*
2641          * Schedule in siblings as one group (if any):
2642          */
2643         for_each_sibling_event(event, group_event) {
2644                 if (event_sched_in(event, cpuctx, ctx)) {
2645                         partial_group = event;
2646                         goto group_error;
2647                 }
2648         }
2649
2650         if (!pmu->commit_txn(pmu))
2651                 return 0;
2652
2653 group_error:
2654         /*
2655          * Groups can be scheduled in as one unit only, so undo any
2656          * partial group before returning:
2657          * The events up to the failed event are scheduled out normally.
2658          */
2659         for_each_sibling_event(event, group_event) {
2660                 if (event == partial_group)
2661                         break;
2662
2663                 event_sched_out(event, cpuctx, ctx);
2664         }
2665         event_sched_out(group_event, cpuctx, ctx);
2666
2667 error:
2668         pmu->cancel_txn(pmu);
2669         return -EAGAIN;
2670 }
2671
2672 /*
2673  * Work out whether we can put this event group on the CPU now.
2674  */
2675 static int group_can_go_on(struct perf_event *event,
2676                            struct perf_cpu_context *cpuctx,
2677                            int can_add_hw)
2678 {
2679         /*
2680          * Groups consisting entirely of software events can always go on.
2681          */
2682         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2683                 return 1;
2684         /*
2685          * If an exclusive group is already on, no other hardware
2686          * events can go on.
2687          */
2688         if (cpuctx->exclusive)
2689                 return 0;
2690         /*
2691          * If this group is exclusive and there are already
2692          * events on the CPU, it can't go on.
2693          */
2694         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2695                 return 0;
2696         /*
2697          * Otherwise, try to add it if all previous groups were able
2698          * to go on.
2699          */
2700         return can_add_hw;
2701 }
2702
2703 static void add_event_to_ctx(struct perf_event *event,
2704                                struct perf_event_context *ctx)
2705 {
2706         list_add_event(event, ctx);
2707         perf_group_attach(event);
2708 }
2709
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711                           struct perf_cpu_context *cpuctx,
2712                           enum event_type_t event_type);
2713 static void
2714 ctx_sched_in(struct perf_event_context *ctx,
2715              struct perf_cpu_context *cpuctx,
2716              enum event_type_t event_type,
2717              struct task_struct *task);
2718
2719 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2720                                struct perf_event_context *ctx,
2721                                enum event_type_t event_type)
2722 {
2723         if (!cpuctx->task_ctx)
2724                 return;
2725
2726         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2727                 return;
2728
2729         ctx_sched_out(ctx, cpuctx, event_type);
2730 }
2731
2732 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2733                                 struct perf_event_context *ctx,
2734                                 struct task_struct *task)
2735 {
2736         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2737         if (ctx)
2738                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2739         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2740         if (ctx)
2741                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2742 }
2743
2744 /*
2745  * We want to maintain the following priority of scheduling:
2746  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2747  *  - task pinned (EVENT_PINNED)
2748  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2749  *  - task flexible (EVENT_FLEXIBLE).
2750  *
2751  * In order to avoid unscheduling and scheduling back in everything every
2752  * time an event is added, only do it for the groups of equal priority and
2753  * below.
2754  *
2755  * This can be called after a batch operation on task events, in which case
2756  * event_type is a bit mask of the types of events involved. For CPU events,
2757  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2758  */
2759 static void ctx_resched(struct perf_cpu_context *cpuctx,
2760                         struct perf_event_context *task_ctx,
2761                         enum event_type_t event_type)
2762 {
2763         enum event_type_t ctx_event_type;
2764         bool cpu_event = !!(event_type & EVENT_CPU);
2765
2766         /*
2767          * If pinned groups are involved, flexible groups also need to be
2768          * scheduled out.
2769          */
2770         if (event_type & EVENT_PINNED)
2771                 event_type |= EVENT_FLEXIBLE;
2772
2773         ctx_event_type = event_type & EVENT_ALL;
2774
2775         perf_pmu_disable(cpuctx->ctx.pmu);
2776         if (task_ctx)
2777                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2778
2779         /*
2780          * Decide which cpu ctx groups to schedule out based on the types
2781          * of events that caused rescheduling:
2782          *  - EVENT_CPU: schedule out corresponding groups;
2783          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2784          *  - otherwise, do nothing more.
2785          */
2786         if (cpu_event)
2787                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2788         else if (ctx_event_type & EVENT_PINNED)
2789                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2790
2791         perf_event_sched_in(cpuctx, task_ctx, current);
2792         perf_pmu_enable(cpuctx->ctx.pmu);
2793 }
2794
2795 void perf_pmu_resched(struct pmu *pmu)
2796 {
2797         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2798         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2799
2800         perf_ctx_lock(cpuctx, task_ctx);
2801         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2802         perf_ctx_unlock(cpuctx, task_ctx);
2803 }
2804
2805 /*
2806  * Cross CPU call to install and enable a performance event
2807  *
2808  * Very similar to remote_function() + event_function() but cannot assume that
2809  * things like ctx->is_active and cpuctx->task_ctx are set.
2810  */
2811 static int  __perf_install_in_context(void *info)
2812 {
2813         struct perf_event *event = info;
2814         struct perf_event_context *ctx = event->ctx;
2815         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2816         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2817         bool reprogram = true;
2818         int ret = 0;
2819
2820         raw_spin_lock(&cpuctx->ctx.lock);
2821         if (ctx->task) {
2822                 raw_spin_lock(&ctx->lock);
2823                 task_ctx = ctx;
2824
2825                 reprogram = (ctx->task == current);
2826
2827                 /*
2828                  * If the task is running, it must be running on this CPU,
2829                  * otherwise we cannot reprogram things.
2830                  *
2831                  * If its not running, we don't care, ctx->lock will
2832                  * serialize against it becoming runnable.
2833                  */
2834                 if (task_curr(ctx->task) && !reprogram) {
2835                         ret = -ESRCH;
2836                         goto unlock;
2837                 }
2838
2839                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2840         } else if (task_ctx) {
2841                 raw_spin_lock(&task_ctx->lock);
2842         }
2843
2844 #ifdef CONFIG_CGROUP_PERF
2845         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2846                 /*
2847                  * If the current cgroup doesn't match the event's
2848                  * cgroup, we should not try to schedule it.
2849                  */
2850                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2851                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2852                                         event->cgrp->css.cgroup);
2853         }
2854 #endif
2855
2856         if (reprogram) {
2857                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2858                 add_event_to_ctx(event, ctx);
2859                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2860         } else {
2861                 add_event_to_ctx(event, ctx);
2862         }
2863
2864 unlock:
2865         perf_ctx_unlock(cpuctx, task_ctx);
2866
2867         return ret;
2868 }
2869
2870 static bool exclusive_event_installable(struct perf_event *event,
2871                                         struct perf_event_context *ctx);
2872
2873 /*
2874  * Attach a performance event to a context.
2875  *
2876  * Very similar to event_function_call, see comment there.
2877  */
2878 static void
2879 perf_install_in_context(struct perf_event_context *ctx,
2880                         struct perf_event *event,
2881                         int cpu)
2882 {
2883         struct task_struct *task = READ_ONCE(ctx->task);
2884
2885         lockdep_assert_held(&ctx->mutex);
2886
2887         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2888
2889         if (event->cpu != -1)
2890                 event->cpu = cpu;
2891
2892         /*
2893          * Ensures that if we can observe event->ctx, both the event and ctx
2894          * will be 'complete'. See perf_iterate_sb_cpu().
2895          */
2896         smp_store_release(&event->ctx, ctx);
2897
2898         /*
2899          * perf_event_attr::disabled events will not run and can be initialized
2900          * without IPI. Except when this is the first event for the context, in
2901          * that case we need the magic of the IPI to set ctx->is_active.
2902          * Similarly, cgroup events for the context also needs the IPI to
2903          * manipulate the cgrp_cpuctx_list.
2904          *
2905          * The IOC_ENABLE that is sure to follow the creation of a disabled
2906          * event will issue the IPI and reprogram the hardware.
2907          */
2908         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2909             ctx->nr_events && !is_cgroup_event(event)) {
2910                 raw_spin_lock_irq(&ctx->lock);
2911                 if (ctx->task == TASK_TOMBSTONE) {
2912                         raw_spin_unlock_irq(&ctx->lock);
2913                         return;
2914                 }
2915                 add_event_to_ctx(event, ctx);
2916                 raw_spin_unlock_irq(&ctx->lock);
2917                 return;
2918         }
2919
2920         if (!task) {
2921                 cpu_function_call(cpu, __perf_install_in_context, event);
2922                 return;
2923         }
2924
2925         /*
2926          * Should not happen, we validate the ctx is still alive before calling.
2927          */
2928         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2929                 return;
2930
2931         /*
2932          * Installing events is tricky because we cannot rely on ctx->is_active
2933          * to be set in case this is the nr_events 0 -> 1 transition.
2934          *
2935          * Instead we use task_curr(), which tells us if the task is running.
2936          * However, since we use task_curr() outside of rq::lock, we can race
2937          * against the actual state. This means the result can be wrong.
2938          *
2939          * If we get a false positive, we retry, this is harmless.
2940          *
2941          * If we get a false negative, things are complicated. If we are after
2942          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2943          * value must be correct. If we're before, it doesn't matter since
2944          * perf_event_context_sched_in() will program the counter.
2945          *
2946          * However, this hinges on the remote context switch having observed
2947          * our task->perf_event_ctxp[] store, such that it will in fact take
2948          * ctx::lock in perf_event_context_sched_in().
2949          *
2950          * We do this by task_function_call(), if the IPI fails to hit the task
2951          * we know any future context switch of task must see the
2952          * perf_event_ctpx[] store.
2953          */
2954
2955         /*
2956          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2957          * task_cpu() load, such that if the IPI then does not find the task
2958          * running, a future context switch of that task must observe the
2959          * store.
2960          */
2961         smp_mb();
2962 again:
2963         if (!task_function_call(task, __perf_install_in_context, event))
2964                 return;
2965
2966         raw_spin_lock_irq(&ctx->lock);
2967         task = ctx->task;
2968         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2969                 /*
2970                  * Cannot happen because we already checked above (which also
2971                  * cannot happen), and we hold ctx->mutex, which serializes us
2972                  * against perf_event_exit_task_context().
2973                  */
2974                 raw_spin_unlock_irq(&ctx->lock);
2975                 return;
2976         }
2977         /*
2978          * If the task is not running, ctx->lock will avoid it becoming so,
2979          * thus we can safely install the event.
2980          */
2981         if (task_curr(task)) {
2982                 raw_spin_unlock_irq(&ctx->lock);
2983                 goto again;
2984         }
2985         add_event_to_ctx(event, ctx);
2986         raw_spin_unlock_irq(&ctx->lock);
2987 }
2988
2989 /*
2990  * Cross CPU call to enable a performance event
2991  */
2992 static void __perf_event_enable(struct perf_event *event,
2993                                 struct perf_cpu_context *cpuctx,
2994                                 struct perf_event_context *ctx,
2995                                 void *info)
2996 {
2997         struct perf_event *leader = event->group_leader;
2998         struct perf_event_context *task_ctx;
2999
3000         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3001             event->state <= PERF_EVENT_STATE_ERROR)
3002                 return;
3003
3004         if (ctx->is_active)
3005                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3006
3007         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3008         perf_cgroup_event_enable(event, ctx);
3009
3010         if (!ctx->is_active)
3011                 return;
3012
3013         if (!event_filter_match(event)) {
3014                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3015                 return;
3016         }
3017
3018         /*
3019          * If the event is in a group and isn't the group leader,
3020          * then don't put it on unless the group is on.
3021          */
3022         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3023                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3024                 return;
3025         }
3026
3027         task_ctx = cpuctx->task_ctx;
3028         if (ctx->task)
3029                 WARN_ON_ONCE(task_ctx != ctx);
3030
3031         ctx_resched(cpuctx, task_ctx, get_event_type(event));
3032 }
3033
3034 /*
3035  * Enable an event.
3036  *
3037  * If event->ctx is a cloned context, callers must make sure that
3038  * every task struct that event->ctx->task could possibly point to
3039  * remains valid.  This condition is satisfied when called through
3040  * perf_event_for_each_child or perf_event_for_each as described
3041  * for perf_event_disable.
3042  */
3043 static void _perf_event_enable(struct perf_event *event)
3044 {
3045         struct perf_event_context *ctx = event->ctx;
3046
3047         raw_spin_lock_irq(&ctx->lock);
3048         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3049             event->state <  PERF_EVENT_STATE_ERROR) {
3050 out:
3051                 raw_spin_unlock_irq(&ctx->lock);
3052                 return;
3053         }
3054
3055         /*
3056          * If the event is in error state, clear that first.
3057          *
3058          * That way, if we see the event in error state below, we know that it
3059          * has gone back into error state, as distinct from the task having
3060          * been scheduled away before the cross-call arrived.
3061          */
3062         if (event->state == PERF_EVENT_STATE_ERROR) {
3063                 /*
3064                  * Detached SIBLING events cannot leave ERROR state.
3065                  */
3066                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3067                     event->group_leader == event)
3068                         goto out;
3069
3070                 event->state = PERF_EVENT_STATE_OFF;
3071         }
3072         raw_spin_unlock_irq(&ctx->lock);
3073
3074         event_function_call(event, __perf_event_enable, NULL);
3075 }
3076
3077 /*
3078  * See perf_event_disable();
3079  */
3080 void perf_event_enable(struct perf_event *event)
3081 {
3082         struct perf_event_context *ctx;
3083
3084         ctx = perf_event_ctx_lock(event);
3085         _perf_event_enable(event);
3086         perf_event_ctx_unlock(event, ctx);
3087 }
3088 EXPORT_SYMBOL_GPL(perf_event_enable);
3089
3090 struct stop_event_data {
3091         struct perf_event       *event;
3092         unsigned int            restart;
3093 };
3094
3095 static int __perf_event_stop(void *info)
3096 {
3097         struct stop_event_data *sd = info;
3098         struct perf_event *event = sd->event;
3099
3100         /* if it's already INACTIVE, do nothing */
3101         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3102                 return 0;
3103
3104         /* matches smp_wmb() in event_sched_in() */
3105         smp_rmb();
3106
3107         /*
3108          * There is a window with interrupts enabled before we get here,
3109          * so we need to check again lest we try to stop another CPU's event.
3110          */
3111         if (READ_ONCE(event->oncpu) != smp_processor_id())
3112                 return -EAGAIN;
3113
3114         event->pmu->stop(event, PERF_EF_UPDATE);
3115
3116         /*
3117          * May race with the actual stop (through perf_pmu_output_stop()),
3118          * but it is only used for events with AUX ring buffer, and such
3119          * events will refuse to restart because of rb::aux_mmap_count==0,
3120          * see comments in perf_aux_output_begin().
3121          *
3122          * Since this is happening on an event-local CPU, no trace is lost
3123          * while restarting.
3124          */
3125         if (sd->restart)
3126                 event->pmu->start(event, 0);
3127
3128         return 0;
3129 }
3130
3131 static int perf_event_stop(struct perf_event *event, int restart)
3132 {
3133         struct stop_event_data sd = {
3134                 .event          = event,
3135                 .restart        = restart,
3136         };
3137         int ret = 0;
3138
3139         do {
3140                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3141                         return 0;
3142
3143                 /* matches smp_wmb() in event_sched_in() */
3144                 smp_rmb();
3145
3146                 /*
3147                  * We only want to restart ACTIVE events, so if the event goes
3148                  * inactive here (event->oncpu==-1), there's nothing more to do;
3149                  * fall through with ret==-ENXIO.
3150                  */
3151                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3152                                         __perf_event_stop, &sd);
3153         } while (ret == -EAGAIN);
3154
3155         return ret;
3156 }
3157
3158 /*
3159  * In order to contain the amount of racy and tricky in the address filter
3160  * configuration management, it is a two part process:
3161  *
3162  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3163  *      we update the addresses of corresponding vmas in
3164  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3165  * (p2) when an event is scheduled in (pmu::add), it calls
3166  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3167  *      if the generation has changed since the previous call.
3168  *
3169  * If (p1) happens while the event is active, we restart it to force (p2).
3170  *
3171  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3172  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3173  *     ioctl;
3174  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3175  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3176  *     for reading;
3177  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3178  *     of exec.
3179  */
3180 void perf_event_addr_filters_sync(struct perf_event *event)
3181 {
3182         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3183
3184         if (!has_addr_filter(event))
3185                 return;
3186
3187         raw_spin_lock(&ifh->lock);
3188         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3189                 event->pmu->addr_filters_sync(event);
3190                 event->hw.addr_filters_gen = event->addr_filters_gen;
3191         }
3192         raw_spin_unlock(&ifh->lock);
3193 }
3194 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3195
3196 static int _perf_event_refresh(struct perf_event *event, int refresh)
3197 {
3198         /*
3199          * not supported on inherited events
3200          */
3201         if (event->attr.inherit || !is_sampling_event(event))
3202                 return -EINVAL;
3203
3204         atomic_add(refresh, &event->event_limit);
3205         _perf_event_enable(event);
3206
3207         return 0;
3208 }
3209
3210 /*
3211  * See perf_event_disable()
3212  */
3213 int perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215         struct perf_event_context *ctx;
3216         int ret;
3217
3218         ctx = perf_event_ctx_lock(event);
3219         ret = _perf_event_refresh(event, refresh);
3220         perf_event_ctx_unlock(event, ctx);
3221
3222         return ret;
3223 }
3224 EXPORT_SYMBOL_GPL(perf_event_refresh);
3225
3226 static int perf_event_modify_breakpoint(struct perf_event *bp,
3227                                          struct perf_event_attr *attr)
3228 {
3229         int err;
3230
3231         _perf_event_disable(bp);
3232
3233         err = modify_user_hw_breakpoint_check(bp, attr, true);
3234
3235         if (!bp->attr.disabled)
3236                 _perf_event_enable(bp);
3237
3238         return err;
3239 }
3240
3241 /*
3242  * Copy event-type-independent attributes that may be modified.
3243  */
3244 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3245                                         const struct perf_event_attr *from)
3246 {
3247         to->sig_data = from->sig_data;
3248 }
3249
3250 static int perf_event_modify_attr(struct perf_event *event,
3251                                   struct perf_event_attr *attr)
3252 {
3253         int (*func)(struct perf_event *, struct perf_event_attr *);
3254         struct perf_event *child;
3255         int err;
3256
3257         if (event->attr.type != attr->type)
3258                 return -EINVAL;
3259
3260         switch (event->attr.type) {
3261         case PERF_TYPE_BREAKPOINT:
3262                 func = perf_event_modify_breakpoint;
3263                 break;
3264         default:
3265                 /* Place holder for future additions. */
3266                 return -EOPNOTSUPP;
3267         }
3268
3269         WARN_ON_ONCE(event->ctx->parent_ctx);
3270
3271         mutex_lock(&event->child_mutex);
3272         /*
3273          * Event-type-independent attributes must be copied before event-type
3274          * modification, which will validate that final attributes match the
3275          * source attributes after all relevant attributes have been copied.
3276          */
3277         perf_event_modify_copy_attr(&event->attr, attr);
3278         err = func(event, attr);
3279         if (err)
3280                 goto out;
3281         list_for_each_entry(child, &event->child_list, child_list) {
3282                 perf_event_modify_copy_attr(&child->attr, attr);
3283                 err = func(child, attr);
3284                 if (err)
3285                         goto out;
3286         }
3287 out:
3288         mutex_unlock(&event->child_mutex);
3289         return err;
3290 }
3291
3292 static void ctx_sched_out(struct perf_event_context *ctx,
3293                           struct perf_cpu_context *cpuctx,
3294                           enum event_type_t event_type)
3295 {
3296         struct perf_event *event, *tmp;
3297         int is_active = ctx->is_active;
3298
3299         lockdep_assert_held(&ctx->lock);
3300
3301         if (likely(!ctx->nr_events)) {
3302                 /*
3303                  * See __perf_remove_from_context().
3304                  */
3305                 WARN_ON_ONCE(ctx->is_active);
3306                 if (ctx->task)
3307                         WARN_ON_ONCE(cpuctx->task_ctx);
3308                 return;
3309         }
3310
3311         /*
3312          * Always update time if it was set; not only when it changes.
3313          * Otherwise we can 'forget' to update time for any but the last
3314          * context we sched out. For example:
3315          *
3316          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3317          *   ctx_sched_out(.event_type = EVENT_PINNED)
3318          *
3319          * would only update time for the pinned events.
3320          */
3321         if (is_active & EVENT_TIME) {
3322                 /* update (and stop) ctx time */
3323                 update_context_time(ctx);
3324                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3325                 /*
3326                  * CPU-release for the below ->is_active store,
3327                  * see __load_acquire() in perf_event_time_now()
3328                  */
3329                 barrier();
3330         }
3331
3332         ctx->is_active &= ~event_type;
3333         if (!(ctx->is_active & EVENT_ALL))
3334                 ctx->is_active = 0;
3335
3336         if (ctx->task) {
3337                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3338                 if (!ctx->is_active)
3339                         cpuctx->task_ctx = NULL;
3340         }
3341
3342         is_active ^= ctx->is_active; /* changed bits */
3343
3344         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3345                 return;
3346
3347         perf_pmu_disable(ctx->pmu);
3348         if (is_active & EVENT_PINNED) {
3349                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3350                         group_sched_out(event, cpuctx, ctx);
3351         }
3352
3353         if (is_active & EVENT_FLEXIBLE) {
3354                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3355                         group_sched_out(event, cpuctx, ctx);
3356
3357                 /*
3358                  * Since we cleared EVENT_FLEXIBLE, also clear
3359                  * rotate_necessary, is will be reset by
3360                  * ctx_flexible_sched_in() when needed.
3361                  */
3362                 ctx->rotate_necessary = 0;
3363         }
3364         perf_pmu_enable(ctx->pmu);
3365 }
3366
3367 /*
3368  * Test whether two contexts are equivalent, i.e. whether they have both been
3369  * cloned from the same version of the same context.
3370  *
3371  * Equivalence is measured using a generation number in the context that is
3372  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3373  * and list_del_event().
3374  */
3375 static int context_equiv(struct perf_event_context *ctx1,
3376                          struct perf_event_context *ctx2)
3377 {
3378         lockdep_assert_held(&ctx1->lock);
3379         lockdep_assert_held(&ctx2->lock);
3380
3381         /* Pinning disables the swap optimization */
3382         if (ctx1->pin_count || ctx2->pin_count)
3383                 return 0;
3384
3385         /* If ctx1 is the parent of ctx2 */
3386         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3387                 return 1;
3388
3389         /* If ctx2 is the parent of ctx1 */
3390         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3391                 return 1;
3392
3393         /*
3394          * If ctx1 and ctx2 have the same parent; we flatten the parent
3395          * hierarchy, see perf_event_init_context().
3396          */
3397         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3398                         ctx1->parent_gen == ctx2->parent_gen)
3399                 return 1;
3400
3401         /* Unmatched */
3402         return 0;
3403 }
3404
3405 static void __perf_event_sync_stat(struct perf_event *event,
3406                                      struct perf_event *next_event)
3407 {
3408         u64 value;
3409
3410         if (!event->attr.inherit_stat)
3411                 return;
3412
3413         /*
3414          * Update the event value, we cannot use perf_event_read()
3415          * because we're in the middle of a context switch and have IRQs
3416          * disabled, which upsets smp_call_function_single(), however
3417          * we know the event must be on the current CPU, therefore we
3418          * don't need to use it.
3419          */
3420         if (event->state == PERF_EVENT_STATE_ACTIVE)
3421                 event->pmu->read(event);
3422
3423         perf_event_update_time(event);
3424
3425         /*
3426          * In order to keep per-task stats reliable we need to flip the event
3427          * values when we flip the contexts.
3428          */
3429         value = local64_read(&next_event->count);
3430         value = local64_xchg(&event->count, value);
3431         local64_set(&next_event->count, value);
3432
3433         swap(event->total_time_enabled, next_event->total_time_enabled);
3434         swap(event->total_time_running, next_event->total_time_running);
3435
3436         /*
3437          * Since we swizzled the values, update the user visible data too.
3438          */
3439         perf_event_update_userpage(event);
3440         perf_event_update_userpage(next_event);
3441 }
3442
3443 static void perf_event_sync_stat(struct perf_event_context *ctx,
3444                                    struct perf_event_context *next_ctx)
3445 {
3446         struct perf_event *event, *next_event;
3447
3448         if (!ctx->nr_stat)
3449                 return;
3450
3451         update_context_time(ctx);
3452
3453         event = list_first_entry(&ctx->event_list,
3454                                    struct perf_event, event_entry);
3455
3456         next_event = list_first_entry(&next_ctx->event_list,
3457                                         struct perf_event, event_entry);
3458
3459         while (&event->event_entry != &ctx->event_list &&
3460                &next_event->event_entry != &next_ctx->event_list) {
3461
3462                 __perf_event_sync_stat(event, next_event);
3463
3464                 event = list_next_entry(event, event_entry);
3465                 next_event = list_next_entry(next_event, event_entry);
3466         }
3467 }
3468
3469 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3470                                          struct task_struct *next)
3471 {
3472         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3473         struct perf_event_context *next_ctx;
3474         struct perf_event_context *parent, *next_parent;
3475         struct perf_cpu_context *cpuctx;
3476         int do_switch = 1;
3477         struct pmu *pmu;
3478
3479         if (likely(!ctx))
3480                 return;
3481
3482         pmu = ctx->pmu;
3483         cpuctx = __get_cpu_context(ctx);
3484         if (!cpuctx->task_ctx)
3485                 return;
3486
3487         rcu_read_lock();
3488         next_ctx = next->perf_event_ctxp[ctxn];
3489         if (!next_ctx)
3490                 goto unlock;
3491
3492         parent = rcu_dereference(ctx->parent_ctx);
3493         next_parent = rcu_dereference(next_ctx->parent_ctx);
3494
3495         /* If neither context have a parent context; they cannot be clones. */
3496         if (!parent && !next_parent)
3497                 goto unlock;
3498
3499         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3500                 /*
3501                  * Looks like the two contexts are clones, so we might be
3502                  * able to optimize the context switch.  We lock both
3503                  * contexts and check that they are clones under the
3504                  * lock (including re-checking that neither has been
3505                  * uncloned in the meantime).  It doesn't matter which
3506                  * order we take the locks because no other cpu could
3507                  * be trying to lock both of these tasks.
3508                  */
3509                 raw_spin_lock(&ctx->lock);
3510                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3511                 if (context_equiv(ctx, next_ctx)) {
3512
3513                         WRITE_ONCE(ctx->task, next);
3514                         WRITE_ONCE(next_ctx->task, task);
3515
3516                         perf_pmu_disable(pmu);
3517
3518                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3519                                 pmu->sched_task(ctx, false);
3520
3521                         /*
3522                          * PMU specific parts of task perf context can require
3523                          * additional synchronization. As an example of such
3524                          * synchronization see implementation details of Intel
3525                          * LBR call stack data profiling;
3526                          */
3527                         if (pmu->swap_task_ctx)
3528                                 pmu->swap_task_ctx(ctx, next_ctx);
3529                         else
3530                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3531
3532                         perf_pmu_enable(pmu);
3533
3534                         /*
3535                          * RCU_INIT_POINTER here is safe because we've not
3536                          * modified the ctx and the above modification of
3537                          * ctx->task and ctx->task_ctx_data are immaterial
3538                          * since those values are always verified under
3539                          * ctx->lock which we're now holding.
3540                          */
3541                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3542                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3543
3544                         do_switch = 0;
3545
3546                         perf_event_sync_stat(ctx, next_ctx);
3547                 }
3548                 raw_spin_unlock(&next_ctx->lock);
3549                 raw_spin_unlock(&ctx->lock);
3550         }
3551 unlock:
3552         rcu_read_unlock();
3553
3554         if (do_switch) {
3555                 raw_spin_lock(&ctx->lock);
3556                 perf_pmu_disable(pmu);
3557
3558                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3559                         pmu->sched_task(ctx, false);
3560                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3561
3562                 perf_pmu_enable(pmu);
3563                 raw_spin_unlock(&ctx->lock);
3564         }
3565 }
3566
3567 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3568
3569 void perf_sched_cb_dec(struct pmu *pmu)
3570 {
3571         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3572
3573         this_cpu_dec(perf_sched_cb_usages);
3574
3575         if (!--cpuctx->sched_cb_usage)
3576                 list_del(&cpuctx->sched_cb_entry);
3577 }
3578
3579
3580 void perf_sched_cb_inc(struct pmu *pmu)
3581 {
3582         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3583
3584         if (!cpuctx->sched_cb_usage++)
3585                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3586
3587         this_cpu_inc(perf_sched_cb_usages);
3588 }
3589
3590 /*
3591  * This function provides the context switch callback to the lower code
3592  * layer. It is invoked ONLY when the context switch callback is enabled.
3593  *
3594  * This callback is relevant even to per-cpu events; for example multi event
3595  * PEBS requires this to provide PID/TID information. This requires we flush
3596  * all queued PEBS records before we context switch to a new task.
3597  */
3598 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3599 {
3600         struct pmu *pmu;
3601
3602         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3603
3604         if (WARN_ON_ONCE(!pmu->sched_task))
3605                 return;
3606
3607         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3608         perf_pmu_disable(pmu);
3609
3610         pmu->sched_task(cpuctx->task_ctx, sched_in);
3611
3612         perf_pmu_enable(pmu);
3613         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3614 }
3615
3616 static void perf_pmu_sched_task(struct task_struct *prev,
3617                                 struct task_struct *next,
3618                                 bool sched_in)
3619 {
3620         struct perf_cpu_context *cpuctx;
3621
3622         if (prev == next)
3623                 return;
3624
3625         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3626                 /* will be handled in perf_event_context_sched_in/out */
3627                 if (cpuctx->task_ctx)
3628                         continue;
3629
3630                 __perf_pmu_sched_task(cpuctx, sched_in);
3631         }
3632 }
3633
3634 static void perf_event_switch(struct task_struct *task,
3635                               struct task_struct *next_prev, bool sched_in);
3636
3637 #define for_each_task_context_nr(ctxn)                                  \
3638         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3639
3640 /*
3641  * Called from scheduler to remove the events of the current task,
3642  * with interrupts disabled.
3643  *
3644  * We stop each event and update the event value in event->count.
3645  *
3646  * This does not protect us against NMI, but disable()
3647  * sets the disabled bit in the control field of event _before_
3648  * accessing the event control register. If a NMI hits, then it will
3649  * not restart the event.
3650  */
3651 void __perf_event_task_sched_out(struct task_struct *task,
3652                                  struct task_struct *next)
3653 {
3654         int ctxn;
3655
3656         if (__this_cpu_read(perf_sched_cb_usages))
3657                 perf_pmu_sched_task(task, next, false);
3658
3659         if (atomic_read(&nr_switch_events))
3660                 perf_event_switch(task, next, false);
3661
3662         for_each_task_context_nr(ctxn)
3663                 perf_event_context_sched_out(task, ctxn, next);
3664
3665         /*
3666          * if cgroup events exist on this CPU, then we need
3667          * to check if we have to switch out PMU state.
3668          * cgroup event are system-wide mode only
3669          */
3670         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3671                 perf_cgroup_sched_out(task, next);
3672 }
3673
3674 /*
3675  * Called with IRQs disabled
3676  */
3677 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3678                               enum event_type_t event_type)
3679 {
3680         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3681 }
3682
3683 static bool perf_less_group_idx(const void *l, const void *r)
3684 {
3685         const struct perf_event *le = *(const struct perf_event **)l;
3686         const struct perf_event *re = *(const struct perf_event **)r;
3687
3688         return le->group_index < re->group_index;
3689 }
3690
3691 static void swap_ptr(void *l, void *r)
3692 {
3693         void **lp = l, **rp = r;
3694
3695         swap(*lp, *rp);
3696 }
3697
3698 static const struct min_heap_callbacks perf_min_heap = {
3699         .elem_size = sizeof(struct perf_event *),
3700         .less = perf_less_group_idx,
3701         .swp = swap_ptr,
3702 };
3703
3704 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3705 {
3706         struct perf_event **itrs = heap->data;
3707
3708         if (event) {
3709                 itrs[heap->nr] = event;
3710                 heap->nr++;
3711         }
3712 }
3713
3714 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3715                                 struct perf_event_groups *groups, int cpu,
3716                                 int (*func)(struct perf_event *, void *),
3717                                 void *data)
3718 {
3719 #ifdef CONFIG_CGROUP_PERF
3720         struct cgroup_subsys_state *css = NULL;
3721 #endif
3722         /* Space for per CPU and/or any CPU event iterators. */
3723         struct perf_event *itrs[2];
3724         struct min_heap event_heap;
3725         struct perf_event **evt;
3726         int ret;
3727
3728         if (cpuctx) {
3729                 event_heap = (struct min_heap){
3730                         .data = cpuctx->heap,
3731                         .nr = 0,
3732                         .size = cpuctx->heap_size,
3733                 };
3734
3735                 lockdep_assert_held(&cpuctx->ctx.lock);
3736
3737 #ifdef CONFIG_CGROUP_PERF
3738                 if (cpuctx->cgrp)
3739                         css = &cpuctx->cgrp->css;
3740 #endif
3741         } else {
3742                 event_heap = (struct min_heap){
3743                         .data = itrs,
3744                         .nr = 0,
3745                         .size = ARRAY_SIZE(itrs),
3746                 };
3747                 /* Events not within a CPU context may be on any CPU. */
3748                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3749         }
3750         evt = event_heap.data;
3751
3752         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3753
3754 #ifdef CONFIG_CGROUP_PERF
3755         for (; css; css = css->parent)
3756                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3757 #endif
3758
3759         min_heapify_all(&event_heap, &perf_min_heap);
3760
3761         while (event_heap.nr) {
3762                 ret = func(*evt, data);
3763                 if (ret)
3764                         return ret;
3765
3766                 *evt = perf_event_groups_next(*evt);
3767                 if (*evt)
3768                         min_heapify(&event_heap, 0, &perf_min_heap);
3769                 else
3770                         min_heap_pop(&event_heap, &perf_min_heap);
3771         }
3772
3773         return 0;
3774 }
3775
3776 /*
3777  * Because the userpage is strictly per-event (there is no concept of context,
3778  * so there cannot be a context indirection), every userpage must be updated
3779  * when context time starts :-(
3780  *
3781  * IOW, we must not miss EVENT_TIME edges.
3782  */
3783 static inline bool event_update_userpage(struct perf_event *event)
3784 {
3785         if (likely(!atomic_read(&event->mmap_count)))
3786                 return false;
3787
3788         perf_event_update_time(event);
3789         perf_event_update_userpage(event);
3790
3791         return true;
3792 }
3793
3794 static inline void group_update_userpage(struct perf_event *group_event)
3795 {
3796         struct perf_event *event;
3797
3798         if (!event_update_userpage(group_event))
3799                 return;
3800
3801         for_each_sibling_event(event, group_event)
3802                 event_update_userpage(event);
3803 }
3804
3805 static int merge_sched_in(struct perf_event *event, void *data)
3806 {
3807         struct perf_event_context *ctx = event->ctx;
3808         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3809         int *can_add_hw = data;
3810
3811         if (event->state <= PERF_EVENT_STATE_OFF)
3812                 return 0;
3813
3814         if (!event_filter_match(event))
3815                 return 0;
3816
3817         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3818                 if (!group_sched_in(event, cpuctx, ctx))
3819                         list_add_tail(&event->active_list, get_event_list(event));
3820         }
3821
3822         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823                 *can_add_hw = 0;
3824                 if (event->attr.pinned) {
3825                         perf_cgroup_event_disable(event, ctx);
3826                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827                 } else {
3828                         ctx->rotate_necessary = 1;
3829                         perf_mux_hrtimer_restart(cpuctx);
3830                         group_update_userpage(event);
3831                 }
3832         }
3833
3834         return 0;
3835 }
3836
3837 static void
3838 ctx_pinned_sched_in(struct perf_event_context *ctx,
3839                     struct perf_cpu_context *cpuctx)
3840 {
3841         int can_add_hw = 1;
3842
3843         if (ctx != &cpuctx->ctx)
3844                 cpuctx = NULL;
3845
3846         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3847                            smp_processor_id(),
3848                            merge_sched_in, &can_add_hw);
3849 }
3850
3851 static void
3852 ctx_flexible_sched_in(struct perf_event_context *ctx,
3853                       struct perf_cpu_context *cpuctx)
3854 {
3855         int can_add_hw = 1;
3856
3857         if (ctx != &cpuctx->ctx)
3858                 cpuctx = NULL;
3859
3860         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3861                            smp_processor_id(),
3862                            merge_sched_in, &can_add_hw);
3863 }
3864
3865 static void
3866 ctx_sched_in(struct perf_event_context *ctx,
3867              struct perf_cpu_context *cpuctx,
3868              enum event_type_t event_type,
3869              struct task_struct *task)
3870 {
3871         int is_active = ctx->is_active;
3872
3873         lockdep_assert_held(&ctx->lock);
3874
3875         if (likely(!ctx->nr_events))
3876                 return;
3877
3878         if (is_active ^ EVENT_TIME) {
3879                 /* start ctx time */
3880                 __update_context_time(ctx, false);
3881                 perf_cgroup_set_timestamp(task, ctx);
3882                 /*
3883                  * CPU-release for the below ->is_active store,
3884                  * see __load_acquire() in perf_event_time_now()
3885                  */
3886                 barrier();
3887         }
3888
3889         ctx->is_active |= (event_type | EVENT_TIME);
3890         if (ctx->task) {
3891                 if (!is_active)
3892                         cpuctx->task_ctx = ctx;
3893                 else
3894                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3895         }
3896
3897         is_active ^= ctx->is_active; /* changed bits */
3898
3899         /*
3900          * First go through the list and put on any pinned groups
3901          * in order to give them the best chance of going on.
3902          */
3903         if (is_active & EVENT_PINNED)
3904                 ctx_pinned_sched_in(ctx, cpuctx);
3905
3906         /* Then walk through the lower prio flexible groups */
3907         if (is_active & EVENT_FLEXIBLE)
3908                 ctx_flexible_sched_in(ctx, cpuctx);
3909 }
3910
3911 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3912                              enum event_type_t event_type,
3913                              struct task_struct *task)
3914 {
3915         struct perf_event_context *ctx = &cpuctx->ctx;
3916
3917         ctx_sched_in(ctx, cpuctx, event_type, task);
3918 }
3919
3920 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3921                                         struct task_struct *task)
3922 {
3923         struct perf_cpu_context *cpuctx;
3924         struct pmu *pmu;
3925
3926         cpuctx = __get_cpu_context(ctx);
3927
3928         /*
3929          * HACK: for HETEROGENEOUS the task context might have switched to a
3930          * different PMU, force (re)set the context,
3931          */
3932         pmu = ctx->pmu = cpuctx->ctx.pmu;
3933
3934         if (cpuctx->task_ctx == ctx) {
3935                 if (cpuctx->sched_cb_usage)
3936                         __perf_pmu_sched_task(cpuctx, true);
3937                 return;
3938         }
3939
3940         perf_ctx_lock(cpuctx, ctx);
3941         /*
3942          * We must check ctx->nr_events while holding ctx->lock, such
3943          * that we serialize against perf_install_in_context().
3944          */
3945         if (!ctx->nr_events)
3946                 goto unlock;
3947
3948         perf_pmu_disable(pmu);
3949         /*
3950          * We want to keep the following priority order:
3951          * cpu pinned (that don't need to move), task pinned,
3952          * cpu flexible, task flexible.
3953          *
3954          * However, if task's ctx is not carrying any pinned
3955          * events, no need to flip the cpuctx's events around.
3956          */
3957         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3958                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3959         perf_event_sched_in(cpuctx, ctx, task);
3960
3961         if (cpuctx->sched_cb_usage && pmu->sched_task)
3962                 pmu->sched_task(cpuctx->task_ctx, true);
3963
3964         perf_pmu_enable(pmu);
3965
3966 unlock:
3967         perf_ctx_unlock(cpuctx, ctx);
3968 }
3969
3970 /*
3971  * Called from scheduler to add the events of the current task
3972  * with interrupts disabled.
3973  *
3974  * We restore the event value and then enable it.
3975  *
3976  * This does not protect us against NMI, but enable()
3977  * sets the enabled bit in the control field of event _before_
3978  * accessing the event control register. If a NMI hits, then it will
3979  * keep the event running.
3980  */
3981 void __perf_event_task_sched_in(struct task_struct *prev,
3982                                 struct task_struct *task)
3983 {
3984         struct perf_event_context *ctx;
3985         int ctxn;
3986
3987         /*
3988          * If cgroup events exist on this CPU, then we need to check if we have
3989          * to switch in PMU state; cgroup event are system-wide mode only.
3990          *
3991          * Since cgroup events are CPU events, we must schedule these in before
3992          * we schedule in the task events.
3993          */
3994         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3995                 perf_cgroup_sched_in(prev, task);
3996
3997         for_each_task_context_nr(ctxn) {
3998                 ctx = task->perf_event_ctxp[ctxn];
3999                 if (likely(!ctx))
4000                         continue;
4001
4002                 perf_event_context_sched_in(ctx, task);
4003         }
4004
4005         if (atomic_read(&nr_switch_events))
4006                 perf_event_switch(task, prev, true);
4007
4008         if (__this_cpu_read(perf_sched_cb_usages))
4009                 perf_pmu_sched_task(prev, task, true);
4010 }
4011
4012 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4013 {
4014         u64 frequency = event->attr.sample_freq;
4015         u64 sec = NSEC_PER_SEC;
4016         u64 divisor, dividend;
4017
4018         int count_fls, nsec_fls, frequency_fls, sec_fls;
4019
4020         count_fls = fls64(count);
4021         nsec_fls = fls64(nsec);
4022         frequency_fls = fls64(frequency);
4023         sec_fls = 30;
4024
4025         /*
4026          * We got @count in @nsec, with a target of sample_freq HZ
4027          * the target period becomes:
4028          *
4029          *             @count * 10^9
4030          * period = -------------------
4031          *          @nsec * sample_freq
4032          *
4033          */
4034
4035         /*
4036          * Reduce accuracy by one bit such that @a and @b converge
4037          * to a similar magnitude.
4038          */
4039 #define REDUCE_FLS(a, b)                \
4040 do {                                    \
4041         if (a##_fls > b##_fls) {        \
4042                 a >>= 1;                \
4043                 a##_fls--;              \
4044         } else {                        \
4045                 b >>= 1;                \
4046                 b##_fls--;              \
4047         }                               \
4048 } while (0)
4049
4050         /*
4051          * Reduce accuracy until either term fits in a u64, then proceed with
4052          * the other, so that finally we can do a u64/u64 division.
4053          */
4054         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4055                 REDUCE_FLS(nsec, frequency);
4056                 REDUCE_FLS(sec, count);
4057         }
4058
4059         if (count_fls + sec_fls > 64) {
4060                 divisor = nsec * frequency;
4061
4062                 while (count_fls + sec_fls > 64) {
4063                         REDUCE_FLS(count, sec);
4064                         divisor >>= 1;
4065                 }
4066
4067                 dividend = count * sec;
4068         } else {
4069                 dividend = count * sec;
4070
4071                 while (nsec_fls + frequency_fls > 64) {
4072                         REDUCE_FLS(nsec, frequency);
4073                         dividend >>= 1;
4074                 }
4075
4076                 divisor = nsec * frequency;
4077         }
4078
4079         if (!divisor)
4080                 return dividend;
4081
4082         return div64_u64(dividend, divisor);
4083 }
4084
4085 static DEFINE_PER_CPU(int, perf_throttled_count);
4086 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4087
4088 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4089 {
4090         struct hw_perf_event *hwc = &event->hw;
4091         s64 period, sample_period;
4092         s64 delta;
4093
4094         period = perf_calculate_period(event, nsec, count);
4095
4096         delta = (s64)(period - hwc->sample_period);
4097         delta = (delta + 7) / 8; /* low pass filter */
4098
4099         sample_period = hwc->sample_period + delta;
4100
4101         if (!sample_period)
4102                 sample_period = 1;
4103
4104         hwc->sample_period = sample_period;
4105
4106         if (local64_read(&hwc->period_left) > 8*sample_period) {
4107                 if (disable)
4108                         event->pmu->stop(event, PERF_EF_UPDATE);
4109
4110                 local64_set(&hwc->period_left, 0);
4111
4112                 if (disable)
4113                         event->pmu->start(event, PERF_EF_RELOAD);
4114         }
4115 }
4116
4117 /*
4118  * combine freq adjustment with unthrottling to avoid two passes over the
4119  * events. At the same time, make sure, having freq events does not change
4120  * the rate of unthrottling as that would introduce bias.
4121  */
4122 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4123                                            int needs_unthr)
4124 {
4125         struct perf_event *event;
4126         struct hw_perf_event *hwc;
4127         u64 now, period = TICK_NSEC;
4128         s64 delta;
4129
4130         /*
4131          * only need to iterate over all events iff:
4132          * - context have events in frequency mode (needs freq adjust)
4133          * - there are events to unthrottle on this cpu
4134          */
4135         if (!(ctx->nr_freq || needs_unthr))
4136                 return;
4137
4138         raw_spin_lock(&ctx->lock);
4139         perf_pmu_disable(ctx->pmu);
4140
4141         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4142                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4143                         continue;
4144
4145                 if (!event_filter_match(event))
4146                         continue;
4147
4148                 perf_pmu_disable(event->pmu);
4149
4150                 hwc = &event->hw;
4151
4152                 if (hwc->interrupts == MAX_INTERRUPTS) {
4153                         hwc->interrupts = 0;
4154                         perf_log_throttle(event, 1);
4155                         event->pmu->start(event, 0);
4156                 }
4157
4158                 if (!event->attr.freq || !event->attr.sample_freq)
4159                         goto next;
4160
4161                 /*
4162                  * stop the event and update event->count
4163                  */
4164                 event->pmu->stop(event, PERF_EF_UPDATE);
4165
4166                 now = local64_read(&event->count);
4167                 delta = now - hwc->freq_count_stamp;
4168                 hwc->freq_count_stamp = now;
4169
4170                 /*
4171                  * restart the event
4172                  * reload only if value has changed
4173                  * we have stopped the event so tell that
4174                  * to perf_adjust_period() to avoid stopping it
4175                  * twice.
4176                  */
4177                 if (delta > 0)
4178                         perf_adjust_period(event, period, delta, false);
4179
4180                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4181         next:
4182                 perf_pmu_enable(event->pmu);
4183         }
4184
4185         perf_pmu_enable(ctx->pmu);
4186         raw_spin_unlock(&ctx->lock);
4187 }
4188
4189 /*
4190  * Move @event to the tail of the @ctx's elegible events.
4191  */
4192 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4193 {
4194         /*
4195          * Rotate the first entry last of non-pinned groups. Rotation might be
4196          * disabled by the inheritance code.
4197          */
4198         if (ctx->rotate_disable)
4199                 return;
4200
4201         perf_event_groups_delete(&ctx->flexible_groups, event);
4202         perf_event_groups_insert(&ctx->flexible_groups, event);
4203 }
4204
4205 /* pick an event from the flexible_groups to rotate */
4206 static inline struct perf_event *
4207 ctx_event_to_rotate(struct perf_event_context *ctx)
4208 {
4209         struct perf_event *event;
4210
4211         /* pick the first active flexible event */
4212         event = list_first_entry_or_null(&ctx->flexible_active,
4213                                          struct perf_event, active_list);
4214
4215         /* if no active flexible event, pick the first event */
4216         if (!event) {
4217                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4218                                       typeof(*event), group_node);
4219         }
4220
4221         /*
4222          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4223          * finds there are unschedulable events, it will set it again.
4224          */
4225         ctx->rotate_necessary = 0;
4226
4227         return event;
4228 }
4229
4230 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4231 {
4232         struct perf_event *cpu_event = NULL, *task_event = NULL;
4233         struct perf_event_context *task_ctx = NULL;
4234         int cpu_rotate, task_rotate;
4235
4236         /*
4237          * Since we run this from IRQ context, nobody can install new
4238          * events, thus the event count values are stable.
4239          */
4240
4241         cpu_rotate = cpuctx->ctx.rotate_necessary;
4242         task_ctx = cpuctx->task_ctx;
4243         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4244
4245         if (!(cpu_rotate || task_rotate))
4246                 return false;
4247
4248         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4249         perf_pmu_disable(cpuctx->ctx.pmu);
4250
4251         if (task_rotate)
4252                 task_event = ctx_event_to_rotate(task_ctx);
4253         if (cpu_rotate)
4254                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4255
4256         /*
4257          * As per the order given at ctx_resched() first 'pop' task flexible
4258          * and then, if needed CPU flexible.
4259          */
4260         if (task_event || (task_ctx && cpu_event))
4261                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4262         if (cpu_event)
4263                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4264
4265         if (task_event)
4266                 rotate_ctx(task_ctx, task_event);
4267         if (cpu_event)
4268                 rotate_ctx(&cpuctx->ctx, cpu_event);
4269
4270         perf_event_sched_in(cpuctx, task_ctx, current);
4271
4272         perf_pmu_enable(cpuctx->ctx.pmu);
4273         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4274
4275         return true;
4276 }
4277
4278 void perf_event_task_tick(void)
4279 {
4280         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4281         struct perf_event_context *ctx, *tmp;
4282         int throttled;
4283
4284         lockdep_assert_irqs_disabled();
4285
4286         __this_cpu_inc(perf_throttled_seq);
4287         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4288         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4289
4290         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4291                 perf_adjust_freq_unthr_context(ctx, throttled);
4292 }
4293
4294 static int event_enable_on_exec(struct perf_event *event,
4295                                 struct perf_event_context *ctx)
4296 {
4297         if (!event->attr.enable_on_exec)
4298                 return 0;
4299
4300         event->attr.enable_on_exec = 0;
4301         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4302                 return 0;
4303
4304         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4305
4306         return 1;
4307 }
4308
4309 /*
4310  * Enable all of a task's events that have been marked enable-on-exec.
4311  * This expects task == current.
4312  */
4313 static void perf_event_enable_on_exec(int ctxn)
4314 {
4315         struct perf_event_context *ctx, *clone_ctx = NULL;
4316         enum event_type_t event_type = 0;
4317         struct perf_cpu_context *cpuctx;
4318         struct perf_event *event;
4319         unsigned long flags;
4320         int enabled = 0;
4321
4322         local_irq_save(flags);
4323         ctx = current->perf_event_ctxp[ctxn];
4324         if (!ctx || !ctx->nr_events)
4325                 goto out;
4326
4327         cpuctx = __get_cpu_context(ctx);
4328         perf_ctx_lock(cpuctx, ctx);
4329         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4330         list_for_each_entry(event, &ctx->event_list, event_entry) {
4331                 enabled |= event_enable_on_exec(event, ctx);
4332                 event_type |= get_event_type(event);
4333         }
4334
4335         /*
4336          * Unclone and reschedule this context if we enabled any event.
4337          */
4338         if (enabled) {
4339                 clone_ctx = unclone_ctx(ctx);
4340                 ctx_resched(cpuctx, ctx, event_type);
4341         } else {
4342                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4343         }
4344         perf_ctx_unlock(cpuctx, ctx);
4345
4346 out:
4347         local_irq_restore(flags);
4348
4349         if (clone_ctx)
4350                 put_ctx(clone_ctx);
4351 }
4352
4353 static void perf_remove_from_owner(struct perf_event *event);
4354 static void perf_event_exit_event(struct perf_event *event,
4355                                   struct perf_event_context *ctx);
4356
4357 /*
4358  * Removes all events from the current task that have been marked
4359  * remove-on-exec, and feeds their values back to parent events.
4360  */
4361 static void perf_event_remove_on_exec(int ctxn)
4362 {
4363         struct perf_event_context *ctx, *clone_ctx = NULL;
4364         struct perf_event *event, *next;
4365         LIST_HEAD(free_list);
4366         unsigned long flags;
4367         bool modified = false;
4368
4369         ctx = perf_pin_task_context(current, ctxn);
4370         if (!ctx)
4371                 return;
4372
4373         mutex_lock(&ctx->mutex);
4374
4375         if (WARN_ON_ONCE(ctx->task != current))
4376                 goto unlock;
4377
4378         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4379                 if (!event->attr.remove_on_exec)
4380                         continue;
4381
4382                 if (!is_kernel_event(event))
4383                         perf_remove_from_owner(event);
4384
4385                 modified = true;
4386
4387                 perf_event_exit_event(event, ctx);
4388         }
4389
4390         raw_spin_lock_irqsave(&ctx->lock, flags);
4391         if (modified)
4392                 clone_ctx = unclone_ctx(ctx);
4393         --ctx->pin_count;
4394         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4395
4396 unlock:
4397         mutex_unlock(&ctx->mutex);
4398
4399         put_ctx(ctx);
4400         if (clone_ctx)
4401                 put_ctx(clone_ctx);
4402 }
4403
4404 struct perf_read_data {
4405         struct perf_event *event;
4406         bool group;
4407         int ret;
4408 };
4409
4410 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4411 {
4412         u16 local_pkg, event_pkg;
4413
4414         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4415                 int local_cpu = smp_processor_id();
4416
4417                 event_pkg = topology_physical_package_id(event_cpu);
4418                 local_pkg = topology_physical_package_id(local_cpu);
4419
4420                 if (event_pkg == local_pkg)
4421                         return local_cpu;
4422         }
4423
4424         return event_cpu;
4425 }
4426
4427 /*
4428  * Cross CPU call to read the hardware event
4429  */
4430 static void __perf_event_read(void *info)
4431 {
4432         struct perf_read_data *data = info;
4433         struct perf_event *sub, *event = data->event;
4434         struct perf_event_context *ctx = event->ctx;
4435         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4436         struct pmu *pmu = event->pmu;
4437
4438         /*
4439          * If this is a task context, we need to check whether it is
4440          * the current task context of this cpu.  If not it has been
4441          * scheduled out before the smp call arrived.  In that case
4442          * event->count would have been updated to a recent sample
4443          * when the event was scheduled out.
4444          */
4445         if (ctx->task && cpuctx->task_ctx != ctx)
4446                 return;
4447
4448         raw_spin_lock(&ctx->lock);
4449         if (ctx->is_active & EVENT_TIME) {
4450                 update_context_time(ctx);
4451                 update_cgrp_time_from_event(event);
4452         }
4453
4454         perf_event_update_time(event);
4455         if (data->group)
4456                 perf_event_update_sibling_time(event);
4457
4458         if (event->state != PERF_EVENT_STATE_ACTIVE)
4459                 goto unlock;
4460
4461         if (!data->group) {
4462                 pmu->read(event);
4463                 data->ret = 0;
4464                 goto unlock;
4465         }
4466
4467         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4468
4469         pmu->read(event);
4470
4471         for_each_sibling_event(sub, event) {
4472                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4473                         /*
4474                          * Use sibling's PMU rather than @event's since
4475                          * sibling could be on different (eg: software) PMU.
4476                          */
4477                         sub->pmu->read(sub);
4478                 }
4479         }
4480
4481         data->ret = pmu->commit_txn(pmu);
4482
4483 unlock:
4484         raw_spin_unlock(&ctx->lock);
4485 }
4486
4487 static inline u64 perf_event_count(struct perf_event *event)
4488 {
4489         return local64_read(&event->count) + atomic64_read(&event->child_count);
4490 }
4491
4492 static void calc_timer_values(struct perf_event *event,
4493                                 u64 *now,
4494                                 u64 *enabled,
4495                                 u64 *running)
4496 {
4497         u64 ctx_time;
4498
4499         *now = perf_clock();
4500         ctx_time = perf_event_time_now(event, *now);
4501         __perf_update_times(event, ctx_time, enabled, running);
4502 }
4503
4504 /*
4505  * NMI-safe method to read a local event, that is an event that
4506  * is:
4507  *   - either for the current task, or for this CPU
4508  *   - does not have inherit set, for inherited task events
4509  *     will not be local and we cannot read them atomically
4510  *   - must not have a pmu::count method
4511  */
4512 int perf_event_read_local(struct perf_event *event, u64 *value,
4513                           u64 *enabled, u64 *running)
4514 {
4515         unsigned long flags;
4516         int ret = 0;
4517
4518         /*
4519          * Disabling interrupts avoids all counter scheduling (context
4520          * switches, timer based rotation and IPIs).
4521          */
4522         local_irq_save(flags);
4523
4524         /*
4525          * It must not be an event with inherit set, we cannot read
4526          * all child counters from atomic context.
4527          */
4528         if (event->attr.inherit) {
4529                 ret = -EOPNOTSUPP;
4530                 goto out;
4531         }
4532
4533         /* If this is a per-task event, it must be for current */
4534         if ((event->attach_state & PERF_ATTACH_TASK) &&
4535             event->hw.target != current) {
4536                 ret = -EINVAL;
4537                 goto out;
4538         }
4539
4540         /* If this is a per-CPU event, it must be for this CPU */
4541         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4542             event->cpu != smp_processor_id()) {
4543                 ret = -EINVAL;
4544                 goto out;
4545         }
4546
4547         /* If this is a pinned event it must be running on this CPU */
4548         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4549                 ret = -EBUSY;
4550                 goto out;
4551         }
4552
4553         /*
4554          * If the event is currently on this CPU, its either a per-task event,
4555          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4556          * oncpu == -1).
4557          */
4558         if (event->oncpu == smp_processor_id())
4559                 event->pmu->read(event);
4560
4561         *value = local64_read(&event->count);
4562         if (enabled || running) {
4563                 u64 __enabled, __running, __now;;
4564
4565                 calc_timer_values(event, &__now, &__enabled, &__running);
4566                 if (enabled)
4567                         *enabled = __enabled;
4568                 if (running)
4569                         *running = __running;
4570         }
4571 out:
4572         local_irq_restore(flags);
4573
4574         return ret;
4575 }
4576
4577 static int perf_event_read(struct perf_event *event, bool group)
4578 {
4579         enum perf_event_state state = READ_ONCE(event->state);
4580         int event_cpu, ret = 0;
4581
4582         /*
4583          * If event is enabled and currently active on a CPU, update the
4584          * value in the event structure:
4585          */
4586 again:
4587         if (state == PERF_EVENT_STATE_ACTIVE) {
4588                 struct perf_read_data data;
4589
4590                 /*
4591                  * Orders the ->state and ->oncpu loads such that if we see
4592                  * ACTIVE we must also see the right ->oncpu.
4593                  *
4594                  * Matches the smp_wmb() from event_sched_in().
4595                  */
4596                 smp_rmb();
4597
4598                 event_cpu = READ_ONCE(event->oncpu);
4599                 if ((unsigned)event_cpu >= nr_cpu_ids)
4600                         return 0;
4601
4602                 data = (struct perf_read_data){
4603                         .event = event,
4604                         .group = group,
4605                         .ret = 0,
4606                 };
4607
4608                 preempt_disable();
4609                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4610
4611                 /*
4612                  * Purposely ignore the smp_call_function_single() return
4613                  * value.
4614                  *
4615                  * If event_cpu isn't a valid CPU it means the event got
4616                  * scheduled out and that will have updated the event count.
4617                  *
4618                  * Therefore, either way, we'll have an up-to-date event count
4619                  * after this.
4620                  */
4621                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4622                 preempt_enable();
4623                 ret = data.ret;
4624
4625         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4626                 struct perf_event_context *ctx = event->ctx;
4627                 unsigned long flags;
4628
4629                 raw_spin_lock_irqsave(&ctx->lock, flags);
4630                 state = event->state;
4631                 if (state != PERF_EVENT_STATE_INACTIVE) {
4632                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4633                         goto again;
4634                 }
4635
4636                 /*
4637                  * May read while context is not active (e.g., thread is
4638                  * blocked), in that case we cannot update context time
4639                  */
4640                 if (ctx->is_active & EVENT_TIME) {
4641                         update_context_time(ctx);
4642                         update_cgrp_time_from_event(event);
4643                 }
4644
4645                 perf_event_update_time(event);
4646                 if (group)
4647                         perf_event_update_sibling_time(event);
4648                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4649         }
4650
4651         return ret;
4652 }
4653
4654 /*
4655  * Initialize the perf_event context in a task_struct:
4656  */
4657 static void __perf_event_init_context(struct perf_event_context *ctx)
4658 {
4659         raw_spin_lock_init(&ctx->lock);
4660         mutex_init(&ctx->mutex);
4661         INIT_LIST_HEAD(&ctx->active_ctx_list);
4662         perf_event_groups_init(&ctx->pinned_groups);
4663         perf_event_groups_init(&ctx->flexible_groups);
4664         INIT_LIST_HEAD(&ctx->event_list);
4665         INIT_LIST_HEAD(&ctx->pinned_active);
4666         INIT_LIST_HEAD(&ctx->flexible_active);
4667         refcount_set(&ctx->refcount, 1);
4668 }
4669
4670 static struct perf_event_context *
4671 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4672 {
4673         struct perf_event_context *ctx;
4674
4675         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4676         if (!ctx)
4677                 return NULL;
4678
4679         __perf_event_init_context(ctx);
4680         if (task)
4681                 ctx->task = get_task_struct(task);
4682         ctx->pmu = pmu;
4683
4684         return ctx;
4685 }
4686
4687 static struct task_struct *
4688 find_lively_task_by_vpid(pid_t vpid)
4689 {
4690         struct task_struct *task;
4691
4692         rcu_read_lock();
4693         if (!vpid)
4694                 task = current;
4695         else
4696                 task = find_task_by_vpid(vpid);
4697         if (task)
4698                 get_task_struct(task);
4699         rcu_read_unlock();
4700
4701         if (!task)
4702                 return ERR_PTR(-ESRCH);
4703
4704         return task;
4705 }
4706
4707 /*
4708  * Returns a matching context with refcount and pincount.
4709  */
4710 static struct perf_event_context *
4711 find_get_context(struct pmu *pmu, struct task_struct *task,
4712                 struct perf_event *event)
4713 {
4714         struct perf_event_context *ctx, *clone_ctx = NULL;
4715         struct perf_cpu_context *cpuctx;
4716         void *task_ctx_data = NULL;
4717         unsigned long flags;
4718         int ctxn, err;
4719         int cpu = event->cpu;
4720
4721         if (!task) {
4722                 /* Must be root to operate on a CPU event: */
4723                 err = perf_allow_cpu(&event->attr);
4724                 if (err)
4725                         return ERR_PTR(err);
4726
4727                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4728                 ctx = &cpuctx->ctx;
4729                 get_ctx(ctx);
4730                 raw_spin_lock_irqsave(&ctx->lock, flags);
4731                 ++ctx->pin_count;
4732                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4733
4734                 return ctx;
4735         }
4736
4737         err = -EINVAL;
4738         ctxn = pmu->task_ctx_nr;
4739         if (ctxn < 0)
4740                 goto errout;
4741
4742         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4743                 task_ctx_data = alloc_task_ctx_data(pmu);
4744                 if (!task_ctx_data) {
4745                         err = -ENOMEM;
4746                         goto errout;
4747                 }
4748         }
4749
4750 retry:
4751         ctx = perf_lock_task_context(task, ctxn, &flags);
4752         if (ctx) {
4753                 clone_ctx = unclone_ctx(ctx);
4754                 ++ctx->pin_count;
4755
4756                 if (task_ctx_data && !ctx->task_ctx_data) {
4757                         ctx->task_ctx_data = task_ctx_data;
4758                         task_ctx_data = NULL;
4759                 }
4760                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4761
4762                 if (clone_ctx)
4763                         put_ctx(clone_ctx);
4764         } else {
4765                 ctx = alloc_perf_context(pmu, task);
4766                 err = -ENOMEM;
4767                 if (!ctx)
4768                         goto errout;
4769
4770                 if (task_ctx_data) {
4771                         ctx->task_ctx_data = task_ctx_data;
4772                         task_ctx_data = NULL;
4773                 }
4774
4775                 err = 0;
4776                 mutex_lock(&task->perf_event_mutex);
4777                 /*
4778                  * If it has already passed perf_event_exit_task().
4779                  * we must see PF_EXITING, it takes this mutex too.
4780                  */
4781                 if (task->flags & PF_EXITING)
4782                         err = -ESRCH;
4783                 else if (task->perf_event_ctxp[ctxn])
4784                         err = -EAGAIN;
4785                 else {
4786                         get_ctx(ctx);
4787                         ++ctx->pin_count;
4788                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4789                 }
4790                 mutex_unlock(&task->perf_event_mutex);
4791
4792                 if (unlikely(err)) {
4793                         put_ctx(ctx);
4794
4795                         if (err == -EAGAIN)
4796                                 goto retry;
4797                         goto errout;
4798                 }
4799         }
4800
4801         free_task_ctx_data(pmu, task_ctx_data);
4802         return ctx;
4803
4804 errout:
4805         free_task_ctx_data(pmu, task_ctx_data);
4806         return ERR_PTR(err);
4807 }
4808
4809 static void perf_event_free_filter(struct perf_event *event);
4810
4811 static void free_event_rcu(struct rcu_head *head)
4812 {
4813         struct perf_event *event;
4814
4815         event = container_of(head, struct perf_event, rcu_head);
4816         if (event->ns)
4817                 put_pid_ns(event->ns);
4818         perf_event_free_filter(event);
4819         kmem_cache_free(perf_event_cache, event);
4820 }
4821
4822 static void ring_buffer_attach(struct perf_event *event,
4823                                struct perf_buffer *rb);
4824
4825 static void detach_sb_event(struct perf_event *event)
4826 {
4827         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4828
4829         raw_spin_lock(&pel->lock);
4830         list_del_rcu(&event->sb_list);
4831         raw_spin_unlock(&pel->lock);
4832 }
4833
4834 static bool is_sb_event(struct perf_event *event)
4835 {
4836         struct perf_event_attr *attr = &event->attr;
4837
4838         if (event->parent)
4839                 return false;
4840
4841         if (event->attach_state & PERF_ATTACH_TASK)
4842                 return false;
4843
4844         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4845             attr->comm || attr->comm_exec ||
4846             attr->task || attr->ksymbol ||
4847             attr->context_switch || attr->text_poke ||
4848             attr->bpf_event)
4849                 return true;
4850         return false;
4851 }
4852
4853 static void unaccount_pmu_sb_event(struct perf_event *event)
4854 {
4855         if (is_sb_event(event))
4856                 detach_sb_event(event);
4857 }
4858
4859 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4860 {
4861         if (event->parent)
4862                 return;
4863
4864         if (is_cgroup_event(event))
4865                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4866 }
4867
4868 #ifdef CONFIG_NO_HZ_FULL
4869 static DEFINE_SPINLOCK(nr_freq_lock);
4870 #endif
4871
4872 static void unaccount_freq_event_nohz(void)
4873 {
4874 #ifdef CONFIG_NO_HZ_FULL
4875         spin_lock(&nr_freq_lock);
4876         if (atomic_dec_and_test(&nr_freq_events))
4877                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4878         spin_unlock(&nr_freq_lock);
4879 #endif
4880 }
4881
4882 static void unaccount_freq_event(void)
4883 {
4884         if (tick_nohz_full_enabled())
4885                 unaccount_freq_event_nohz();
4886         else
4887                 atomic_dec(&nr_freq_events);
4888 }
4889
4890 static void unaccount_event(struct perf_event *event)
4891 {
4892         bool dec = false;
4893
4894         if (event->parent)
4895                 return;
4896
4897         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4898                 dec = true;
4899         if (event->attr.mmap || event->attr.mmap_data)
4900                 atomic_dec(&nr_mmap_events);
4901         if (event->attr.build_id)
4902                 atomic_dec(&nr_build_id_events);
4903         if (event->attr.comm)
4904                 atomic_dec(&nr_comm_events);
4905         if (event->attr.namespaces)
4906                 atomic_dec(&nr_namespaces_events);
4907         if (event->attr.cgroup)
4908                 atomic_dec(&nr_cgroup_events);
4909         if (event->attr.task)
4910                 atomic_dec(&nr_task_events);
4911         if (event->attr.freq)
4912                 unaccount_freq_event();
4913         if (event->attr.context_switch) {
4914                 dec = true;
4915                 atomic_dec(&nr_switch_events);
4916         }
4917         if (is_cgroup_event(event))
4918                 dec = true;
4919         if (has_branch_stack(event))
4920                 dec = true;
4921         if (event->attr.ksymbol)
4922                 atomic_dec(&nr_ksymbol_events);
4923         if (event->attr.bpf_event)
4924                 atomic_dec(&nr_bpf_events);
4925         if (event->attr.text_poke)
4926                 atomic_dec(&nr_text_poke_events);
4927
4928         if (dec) {
4929                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4930                         schedule_delayed_work(&perf_sched_work, HZ);
4931         }
4932
4933         unaccount_event_cpu(event, event->cpu);
4934
4935         unaccount_pmu_sb_event(event);
4936 }
4937
4938 static void perf_sched_delayed(struct work_struct *work)
4939 {
4940         mutex_lock(&perf_sched_mutex);
4941         if (atomic_dec_and_test(&perf_sched_count))
4942                 static_branch_disable(&perf_sched_events);
4943         mutex_unlock(&perf_sched_mutex);
4944 }
4945
4946 /*
4947  * The following implement mutual exclusion of events on "exclusive" pmus
4948  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4949  * at a time, so we disallow creating events that might conflict, namely:
4950  *
4951  *  1) cpu-wide events in the presence of per-task events,
4952  *  2) per-task events in the presence of cpu-wide events,
4953  *  3) two matching events on the same context.
4954  *
4955  * The former two cases are handled in the allocation path (perf_event_alloc(),
4956  * _free_event()), the latter -- before the first perf_install_in_context().
4957  */
4958 static int exclusive_event_init(struct perf_event *event)
4959 {
4960         struct pmu *pmu = event->pmu;
4961
4962         if (!is_exclusive_pmu(pmu))
4963                 return 0;
4964
4965         /*
4966          * Prevent co-existence of per-task and cpu-wide events on the
4967          * same exclusive pmu.
4968          *
4969          * Negative pmu::exclusive_cnt means there are cpu-wide
4970          * events on this "exclusive" pmu, positive means there are
4971          * per-task events.
4972          *
4973          * Since this is called in perf_event_alloc() path, event::ctx
4974          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4975          * to mean "per-task event", because unlike other attach states it
4976          * never gets cleared.
4977          */
4978         if (event->attach_state & PERF_ATTACH_TASK) {
4979                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4980                         return -EBUSY;
4981         } else {
4982                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4983                         return -EBUSY;
4984         }
4985
4986         return 0;
4987 }
4988
4989 static void exclusive_event_destroy(struct perf_event *event)
4990 {
4991         struct pmu *pmu = event->pmu;
4992
4993         if (!is_exclusive_pmu(pmu))
4994                 return;
4995
4996         /* see comment in exclusive_event_init() */
4997         if (event->attach_state & PERF_ATTACH_TASK)
4998                 atomic_dec(&pmu->exclusive_cnt);
4999         else
5000                 atomic_inc(&pmu->exclusive_cnt);
5001 }
5002
5003 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5004 {
5005         if ((e1->pmu == e2->pmu) &&
5006             (e1->cpu == e2->cpu ||
5007              e1->cpu == -1 ||
5008              e2->cpu == -1))
5009                 return true;
5010         return false;
5011 }
5012
5013 static bool exclusive_event_installable(struct perf_event *event,
5014                                         struct perf_event_context *ctx)
5015 {
5016         struct perf_event *iter_event;
5017         struct pmu *pmu = event->pmu;
5018
5019         lockdep_assert_held(&ctx->mutex);
5020
5021         if (!is_exclusive_pmu(pmu))
5022                 return true;
5023
5024         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5025                 if (exclusive_event_match(iter_event, event))
5026                         return false;
5027         }
5028
5029         return true;
5030 }
5031
5032 static void perf_addr_filters_splice(struct perf_event *event,
5033                                        struct list_head *head);
5034
5035 static void _free_event(struct perf_event *event)
5036 {
5037         irq_work_sync(&event->pending);
5038
5039         unaccount_event(event);
5040
5041         security_perf_event_free(event);
5042
5043         if (event->rb) {
5044                 /*
5045                  * Can happen when we close an event with re-directed output.
5046                  *
5047                  * Since we have a 0 refcount, perf_mmap_close() will skip
5048                  * over us; possibly making our ring_buffer_put() the last.
5049                  */
5050                 mutex_lock(&event->mmap_mutex);
5051                 ring_buffer_attach(event, NULL);
5052                 mutex_unlock(&event->mmap_mutex);
5053         }
5054
5055         if (is_cgroup_event(event))
5056                 perf_detach_cgroup(event);
5057
5058         if (!event->parent) {
5059                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5060                         put_callchain_buffers();
5061         }
5062
5063         perf_event_free_bpf_prog(event);
5064         perf_addr_filters_splice(event, NULL);
5065         kfree(event->addr_filter_ranges);
5066
5067         if (event->destroy)
5068                 event->destroy(event);
5069
5070         /*
5071          * Must be after ->destroy(), due to uprobe_perf_close() using
5072          * hw.target.
5073          */
5074         if (event->hw.target)
5075                 put_task_struct(event->hw.target);
5076
5077         /*
5078          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5079          * all task references must be cleaned up.
5080          */
5081         if (event->ctx)
5082                 put_ctx(event->ctx);
5083
5084         exclusive_event_destroy(event);
5085         module_put(event->pmu->module);
5086
5087         call_rcu(&event->rcu_head, free_event_rcu);
5088 }
5089
5090 /*
5091  * Used to free events which have a known refcount of 1, such as in error paths
5092  * where the event isn't exposed yet and inherited events.
5093  */
5094 static void free_event(struct perf_event *event)
5095 {
5096         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5097                                 "unexpected event refcount: %ld; ptr=%p\n",
5098                                 atomic_long_read(&event->refcount), event)) {
5099                 /* leak to avoid use-after-free */
5100                 return;
5101         }
5102
5103         _free_event(event);
5104 }
5105
5106 /*
5107  * Remove user event from the owner task.
5108  */
5109 static void perf_remove_from_owner(struct perf_event *event)
5110 {
5111         struct task_struct *owner;
5112
5113         rcu_read_lock();
5114         /*
5115          * Matches the smp_store_release() in perf_event_exit_task(). If we
5116          * observe !owner it means the list deletion is complete and we can
5117          * indeed free this event, otherwise we need to serialize on
5118          * owner->perf_event_mutex.
5119          */
5120         owner = READ_ONCE(event->owner);
5121         if (owner) {
5122                 /*
5123                  * Since delayed_put_task_struct() also drops the last
5124                  * task reference we can safely take a new reference
5125                  * while holding the rcu_read_lock().
5126                  */
5127                 get_task_struct(owner);
5128         }
5129         rcu_read_unlock();
5130
5131         if (owner) {
5132                 /*
5133                  * If we're here through perf_event_exit_task() we're already
5134                  * holding ctx->mutex which would be an inversion wrt. the
5135                  * normal lock order.
5136                  *
5137                  * However we can safely take this lock because its the child
5138                  * ctx->mutex.
5139                  */
5140                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5141
5142                 /*
5143                  * We have to re-check the event->owner field, if it is cleared
5144                  * we raced with perf_event_exit_task(), acquiring the mutex
5145                  * ensured they're done, and we can proceed with freeing the
5146                  * event.
5147                  */
5148                 if (event->owner) {
5149                         list_del_init(&event->owner_entry);
5150                         smp_store_release(&event->owner, NULL);
5151                 }
5152                 mutex_unlock(&owner->perf_event_mutex);
5153                 put_task_struct(owner);
5154         }
5155 }
5156
5157 static void put_event(struct perf_event *event)
5158 {
5159         if (!atomic_long_dec_and_test(&event->refcount))
5160                 return;
5161
5162         _free_event(event);
5163 }
5164
5165 /*
5166  * Kill an event dead; while event:refcount will preserve the event
5167  * object, it will not preserve its functionality. Once the last 'user'
5168  * gives up the object, we'll destroy the thing.
5169  */
5170 int perf_event_release_kernel(struct perf_event *event)
5171 {
5172         struct perf_event_context *ctx = event->ctx;
5173         struct perf_event *child, *tmp;
5174         LIST_HEAD(free_list);
5175
5176         /*
5177          * If we got here through err_file: fput(event_file); we will not have
5178          * attached to a context yet.
5179          */
5180         if (!ctx) {
5181                 WARN_ON_ONCE(event->attach_state &
5182                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5183                 goto no_ctx;
5184         }
5185
5186         if (!is_kernel_event(event))
5187                 perf_remove_from_owner(event);
5188
5189         ctx = perf_event_ctx_lock(event);
5190         WARN_ON_ONCE(ctx->parent_ctx);
5191         perf_remove_from_context(event, DETACH_GROUP);
5192
5193         raw_spin_lock_irq(&ctx->lock);
5194         /*
5195          * Mark this event as STATE_DEAD, there is no external reference to it
5196          * anymore.
5197          *
5198          * Anybody acquiring event->child_mutex after the below loop _must_
5199          * also see this, most importantly inherit_event() which will avoid
5200          * placing more children on the list.
5201          *
5202          * Thus this guarantees that we will in fact observe and kill _ALL_
5203          * child events.
5204          */
5205         event->state = PERF_EVENT_STATE_DEAD;
5206         raw_spin_unlock_irq(&ctx->lock);
5207
5208         perf_event_ctx_unlock(event, ctx);
5209
5210 again:
5211         mutex_lock(&event->child_mutex);
5212         list_for_each_entry(child, &event->child_list, child_list) {
5213
5214                 /*
5215                  * Cannot change, child events are not migrated, see the
5216                  * comment with perf_event_ctx_lock_nested().
5217                  */
5218                 ctx = READ_ONCE(child->ctx);
5219                 /*
5220                  * Since child_mutex nests inside ctx::mutex, we must jump
5221                  * through hoops. We start by grabbing a reference on the ctx.
5222                  *
5223                  * Since the event cannot get freed while we hold the
5224                  * child_mutex, the context must also exist and have a !0
5225                  * reference count.
5226                  */
5227                 get_ctx(ctx);
5228
5229                 /*
5230                  * Now that we have a ctx ref, we can drop child_mutex, and
5231                  * acquire ctx::mutex without fear of it going away. Then we
5232                  * can re-acquire child_mutex.
5233                  */
5234                 mutex_unlock(&event->child_mutex);
5235                 mutex_lock(&ctx->mutex);
5236                 mutex_lock(&event->child_mutex);
5237
5238                 /*
5239                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5240                  * state, if child is still the first entry, it didn't get freed
5241                  * and we can continue doing so.
5242                  */
5243                 tmp = list_first_entry_or_null(&event->child_list,
5244                                                struct perf_event, child_list);
5245                 if (tmp == child) {
5246                         perf_remove_from_context(child, DETACH_GROUP);
5247                         list_move(&child->child_list, &free_list);
5248                         /*
5249                          * This matches the refcount bump in inherit_event();
5250                          * this can't be the last reference.
5251                          */
5252                         put_event(event);
5253                 }
5254
5255                 mutex_unlock(&event->child_mutex);
5256                 mutex_unlock(&ctx->mutex);
5257                 put_ctx(ctx);
5258                 goto again;
5259         }
5260         mutex_unlock(&event->child_mutex);
5261
5262         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5263                 void *var = &child->ctx->refcount;
5264
5265                 list_del(&child->child_list);
5266                 free_event(child);
5267
5268                 /*
5269                  * Wake any perf_event_free_task() waiting for this event to be
5270                  * freed.
5271                  */
5272                 smp_mb(); /* pairs with wait_var_event() */
5273                 wake_up_var(var);
5274         }
5275
5276 no_ctx:
5277         put_event(event); /* Must be the 'last' reference */
5278         return 0;
5279 }
5280 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5281
5282 /*
5283  * Called when the last reference to the file is gone.
5284  */
5285 static int perf_release(struct inode *inode, struct file *file)
5286 {
5287         perf_event_release_kernel(file->private_data);
5288         return 0;
5289 }
5290
5291 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5292 {
5293         struct perf_event *child;
5294         u64 total = 0;
5295
5296         *enabled = 0;
5297         *running = 0;
5298
5299         mutex_lock(&event->child_mutex);
5300
5301         (void)perf_event_read(event, false);
5302         total += perf_event_count(event);
5303
5304         *enabled += event->total_time_enabled +
5305                         atomic64_read(&event->child_total_time_enabled);
5306         *running += event->total_time_running +
5307                         atomic64_read(&event->child_total_time_running);
5308
5309         list_for_each_entry(child, &event->child_list, child_list) {
5310                 (void)perf_event_read(child, false);
5311                 total += perf_event_count(child);
5312                 *enabled += child->total_time_enabled;
5313                 *running += child->total_time_running;
5314         }
5315         mutex_unlock(&event->child_mutex);
5316
5317         return total;
5318 }
5319
5320 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5321 {
5322         struct perf_event_context *ctx;
5323         u64 count;
5324
5325         ctx = perf_event_ctx_lock(event);
5326         count = __perf_event_read_value(event, enabled, running);
5327         perf_event_ctx_unlock(event, ctx);
5328
5329         return count;
5330 }
5331 EXPORT_SYMBOL_GPL(perf_event_read_value);
5332
5333 static int __perf_read_group_add(struct perf_event *leader,
5334                                         u64 read_format, u64 *values)
5335 {
5336         struct perf_event_context *ctx = leader->ctx;
5337         struct perf_event *sub;
5338         unsigned long flags;
5339         int n = 1; /* skip @nr */
5340         int ret;
5341
5342         ret = perf_event_read(leader, true);
5343         if (ret)
5344                 return ret;
5345
5346         raw_spin_lock_irqsave(&ctx->lock, flags);
5347
5348         /*
5349          * Since we co-schedule groups, {enabled,running} times of siblings
5350          * will be identical to those of the leader, so we only publish one
5351          * set.
5352          */
5353         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5354                 values[n++] += leader->total_time_enabled +
5355                         atomic64_read(&leader->child_total_time_enabled);
5356         }
5357
5358         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5359                 values[n++] += leader->total_time_running +
5360                         atomic64_read(&leader->child_total_time_running);
5361         }
5362
5363         /*
5364          * Write {count,id} tuples for every sibling.
5365          */
5366         values[n++] += perf_event_count(leader);
5367         if (read_format & PERF_FORMAT_ID)
5368                 values[n++] = primary_event_id(leader);
5369
5370         for_each_sibling_event(sub, leader) {
5371                 values[n++] += perf_event_count(sub);
5372                 if (read_format & PERF_FORMAT_ID)
5373                         values[n++] = primary_event_id(sub);
5374         }
5375
5376         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5377         return 0;
5378 }
5379
5380 static int perf_read_group(struct perf_event *event,
5381                                    u64 read_format, char __user *buf)
5382 {
5383         struct perf_event *leader = event->group_leader, *child;
5384         struct perf_event_context *ctx = leader->ctx;
5385         int ret;
5386         u64 *values;
5387
5388         lockdep_assert_held(&ctx->mutex);
5389
5390         values = kzalloc(event->read_size, GFP_KERNEL);
5391         if (!values)
5392                 return -ENOMEM;
5393
5394         values[0] = 1 + leader->nr_siblings;
5395
5396         /*
5397          * By locking the child_mutex of the leader we effectively
5398          * lock the child list of all siblings.. XXX explain how.
5399          */
5400         mutex_lock(&leader->child_mutex);
5401
5402         ret = __perf_read_group_add(leader, read_format, values);
5403         if (ret)
5404                 goto unlock;
5405
5406         list_for_each_entry(child, &leader->child_list, child_list) {
5407                 ret = __perf_read_group_add(child, read_format, values);
5408                 if (ret)
5409                         goto unlock;
5410         }
5411
5412         mutex_unlock(&leader->child_mutex);
5413
5414         ret = event->read_size;
5415         if (copy_to_user(buf, values, event->read_size))
5416                 ret = -EFAULT;
5417         goto out;
5418
5419 unlock:
5420         mutex_unlock(&leader->child_mutex);
5421 out:
5422         kfree(values);
5423         return ret;
5424 }
5425
5426 static int perf_read_one(struct perf_event *event,
5427                                  u64 read_format, char __user *buf)
5428 {
5429         u64 enabled, running;
5430         u64 values[4];
5431         int n = 0;
5432
5433         values[n++] = __perf_event_read_value(event, &enabled, &running);
5434         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5435                 values[n++] = enabled;
5436         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5437                 values[n++] = running;
5438         if (read_format & PERF_FORMAT_ID)
5439                 values[n++] = primary_event_id(event);
5440
5441         if (copy_to_user(buf, values, n * sizeof(u64)))
5442                 return -EFAULT;
5443
5444         return n * sizeof(u64);
5445 }
5446
5447 static bool is_event_hup(struct perf_event *event)
5448 {
5449         bool no_children;
5450
5451         if (event->state > PERF_EVENT_STATE_EXIT)
5452                 return false;
5453
5454         mutex_lock(&event->child_mutex);
5455         no_children = list_empty(&event->child_list);
5456         mutex_unlock(&event->child_mutex);
5457         return no_children;
5458 }
5459
5460 /*
5461  * Read the performance event - simple non blocking version for now
5462  */
5463 static ssize_t
5464 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5465 {
5466         u64 read_format = event->attr.read_format;
5467         int ret;
5468
5469         /*
5470          * Return end-of-file for a read on an event that is in
5471          * error state (i.e. because it was pinned but it couldn't be
5472          * scheduled on to the CPU at some point).
5473          */
5474         if (event->state == PERF_EVENT_STATE_ERROR)
5475                 return 0;
5476
5477         if (count < event->read_size)
5478                 return -ENOSPC;
5479
5480         WARN_ON_ONCE(event->ctx->parent_ctx);
5481         if (read_format & PERF_FORMAT_GROUP)
5482                 ret = perf_read_group(event, read_format, buf);
5483         else
5484                 ret = perf_read_one(event, read_format, buf);
5485
5486         return ret;
5487 }
5488
5489 static ssize_t
5490 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5491 {
5492         struct perf_event *event = file->private_data;
5493         struct perf_event_context *ctx;
5494         int ret;
5495
5496         ret = security_perf_event_read(event);
5497         if (ret)
5498                 return ret;
5499
5500         ctx = perf_event_ctx_lock(event);
5501         ret = __perf_read(event, buf, count);
5502         perf_event_ctx_unlock(event, ctx);
5503
5504         return ret;
5505 }
5506
5507 static __poll_t perf_poll(struct file *file, poll_table *wait)
5508 {
5509         struct perf_event *event = file->private_data;
5510         struct perf_buffer *rb;
5511         __poll_t events = EPOLLHUP;
5512
5513         poll_wait(file, &event->waitq, wait);
5514
5515         if (is_event_hup(event))
5516                 return events;
5517
5518         /*
5519          * Pin the event->rb by taking event->mmap_mutex; otherwise
5520          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5521          */
5522         mutex_lock(&event->mmap_mutex);
5523         rb = event->rb;
5524         if (rb)
5525                 events = atomic_xchg(&rb->poll, 0);
5526         mutex_unlock(&event->mmap_mutex);
5527         return events;
5528 }
5529
5530 static void _perf_event_reset(struct perf_event *event)
5531 {
5532         (void)perf_event_read(event, false);
5533         local64_set(&event->count, 0);
5534         perf_event_update_userpage(event);
5535 }
5536
5537 /* Assume it's not an event with inherit set. */
5538 u64 perf_event_pause(struct perf_event *event, bool reset)
5539 {
5540         struct perf_event_context *ctx;
5541         u64 count;
5542
5543         ctx = perf_event_ctx_lock(event);
5544         WARN_ON_ONCE(event->attr.inherit);
5545         _perf_event_disable(event);
5546         count = local64_read(&event->count);
5547         if (reset)
5548                 local64_set(&event->count, 0);
5549         perf_event_ctx_unlock(event, ctx);
5550
5551         return count;
5552 }
5553 EXPORT_SYMBOL_GPL(perf_event_pause);
5554
5555 /*
5556  * Holding the top-level event's child_mutex means that any
5557  * descendant process that has inherited this event will block
5558  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5559  * task existence requirements of perf_event_enable/disable.
5560  */
5561 static void perf_event_for_each_child(struct perf_event *event,
5562                                         void (*func)(struct perf_event *))
5563 {
5564         struct perf_event *child;
5565
5566         WARN_ON_ONCE(event->ctx->parent_ctx);
5567
5568         mutex_lock(&event->child_mutex);
5569         func(event);
5570         list_for_each_entry(child, &event->child_list, child_list)
5571                 func(child);
5572         mutex_unlock(&event->child_mutex);
5573 }
5574
5575 static void perf_event_for_each(struct perf_event *event,
5576                                   void (*func)(struct perf_event *))
5577 {
5578         struct perf_event_context *ctx = event->ctx;
5579         struct perf_event *sibling;
5580
5581         lockdep_assert_held(&ctx->mutex);
5582
5583         event = event->group_leader;
5584
5585         perf_event_for_each_child(event, func);
5586         for_each_sibling_event(sibling, event)
5587                 perf_event_for_each_child(sibling, func);
5588 }
5589
5590 static void __perf_event_period(struct perf_event *event,
5591                                 struct perf_cpu_context *cpuctx,
5592                                 struct perf_event_context *ctx,
5593                                 void *info)
5594 {
5595         u64 value = *((u64 *)info);
5596         bool active;
5597
5598         if (event->attr.freq) {
5599                 event->attr.sample_freq = value;
5600         } else {
5601                 event->attr.sample_period = value;
5602                 event->hw.sample_period = value;
5603         }
5604
5605         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5606         if (active) {
5607                 perf_pmu_disable(ctx->pmu);
5608                 /*
5609                  * We could be throttled; unthrottle now to avoid the tick
5610                  * trying to unthrottle while we already re-started the event.
5611                  */
5612                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5613                         event->hw.interrupts = 0;
5614                         perf_log_throttle(event, 1);
5615                 }
5616                 event->pmu->stop(event, PERF_EF_UPDATE);
5617         }
5618
5619         local64_set(&event->hw.period_left, 0);
5620
5621         if (active) {
5622                 event->pmu->start(event, PERF_EF_RELOAD);
5623                 perf_pmu_enable(ctx->pmu);
5624         }
5625 }
5626
5627 static int perf_event_check_period(struct perf_event *event, u64 value)
5628 {
5629         return event->pmu->check_period(event, value);
5630 }
5631
5632 static int _perf_event_period(struct perf_event *event, u64 value)
5633 {
5634         if (!is_sampling_event(event))
5635                 return -EINVAL;
5636
5637         if (!value)
5638                 return -EINVAL;
5639
5640         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5641                 return -EINVAL;
5642
5643         if (perf_event_check_period(event, value))
5644                 return -EINVAL;
5645
5646         if (!event->attr.freq && (value & (1ULL << 63)))
5647                 return -EINVAL;
5648
5649         event_function_call(event, __perf_event_period, &value);
5650
5651         return 0;
5652 }
5653
5654 int perf_event_period(struct perf_event *event, u64 value)
5655 {
5656         struct perf_event_context *ctx;
5657         int ret;
5658
5659         ctx = perf_event_ctx_lock(event);
5660         ret = _perf_event_period(event, value);
5661         perf_event_ctx_unlock(event, ctx);
5662
5663         return ret;
5664 }
5665 EXPORT_SYMBOL_GPL(perf_event_period);
5666
5667 static const struct file_operations perf_fops;
5668
5669 static inline int perf_fget_light(int fd, struct fd *p)
5670 {
5671         struct fd f = fdget(fd);
5672         if (!f.file)
5673                 return -EBADF;
5674
5675         if (f.file->f_op != &perf_fops) {
5676                 fdput(f);
5677                 return -EBADF;
5678         }
5679         *p = f;
5680         return 0;
5681 }
5682
5683 static int perf_event_set_output(struct perf_event *event,
5684                                  struct perf_event *output_event);
5685 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5686 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5687                           struct perf_event_attr *attr);
5688
5689 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5690 {
5691         void (*func)(struct perf_event *);
5692         u32 flags = arg;
5693
5694         switch (cmd) {
5695         case PERF_EVENT_IOC_ENABLE:
5696                 func = _perf_event_enable;
5697                 break;
5698         case PERF_EVENT_IOC_DISABLE:
5699                 func = _perf_event_disable;
5700                 break;
5701         case PERF_EVENT_IOC_RESET:
5702                 func = _perf_event_reset;
5703                 break;
5704
5705         case PERF_EVENT_IOC_REFRESH:
5706                 return _perf_event_refresh(event, arg);
5707
5708         case PERF_EVENT_IOC_PERIOD:
5709         {
5710                 u64 value;
5711
5712                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5713                         return -EFAULT;
5714
5715                 return _perf_event_period(event, value);
5716         }
5717         case PERF_EVENT_IOC_ID:
5718         {
5719                 u64 id = primary_event_id(event);
5720
5721                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5722                         return -EFAULT;
5723                 return 0;
5724         }
5725
5726         case PERF_EVENT_IOC_SET_OUTPUT:
5727         {
5728                 int ret;
5729                 if (arg != -1) {
5730                         struct perf_event *output_event;
5731                         struct fd output;
5732                         ret = perf_fget_light(arg, &output);
5733                         if (ret)
5734                                 return ret;
5735                         output_event = output.file->private_data;
5736                         ret = perf_event_set_output(event, output_event);
5737                         fdput(output);
5738                 } else {
5739                         ret = perf_event_set_output(event, NULL);
5740                 }
5741                 return ret;
5742         }
5743
5744         case PERF_EVENT_IOC_SET_FILTER:
5745                 return perf_event_set_filter(event, (void __user *)arg);
5746
5747         case PERF_EVENT_IOC_SET_BPF:
5748         {
5749                 struct bpf_prog *prog;
5750                 int err;
5751
5752                 prog = bpf_prog_get(arg);
5753                 if (IS_ERR(prog))
5754                         return PTR_ERR(prog);
5755
5756                 err = perf_event_set_bpf_prog(event, prog, 0);
5757                 if (err) {
5758                         bpf_prog_put(prog);
5759                         return err;
5760                 }
5761
5762                 return 0;
5763         }
5764
5765         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5766                 struct perf_buffer *rb;
5767
5768                 rcu_read_lock();
5769                 rb = rcu_dereference(event->rb);
5770                 if (!rb || !rb->nr_pages) {
5771                         rcu_read_unlock();
5772                         return -EINVAL;
5773                 }
5774                 rb_toggle_paused(rb, !!arg);
5775                 rcu_read_unlock();
5776                 return 0;
5777         }
5778
5779         case PERF_EVENT_IOC_QUERY_BPF:
5780                 return perf_event_query_prog_array(event, (void __user *)arg);
5781
5782         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5783                 struct perf_event_attr new_attr;
5784                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5785                                          &new_attr);
5786
5787                 if (err)
5788                         return err;
5789
5790                 return perf_event_modify_attr(event,  &new_attr);
5791         }
5792         default:
5793                 return -ENOTTY;
5794         }
5795
5796         if (flags & PERF_IOC_FLAG_GROUP)
5797                 perf_event_for_each(event, func);
5798         else
5799                 perf_event_for_each_child(event, func);
5800
5801         return 0;
5802 }
5803
5804 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5805 {
5806         struct perf_event *event = file->private_data;
5807         struct perf_event_context *ctx;
5808         long ret;
5809
5810         /* Treat ioctl like writes as it is likely a mutating operation. */
5811         ret = security_perf_event_write(event);
5812         if (ret)
5813                 return ret;
5814
5815         ctx = perf_event_ctx_lock(event);
5816         ret = _perf_ioctl(event, cmd, arg);
5817         perf_event_ctx_unlock(event, ctx);
5818
5819         return ret;
5820 }
5821
5822 #ifdef CONFIG_COMPAT
5823 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5824                                 unsigned long arg)
5825 {
5826         switch (_IOC_NR(cmd)) {
5827         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5828         case _IOC_NR(PERF_EVENT_IOC_ID):
5829         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5830         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5831                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5832                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5833                         cmd &= ~IOCSIZE_MASK;
5834                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5835                 }
5836                 break;
5837         }
5838         return perf_ioctl(file, cmd, arg);
5839 }
5840 #else
5841 # define perf_compat_ioctl NULL
5842 #endif
5843
5844 int perf_event_task_enable(void)
5845 {
5846         struct perf_event_context *ctx;
5847         struct perf_event *event;
5848
5849         mutex_lock(&current->perf_event_mutex);
5850         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5851                 ctx = perf_event_ctx_lock(event);
5852                 perf_event_for_each_child(event, _perf_event_enable);
5853                 perf_event_ctx_unlock(event, ctx);
5854         }
5855         mutex_unlock(&current->perf_event_mutex);
5856
5857         return 0;
5858 }
5859
5860 int perf_event_task_disable(void)
5861 {
5862         struct perf_event_context *ctx;
5863         struct perf_event *event;
5864
5865         mutex_lock(&current->perf_event_mutex);
5866         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5867                 ctx = perf_event_ctx_lock(event);
5868                 perf_event_for_each_child(event, _perf_event_disable);
5869                 perf_event_ctx_unlock(event, ctx);
5870         }
5871         mutex_unlock(&current->perf_event_mutex);
5872
5873         return 0;
5874 }
5875
5876 static int perf_event_index(struct perf_event *event)
5877 {
5878         if (event->hw.state & PERF_HES_STOPPED)
5879                 return 0;
5880
5881         if (event->state != PERF_EVENT_STATE_ACTIVE)
5882                 return 0;
5883
5884         return event->pmu->event_idx(event);
5885 }
5886
5887 static void perf_event_init_userpage(struct perf_event *event)
5888 {
5889         struct perf_event_mmap_page *userpg;
5890         struct perf_buffer *rb;
5891
5892         rcu_read_lock();
5893         rb = rcu_dereference(event->rb);
5894         if (!rb)
5895                 goto unlock;
5896
5897         userpg = rb->user_page;
5898
5899         /* Allow new userspace to detect that bit 0 is deprecated */
5900         userpg->cap_bit0_is_deprecated = 1;
5901         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5902         userpg->data_offset = PAGE_SIZE;
5903         userpg->data_size = perf_data_size(rb);
5904
5905 unlock:
5906         rcu_read_unlock();
5907 }
5908
5909 void __weak arch_perf_update_userpage(
5910         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5911 {
5912 }
5913
5914 /*
5915  * Callers need to ensure there can be no nesting of this function, otherwise
5916  * the seqlock logic goes bad. We can not serialize this because the arch
5917  * code calls this from NMI context.
5918  */
5919 void perf_event_update_userpage(struct perf_event *event)
5920 {
5921         struct perf_event_mmap_page *userpg;
5922         struct perf_buffer *rb;
5923         u64 enabled, running, now;
5924
5925         rcu_read_lock();
5926         rb = rcu_dereference(event->rb);
5927         if (!rb)
5928                 goto unlock;
5929
5930         /*
5931          * compute total_time_enabled, total_time_running
5932          * based on snapshot values taken when the event
5933          * was last scheduled in.
5934          *
5935          * we cannot simply called update_context_time()
5936          * because of locking issue as we can be called in
5937          * NMI context
5938          */
5939         calc_timer_values(event, &now, &enabled, &running);
5940
5941         userpg = rb->user_page;
5942         /*
5943          * Disable preemption to guarantee consistent time stamps are stored to
5944          * the user page.
5945          */
5946         preempt_disable();
5947         ++userpg->lock;
5948         barrier();
5949         userpg->index = perf_event_index(event);
5950         userpg->offset = perf_event_count(event);
5951         if (userpg->index)
5952                 userpg->offset -= local64_read(&event->hw.prev_count);
5953
5954         userpg->time_enabled = enabled +
5955                         atomic64_read(&event->child_total_time_enabled);
5956
5957         userpg->time_running = running +
5958                         atomic64_read(&event->child_total_time_running);
5959
5960         arch_perf_update_userpage(event, userpg, now);
5961
5962         barrier();
5963         ++userpg->lock;
5964         preempt_enable();
5965 unlock:
5966         rcu_read_unlock();
5967 }
5968 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5969
5970 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5971 {
5972         struct perf_event *event = vmf->vma->vm_file->private_data;
5973         struct perf_buffer *rb;
5974         vm_fault_t ret = VM_FAULT_SIGBUS;
5975
5976         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5977                 if (vmf->pgoff == 0)
5978                         ret = 0;
5979                 return ret;
5980         }
5981
5982         rcu_read_lock();
5983         rb = rcu_dereference(event->rb);
5984         if (!rb)
5985                 goto unlock;
5986
5987         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5988                 goto unlock;
5989
5990         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5991         if (!vmf->page)
5992                 goto unlock;
5993
5994         get_page(vmf->page);
5995         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5996         vmf->page->index   = vmf->pgoff;
5997
5998         ret = 0;
5999 unlock:
6000         rcu_read_unlock();
6001
6002         return ret;
6003 }
6004
6005 static void ring_buffer_attach(struct perf_event *event,
6006                                struct perf_buffer *rb)
6007 {
6008         struct perf_buffer *old_rb = NULL;
6009         unsigned long flags;
6010
6011         WARN_ON_ONCE(event->parent);
6012
6013         if (event->rb) {
6014                 /*
6015                  * Should be impossible, we set this when removing
6016                  * event->rb_entry and wait/clear when adding event->rb_entry.
6017                  */
6018                 WARN_ON_ONCE(event->rcu_pending);
6019
6020                 old_rb = event->rb;
6021                 spin_lock_irqsave(&old_rb->event_lock, flags);
6022                 list_del_rcu(&event->rb_entry);
6023                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6024
6025                 event->rcu_batches = get_state_synchronize_rcu();
6026                 event->rcu_pending = 1;
6027         }
6028
6029         if (rb) {
6030                 if (event->rcu_pending) {
6031                         cond_synchronize_rcu(event->rcu_batches);
6032                         event->rcu_pending = 0;
6033                 }
6034
6035                 spin_lock_irqsave(&rb->event_lock, flags);
6036                 list_add_rcu(&event->rb_entry, &rb->event_list);
6037                 spin_unlock_irqrestore(&rb->event_lock, flags);
6038         }
6039
6040         /*
6041          * Avoid racing with perf_mmap_close(AUX): stop the event
6042          * before swizzling the event::rb pointer; if it's getting
6043          * unmapped, its aux_mmap_count will be 0 and it won't
6044          * restart. See the comment in __perf_pmu_output_stop().
6045          *
6046          * Data will inevitably be lost when set_output is done in
6047          * mid-air, but then again, whoever does it like this is
6048          * not in for the data anyway.
6049          */
6050         if (has_aux(event))
6051                 perf_event_stop(event, 0);
6052
6053         rcu_assign_pointer(event->rb, rb);
6054
6055         if (old_rb) {
6056                 ring_buffer_put(old_rb);
6057                 /*
6058                  * Since we detached before setting the new rb, so that we
6059                  * could attach the new rb, we could have missed a wakeup.
6060                  * Provide it now.
6061                  */
6062                 wake_up_all(&event->waitq);
6063         }
6064 }
6065
6066 static void ring_buffer_wakeup(struct perf_event *event)
6067 {
6068         struct perf_buffer *rb;
6069
6070         if (event->parent)
6071                 event = event->parent;
6072
6073         rcu_read_lock();
6074         rb = rcu_dereference(event->rb);
6075         if (rb) {
6076                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6077                         wake_up_all(&event->waitq);
6078         }
6079         rcu_read_unlock();
6080 }
6081
6082 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6083 {
6084         struct perf_buffer *rb;
6085
6086         if (event->parent)
6087                 event = event->parent;
6088
6089         rcu_read_lock();
6090         rb = rcu_dereference(event->rb);
6091         if (rb) {
6092                 if (!refcount_inc_not_zero(&rb->refcount))
6093                         rb = NULL;
6094         }
6095         rcu_read_unlock();
6096
6097         return rb;
6098 }
6099
6100 void ring_buffer_put(struct perf_buffer *rb)
6101 {
6102         if (!refcount_dec_and_test(&rb->refcount))
6103                 return;
6104
6105         WARN_ON_ONCE(!list_empty(&rb->event_list));
6106
6107         call_rcu(&rb->rcu_head, rb_free_rcu);
6108 }
6109
6110 static void perf_mmap_open(struct vm_area_struct *vma)
6111 {
6112         struct perf_event *event = vma->vm_file->private_data;
6113
6114         atomic_inc(&event->mmap_count);
6115         atomic_inc(&event->rb->mmap_count);
6116
6117         if (vma->vm_pgoff)
6118                 atomic_inc(&event->rb->aux_mmap_count);
6119
6120         if (event->pmu->event_mapped)
6121                 event->pmu->event_mapped(event, vma->vm_mm);
6122 }
6123
6124 static void perf_pmu_output_stop(struct perf_event *event);
6125
6126 /*
6127  * A buffer can be mmap()ed multiple times; either directly through the same
6128  * event, or through other events by use of perf_event_set_output().
6129  *
6130  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6131  * the buffer here, where we still have a VM context. This means we need
6132  * to detach all events redirecting to us.
6133  */
6134 static void perf_mmap_close(struct vm_area_struct *vma)
6135 {
6136         struct perf_event *event = vma->vm_file->private_data;
6137         struct perf_buffer *rb = ring_buffer_get(event);
6138         struct user_struct *mmap_user = rb->mmap_user;
6139         int mmap_locked = rb->mmap_locked;
6140         unsigned long size = perf_data_size(rb);
6141         bool detach_rest = false;
6142
6143         if (event->pmu->event_unmapped)
6144                 event->pmu->event_unmapped(event, vma->vm_mm);
6145
6146         /*
6147          * rb->aux_mmap_count will always drop before rb->mmap_count and
6148          * event->mmap_count, so it is ok to use event->mmap_mutex to
6149          * serialize with perf_mmap here.
6150          */
6151         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6152             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6153                 /*
6154                  * Stop all AUX events that are writing to this buffer,
6155                  * so that we can free its AUX pages and corresponding PMU
6156                  * data. Note that after rb::aux_mmap_count dropped to zero,
6157                  * they won't start any more (see perf_aux_output_begin()).
6158                  */
6159                 perf_pmu_output_stop(event);
6160
6161                 /* now it's safe to free the pages */
6162                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6163                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6164
6165                 /* this has to be the last one */
6166                 rb_free_aux(rb);
6167                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6168
6169                 mutex_unlock(&event->mmap_mutex);
6170         }
6171
6172         if (atomic_dec_and_test(&rb->mmap_count))
6173                 detach_rest = true;
6174
6175         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6176                 goto out_put;
6177
6178         ring_buffer_attach(event, NULL);
6179         mutex_unlock(&event->mmap_mutex);
6180
6181         /* If there's still other mmap()s of this buffer, we're done. */
6182         if (!detach_rest)
6183                 goto out_put;
6184
6185         /*
6186          * No other mmap()s, detach from all other events that might redirect
6187          * into the now unreachable buffer. Somewhat complicated by the
6188          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6189          */
6190 again:
6191         rcu_read_lock();
6192         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6193                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6194                         /*
6195                          * This event is en-route to free_event() which will
6196                          * detach it and remove it from the list.
6197                          */
6198                         continue;
6199                 }
6200                 rcu_read_unlock();
6201
6202                 mutex_lock(&event->mmap_mutex);
6203                 /*
6204                  * Check we didn't race with perf_event_set_output() which can
6205                  * swizzle the rb from under us while we were waiting to
6206                  * acquire mmap_mutex.
6207                  *
6208                  * If we find a different rb; ignore this event, a next
6209                  * iteration will no longer find it on the list. We have to
6210                  * still restart the iteration to make sure we're not now
6211                  * iterating the wrong list.
6212                  */
6213                 if (event->rb == rb)
6214                         ring_buffer_attach(event, NULL);
6215
6216                 mutex_unlock(&event->mmap_mutex);
6217                 put_event(event);
6218
6219                 /*
6220                  * Restart the iteration; either we're on the wrong list or
6221                  * destroyed its integrity by doing a deletion.
6222                  */
6223                 goto again;
6224         }
6225         rcu_read_unlock();
6226
6227         /*
6228          * It could be there's still a few 0-ref events on the list; they'll
6229          * get cleaned up by free_event() -- they'll also still have their
6230          * ref on the rb and will free it whenever they are done with it.
6231          *
6232          * Aside from that, this buffer is 'fully' detached and unmapped,
6233          * undo the VM accounting.
6234          */
6235
6236         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6237                         &mmap_user->locked_vm);
6238         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6239         free_uid(mmap_user);
6240
6241 out_put:
6242         ring_buffer_put(rb); /* could be last */
6243 }
6244
6245 static const struct vm_operations_struct perf_mmap_vmops = {
6246         .open           = perf_mmap_open,
6247         .close          = perf_mmap_close, /* non mergeable */
6248         .fault          = perf_mmap_fault,
6249         .page_mkwrite   = perf_mmap_fault,
6250 };
6251
6252 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6253 {
6254         struct perf_event *event = file->private_data;
6255         unsigned long user_locked, user_lock_limit;
6256         struct user_struct *user = current_user();
6257         struct perf_buffer *rb = NULL;
6258         unsigned long locked, lock_limit;
6259         unsigned long vma_size;
6260         unsigned long nr_pages;
6261         long user_extra = 0, extra = 0;
6262         int ret = 0, flags = 0;
6263
6264         /*
6265          * Don't allow mmap() of inherited per-task counters. This would
6266          * create a performance issue due to all children writing to the
6267          * same rb.
6268          */
6269         if (event->cpu == -1 && event->attr.inherit)
6270                 return -EINVAL;
6271
6272         if (!(vma->vm_flags & VM_SHARED))
6273                 return -EINVAL;
6274
6275         ret = security_perf_event_read(event);
6276         if (ret)
6277                 return ret;
6278
6279         vma_size = vma->vm_end - vma->vm_start;
6280
6281         if (vma->vm_pgoff == 0) {
6282                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6283         } else {
6284                 /*
6285                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6286                  * mapped, all subsequent mappings should have the same size
6287                  * and offset. Must be above the normal perf buffer.
6288                  */
6289                 u64 aux_offset, aux_size;
6290
6291                 if (!event->rb)
6292                         return -EINVAL;
6293
6294                 nr_pages = vma_size / PAGE_SIZE;
6295
6296                 mutex_lock(&event->mmap_mutex);
6297                 ret = -EINVAL;
6298
6299                 rb = event->rb;
6300                 if (!rb)
6301                         goto aux_unlock;
6302
6303                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6304                 aux_size = READ_ONCE(rb->user_page->aux_size);
6305
6306                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6307                         goto aux_unlock;
6308
6309                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6310                         goto aux_unlock;
6311
6312                 /* already mapped with a different offset */
6313                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6314                         goto aux_unlock;
6315
6316                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6317                         goto aux_unlock;
6318
6319                 /* already mapped with a different size */
6320                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6321                         goto aux_unlock;
6322
6323                 if (!is_power_of_2(nr_pages))
6324                         goto aux_unlock;
6325
6326                 if (!atomic_inc_not_zero(&rb->mmap_count))
6327                         goto aux_unlock;
6328
6329                 if (rb_has_aux(rb)) {
6330                         atomic_inc(&rb->aux_mmap_count);
6331                         ret = 0;
6332                         goto unlock;
6333                 }
6334
6335                 atomic_set(&rb->aux_mmap_count, 1);
6336                 user_extra = nr_pages;
6337
6338                 goto accounting;
6339         }
6340
6341         /*
6342          * If we have rb pages ensure they're a power-of-two number, so we
6343          * can do bitmasks instead of modulo.
6344          */
6345         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6346                 return -EINVAL;
6347
6348         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6349                 return -EINVAL;
6350
6351         WARN_ON_ONCE(event->ctx->parent_ctx);
6352 again:
6353         mutex_lock(&event->mmap_mutex);
6354         if (event->rb) {
6355                 if (event->rb->nr_pages != nr_pages) {
6356                         ret = -EINVAL;
6357                         goto unlock;
6358                 }
6359
6360                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6361                         /*
6362                          * Raced against perf_mmap_close() through
6363                          * perf_event_set_output(). Try again, hope for better
6364                          * luck.
6365                          */
6366                         mutex_unlock(&event->mmap_mutex);
6367                         goto again;
6368                 }
6369
6370                 goto unlock;
6371         }
6372
6373         user_extra = nr_pages + 1;
6374
6375 accounting:
6376         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6377
6378         /*
6379          * Increase the limit linearly with more CPUs:
6380          */
6381         user_lock_limit *= num_online_cpus();
6382
6383         user_locked = atomic_long_read(&user->locked_vm);
6384
6385         /*
6386          * sysctl_perf_event_mlock may have changed, so that
6387          *     user->locked_vm > user_lock_limit
6388          */
6389         if (user_locked > user_lock_limit)
6390                 user_locked = user_lock_limit;
6391         user_locked += user_extra;
6392
6393         if (user_locked > user_lock_limit) {
6394                 /*
6395                  * charge locked_vm until it hits user_lock_limit;
6396                  * charge the rest from pinned_vm
6397                  */
6398                 extra = user_locked - user_lock_limit;
6399                 user_extra -= extra;
6400         }
6401
6402         lock_limit = rlimit(RLIMIT_MEMLOCK);
6403         lock_limit >>= PAGE_SHIFT;
6404         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6405
6406         if ((locked > lock_limit) && perf_is_paranoid() &&
6407                 !capable(CAP_IPC_LOCK)) {
6408                 ret = -EPERM;
6409                 goto unlock;
6410         }
6411
6412         WARN_ON(!rb && event->rb);
6413
6414         if (vma->vm_flags & VM_WRITE)
6415                 flags |= RING_BUFFER_WRITABLE;
6416
6417         if (!rb) {
6418                 rb = rb_alloc(nr_pages,
6419                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6420                               event->cpu, flags);
6421
6422                 if (!rb) {
6423                         ret = -ENOMEM;
6424                         goto unlock;
6425                 }
6426
6427                 atomic_set(&rb->mmap_count, 1);
6428                 rb->mmap_user = get_current_user();
6429                 rb->mmap_locked = extra;
6430
6431                 ring_buffer_attach(event, rb);
6432
6433                 perf_event_update_time(event);
6434                 perf_event_init_userpage(event);
6435                 perf_event_update_userpage(event);
6436         } else {
6437                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6438                                    event->attr.aux_watermark, flags);
6439                 if (!ret)
6440                         rb->aux_mmap_locked = extra;
6441         }
6442
6443 unlock:
6444         if (!ret) {
6445                 atomic_long_add(user_extra, &user->locked_vm);
6446                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6447
6448                 atomic_inc(&event->mmap_count);
6449         } else if (rb) {
6450                 atomic_dec(&rb->mmap_count);
6451         }
6452 aux_unlock:
6453         mutex_unlock(&event->mmap_mutex);
6454
6455         /*
6456          * Since pinned accounting is per vm we cannot allow fork() to copy our
6457          * vma.
6458          */
6459         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6460         vma->vm_ops = &perf_mmap_vmops;
6461
6462         if (event->pmu->event_mapped)
6463                 event->pmu->event_mapped(event, vma->vm_mm);
6464
6465         return ret;
6466 }
6467
6468 static int perf_fasync(int fd, struct file *filp, int on)
6469 {
6470         struct inode *inode = file_inode(filp);
6471         struct perf_event *event = filp->private_data;
6472         int retval;
6473
6474         inode_lock(inode);
6475         retval = fasync_helper(fd, filp, on, &event->fasync);
6476         inode_unlock(inode);
6477
6478         if (retval < 0)
6479                 return retval;
6480
6481         return 0;
6482 }
6483
6484 static const struct file_operations perf_fops = {
6485         .llseek                 = no_llseek,
6486         .release                = perf_release,
6487         .read                   = perf_read,
6488         .poll                   = perf_poll,
6489         .unlocked_ioctl         = perf_ioctl,
6490         .compat_ioctl           = perf_compat_ioctl,
6491         .mmap                   = perf_mmap,
6492         .fasync                 = perf_fasync,
6493 };
6494
6495 /*
6496  * Perf event wakeup
6497  *
6498  * If there's data, ensure we set the poll() state and publish everything
6499  * to user-space before waking everybody up.
6500  */
6501
6502 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6503 {
6504         /* only the parent has fasync state */
6505         if (event->parent)
6506                 event = event->parent;
6507         return &event->fasync;
6508 }
6509
6510 void perf_event_wakeup(struct perf_event *event)
6511 {
6512         ring_buffer_wakeup(event);
6513
6514         if (event->pending_kill) {
6515                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6516                 event->pending_kill = 0;
6517         }
6518 }
6519
6520 static void perf_sigtrap(struct perf_event *event)
6521 {
6522         /*
6523          * We'd expect this to only occur if the irq_work is delayed and either
6524          * ctx->task or current has changed in the meantime. This can be the
6525          * case on architectures that do not implement arch_irq_work_raise().
6526          */
6527         if (WARN_ON_ONCE(event->ctx->task != current))
6528                 return;
6529
6530         /*
6531          * perf_pending_event() can race with the task exiting.
6532          */
6533         if (current->flags & PF_EXITING)
6534                 return;
6535
6536         force_sig_perf((void __user *)event->pending_addr,
6537                        event->attr.type, event->attr.sig_data);
6538 }
6539
6540 static void perf_pending_event_disable(struct perf_event *event)
6541 {
6542         int cpu = READ_ONCE(event->pending_disable);
6543
6544         if (cpu < 0)
6545                 return;
6546
6547         if (cpu == smp_processor_id()) {
6548                 WRITE_ONCE(event->pending_disable, -1);
6549
6550                 if (event->attr.sigtrap) {
6551                         perf_sigtrap(event);
6552                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6553                         return;
6554                 }
6555
6556                 perf_event_disable_local(event);
6557                 return;
6558         }
6559
6560         /*
6561          *  CPU-A                       CPU-B
6562          *
6563          *  perf_event_disable_inatomic()
6564          *    @pending_disable = CPU-A;
6565          *    irq_work_queue();
6566          *
6567          *  sched-out
6568          *    @pending_disable = -1;
6569          *
6570          *                              sched-in
6571          *                              perf_event_disable_inatomic()
6572          *                                @pending_disable = CPU-B;
6573          *                                irq_work_queue(); // FAILS
6574          *
6575          *  irq_work_run()
6576          *    perf_pending_event()
6577          *
6578          * But the event runs on CPU-B and wants disabling there.
6579          */
6580         irq_work_queue_on(&event->pending, cpu);
6581 }
6582
6583 static void perf_pending_event(struct irq_work *entry)
6584 {
6585         struct perf_event *event = container_of(entry, struct perf_event, pending);
6586         int rctx;
6587
6588         rctx = perf_swevent_get_recursion_context();
6589         /*
6590          * If we 'fail' here, that's OK, it means recursion is already disabled
6591          * and we won't recurse 'further'.
6592          */
6593
6594         perf_pending_event_disable(event);
6595
6596         if (event->pending_wakeup) {
6597                 event->pending_wakeup = 0;
6598                 perf_event_wakeup(event);
6599         }
6600
6601         if (rctx >= 0)
6602                 perf_swevent_put_recursion_context(rctx);
6603 }
6604
6605 #ifdef CONFIG_GUEST_PERF_EVENTS
6606 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6607
6608 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6609 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6610 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6611
6612 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6613 {
6614         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6615                 return;
6616
6617         rcu_assign_pointer(perf_guest_cbs, cbs);
6618         static_call_update(__perf_guest_state, cbs->state);
6619         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6620
6621         /* Implementing ->handle_intel_pt_intr is optional. */
6622         if (cbs->handle_intel_pt_intr)
6623                 static_call_update(__perf_guest_handle_intel_pt_intr,
6624                                    cbs->handle_intel_pt_intr);
6625 }
6626 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6627
6628 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6629 {
6630         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6631                 return;
6632
6633         rcu_assign_pointer(perf_guest_cbs, NULL);
6634         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6635         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6636         static_call_update(__perf_guest_handle_intel_pt_intr,
6637                            (void *)&__static_call_return0);
6638         synchronize_rcu();
6639 }
6640 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6641 #endif
6642
6643 static void
6644 perf_output_sample_regs(struct perf_output_handle *handle,
6645                         struct pt_regs *regs, u64 mask)
6646 {
6647         int bit;
6648         DECLARE_BITMAP(_mask, 64);
6649
6650         bitmap_from_u64(_mask, mask);
6651         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6652                 u64 val;
6653
6654                 val = perf_reg_value(regs, bit);
6655                 perf_output_put(handle, val);
6656         }
6657 }
6658
6659 static void perf_sample_regs_user(struct perf_regs *regs_user,
6660                                   struct pt_regs *regs)
6661 {
6662         if (user_mode(regs)) {
6663                 regs_user->abi = perf_reg_abi(current);
6664                 regs_user->regs = regs;
6665         } else if (!(current->flags & PF_KTHREAD)) {
6666                 perf_get_regs_user(regs_user, regs);
6667         } else {
6668                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6669                 regs_user->regs = NULL;
6670         }
6671 }
6672
6673 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6674                                   struct pt_regs *regs)
6675 {
6676         regs_intr->regs = regs;
6677         regs_intr->abi  = perf_reg_abi(current);
6678 }
6679
6680
6681 /*
6682  * Get remaining task size from user stack pointer.
6683  *
6684  * It'd be better to take stack vma map and limit this more
6685  * precisely, but there's no way to get it safely under interrupt,
6686  * so using TASK_SIZE as limit.
6687  */
6688 static u64 perf_ustack_task_size(struct pt_regs *regs)
6689 {
6690         unsigned long addr = perf_user_stack_pointer(regs);
6691
6692         if (!addr || addr >= TASK_SIZE)
6693                 return 0;
6694
6695         return TASK_SIZE - addr;
6696 }
6697
6698 static u16
6699 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6700                         struct pt_regs *regs)
6701 {
6702         u64 task_size;
6703
6704         /* No regs, no stack pointer, no dump. */
6705         if (!regs)
6706                 return 0;
6707
6708         /*
6709          * Check if we fit in with the requested stack size into the:
6710          * - TASK_SIZE
6711          *   If we don't, we limit the size to the TASK_SIZE.
6712          *
6713          * - remaining sample size
6714          *   If we don't, we customize the stack size to
6715          *   fit in to the remaining sample size.
6716          */
6717
6718         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6719         stack_size = min(stack_size, (u16) task_size);
6720
6721         /* Current header size plus static size and dynamic size. */
6722         header_size += 2 * sizeof(u64);
6723
6724         /* Do we fit in with the current stack dump size? */
6725         if ((u16) (header_size + stack_size) < header_size) {
6726                 /*
6727                  * If we overflow the maximum size for the sample,
6728                  * we customize the stack dump size to fit in.
6729                  */
6730                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6731                 stack_size = round_up(stack_size, sizeof(u64));
6732         }
6733
6734         return stack_size;
6735 }
6736
6737 static void
6738 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6739                           struct pt_regs *regs)
6740 {
6741         /* Case of a kernel thread, nothing to dump */
6742         if (!regs) {
6743                 u64 size = 0;
6744                 perf_output_put(handle, size);
6745         } else {
6746                 unsigned long sp;
6747                 unsigned int rem;
6748                 u64 dyn_size;
6749
6750                 /*
6751                  * We dump:
6752                  * static size
6753                  *   - the size requested by user or the best one we can fit
6754                  *     in to the sample max size
6755                  * data
6756                  *   - user stack dump data
6757                  * dynamic size
6758                  *   - the actual dumped size
6759                  */
6760
6761                 /* Static size. */
6762                 perf_output_put(handle, dump_size);
6763
6764                 /* Data. */
6765                 sp = perf_user_stack_pointer(regs);
6766                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6767                 dyn_size = dump_size - rem;
6768
6769                 perf_output_skip(handle, rem);
6770
6771                 /* Dynamic size. */
6772                 perf_output_put(handle, dyn_size);
6773         }
6774 }
6775
6776 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6777                                           struct perf_sample_data *data,
6778                                           size_t size)
6779 {
6780         struct perf_event *sampler = event->aux_event;
6781         struct perf_buffer *rb;
6782
6783         data->aux_size = 0;
6784
6785         if (!sampler)
6786                 goto out;
6787
6788         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6789                 goto out;
6790
6791         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6792                 goto out;
6793
6794         rb = ring_buffer_get(sampler);
6795         if (!rb)
6796                 goto out;
6797
6798         /*
6799          * If this is an NMI hit inside sampling code, don't take
6800          * the sample. See also perf_aux_sample_output().
6801          */
6802         if (READ_ONCE(rb->aux_in_sampling)) {
6803                 data->aux_size = 0;
6804         } else {
6805                 size = min_t(size_t, size, perf_aux_size(rb));
6806                 data->aux_size = ALIGN(size, sizeof(u64));
6807         }
6808         ring_buffer_put(rb);
6809
6810 out:
6811         return data->aux_size;
6812 }
6813
6814 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6815                                  struct perf_event *event,
6816                                  struct perf_output_handle *handle,
6817                                  unsigned long size)
6818 {
6819         unsigned long flags;
6820         long ret;
6821
6822         /*
6823          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6824          * paths. If we start calling them in NMI context, they may race with
6825          * the IRQ ones, that is, for example, re-starting an event that's just
6826          * been stopped, which is why we're using a separate callback that
6827          * doesn't change the event state.
6828          *
6829          * IRQs need to be disabled to prevent IPIs from racing with us.
6830          */
6831         local_irq_save(flags);
6832         /*
6833          * Guard against NMI hits inside the critical section;
6834          * see also perf_prepare_sample_aux().
6835          */
6836         WRITE_ONCE(rb->aux_in_sampling, 1);
6837         barrier();
6838
6839         ret = event->pmu->snapshot_aux(event, handle, size);
6840
6841         barrier();
6842         WRITE_ONCE(rb->aux_in_sampling, 0);
6843         local_irq_restore(flags);
6844
6845         return ret;
6846 }
6847
6848 static void perf_aux_sample_output(struct perf_event *event,
6849                                    struct perf_output_handle *handle,
6850                                    struct perf_sample_data *data)
6851 {
6852         struct perf_event *sampler = event->aux_event;
6853         struct perf_buffer *rb;
6854         unsigned long pad;
6855         long size;
6856
6857         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6858                 return;
6859
6860         rb = ring_buffer_get(sampler);
6861         if (!rb)
6862                 return;
6863
6864         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6865
6866         /*
6867          * An error here means that perf_output_copy() failed (returned a
6868          * non-zero surplus that it didn't copy), which in its current
6869          * enlightened implementation is not possible. If that changes, we'd
6870          * like to know.
6871          */
6872         if (WARN_ON_ONCE(size < 0))
6873                 goto out_put;
6874
6875         /*
6876          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6877          * perf_prepare_sample_aux(), so should not be more than that.
6878          */
6879         pad = data->aux_size - size;
6880         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6881                 pad = 8;
6882
6883         if (pad) {
6884                 u64 zero = 0;
6885                 perf_output_copy(handle, &zero, pad);
6886         }
6887
6888 out_put:
6889         ring_buffer_put(rb);
6890 }
6891
6892 static void __perf_event_header__init_id(struct perf_event_header *header,
6893                                          struct perf_sample_data *data,
6894                                          struct perf_event *event)
6895 {
6896         u64 sample_type = event->attr.sample_type;
6897
6898         data->type = sample_type;
6899         header->size += event->id_header_size;
6900
6901         if (sample_type & PERF_SAMPLE_TID) {
6902                 /* namespace issues */
6903                 data->tid_entry.pid = perf_event_pid(event, current);
6904                 data->tid_entry.tid = perf_event_tid(event, current);
6905         }
6906
6907         if (sample_type & PERF_SAMPLE_TIME)
6908                 data->time = perf_event_clock(event);
6909
6910         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6911                 data->id = primary_event_id(event);
6912
6913         if (sample_type & PERF_SAMPLE_STREAM_ID)
6914                 data->stream_id = event->id;
6915
6916         if (sample_type & PERF_SAMPLE_CPU) {
6917                 data->cpu_entry.cpu      = raw_smp_processor_id();
6918                 data->cpu_entry.reserved = 0;
6919         }
6920 }
6921
6922 void perf_event_header__init_id(struct perf_event_header *header,
6923                                 struct perf_sample_data *data,
6924                                 struct perf_event *event)
6925 {
6926         if (event->attr.sample_id_all)
6927                 __perf_event_header__init_id(header, data, event);
6928 }
6929
6930 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6931                                            struct perf_sample_data *data)
6932 {
6933         u64 sample_type = data->type;
6934
6935         if (sample_type & PERF_SAMPLE_TID)
6936                 perf_output_put(handle, data->tid_entry);
6937
6938         if (sample_type & PERF_SAMPLE_TIME)
6939                 perf_output_put(handle, data->time);
6940
6941         if (sample_type & PERF_SAMPLE_ID)
6942                 perf_output_put(handle, data->id);
6943
6944         if (sample_type & PERF_SAMPLE_STREAM_ID)
6945                 perf_output_put(handle, data->stream_id);
6946
6947         if (sample_type & PERF_SAMPLE_CPU)
6948                 perf_output_put(handle, data->cpu_entry);
6949
6950         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6951                 perf_output_put(handle, data->id);
6952 }
6953
6954 void perf_event__output_id_sample(struct perf_event *event,
6955                                   struct perf_output_handle *handle,
6956                                   struct perf_sample_data *sample)
6957 {
6958         if (event->attr.sample_id_all)
6959                 __perf_event__output_id_sample(handle, sample);
6960 }
6961
6962 static void perf_output_read_one(struct perf_output_handle *handle,
6963                                  struct perf_event *event,
6964                                  u64 enabled, u64 running)
6965 {
6966         u64 read_format = event->attr.read_format;
6967         u64 values[4];
6968         int n = 0;
6969
6970         values[n++] = perf_event_count(event);
6971         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6972                 values[n++] = enabled +
6973                         atomic64_read(&event->child_total_time_enabled);
6974         }
6975         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6976                 values[n++] = running +
6977                         atomic64_read(&event->child_total_time_running);
6978         }
6979         if (read_format & PERF_FORMAT_ID)
6980                 values[n++] = primary_event_id(event);
6981
6982         __output_copy(handle, values, n * sizeof(u64));
6983 }
6984
6985 static void perf_output_read_group(struct perf_output_handle *handle,
6986                             struct perf_event *event,
6987                             u64 enabled, u64 running)
6988 {
6989         struct perf_event *leader = event->group_leader, *sub;
6990         u64 read_format = event->attr.read_format;
6991         u64 values[5];
6992         int n = 0;
6993
6994         values[n++] = 1 + leader->nr_siblings;
6995
6996         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6997                 values[n++] = enabled;
6998
6999         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7000                 values[n++] = running;
7001
7002         if ((leader != event) &&
7003             (leader->state == PERF_EVENT_STATE_ACTIVE))
7004                 leader->pmu->read(leader);
7005
7006         values[n++] = perf_event_count(leader);
7007         if (read_format & PERF_FORMAT_ID)
7008                 values[n++] = primary_event_id(leader);
7009
7010         __output_copy(handle, values, n * sizeof(u64));
7011
7012         for_each_sibling_event(sub, leader) {
7013                 n = 0;
7014
7015                 if ((sub != event) &&
7016                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7017                         sub->pmu->read(sub);
7018
7019                 values[n++] = perf_event_count(sub);
7020                 if (read_format & PERF_FORMAT_ID)
7021                         values[n++] = primary_event_id(sub);
7022
7023                 __output_copy(handle, values, n * sizeof(u64));
7024         }
7025 }
7026
7027 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7028                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7029
7030 /*
7031  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7032  *
7033  * The problem is that its both hard and excessively expensive to iterate the
7034  * child list, not to mention that its impossible to IPI the children running
7035  * on another CPU, from interrupt/NMI context.
7036  */
7037 static void perf_output_read(struct perf_output_handle *handle,
7038                              struct perf_event *event)
7039 {
7040         u64 enabled = 0, running = 0, now;
7041         u64 read_format = event->attr.read_format;
7042
7043         /*
7044          * compute total_time_enabled, total_time_running
7045          * based on snapshot values taken when the event
7046          * was last scheduled in.
7047          *
7048          * we cannot simply called update_context_time()
7049          * because of locking issue as we are called in
7050          * NMI context
7051          */
7052         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7053                 calc_timer_values(event, &now, &enabled, &running);
7054
7055         if (event->attr.read_format & PERF_FORMAT_GROUP)
7056                 perf_output_read_group(handle, event, enabled, running);
7057         else
7058                 perf_output_read_one(handle, event, enabled, running);
7059 }
7060
7061 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7062 {
7063         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7064 }
7065
7066 void perf_output_sample(struct perf_output_handle *handle,
7067                         struct perf_event_header *header,
7068                         struct perf_sample_data *data,
7069                         struct perf_event *event)
7070 {
7071         u64 sample_type = data->type;
7072
7073         perf_output_put(handle, *header);
7074
7075         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7076                 perf_output_put(handle, data->id);
7077
7078         if (sample_type & PERF_SAMPLE_IP)
7079                 perf_output_put(handle, data->ip);
7080
7081         if (sample_type & PERF_SAMPLE_TID)
7082                 perf_output_put(handle, data->tid_entry);
7083
7084         if (sample_type & PERF_SAMPLE_TIME)
7085                 perf_output_put(handle, data->time);
7086
7087         if (sample_type & PERF_SAMPLE_ADDR)
7088                 perf_output_put(handle, data->addr);
7089
7090         if (sample_type & PERF_SAMPLE_ID)
7091                 perf_output_put(handle, data->id);
7092
7093         if (sample_type & PERF_SAMPLE_STREAM_ID)
7094                 perf_output_put(handle, data->stream_id);
7095
7096         if (sample_type & PERF_SAMPLE_CPU)
7097                 perf_output_put(handle, data->cpu_entry);
7098
7099         if (sample_type & PERF_SAMPLE_PERIOD)
7100                 perf_output_put(handle, data->period);
7101
7102         if (sample_type & PERF_SAMPLE_READ)
7103                 perf_output_read(handle, event);
7104
7105         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7106                 int size = 1;
7107
7108                 size += data->callchain->nr;
7109                 size *= sizeof(u64);
7110                 __output_copy(handle, data->callchain, size);
7111         }
7112
7113         if (sample_type & PERF_SAMPLE_RAW) {
7114                 struct perf_raw_record *raw = data->raw;
7115
7116                 if (raw) {
7117                         struct perf_raw_frag *frag = &raw->frag;
7118
7119                         perf_output_put(handle, raw->size);
7120                         do {
7121                                 if (frag->copy) {
7122                                         __output_custom(handle, frag->copy,
7123                                                         frag->data, frag->size);
7124                                 } else {
7125                                         __output_copy(handle, frag->data,
7126                                                       frag->size);
7127                                 }
7128                                 if (perf_raw_frag_last(frag))
7129                                         break;
7130                                 frag = frag->next;
7131                         } while (1);
7132                         if (frag->pad)
7133                                 __output_skip(handle, NULL, frag->pad);
7134                 } else {
7135                         struct {
7136                                 u32     size;
7137                                 u32     data;
7138                         } raw = {
7139                                 .size = sizeof(u32),
7140                                 .data = 0,
7141                         };
7142                         perf_output_put(handle, raw);
7143                 }
7144         }
7145
7146         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7147                 if (data->br_stack) {
7148                         size_t size;
7149
7150                         size = data->br_stack->nr
7151                              * sizeof(struct perf_branch_entry);
7152
7153                         perf_output_put(handle, data->br_stack->nr);
7154                         if (perf_sample_save_hw_index(event))
7155                                 perf_output_put(handle, data->br_stack->hw_idx);
7156                         perf_output_copy(handle, data->br_stack->entries, size);
7157                 } else {
7158                         /*
7159                          * we always store at least the value of nr
7160                          */
7161                         u64 nr = 0;
7162                         perf_output_put(handle, nr);
7163                 }
7164         }
7165
7166         if (sample_type & PERF_SAMPLE_REGS_USER) {
7167                 u64 abi = data->regs_user.abi;
7168
7169                 /*
7170                  * If there are no regs to dump, notice it through
7171                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7172                  */
7173                 perf_output_put(handle, abi);
7174
7175                 if (abi) {
7176                         u64 mask = event->attr.sample_regs_user;
7177                         perf_output_sample_regs(handle,
7178                                                 data->regs_user.regs,
7179                                                 mask);
7180                 }
7181         }
7182
7183         if (sample_type & PERF_SAMPLE_STACK_USER) {
7184                 perf_output_sample_ustack(handle,
7185                                           data->stack_user_size,
7186                                           data->regs_user.regs);
7187         }
7188
7189         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7190                 perf_output_put(handle, data->weight.full);
7191
7192         if (sample_type & PERF_SAMPLE_DATA_SRC)
7193                 perf_output_put(handle, data->data_src.val);
7194
7195         if (sample_type & PERF_SAMPLE_TRANSACTION)
7196                 perf_output_put(handle, data->txn);
7197
7198         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7199                 u64 abi = data->regs_intr.abi;
7200                 /*
7201                  * If there are no regs to dump, notice it through
7202                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7203                  */
7204                 perf_output_put(handle, abi);
7205
7206                 if (abi) {
7207                         u64 mask = event->attr.sample_regs_intr;
7208
7209                         perf_output_sample_regs(handle,
7210                                                 data->regs_intr.regs,
7211                                                 mask);
7212                 }
7213         }
7214
7215         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7216                 perf_output_put(handle, data->phys_addr);
7217
7218         if (sample_type & PERF_SAMPLE_CGROUP)
7219                 perf_output_put(handle, data->cgroup);
7220
7221         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7222                 perf_output_put(handle, data->data_page_size);
7223
7224         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7225                 perf_output_put(handle, data->code_page_size);
7226
7227         if (sample_type & PERF_SAMPLE_AUX) {
7228                 perf_output_put(handle, data->aux_size);
7229
7230                 if (data->aux_size)
7231                         perf_aux_sample_output(event, handle, data);
7232         }
7233
7234         if (!event->attr.watermark) {
7235                 int wakeup_events = event->attr.wakeup_events;
7236
7237                 if (wakeup_events) {
7238                         struct perf_buffer *rb = handle->rb;
7239                         int events = local_inc_return(&rb->events);
7240
7241                         if (events >= wakeup_events) {
7242                                 local_sub(wakeup_events, &rb->events);
7243                                 local_inc(&rb->wakeup);
7244                         }
7245                 }
7246         }
7247 }
7248
7249 static u64 perf_virt_to_phys(u64 virt)
7250 {
7251         u64 phys_addr = 0;
7252
7253         if (!virt)
7254                 return 0;
7255
7256         if (virt >= TASK_SIZE) {
7257                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7258                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7259                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7260                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7261         } else {
7262                 /*
7263                  * Walking the pages tables for user address.
7264                  * Interrupts are disabled, so it prevents any tear down
7265                  * of the page tables.
7266                  * Try IRQ-safe get_user_page_fast_only first.
7267                  * If failed, leave phys_addr as 0.
7268                  */
7269                 if (current->mm != NULL) {
7270                         struct page *p;
7271
7272                         pagefault_disable();
7273                         if (get_user_page_fast_only(virt, 0, &p)) {
7274                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7275                                 put_page(p);
7276                         }
7277                         pagefault_enable();
7278                 }
7279         }
7280
7281         return phys_addr;
7282 }
7283
7284 /*
7285  * Return the pagetable size of a given virtual address.
7286  */
7287 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7288 {
7289         u64 size = 0;
7290
7291 #ifdef CONFIG_HAVE_FAST_GUP
7292         pgd_t *pgdp, pgd;
7293         p4d_t *p4dp, p4d;
7294         pud_t *pudp, pud;
7295         pmd_t *pmdp, pmd;
7296         pte_t *ptep, pte;
7297
7298         pgdp = pgd_offset(mm, addr);
7299         pgd = READ_ONCE(*pgdp);
7300         if (pgd_none(pgd))
7301                 return 0;
7302
7303         if (pgd_leaf(pgd))
7304                 return pgd_leaf_size(pgd);
7305
7306         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7307         p4d = READ_ONCE(*p4dp);
7308         if (!p4d_present(p4d))
7309                 return 0;
7310
7311         if (p4d_leaf(p4d))
7312                 return p4d_leaf_size(p4d);
7313
7314         pudp = pud_offset_lockless(p4dp, p4d, addr);
7315         pud = READ_ONCE(*pudp);
7316         if (!pud_present(pud))
7317                 return 0;
7318
7319         if (pud_leaf(pud))
7320                 return pud_leaf_size(pud);
7321
7322         pmdp = pmd_offset_lockless(pudp, pud, addr);
7323         pmd = READ_ONCE(*pmdp);
7324         if (!pmd_present(pmd))
7325                 return 0;
7326
7327         if (pmd_leaf(pmd))
7328                 return pmd_leaf_size(pmd);
7329
7330         ptep = pte_offset_map(&pmd, addr);
7331         pte = ptep_get_lockless(ptep);
7332         if (pte_present(pte))
7333                 size = pte_leaf_size(pte);
7334         pte_unmap(ptep);
7335 #endif /* CONFIG_HAVE_FAST_GUP */
7336
7337         return size;
7338 }
7339
7340 static u64 perf_get_page_size(unsigned long addr)
7341 {
7342         struct mm_struct *mm;
7343         unsigned long flags;
7344         u64 size;
7345
7346         if (!addr)
7347                 return 0;
7348
7349         /*
7350          * Software page-table walkers must disable IRQs,
7351          * which prevents any tear down of the page tables.
7352          */
7353         local_irq_save(flags);
7354
7355         mm = current->mm;
7356         if (!mm) {
7357                 /*
7358                  * For kernel threads and the like, use init_mm so that
7359                  * we can find kernel memory.
7360                  */
7361                 mm = &init_mm;
7362         }
7363
7364         size = perf_get_pgtable_size(mm, addr);
7365
7366         local_irq_restore(flags);
7367
7368         return size;
7369 }
7370
7371 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7372
7373 struct perf_callchain_entry *
7374 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7375 {
7376         bool kernel = !event->attr.exclude_callchain_kernel;
7377         bool user   = !event->attr.exclude_callchain_user;
7378         /* Disallow cross-task user callchains. */
7379         bool crosstask = event->ctx->task && event->ctx->task != current;
7380         const u32 max_stack = event->attr.sample_max_stack;
7381         struct perf_callchain_entry *callchain;
7382
7383         if (!kernel && !user)
7384                 return &__empty_callchain;
7385
7386         callchain = get_perf_callchain(regs, 0, kernel, user,
7387                                        max_stack, crosstask, true);
7388         return callchain ?: &__empty_callchain;
7389 }
7390
7391 void perf_prepare_sample(struct perf_event_header *header,
7392                          struct perf_sample_data *data,
7393                          struct perf_event *event,
7394                          struct pt_regs *regs)
7395 {
7396         u64 sample_type = event->attr.sample_type;
7397
7398         header->type = PERF_RECORD_SAMPLE;
7399         header->size = sizeof(*header) + event->header_size;
7400
7401         header->misc = 0;
7402         header->misc |= perf_misc_flags(regs);
7403
7404         __perf_event_header__init_id(header, data, event);
7405
7406         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7407                 data->ip = perf_instruction_pointer(regs);
7408
7409         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7410                 int size = 1;
7411
7412                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7413                         data->callchain = perf_callchain(event, regs);
7414
7415                 size += data->callchain->nr;
7416
7417                 header->size += size * sizeof(u64);
7418         }
7419
7420         if (sample_type & PERF_SAMPLE_RAW) {
7421                 struct perf_raw_record *raw = data->raw;
7422                 int size;
7423
7424                 if (raw) {
7425                         struct perf_raw_frag *frag = &raw->frag;
7426                         u32 sum = 0;
7427
7428                         do {
7429                                 sum += frag->size;
7430                                 if (perf_raw_frag_last(frag))
7431                                         break;
7432                                 frag = frag->next;
7433                         } while (1);
7434
7435                         size = round_up(sum + sizeof(u32), sizeof(u64));
7436                         raw->size = size - sizeof(u32);
7437                         frag->pad = raw->size - sum;
7438                 } else {
7439                         size = sizeof(u64);
7440                 }
7441
7442                 header->size += size;
7443         }
7444
7445         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7446                 int size = sizeof(u64); /* nr */
7447                 if (data->br_stack) {
7448                         if (perf_sample_save_hw_index(event))
7449                                 size += sizeof(u64);
7450
7451                         size += data->br_stack->nr
7452                               * sizeof(struct perf_branch_entry);
7453                 }
7454                 header->size += size;
7455         }
7456
7457         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7458                 perf_sample_regs_user(&data->regs_user, regs);
7459
7460         if (sample_type & PERF_SAMPLE_REGS_USER) {
7461                 /* regs dump ABI info */
7462                 int size = sizeof(u64);
7463
7464                 if (data->regs_user.regs) {
7465                         u64 mask = event->attr.sample_regs_user;
7466                         size += hweight64(mask) * sizeof(u64);
7467                 }
7468
7469                 header->size += size;
7470         }
7471
7472         if (sample_type & PERF_SAMPLE_STACK_USER) {
7473                 /*
7474                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7475                  * processed as the last one or have additional check added
7476                  * in case new sample type is added, because we could eat
7477                  * up the rest of the sample size.
7478                  */
7479                 u16 stack_size = event->attr.sample_stack_user;
7480                 u16 size = sizeof(u64);
7481
7482                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7483                                                      data->regs_user.regs);
7484
7485                 /*
7486                  * If there is something to dump, add space for the dump
7487                  * itself and for the field that tells the dynamic size,
7488                  * which is how many have been actually dumped.
7489                  */
7490                 if (stack_size)
7491                         size += sizeof(u64) + stack_size;
7492
7493                 data->stack_user_size = stack_size;
7494                 header->size += size;
7495         }
7496
7497         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7498                 /* regs dump ABI info */
7499                 int size = sizeof(u64);
7500
7501                 perf_sample_regs_intr(&data->regs_intr, regs);
7502
7503                 if (data->regs_intr.regs) {
7504                         u64 mask = event->attr.sample_regs_intr;
7505
7506                         size += hweight64(mask) * sizeof(u64);
7507                 }
7508
7509                 header->size += size;
7510         }
7511
7512         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7513                 data->phys_addr = perf_virt_to_phys(data->addr);
7514
7515 #ifdef CONFIG_CGROUP_PERF
7516         if (sample_type & PERF_SAMPLE_CGROUP) {
7517                 struct cgroup *cgrp;
7518
7519                 /* protected by RCU */
7520                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7521                 data->cgroup = cgroup_id(cgrp);
7522         }
7523 #endif
7524
7525         /*
7526          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7527          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7528          * but the value will not dump to the userspace.
7529          */
7530         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7531                 data->data_page_size = perf_get_page_size(data->addr);
7532
7533         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7534                 data->code_page_size = perf_get_page_size(data->ip);
7535
7536         if (sample_type & PERF_SAMPLE_AUX) {
7537                 u64 size;
7538
7539                 header->size += sizeof(u64); /* size */
7540
7541                 /*
7542                  * Given the 16bit nature of header::size, an AUX sample can
7543                  * easily overflow it, what with all the preceding sample bits.
7544                  * Make sure this doesn't happen by using up to U16_MAX bytes
7545                  * per sample in total (rounded down to 8 byte boundary).
7546                  */
7547                 size = min_t(size_t, U16_MAX - header->size,
7548                              event->attr.aux_sample_size);
7549                 size = rounddown(size, 8);
7550                 size = perf_prepare_sample_aux(event, data, size);
7551
7552                 WARN_ON_ONCE(size + header->size > U16_MAX);
7553                 header->size += size;
7554         }
7555         /*
7556          * If you're adding more sample types here, you likely need to do
7557          * something about the overflowing header::size, like repurpose the
7558          * lowest 3 bits of size, which should be always zero at the moment.
7559          * This raises a more important question, do we really need 512k sized
7560          * samples and why, so good argumentation is in order for whatever you
7561          * do here next.
7562          */
7563         WARN_ON_ONCE(header->size & 7);
7564 }
7565
7566 static __always_inline int
7567 __perf_event_output(struct perf_event *event,
7568                     struct perf_sample_data *data,
7569                     struct pt_regs *regs,
7570                     int (*output_begin)(struct perf_output_handle *,
7571                                         struct perf_sample_data *,
7572                                         struct perf_event *,
7573                                         unsigned int))
7574 {
7575         struct perf_output_handle handle;
7576         struct perf_event_header header;
7577         int err;
7578
7579         /* protect the callchain buffers */
7580         rcu_read_lock();
7581
7582         perf_prepare_sample(&header, data, event, regs);
7583
7584         err = output_begin(&handle, data, event, header.size);
7585         if (err)
7586                 goto exit;
7587
7588         perf_output_sample(&handle, &header, data, event);
7589
7590         perf_output_end(&handle);
7591
7592 exit:
7593         rcu_read_unlock();
7594         return err;
7595 }
7596
7597 void
7598 perf_event_output_forward(struct perf_event *event,
7599                          struct perf_sample_data *data,
7600                          struct pt_regs *regs)
7601 {
7602         __perf_event_output(event, data, regs, perf_output_begin_forward);
7603 }
7604
7605 void
7606 perf_event_output_backward(struct perf_event *event,
7607                            struct perf_sample_data *data,
7608                            struct pt_regs *regs)
7609 {
7610         __perf_event_output(event, data, regs, perf_output_begin_backward);
7611 }
7612
7613 int
7614 perf_event_output(struct perf_event *event,
7615                   struct perf_sample_data *data,
7616                   struct pt_regs *regs)
7617 {
7618         return __perf_event_output(event, data, regs, perf_output_begin);
7619 }
7620
7621 /*
7622  * read event_id
7623  */
7624
7625 struct perf_read_event {
7626         struct perf_event_header        header;
7627
7628         u32                             pid;
7629         u32                             tid;
7630 };
7631
7632 static void
7633 perf_event_read_event(struct perf_event *event,
7634                         struct task_struct *task)
7635 {
7636         struct perf_output_handle handle;
7637         struct perf_sample_data sample;
7638         struct perf_read_event read_event = {
7639                 .header = {
7640                         .type = PERF_RECORD_READ,
7641                         .misc = 0,
7642                         .size = sizeof(read_event) + event->read_size,
7643                 },
7644                 .pid = perf_event_pid(event, task),
7645                 .tid = perf_event_tid(event, task),
7646         };
7647         int ret;
7648
7649         perf_event_header__init_id(&read_event.header, &sample, event);
7650         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7651         if (ret)
7652                 return;
7653
7654         perf_output_put(&handle, read_event);
7655         perf_output_read(&handle, event);
7656         perf_event__output_id_sample(event, &handle, &sample);
7657
7658         perf_output_end(&handle);
7659 }
7660
7661 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7662
7663 static void
7664 perf_iterate_ctx(struct perf_event_context *ctx,
7665                    perf_iterate_f output,
7666                    void *data, bool all)
7667 {
7668         struct perf_event *event;
7669
7670         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7671                 if (!all) {
7672                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7673                                 continue;
7674                         if (!event_filter_match(event))
7675                                 continue;
7676                 }
7677
7678                 output(event, data);
7679         }
7680 }
7681
7682 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7683 {
7684         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7685         struct perf_event *event;
7686
7687         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7688                 /*
7689                  * Skip events that are not fully formed yet; ensure that
7690                  * if we observe event->ctx, both event and ctx will be
7691                  * complete enough. See perf_install_in_context().
7692                  */
7693                 if (!smp_load_acquire(&event->ctx))
7694                         continue;
7695
7696                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7697                         continue;
7698                 if (!event_filter_match(event))
7699                         continue;
7700                 output(event, data);
7701         }
7702 }
7703
7704 /*
7705  * Iterate all events that need to receive side-band events.
7706  *
7707  * For new callers; ensure that account_pmu_sb_event() includes
7708  * your event, otherwise it might not get delivered.
7709  */
7710 static void
7711 perf_iterate_sb(perf_iterate_f output, void *data,
7712                struct perf_event_context *task_ctx)
7713 {
7714         struct perf_event_context *ctx;
7715         int ctxn;
7716
7717         rcu_read_lock();
7718         preempt_disable();
7719
7720         /*
7721          * If we have task_ctx != NULL we only notify the task context itself.
7722          * The task_ctx is set only for EXIT events before releasing task
7723          * context.
7724          */
7725         if (task_ctx) {
7726                 perf_iterate_ctx(task_ctx, output, data, false);
7727                 goto done;
7728         }
7729
7730         perf_iterate_sb_cpu(output, data);
7731
7732         for_each_task_context_nr(ctxn) {
7733                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7734                 if (ctx)
7735                         perf_iterate_ctx(ctx, output, data, false);
7736         }
7737 done:
7738         preempt_enable();
7739         rcu_read_unlock();
7740 }
7741
7742 /*
7743  * Clear all file-based filters at exec, they'll have to be
7744  * re-instated when/if these objects are mmapped again.
7745  */
7746 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7747 {
7748         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7749         struct perf_addr_filter *filter;
7750         unsigned int restart = 0, count = 0;
7751         unsigned long flags;
7752
7753         if (!has_addr_filter(event))
7754                 return;
7755
7756         raw_spin_lock_irqsave(&ifh->lock, flags);
7757         list_for_each_entry(filter, &ifh->list, entry) {
7758                 if (filter->path.dentry) {
7759                         event->addr_filter_ranges[count].start = 0;
7760                         event->addr_filter_ranges[count].size = 0;
7761                         restart++;
7762                 }
7763
7764                 count++;
7765         }
7766
7767         if (restart)
7768                 event->addr_filters_gen++;
7769         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7770
7771         if (restart)
7772                 perf_event_stop(event, 1);
7773 }
7774
7775 void perf_event_exec(void)
7776 {
7777         struct perf_event_context *ctx;
7778         int ctxn;
7779
7780         for_each_task_context_nr(ctxn) {
7781                 perf_event_enable_on_exec(ctxn);
7782                 perf_event_remove_on_exec(ctxn);
7783
7784                 rcu_read_lock();
7785                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7786                 if (ctx) {
7787                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7788                                          NULL, true);
7789                 }
7790                 rcu_read_unlock();
7791         }
7792 }
7793
7794 struct remote_output {
7795         struct perf_buffer      *rb;
7796         int                     err;
7797 };
7798
7799 static void __perf_event_output_stop(struct perf_event *event, void *data)
7800 {
7801         struct perf_event *parent = event->parent;
7802         struct remote_output *ro = data;
7803         struct perf_buffer *rb = ro->rb;
7804         struct stop_event_data sd = {
7805                 .event  = event,
7806         };
7807
7808         if (!has_aux(event))
7809                 return;
7810
7811         if (!parent)
7812                 parent = event;
7813
7814         /*
7815          * In case of inheritance, it will be the parent that links to the
7816          * ring-buffer, but it will be the child that's actually using it.
7817          *
7818          * We are using event::rb to determine if the event should be stopped,
7819          * however this may race with ring_buffer_attach() (through set_output),
7820          * which will make us skip the event that actually needs to be stopped.
7821          * So ring_buffer_attach() has to stop an aux event before re-assigning
7822          * its rb pointer.
7823          */
7824         if (rcu_dereference(parent->rb) == rb)
7825                 ro->err = __perf_event_stop(&sd);
7826 }
7827
7828 static int __perf_pmu_output_stop(void *info)
7829 {
7830         struct perf_event *event = info;
7831         struct pmu *pmu = event->ctx->pmu;
7832         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7833         struct remote_output ro = {
7834                 .rb     = event->rb,
7835         };
7836
7837         rcu_read_lock();
7838         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7839         if (cpuctx->task_ctx)
7840                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7841                                    &ro, false);
7842         rcu_read_unlock();
7843
7844         return ro.err;
7845 }
7846
7847 static void perf_pmu_output_stop(struct perf_event *event)
7848 {
7849         struct perf_event *iter;
7850         int err, cpu;
7851
7852 restart:
7853         rcu_read_lock();
7854         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7855                 /*
7856                  * For per-CPU events, we need to make sure that neither they
7857                  * nor their children are running; for cpu==-1 events it's
7858                  * sufficient to stop the event itself if it's active, since
7859                  * it can't have children.
7860                  */
7861                 cpu = iter->cpu;
7862                 if (cpu == -1)
7863                         cpu = READ_ONCE(iter->oncpu);
7864
7865                 if (cpu == -1)
7866                         continue;
7867
7868                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7869                 if (err == -EAGAIN) {
7870                         rcu_read_unlock();
7871                         goto restart;
7872                 }
7873         }
7874         rcu_read_unlock();
7875 }
7876
7877 /*
7878  * task tracking -- fork/exit
7879  *
7880  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7881  */
7882
7883 struct perf_task_event {
7884         struct task_struct              *task;
7885         struct perf_event_context       *task_ctx;
7886
7887         struct {
7888                 struct perf_event_header        header;
7889
7890                 u32                             pid;
7891                 u32                             ppid;
7892                 u32                             tid;
7893                 u32                             ptid;
7894                 u64                             time;
7895         } event_id;
7896 };
7897
7898 static int perf_event_task_match(struct perf_event *event)
7899 {
7900         return event->attr.comm  || event->attr.mmap ||
7901                event->attr.mmap2 || event->attr.mmap_data ||
7902                event->attr.task;
7903 }
7904
7905 static void perf_event_task_output(struct perf_event *event,
7906                                    void *data)
7907 {
7908         struct perf_task_event *task_event = data;
7909         struct perf_output_handle handle;
7910         struct perf_sample_data sample;
7911         struct task_struct *task = task_event->task;
7912         int ret, size = task_event->event_id.header.size;
7913
7914         if (!perf_event_task_match(event))
7915                 return;
7916
7917         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7918
7919         ret = perf_output_begin(&handle, &sample, event,
7920                                 task_event->event_id.header.size);
7921         if (ret)
7922                 goto out;
7923
7924         task_event->event_id.pid = perf_event_pid(event, task);
7925         task_event->event_id.tid = perf_event_tid(event, task);
7926
7927         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7928                 task_event->event_id.ppid = perf_event_pid(event,
7929                                                         task->real_parent);
7930                 task_event->event_id.ptid = perf_event_pid(event,
7931                                                         task->real_parent);
7932         } else {  /* PERF_RECORD_FORK */
7933                 task_event->event_id.ppid = perf_event_pid(event, current);
7934                 task_event->event_id.ptid = perf_event_tid(event, current);
7935         }
7936
7937         task_event->event_id.time = perf_event_clock(event);
7938
7939         perf_output_put(&handle, task_event->event_id);
7940
7941         perf_event__output_id_sample(event, &handle, &sample);
7942
7943         perf_output_end(&handle);
7944 out:
7945         task_event->event_id.header.size = size;
7946 }
7947
7948 static void perf_event_task(struct task_struct *task,
7949                               struct perf_event_context *task_ctx,
7950                               int new)
7951 {
7952         struct perf_task_event task_event;
7953
7954         if (!atomic_read(&nr_comm_events) &&
7955             !atomic_read(&nr_mmap_events) &&
7956             !atomic_read(&nr_task_events))
7957                 return;
7958
7959         task_event = (struct perf_task_event){
7960                 .task     = task,
7961                 .task_ctx = task_ctx,
7962                 .event_id    = {
7963                         .header = {
7964                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7965                                 .misc = 0,
7966                                 .size = sizeof(task_event.event_id),
7967                         },
7968                         /* .pid  */
7969                         /* .ppid */
7970                         /* .tid  */
7971                         /* .ptid */
7972                         /* .time */
7973                 },
7974         };
7975
7976         perf_iterate_sb(perf_event_task_output,
7977                        &task_event,
7978                        task_ctx);
7979 }
7980
7981 void perf_event_fork(struct task_struct *task)
7982 {
7983         perf_event_task(task, NULL, 1);
7984         perf_event_namespaces(task);
7985 }
7986
7987 /*
7988  * comm tracking
7989  */
7990
7991 struct perf_comm_event {
7992         struct task_struct      *task;
7993         char                    *comm;
7994         int                     comm_size;
7995
7996         struct {
7997                 struct perf_event_header        header;
7998
7999                 u32                             pid;
8000                 u32                             tid;
8001         } event_id;
8002 };
8003
8004 static int perf_event_comm_match(struct perf_event *event)
8005 {
8006         return event->attr.comm;
8007 }
8008
8009 static void perf_event_comm_output(struct perf_event *event,
8010                                    void *data)
8011 {
8012         struct perf_comm_event *comm_event = data;
8013         struct perf_output_handle handle;
8014         struct perf_sample_data sample;
8015         int size = comm_event->event_id.header.size;
8016         int ret;
8017
8018         if (!perf_event_comm_match(event))
8019                 return;
8020
8021         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8022         ret = perf_output_begin(&handle, &sample, event,
8023                                 comm_event->event_id.header.size);
8024
8025         if (ret)
8026                 goto out;
8027
8028         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8029         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8030
8031         perf_output_put(&handle, comm_event->event_id);
8032         __output_copy(&handle, comm_event->comm,
8033                                    comm_event->comm_size);
8034
8035         perf_event__output_id_sample(event, &handle, &sample);
8036
8037         perf_output_end(&handle);
8038 out:
8039         comm_event->event_id.header.size = size;
8040 }
8041
8042 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8043 {
8044         char comm[TASK_COMM_LEN];
8045         unsigned int size;
8046
8047         memset(comm, 0, sizeof(comm));
8048         strlcpy(comm, comm_event->task->comm, sizeof(comm));
8049         size = ALIGN(strlen(comm)+1, sizeof(u64));
8050
8051         comm_event->comm = comm;
8052         comm_event->comm_size = size;
8053
8054         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8055
8056         perf_iterate_sb(perf_event_comm_output,
8057                        comm_event,
8058                        NULL);
8059 }
8060
8061 void perf_event_comm(struct task_struct *task, bool exec)
8062 {
8063         struct perf_comm_event comm_event;
8064
8065         if (!atomic_read(&nr_comm_events))
8066                 return;
8067
8068         comm_event = (struct perf_comm_event){
8069                 .task   = task,
8070                 /* .comm      */
8071                 /* .comm_size */
8072                 .event_id  = {
8073                         .header = {
8074                                 .type = PERF_RECORD_COMM,
8075                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8076                                 /* .size */
8077                         },
8078                         /* .pid */
8079                         /* .tid */
8080                 },
8081         };
8082
8083         perf_event_comm_event(&comm_event);
8084 }
8085
8086 /*
8087  * namespaces tracking
8088  */
8089
8090 struct perf_namespaces_event {
8091         struct task_struct              *task;
8092
8093         struct {
8094                 struct perf_event_header        header;
8095
8096                 u32                             pid;
8097                 u32                             tid;
8098                 u64                             nr_namespaces;
8099                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8100         } event_id;
8101 };
8102
8103 static int perf_event_namespaces_match(struct perf_event *event)
8104 {
8105         return event->attr.namespaces;
8106 }
8107
8108 static void perf_event_namespaces_output(struct perf_event *event,
8109                                          void *data)
8110 {
8111         struct perf_namespaces_event *namespaces_event = data;
8112         struct perf_output_handle handle;
8113         struct perf_sample_data sample;
8114         u16 header_size = namespaces_event->event_id.header.size;
8115         int ret;
8116
8117         if (!perf_event_namespaces_match(event))
8118                 return;
8119
8120         perf_event_header__init_id(&namespaces_event->event_id.header,
8121                                    &sample, event);
8122         ret = perf_output_begin(&handle, &sample, event,
8123                                 namespaces_event->event_id.header.size);
8124         if (ret)
8125                 goto out;
8126
8127         namespaces_event->event_id.pid = perf_event_pid(event,
8128                                                         namespaces_event->task);
8129         namespaces_event->event_id.tid = perf_event_tid(event,
8130                                                         namespaces_event->task);
8131
8132         perf_output_put(&handle, namespaces_event->event_id);
8133
8134         perf_event__output_id_sample(event, &handle, &sample);
8135
8136         perf_output_end(&handle);
8137 out:
8138         namespaces_event->event_id.header.size = header_size;
8139 }
8140
8141 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8142                                    struct task_struct *task,
8143                                    const struct proc_ns_operations *ns_ops)
8144 {
8145         struct path ns_path;
8146         struct inode *ns_inode;
8147         int error;
8148
8149         error = ns_get_path(&ns_path, task, ns_ops);
8150         if (!error) {
8151                 ns_inode = ns_path.dentry->d_inode;
8152                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8153                 ns_link_info->ino = ns_inode->i_ino;
8154                 path_put(&ns_path);
8155         }
8156 }
8157
8158 void perf_event_namespaces(struct task_struct *task)
8159 {
8160         struct perf_namespaces_event namespaces_event;
8161         struct perf_ns_link_info *ns_link_info;
8162
8163         if (!atomic_read(&nr_namespaces_events))
8164                 return;
8165
8166         namespaces_event = (struct perf_namespaces_event){
8167                 .task   = task,
8168                 .event_id  = {
8169                         .header = {
8170                                 .type = PERF_RECORD_NAMESPACES,
8171                                 .misc = 0,
8172                                 .size = sizeof(namespaces_event.event_id),
8173                         },
8174                         /* .pid */
8175                         /* .tid */
8176                         .nr_namespaces = NR_NAMESPACES,
8177                         /* .link_info[NR_NAMESPACES] */
8178                 },
8179         };
8180
8181         ns_link_info = namespaces_event.event_id.link_info;
8182
8183         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8184                                task, &mntns_operations);
8185
8186 #ifdef CONFIG_USER_NS
8187         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8188                                task, &userns_operations);
8189 #endif
8190 #ifdef CONFIG_NET_NS
8191         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8192                                task, &netns_operations);
8193 #endif
8194 #ifdef CONFIG_UTS_NS
8195         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8196                                task, &utsns_operations);
8197 #endif
8198 #ifdef CONFIG_IPC_NS
8199         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8200                                task, &ipcns_operations);
8201 #endif
8202 #ifdef CONFIG_PID_NS
8203         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8204                                task, &pidns_operations);
8205 #endif
8206 #ifdef CONFIG_CGROUPS
8207         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8208                                task, &cgroupns_operations);
8209 #endif
8210
8211         perf_iterate_sb(perf_event_namespaces_output,
8212                         &namespaces_event,
8213                         NULL);
8214 }
8215
8216 /*
8217  * cgroup tracking
8218  */
8219 #ifdef CONFIG_CGROUP_PERF
8220
8221 struct perf_cgroup_event {
8222         char                            *path;
8223         int                             path_size;
8224         struct {
8225                 struct perf_event_header        header;
8226                 u64                             id;
8227                 char                            path[];
8228         } event_id;
8229 };
8230
8231 static int perf_event_cgroup_match(struct perf_event *event)
8232 {
8233         return event->attr.cgroup;
8234 }
8235
8236 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8237 {
8238         struct perf_cgroup_event *cgroup_event = data;
8239         struct perf_output_handle handle;
8240         struct perf_sample_data sample;
8241         u16 header_size = cgroup_event->event_id.header.size;
8242         int ret;
8243
8244         if (!perf_event_cgroup_match(event))
8245                 return;
8246
8247         perf_event_header__init_id(&cgroup_event->event_id.header,
8248                                    &sample, event);
8249         ret = perf_output_begin(&handle, &sample, event,
8250                                 cgroup_event->event_id.header.size);
8251         if (ret)
8252                 goto out;
8253
8254         perf_output_put(&handle, cgroup_event->event_id);
8255         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8256
8257         perf_event__output_id_sample(event, &handle, &sample);
8258
8259         perf_output_end(&handle);
8260 out:
8261         cgroup_event->event_id.header.size = header_size;
8262 }
8263
8264 static void perf_event_cgroup(struct cgroup *cgrp)
8265 {
8266         struct perf_cgroup_event cgroup_event;
8267         char path_enomem[16] = "//enomem";
8268         char *pathname;
8269         size_t size;
8270
8271         if (!atomic_read(&nr_cgroup_events))
8272                 return;
8273
8274         cgroup_event = (struct perf_cgroup_event){
8275                 .event_id  = {
8276                         .header = {
8277                                 .type = PERF_RECORD_CGROUP,
8278                                 .misc = 0,
8279                                 .size = sizeof(cgroup_event.event_id),
8280                         },
8281                         .id = cgroup_id(cgrp),
8282                 },
8283         };
8284
8285         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8286         if (pathname == NULL) {
8287                 cgroup_event.path = path_enomem;
8288         } else {
8289                 /* just to be sure to have enough space for alignment */
8290                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8291                 cgroup_event.path = pathname;
8292         }
8293
8294         /*
8295          * Since our buffer works in 8 byte units we need to align our string
8296          * size to a multiple of 8. However, we must guarantee the tail end is
8297          * zero'd out to avoid leaking random bits to userspace.
8298          */
8299         size = strlen(cgroup_event.path) + 1;
8300         while (!IS_ALIGNED(size, sizeof(u64)))
8301                 cgroup_event.path[size++] = '\0';
8302
8303         cgroup_event.event_id.header.size += size;
8304         cgroup_event.path_size = size;
8305
8306         perf_iterate_sb(perf_event_cgroup_output,
8307                         &cgroup_event,
8308                         NULL);
8309
8310         kfree(pathname);
8311 }
8312
8313 #endif
8314
8315 /*
8316  * mmap tracking
8317  */
8318
8319 struct perf_mmap_event {
8320         struct vm_area_struct   *vma;
8321
8322         const char              *file_name;
8323         int                     file_size;
8324         int                     maj, min;
8325         u64                     ino;
8326         u64                     ino_generation;
8327         u32                     prot, flags;
8328         u8                      build_id[BUILD_ID_SIZE_MAX];
8329         u32                     build_id_size;
8330
8331         struct {
8332                 struct perf_event_header        header;
8333
8334                 u32                             pid;
8335                 u32                             tid;
8336                 u64                             start;
8337                 u64                             len;
8338                 u64                             pgoff;
8339         } event_id;
8340 };
8341
8342 static int perf_event_mmap_match(struct perf_event *event,
8343                                  void *data)
8344 {
8345         struct perf_mmap_event *mmap_event = data;
8346         struct vm_area_struct *vma = mmap_event->vma;
8347         int executable = vma->vm_flags & VM_EXEC;
8348
8349         return (!executable && event->attr.mmap_data) ||
8350                (executable && (event->attr.mmap || event->attr.mmap2));
8351 }
8352
8353 static void perf_event_mmap_output(struct perf_event *event,
8354                                    void *data)
8355 {
8356         struct perf_mmap_event *mmap_event = data;
8357         struct perf_output_handle handle;
8358         struct perf_sample_data sample;
8359         int size = mmap_event->event_id.header.size;
8360         u32 type = mmap_event->event_id.header.type;
8361         bool use_build_id;
8362         int ret;
8363
8364         if (!perf_event_mmap_match(event, data))
8365                 return;
8366
8367         if (event->attr.mmap2) {
8368                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8369                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8370                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8371                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8372                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8373                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8374                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8375         }
8376
8377         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8378         ret = perf_output_begin(&handle, &sample, event,
8379                                 mmap_event->event_id.header.size);
8380         if (ret)
8381                 goto out;
8382
8383         mmap_event->event_id.pid = perf_event_pid(event, current);
8384         mmap_event->event_id.tid = perf_event_tid(event, current);
8385
8386         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8387
8388         if (event->attr.mmap2 && use_build_id)
8389                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8390
8391         perf_output_put(&handle, mmap_event->event_id);
8392
8393         if (event->attr.mmap2) {
8394                 if (use_build_id) {
8395                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8396
8397                         __output_copy(&handle, size, 4);
8398                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8399                 } else {
8400                         perf_output_put(&handle, mmap_event->maj);
8401                         perf_output_put(&handle, mmap_event->min);
8402                         perf_output_put(&handle, mmap_event->ino);
8403                         perf_output_put(&handle, mmap_event->ino_generation);
8404                 }
8405                 perf_output_put(&handle, mmap_event->prot);
8406                 perf_output_put(&handle, mmap_event->flags);
8407         }
8408
8409         __output_copy(&handle, mmap_event->file_name,
8410                                    mmap_event->file_size);
8411
8412         perf_event__output_id_sample(event, &handle, &sample);
8413
8414         perf_output_end(&handle);
8415 out:
8416         mmap_event->event_id.header.size = size;
8417         mmap_event->event_id.header.type = type;
8418 }
8419
8420 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8421 {
8422         struct vm_area_struct *vma = mmap_event->vma;
8423         struct file *file = vma->vm_file;
8424         int maj = 0, min = 0;
8425         u64 ino = 0, gen = 0;
8426         u32 prot = 0, flags = 0;
8427         unsigned int size;
8428         char tmp[16];
8429         char *buf = NULL;
8430         char *name;
8431
8432         if (vma->vm_flags & VM_READ)
8433                 prot |= PROT_READ;
8434         if (vma->vm_flags & VM_WRITE)
8435                 prot |= PROT_WRITE;
8436         if (vma->vm_flags & VM_EXEC)
8437                 prot |= PROT_EXEC;
8438
8439         if (vma->vm_flags & VM_MAYSHARE)
8440                 flags = MAP_SHARED;
8441         else
8442                 flags = MAP_PRIVATE;
8443
8444         if (vma->vm_flags & VM_LOCKED)
8445                 flags |= MAP_LOCKED;
8446         if (is_vm_hugetlb_page(vma))
8447                 flags |= MAP_HUGETLB;
8448
8449         if (file) {
8450                 struct inode *inode;
8451                 dev_t dev;
8452
8453                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8454                 if (!buf) {
8455                         name = "//enomem";
8456                         goto cpy_name;
8457                 }
8458                 /*
8459                  * d_path() works from the end of the rb backwards, so we
8460                  * need to add enough zero bytes after the string to handle
8461                  * the 64bit alignment we do later.
8462                  */
8463                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8464                 if (IS_ERR(name)) {
8465                         name = "//toolong";
8466                         goto cpy_name;
8467                 }
8468                 inode = file_inode(vma->vm_file);
8469                 dev = inode->i_sb->s_dev;
8470                 ino = inode->i_ino;
8471                 gen = inode->i_generation;
8472                 maj = MAJOR(dev);
8473                 min = MINOR(dev);
8474
8475                 goto got_name;
8476         } else {
8477                 if (vma->vm_ops && vma->vm_ops->name) {
8478                         name = (char *) vma->vm_ops->name(vma);
8479                         if (name)
8480                                 goto cpy_name;
8481                 }
8482
8483                 name = (char *)arch_vma_name(vma);
8484                 if (name)
8485                         goto cpy_name;
8486
8487                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8488                                 vma->vm_end >= vma->vm_mm->brk) {
8489                         name = "[heap]";
8490                         goto cpy_name;
8491                 }
8492                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8493                                 vma->vm_end >= vma->vm_mm->start_stack) {
8494                         name = "[stack]";
8495                         goto cpy_name;
8496                 }
8497
8498                 name = "//anon";
8499                 goto cpy_name;
8500         }
8501
8502 cpy_name:
8503         strlcpy(tmp, name, sizeof(tmp));
8504         name = tmp;
8505 got_name:
8506         /*
8507          * Since our buffer works in 8 byte units we need to align our string
8508          * size to a multiple of 8. However, we must guarantee the tail end is
8509          * zero'd out to avoid leaking random bits to userspace.
8510          */
8511         size = strlen(name)+1;
8512         while (!IS_ALIGNED(size, sizeof(u64)))
8513                 name[size++] = '\0';
8514
8515         mmap_event->file_name = name;
8516         mmap_event->file_size = size;
8517         mmap_event->maj = maj;
8518         mmap_event->min = min;
8519         mmap_event->ino = ino;
8520         mmap_event->ino_generation = gen;
8521         mmap_event->prot = prot;
8522         mmap_event->flags = flags;
8523
8524         if (!(vma->vm_flags & VM_EXEC))
8525                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8526
8527         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8528
8529         if (atomic_read(&nr_build_id_events))
8530                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8531
8532         perf_iterate_sb(perf_event_mmap_output,
8533                        mmap_event,
8534                        NULL);
8535
8536         kfree(buf);
8537 }
8538
8539 /*
8540  * Check whether inode and address range match filter criteria.
8541  */
8542 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8543                                      struct file *file, unsigned long offset,
8544                                      unsigned long size)
8545 {
8546         /* d_inode(NULL) won't be equal to any mapped user-space file */
8547         if (!filter->path.dentry)
8548                 return false;
8549
8550         if (d_inode(filter->path.dentry) != file_inode(file))
8551                 return false;
8552
8553         if (filter->offset > offset + size)
8554                 return false;
8555
8556         if (filter->offset + filter->size < offset)
8557                 return false;
8558
8559         return true;
8560 }
8561
8562 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8563                                         struct vm_area_struct *vma,
8564                                         struct perf_addr_filter_range *fr)
8565 {
8566         unsigned long vma_size = vma->vm_end - vma->vm_start;
8567         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8568         struct file *file = vma->vm_file;
8569
8570         if (!perf_addr_filter_match(filter, file, off, vma_size))
8571                 return false;
8572
8573         if (filter->offset < off) {
8574                 fr->start = vma->vm_start;
8575                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8576         } else {
8577                 fr->start = vma->vm_start + filter->offset - off;
8578                 fr->size = min(vma->vm_end - fr->start, filter->size);
8579         }
8580
8581         return true;
8582 }
8583
8584 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8585 {
8586         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8587         struct vm_area_struct *vma = data;
8588         struct perf_addr_filter *filter;
8589         unsigned int restart = 0, count = 0;
8590         unsigned long flags;
8591
8592         if (!has_addr_filter(event))
8593                 return;
8594
8595         if (!vma->vm_file)
8596                 return;
8597
8598         raw_spin_lock_irqsave(&ifh->lock, flags);
8599         list_for_each_entry(filter, &ifh->list, entry) {
8600                 if (perf_addr_filter_vma_adjust(filter, vma,
8601                                                 &event->addr_filter_ranges[count]))
8602                         restart++;
8603
8604                 count++;
8605         }
8606
8607         if (restart)
8608                 event->addr_filters_gen++;
8609         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8610
8611         if (restart)
8612                 perf_event_stop(event, 1);
8613 }
8614
8615 /*
8616  * Adjust all task's events' filters to the new vma
8617  */
8618 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8619 {
8620         struct perf_event_context *ctx;
8621         int ctxn;
8622
8623         /*
8624          * Data tracing isn't supported yet and as such there is no need
8625          * to keep track of anything that isn't related to executable code:
8626          */
8627         if (!(vma->vm_flags & VM_EXEC))
8628                 return;
8629
8630         rcu_read_lock();
8631         for_each_task_context_nr(ctxn) {
8632                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8633                 if (!ctx)
8634                         continue;
8635
8636                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8637         }
8638         rcu_read_unlock();
8639 }
8640
8641 void perf_event_mmap(struct vm_area_struct *vma)
8642 {
8643         struct perf_mmap_event mmap_event;
8644
8645         if (!atomic_read(&nr_mmap_events))
8646                 return;
8647
8648         mmap_event = (struct perf_mmap_event){
8649                 .vma    = vma,
8650                 /* .file_name */
8651                 /* .file_size */
8652                 .event_id  = {
8653                         .header = {
8654                                 .type = PERF_RECORD_MMAP,
8655                                 .misc = PERF_RECORD_MISC_USER,
8656                                 /* .size */
8657                         },
8658                         /* .pid */
8659                         /* .tid */
8660                         .start  = vma->vm_start,
8661                         .len    = vma->vm_end - vma->vm_start,
8662                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8663                 },
8664                 /* .maj (attr_mmap2 only) */
8665                 /* .min (attr_mmap2 only) */
8666                 /* .ino (attr_mmap2 only) */
8667                 /* .ino_generation (attr_mmap2 only) */
8668                 /* .prot (attr_mmap2 only) */
8669                 /* .flags (attr_mmap2 only) */
8670         };
8671
8672         perf_addr_filters_adjust(vma);
8673         perf_event_mmap_event(&mmap_event);
8674 }
8675
8676 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8677                           unsigned long size, u64 flags)
8678 {
8679         struct perf_output_handle handle;
8680         struct perf_sample_data sample;
8681         struct perf_aux_event {
8682                 struct perf_event_header        header;
8683                 u64                             offset;
8684                 u64                             size;
8685                 u64                             flags;
8686         } rec = {
8687                 .header = {
8688                         .type = PERF_RECORD_AUX,
8689                         .misc = 0,
8690                         .size = sizeof(rec),
8691                 },
8692                 .offset         = head,
8693                 .size           = size,
8694                 .flags          = flags,
8695         };
8696         int ret;
8697
8698         perf_event_header__init_id(&rec.header, &sample, event);
8699         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8700
8701         if (ret)
8702                 return;
8703
8704         perf_output_put(&handle, rec);
8705         perf_event__output_id_sample(event, &handle, &sample);
8706
8707         perf_output_end(&handle);
8708 }
8709
8710 /*
8711  * Lost/dropped samples logging
8712  */
8713 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8714 {
8715         struct perf_output_handle handle;
8716         struct perf_sample_data sample;
8717         int ret;
8718
8719         struct {
8720                 struct perf_event_header        header;
8721                 u64                             lost;
8722         } lost_samples_event = {
8723                 .header = {
8724                         .type = PERF_RECORD_LOST_SAMPLES,
8725                         .misc = 0,
8726                         .size = sizeof(lost_samples_event),
8727                 },
8728                 .lost           = lost,
8729         };
8730
8731         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8732
8733         ret = perf_output_begin(&handle, &sample, event,
8734                                 lost_samples_event.header.size);
8735         if (ret)
8736                 return;
8737
8738         perf_output_put(&handle, lost_samples_event);
8739         perf_event__output_id_sample(event, &handle, &sample);
8740         perf_output_end(&handle);
8741 }
8742
8743 /*
8744  * context_switch tracking
8745  */
8746
8747 struct perf_switch_event {
8748         struct task_struct      *task;
8749         struct task_struct      *next_prev;
8750
8751         struct {
8752                 struct perf_event_header        header;
8753                 u32                             next_prev_pid;
8754                 u32                             next_prev_tid;
8755         } event_id;
8756 };
8757
8758 static int perf_event_switch_match(struct perf_event *event)
8759 {
8760         return event->attr.context_switch;
8761 }
8762
8763 static void perf_event_switch_output(struct perf_event *event, void *data)
8764 {
8765         struct perf_switch_event *se = data;
8766         struct perf_output_handle handle;
8767         struct perf_sample_data sample;
8768         int ret;
8769
8770         if (!perf_event_switch_match(event))
8771                 return;
8772
8773         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8774         if (event->ctx->task) {
8775                 se->event_id.header.type = PERF_RECORD_SWITCH;
8776                 se->event_id.header.size = sizeof(se->event_id.header);
8777         } else {
8778                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8779                 se->event_id.header.size = sizeof(se->event_id);
8780                 se->event_id.next_prev_pid =
8781                                         perf_event_pid(event, se->next_prev);
8782                 se->event_id.next_prev_tid =
8783                                         perf_event_tid(event, se->next_prev);
8784         }
8785
8786         perf_event_header__init_id(&se->event_id.header, &sample, event);
8787
8788         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8789         if (ret)
8790                 return;
8791
8792         if (event->ctx->task)
8793                 perf_output_put(&handle, se->event_id.header);
8794         else
8795                 perf_output_put(&handle, se->event_id);
8796
8797         perf_event__output_id_sample(event, &handle, &sample);
8798
8799         perf_output_end(&handle);
8800 }
8801
8802 static void perf_event_switch(struct task_struct *task,
8803                               struct task_struct *next_prev, bool sched_in)
8804 {
8805         struct perf_switch_event switch_event;
8806
8807         /* N.B. caller checks nr_switch_events != 0 */
8808
8809         switch_event = (struct perf_switch_event){
8810                 .task           = task,
8811                 .next_prev      = next_prev,
8812                 .event_id       = {
8813                         .header = {
8814                                 /* .type */
8815                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8816                                 /* .size */
8817                         },
8818                         /* .next_prev_pid */
8819                         /* .next_prev_tid */
8820                 },
8821         };
8822
8823         if (!sched_in && task->on_rq) {
8824                 switch_event.event_id.header.misc |=
8825                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8826         }
8827
8828         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8829 }
8830
8831 /*
8832  * IRQ throttle logging
8833  */
8834
8835 static void perf_log_throttle(struct perf_event *event, int enable)
8836 {
8837         struct perf_output_handle handle;
8838         struct perf_sample_data sample;
8839         int ret;
8840
8841         struct {
8842                 struct perf_event_header        header;
8843                 u64                             time;
8844                 u64                             id;
8845                 u64                             stream_id;
8846         } throttle_event = {
8847                 .header = {
8848                         .type = PERF_RECORD_THROTTLE,
8849                         .misc = 0,
8850                         .size = sizeof(throttle_event),
8851                 },
8852                 .time           = perf_event_clock(event),
8853                 .id             = primary_event_id(event),
8854                 .stream_id      = event->id,
8855         };
8856
8857         if (enable)
8858                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8859
8860         perf_event_header__init_id(&throttle_event.header, &sample, event);
8861
8862         ret = perf_output_begin(&handle, &sample, event,
8863                                 throttle_event.header.size);
8864         if (ret)
8865                 return;
8866
8867         perf_output_put(&handle, throttle_event);
8868         perf_event__output_id_sample(event, &handle, &sample);
8869         perf_output_end(&handle);
8870 }
8871
8872 /*
8873  * ksymbol register/unregister tracking
8874  */
8875
8876 struct perf_ksymbol_event {
8877         const char      *name;
8878         int             name_len;
8879         struct {
8880                 struct perf_event_header        header;
8881                 u64                             addr;
8882                 u32                             len;
8883                 u16                             ksym_type;
8884                 u16                             flags;
8885         } event_id;
8886 };
8887
8888 static int perf_event_ksymbol_match(struct perf_event *event)
8889 {
8890         return event->attr.ksymbol;
8891 }
8892
8893 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8894 {
8895         struct perf_ksymbol_event *ksymbol_event = data;
8896         struct perf_output_handle handle;
8897         struct perf_sample_data sample;
8898         int ret;
8899
8900         if (!perf_event_ksymbol_match(event))
8901                 return;
8902
8903         perf_event_header__init_id(&ksymbol_event->event_id.header,
8904                                    &sample, event);
8905         ret = perf_output_begin(&handle, &sample, event,
8906                                 ksymbol_event->event_id.header.size);
8907         if (ret)
8908                 return;
8909
8910         perf_output_put(&handle, ksymbol_event->event_id);
8911         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8912         perf_event__output_id_sample(event, &handle, &sample);
8913
8914         perf_output_end(&handle);
8915 }
8916
8917 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8918                         const char *sym)
8919 {
8920         struct perf_ksymbol_event ksymbol_event;
8921         char name[KSYM_NAME_LEN];
8922         u16 flags = 0;
8923         int name_len;
8924
8925         if (!atomic_read(&nr_ksymbol_events))
8926                 return;
8927
8928         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8929             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8930                 goto err;
8931
8932         strlcpy(name, sym, KSYM_NAME_LEN);
8933         name_len = strlen(name) + 1;
8934         while (!IS_ALIGNED(name_len, sizeof(u64)))
8935                 name[name_len++] = '\0';
8936         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8937
8938         if (unregister)
8939                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8940
8941         ksymbol_event = (struct perf_ksymbol_event){
8942                 .name = name,
8943                 .name_len = name_len,
8944                 .event_id = {
8945                         .header = {
8946                                 .type = PERF_RECORD_KSYMBOL,
8947                                 .size = sizeof(ksymbol_event.event_id) +
8948                                         name_len,
8949                         },
8950                         .addr = addr,
8951                         .len = len,
8952                         .ksym_type = ksym_type,
8953                         .flags = flags,
8954                 },
8955         };
8956
8957         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8958         return;
8959 err:
8960         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8961 }
8962
8963 /*
8964  * bpf program load/unload tracking
8965  */
8966
8967 struct perf_bpf_event {
8968         struct bpf_prog *prog;
8969         struct {
8970                 struct perf_event_header        header;
8971                 u16                             type;
8972                 u16                             flags;
8973                 u32                             id;
8974                 u8                              tag[BPF_TAG_SIZE];
8975         } event_id;
8976 };
8977
8978 static int perf_event_bpf_match(struct perf_event *event)
8979 {
8980         return event->attr.bpf_event;
8981 }
8982
8983 static void perf_event_bpf_output(struct perf_event *event, void *data)
8984 {
8985         struct perf_bpf_event *bpf_event = data;
8986         struct perf_output_handle handle;
8987         struct perf_sample_data sample;
8988         int ret;
8989
8990         if (!perf_event_bpf_match(event))
8991                 return;
8992
8993         perf_event_header__init_id(&bpf_event->event_id.header,
8994                                    &sample, event);
8995         ret = perf_output_begin(&handle, data, event,
8996                                 bpf_event->event_id.header.size);
8997         if (ret)
8998                 return;
8999
9000         perf_output_put(&handle, bpf_event->event_id);
9001         perf_event__output_id_sample(event, &handle, &sample);
9002
9003         perf_output_end(&handle);
9004 }
9005
9006 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9007                                          enum perf_bpf_event_type type)
9008 {
9009         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9010         int i;
9011
9012         if (prog->aux->func_cnt == 0) {
9013                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9014                                    (u64)(unsigned long)prog->bpf_func,
9015                                    prog->jited_len, unregister,
9016                                    prog->aux->ksym.name);
9017         } else {
9018                 for (i = 0; i < prog->aux->func_cnt; i++) {
9019                         struct bpf_prog *subprog = prog->aux->func[i];
9020
9021                         perf_event_ksymbol(
9022                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9023                                 (u64)(unsigned long)subprog->bpf_func,
9024                                 subprog->jited_len, unregister,
9025                                 prog->aux->ksym.name);
9026                 }
9027         }
9028 }
9029
9030 void perf_event_bpf_event(struct bpf_prog *prog,
9031                           enum perf_bpf_event_type type,
9032                           u16 flags)
9033 {
9034         struct perf_bpf_event bpf_event;
9035
9036         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9037             type >= PERF_BPF_EVENT_MAX)
9038                 return;
9039
9040         switch (type) {
9041         case PERF_BPF_EVENT_PROG_LOAD:
9042         case PERF_BPF_EVENT_PROG_UNLOAD:
9043                 if (atomic_read(&nr_ksymbol_events))
9044                         perf_event_bpf_emit_ksymbols(prog, type);
9045                 break;
9046         default:
9047                 break;
9048         }
9049
9050         if (!atomic_read(&nr_bpf_events))
9051                 return;
9052
9053         bpf_event = (struct perf_bpf_event){
9054                 .prog = prog,
9055                 .event_id = {
9056                         .header = {
9057                                 .type = PERF_RECORD_BPF_EVENT,
9058                                 .size = sizeof(bpf_event.event_id),
9059                         },
9060                         .type = type,
9061                         .flags = flags,
9062                         .id = prog->aux->id,
9063                 },
9064         };
9065
9066         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9067
9068         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9069         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9070 }
9071
9072 struct perf_text_poke_event {
9073         const void              *old_bytes;
9074         const void              *new_bytes;
9075         size_t                  pad;
9076         u16                     old_len;
9077         u16                     new_len;
9078
9079         struct {
9080                 struct perf_event_header        header;
9081
9082                 u64                             addr;
9083         } event_id;
9084 };
9085
9086 static int perf_event_text_poke_match(struct perf_event *event)
9087 {
9088         return event->attr.text_poke;
9089 }
9090
9091 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9092 {
9093         struct perf_text_poke_event *text_poke_event = data;
9094         struct perf_output_handle handle;
9095         struct perf_sample_data sample;
9096         u64 padding = 0;
9097         int ret;
9098
9099         if (!perf_event_text_poke_match(event))
9100                 return;
9101
9102         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9103
9104         ret = perf_output_begin(&handle, &sample, event,
9105                                 text_poke_event->event_id.header.size);
9106         if (ret)
9107                 return;
9108
9109         perf_output_put(&handle, text_poke_event->event_id);
9110         perf_output_put(&handle, text_poke_event->old_len);
9111         perf_output_put(&handle, text_poke_event->new_len);
9112
9113         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9114         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9115
9116         if (text_poke_event->pad)
9117                 __output_copy(&handle, &padding, text_poke_event->pad);
9118
9119         perf_event__output_id_sample(event, &handle, &sample);
9120
9121         perf_output_end(&handle);
9122 }
9123
9124 void perf_event_text_poke(const void *addr, const void *old_bytes,
9125                           size_t old_len, const void *new_bytes, size_t new_len)
9126 {
9127         struct perf_text_poke_event text_poke_event;
9128         size_t tot, pad;
9129
9130         if (!atomic_read(&nr_text_poke_events))
9131                 return;
9132
9133         tot  = sizeof(text_poke_event.old_len) + old_len;
9134         tot += sizeof(text_poke_event.new_len) + new_len;
9135         pad  = ALIGN(tot, sizeof(u64)) - tot;
9136
9137         text_poke_event = (struct perf_text_poke_event){
9138                 .old_bytes    = old_bytes,
9139                 .new_bytes    = new_bytes,
9140                 .pad          = pad,
9141                 .old_len      = old_len,
9142                 .new_len      = new_len,
9143                 .event_id  = {
9144                         .header = {
9145                                 .type = PERF_RECORD_TEXT_POKE,
9146                                 .misc = PERF_RECORD_MISC_KERNEL,
9147                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9148                         },
9149                         .addr = (unsigned long)addr,
9150                 },
9151         };
9152
9153         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9154 }
9155
9156 void perf_event_itrace_started(struct perf_event *event)
9157 {
9158         event->attach_state |= PERF_ATTACH_ITRACE;
9159 }
9160
9161 static void perf_log_itrace_start(struct perf_event *event)
9162 {
9163         struct perf_output_handle handle;
9164         struct perf_sample_data sample;
9165         struct perf_aux_event {
9166                 struct perf_event_header        header;
9167                 u32                             pid;
9168                 u32                             tid;
9169         } rec;
9170         int ret;
9171
9172         if (event->parent)
9173                 event = event->parent;
9174
9175         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9176             event->attach_state & PERF_ATTACH_ITRACE)
9177                 return;
9178
9179         rec.header.type = PERF_RECORD_ITRACE_START;
9180         rec.header.misc = 0;
9181         rec.header.size = sizeof(rec);
9182         rec.pid = perf_event_pid(event, current);
9183         rec.tid = perf_event_tid(event, current);
9184
9185         perf_event_header__init_id(&rec.header, &sample, event);
9186         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9187
9188         if (ret)
9189                 return;
9190
9191         perf_output_put(&handle, rec);
9192         perf_event__output_id_sample(event, &handle, &sample);
9193
9194         perf_output_end(&handle);
9195 }
9196
9197 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9198 {
9199         struct perf_output_handle handle;
9200         struct perf_sample_data sample;
9201         struct perf_aux_event {
9202                 struct perf_event_header        header;
9203                 u64                             hw_id;
9204         } rec;
9205         int ret;
9206
9207         if (event->parent)
9208                 event = event->parent;
9209
9210         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9211         rec.header.misc = 0;
9212         rec.header.size = sizeof(rec);
9213         rec.hw_id       = hw_id;
9214
9215         perf_event_header__init_id(&rec.header, &sample, event);
9216         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9217
9218         if (ret)
9219                 return;
9220
9221         perf_output_put(&handle, rec);
9222         perf_event__output_id_sample(event, &handle, &sample);
9223
9224         perf_output_end(&handle);
9225 }
9226
9227 static int
9228 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9229 {
9230         struct hw_perf_event *hwc = &event->hw;
9231         int ret = 0;
9232         u64 seq;
9233
9234         seq = __this_cpu_read(perf_throttled_seq);
9235         if (seq != hwc->interrupts_seq) {
9236                 hwc->interrupts_seq = seq;
9237                 hwc->interrupts = 1;
9238         } else {
9239                 hwc->interrupts++;
9240                 if (unlikely(throttle
9241                              && hwc->interrupts >= max_samples_per_tick)) {
9242                         __this_cpu_inc(perf_throttled_count);
9243                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9244                         hwc->interrupts = MAX_INTERRUPTS;
9245                         perf_log_throttle(event, 0);
9246                         ret = 1;
9247                 }
9248         }
9249
9250         if (event->attr.freq) {
9251                 u64 now = perf_clock();
9252                 s64 delta = now - hwc->freq_time_stamp;
9253
9254                 hwc->freq_time_stamp = now;
9255
9256                 if (delta > 0 && delta < 2*TICK_NSEC)
9257                         perf_adjust_period(event, delta, hwc->last_period, true);
9258         }
9259
9260         return ret;
9261 }
9262
9263 int perf_event_account_interrupt(struct perf_event *event)
9264 {
9265         return __perf_event_account_interrupt(event, 1);
9266 }
9267
9268 /*
9269  * Generic event overflow handling, sampling.
9270  */
9271
9272 static int __perf_event_overflow(struct perf_event *event,
9273                                    int throttle, struct perf_sample_data *data,
9274                                    struct pt_regs *regs)
9275 {
9276         int events = atomic_read(&event->event_limit);
9277         int ret = 0;
9278
9279         /*
9280          * Non-sampling counters might still use the PMI to fold short
9281          * hardware counters, ignore those.
9282          */
9283         if (unlikely(!is_sampling_event(event)))
9284                 return 0;
9285
9286         ret = __perf_event_account_interrupt(event, throttle);
9287
9288         /*
9289          * XXX event_limit might not quite work as expected on inherited
9290          * events
9291          */
9292
9293         event->pending_kill = POLL_IN;
9294         if (events && atomic_dec_and_test(&event->event_limit)) {
9295                 ret = 1;
9296                 event->pending_kill = POLL_HUP;
9297                 event->pending_addr = data->addr;
9298
9299                 perf_event_disable_inatomic(event);
9300         }
9301
9302         READ_ONCE(event->overflow_handler)(event, data, regs);
9303
9304         if (*perf_event_fasync(event) && event->pending_kill) {
9305                 event->pending_wakeup = 1;
9306                 irq_work_queue(&event->pending);
9307         }
9308
9309         return ret;
9310 }
9311
9312 int perf_event_overflow(struct perf_event *event,
9313                           struct perf_sample_data *data,
9314                           struct pt_regs *regs)
9315 {
9316         return __perf_event_overflow(event, 1, data, regs);
9317 }
9318
9319 /*
9320  * Generic software event infrastructure
9321  */
9322
9323 struct swevent_htable {
9324         struct swevent_hlist            *swevent_hlist;
9325         struct mutex                    hlist_mutex;
9326         int                             hlist_refcount;
9327
9328         /* Recursion avoidance in each contexts */
9329         int                             recursion[PERF_NR_CONTEXTS];
9330 };
9331
9332 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9333
9334 /*
9335  * We directly increment event->count and keep a second value in
9336  * event->hw.period_left to count intervals. This period event
9337  * is kept in the range [-sample_period, 0] so that we can use the
9338  * sign as trigger.
9339  */
9340
9341 u64 perf_swevent_set_period(struct perf_event *event)
9342 {
9343         struct hw_perf_event *hwc = &event->hw;
9344         u64 period = hwc->last_period;
9345         u64 nr, offset;
9346         s64 old, val;
9347
9348         hwc->last_period = hwc->sample_period;
9349
9350 again:
9351         old = val = local64_read(&hwc->period_left);
9352         if (val < 0)
9353                 return 0;
9354
9355         nr = div64_u64(period + val, period);
9356         offset = nr * period;
9357         val -= offset;
9358         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9359                 goto again;
9360
9361         return nr;
9362 }
9363
9364 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9365                                     struct perf_sample_data *data,
9366                                     struct pt_regs *regs)
9367 {
9368         struct hw_perf_event *hwc = &event->hw;
9369         int throttle = 0;
9370
9371         if (!overflow)
9372                 overflow = perf_swevent_set_period(event);
9373
9374         if (hwc->interrupts == MAX_INTERRUPTS)
9375                 return;
9376
9377         for (; overflow; overflow--) {
9378                 if (__perf_event_overflow(event, throttle,
9379                                             data, regs)) {
9380                         /*
9381                          * We inhibit the overflow from happening when
9382                          * hwc->interrupts == MAX_INTERRUPTS.
9383                          */
9384                         break;
9385                 }
9386                 throttle = 1;
9387         }
9388 }
9389
9390 static void perf_swevent_event(struct perf_event *event, u64 nr,
9391                                struct perf_sample_data *data,
9392                                struct pt_regs *regs)
9393 {
9394         struct hw_perf_event *hwc = &event->hw;
9395
9396         local64_add(nr, &event->count);
9397
9398         if (!regs)
9399                 return;
9400
9401         if (!is_sampling_event(event))
9402                 return;
9403
9404         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9405                 data->period = nr;
9406                 return perf_swevent_overflow(event, 1, data, regs);
9407         } else
9408                 data->period = event->hw.last_period;
9409
9410         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9411                 return perf_swevent_overflow(event, 1, data, regs);
9412
9413         if (local64_add_negative(nr, &hwc->period_left))
9414                 return;
9415
9416         perf_swevent_overflow(event, 0, data, regs);
9417 }
9418
9419 static int perf_exclude_event(struct perf_event *event,
9420                               struct pt_regs *regs)
9421 {
9422         if (event->hw.state & PERF_HES_STOPPED)
9423                 return 1;
9424
9425         if (regs) {
9426                 if (event->attr.exclude_user && user_mode(regs))
9427                         return 1;
9428
9429                 if (event->attr.exclude_kernel && !user_mode(regs))
9430                         return 1;
9431         }
9432
9433         return 0;
9434 }
9435
9436 static int perf_swevent_match(struct perf_event *event,
9437                                 enum perf_type_id type,
9438                                 u32 event_id,
9439                                 struct perf_sample_data *data,
9440                                 struct pt_regs *regs)
9441 {
9442         if (event->attr.type != type)
9443                 return 0;
9444
9445         if (event->attr.config != event_id)
9446                 return 0;
9447
9448         if (perf_exclude_event(event, regs))
9449                 return 0;
9450
9451         return 1;
9452 }
9453
9454 static inline u64 swevent_hash(u64 type, u32 event_id)
9455 {
9456         u64 val = event_id | (type << 32);
9457
9458         return hash_64(val, SWEVENT_HLIST_BITS);
9459 }
9460
9461 static inline struct hlist_head *
9462 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9463 {
9464         u64 hash = swevent_hash(type, event_id);
9465
9466         return &hlist->heads[hash];
9467 }
9468
9469 /* For the read side: events when they trigger */
9470 static inline struct hlist_head *
9471 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9472 {
9473         struct swevent_hlist *hlist;
9474
9475         hlist = rcu_dereference(swhash->swevent_hlist);
9476         if (!hlist)
9477                 return NULL;
9478
9479         return __find_swevent_head(hlist, type, event_id);
9480 }
9481
9482 /* For the event head insertion and removal in the hlist */
9483 static inline struct hlist_head *
9484 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9485 {
9486         struct swevent_hlist *hlist;
9487         u32 event_id = event->attr.config;
9488         u64 type = event->attr.type;
9489
9490         /*
9491          * Event scheduling is always serialized against hlist allocation
9492          * and release. Which makes the protected version suitable here.
9493          * The context lock guarantees that.
9494          */
9495         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9496                                           lockdep_is_held(&event->ctx->lock));
9497         if (!hlist)
9498                 return NULL;
9499
9500         return __find_swevent_head(hlist, type, event_id);
9501 }
9502
9503 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9504                                     u64 nr,
9505                                     struct perf_sample_data *data,
9506                                     struct pt_regs *regs)
9507 {
9508         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9509         struct perf_event *event;
9510         struct hlist_head *head;
9511
9512         rcu_read_lock();
9513         head = find_swevent_head_rcu(swhash, type, event_id);
9514         if (!head)
9515                 goto end;
9516
9517         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9518                 if (perf_swevent_match(event, type, event_id, data, regs))
9519                         perf_swevent_event(event, nr, data, regs);
9520         }
9521 end:
9522         rcu_read_unlock();
9523 }
9524
9525 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9526
9527 int perf_swevent_get_recursion_context(void)
9528 {
9529         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9530
9531         return get_recursion_context(swhash->recursion);
9532 }
9533 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9534
9535 void perf_swevent_put_recursion_context(int rctx)
9536 {
9537         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9538
9539         put_recursion_context(swhash->recursion, rctx);
9540 }
9541
9542 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9543 {
9544         struct perf_sample_data data;
9545
9546         if (WARN_ON_ONCE(!regs))
9547                 return;
9548
9549         perf_sample_data_init(&data, addr, 0);
9550         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9551 }
9552
9553 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9554 {
9555         int rctx;
9556
9557         preempt_disable_notrace();
9558         rctx = perf_swevent_get_recursion_context();
9559         if (unlikely(rctx < 0))
9560                 goto fail;
9561
9562         ___perf_sw_event(event_id, nr, regs, addr);
9563
9564         perf_swevent_put_recursion_context(rctx);
9565 fail:
9566         preempt_enable_notrace();
9567 }
9568
9569 static void perf_swevent_read(struct perf_event *event)
9570 {
9571 }
9572
9573 static int perf_swevent_add(struct perf_event *event, int flags)
9574 {
9575         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9576         struct hw_perf_event *hwc = &event->hw;
9577         struct hlist_head *head;
9578
9579         if (is_sampling_event(event)) {
9580                 hwc->last_period = hwc->sample_period;
9581                 perf_swevent_set_period(event);
9582         }
9583
9584         hwc->state = !(flags & PERF_EF_START);
9585
9586         head = find_swevent_head(swhash, event);
9587         if (WARN_ON_ONCE(!head))
9588                 return -EINVAL;
9589
9590         hlist_add_head_rcu(&event->hlist_entry, head);
9591         perf_event_update_userpage(event);
9592
9593         return 0;
9594 }
9595
9596 static void perf_swevent_del(struct perf_event *event, int flags)
9597 {
9598         hlist_del_rcu(&event->hlist_entry);
9599 }
9600
9601 static void perf_swevent_start(struct perf_event *event, int flags)
9602 {
9603         event->hw.state = 0;
9604 }
9605
9606 static void perf_swevent_stop(struct perf_event *event, int flags)
9607 {
9608         event->hw.state = PERF_HES_STOPPED;
9609 }
9610
9611 /* Deref the hlist from the update side */
9612 static inline struct swevent_hlist *
9613 swevent_hlist_deref(struct swevent_htable *swhash)
9614 {
9615         return rcu_dereference_protected(swhash->swevent_hlist,
9616                                          lockdep_is_held(&swhash->hlist_mutex));
9617 }
9618
9619 static void swevent_hlist_release(struct swevent_htable *swhash)
9620 {
9621         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9622
9623         if (!hlist)
9624                 return;
9625
9626         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9627         kfree_rcu(hlist, rcu_head);
9628 }
9629
9630 static void swevent_hlist_put_cpu(int cpu)
9631 {
9632         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9633
9634         mutex_lock(&swhash->hlist_mutex);
9635
9636         if (!--swhash->hlist_refcount)
9637                 swevent_hlist_release(swhash);
9638
9639         mutex_unlock(&swhash->hlist_mutex);
9640 }
9641
9642 static void swevent_hlist_put(void)
9643 {
9644         int cpu;
9645
9646         for_each_possible_cpu(cpu)
9647                 swevent_hlist_put_cpu(cpu);
9648 }
9649
9650 static int swevent_hlist_get_cpu(int cpu)
9651 {
9652         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9653         int err = 0;
9654
9655         mutex_lock(&swhash->hlist_mutex);
9656         if (!swevent_hlist_deref(swhash) &&
9657             cpumask_test_cpu(cpu, perf_online_mask)) {
9658                 struct swevent_hlist *hlist;
9659
9660                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9661                 if (!hlist) {
9662                         err = -ENOMEM;
9663                         goto exit;
9664                 }
9665                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9666         }
9667         swhash->hlist_refcount++;
9668 exit:
9669         mutex_unlock(&swhash->hlist_mutex);
9670
9671         return err;
9672 }
9673
9674 static int swevent_hlist_get(void)
9675 {
9676         int err, cpu, failed_cpu;
9677
9678         mutex_lock(&pmus_lock);
9679         for_each_possible_cpu(cpu) {
9680                 err = swevent_hlist_get_cpu(cpu);
9681                 if (err) {
9682                         failed_cpu = cpu;
9683                         goto fail;
9684                 }
9685         }
9686         mutex_unlock(&pmus_lock);
9687         return 0;
9688 fail:
9689         for_each_possible_cpu(cpu) {
9690                 if (cpu == failed_cpu)
9691                         break;
9692                 swevent_hlist_put_cpu(cpu);
9693         }
9694         mutex_unlock(&pmus_lock);
9695         return err;
9696 }
9697
9698 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9699
9700 static void sw_perf_event_destroy(struct perf_event *event)
9701 {
9702         u64 event_id = event->attr.config;
9703
9704         WARN_ON(event->parent);
9705
9706         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9707         swevent_hlist_put();
9708 }
9709
9710 static int perf_swevent_init(struct perf_event *event)
9711 {
9712         u64 event_id = event->attr.config;
9713
9714         if (event->attr.type != PERF_TYPE_SOFTWARE)
9715                 return -ENOENT;
9716
9717         /*
9718          * no branch sampling for software events
9719          */
9720         if (has_branch_stack(event))
9721                 return -EOPNOTSUPP;
9722
9723         switch (event_id) {
9724         case PERF_COUNT_SW_CPU_CLOCK:
9725         case PERF_COUNT_SW_TASK_CLOCK:
9726                 return -ENOENT;
9727
9728         default:
9729                 break;
9730         }
9731
9732         if (event_id >= PERF_COUNT_SW_MAX)
9733                 return -ENOENT;
9734
9735         if (!event->parent) {
9736                 int err;
9737
9738                 err = swevent_hlist_get();
9739                 if (err)
9740                         return err;
9741
9742                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9743                 event->destroy = sw_perf_event_destroy;
9744         }
9745
9746         return 0;
9747 }
9748
9749 static struct pmu perf_swevent = {
9750         .task_ctx_nr    = perf_sw_context,
9751
9752         .capabilities   = PERF_PMU_CAP_NO_NMI,
9753
9754         .event_init     = perf_swevent_init,
9755         .add            = perf_swevent_add,
9756         .del            = perf_swevent_del,
9757         .start          = perf_swevent_start,
9758         .stop           = perf_swevent_stop,
9759         .read           = perf_swevent_read,
9760 };
9761
9762 #ifdef CONFIG_EVENT_TRACING
9763
9764 static int perf_tp_filter_match(struct perf_event *event,
9765                                 struct perf_sample_data *data)
9766 {
9767         void *record = data->raw->frag.data;
9768
9769         /* only top level events have filters set */
9770         if (event->parent)
9771                 event = event->parent;
9772
9773         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9774                 return 1;
9775         return 0;
9776 }
9777
9778 static int perf_tp_event_match(struct perf_event *event,
9779                                 struct perf_sample_data *data,
9780                                 struct pt_regs *regs)
9781 {
9782         if (event->hw.state & PERF_HES_STOPPED)
9783                 return 0;
9784         /*
9785          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9786          */
9787         if (event->attr.exclude_kernel && !user_mode(regs))
9788                 return 0;
9789
9790         if (!perf_tp_filter_match(event, data))
9791                 return 0;
9792
9793         return 1;
9794 }
9795
9796 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9797                                struct trace_event_call *call, u64 count,
9798                                struct pt_regs *regs, struct hlist_head *head,
9799                                struct task_struct *task)
9800 {
9801         if (bpf_prog_array_valid(call)) {
9802                 *(struct pt_regs **)raw_data = regs;
9803                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9804                         perf_swevent_put_recursion_context(rctx);
9805                         return;
9806                 }
9807         }
9808         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9809                       rctx, task);
9810 }
9811 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9812
9813 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9814                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9815                    struct task_struct *task)
9816 {
9817         struct perf_sample_data data;
9818         struct perf_event *event;
9819
9820         struct perf_raw_record raw = {
9821                 .frag = {
9822                         .size = entry_size,
9823                         .data = record,
9824                 },
9825         };
9826
9827         perf_sample_data_init(&data, 0, 0);
9828         data.raw = &raw;
9829
9830         perf_trace_buf_update(record, event_type);
9831
9832         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9833                 if (perf_tp_event_match(event, &data, regs))
9834                         perf_swevent_event(event, count, &data, regs);
9835         }
9836
9837         /*
9838          * If we got specified a target task, also iterate its context and
9839          * deliver this event there too.
9840          */
9841         if (task && task != current) {
9842                 struct perf_event_context *ctx;
9843                 struct trace_entry *entry = record;
9844
9845                 rcu_read_lock();
9846                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9847                 if (!ctx)
9848                         goto unlock;
9849
9850                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9851                         if (event->cpu != smp_processor_id())
9852                                 continue;
9853                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9854                                 continue;
9855                         if (event->attr.config != entry->type)
9856                                 continue;
9857                         /* Cannot deliver synchronous signal to other task. */
9858                         if (event->attr.sigtrap)
9859                                 continue;
9860                         if (perf_tp_event_match(event, &data, regs))
9861                                 perf_swevent_event(event, count, &data, regs);
9862                 }
9863 unlock:
9864                 rcu_read_unlock();
9865         }
9866
9867         perf_swevent_put_recursion_context(rctx);
9868 }
9869 EXPORT_SYMBOL_GPL(perf_tp_event);
9870
9871 static void tp_perf_event_destroy(struct perf_event *event)
9872 {
9873         perf_trace_destroy(event);
9874 }
9875
9876 static int perf_tp_event_init(struct perf_event *event)
9877 {
9878         int err;
9879
9880         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9881                 return -ENOENT;
9882
9883         /*
9884          * no branch sampling for tracepoint events
9885          */
9886         if (has_branch_stack(event))
9887                 return -EOPNOTSUPP;
9888
9889         err = perf_trace_init(event);
9890         if (err)
9891                 return err;
9892
9893         event->destroy = tp_perf_event_destroy;
9894
9895         return 0;
9896 }
9897
9898 static struct pmu perf_tracepoint = {
9899         .task_ctx_nr    = perf_sw_context,
9900
9901         .event_init     = perf_tp_event_init,
9902         .add            = perf_trace_add,
9903         .del            = perf_trace_del,
9904         .start          = perf_swevent_start,
9905         .stop           = perf_swevent_stop,
9906         .read           = perf_swevent_read,
9907 };
9908
9909 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9910 /*
9911  * Flags in config, used by dynamic PMU kprobe and uprobe
9912  * The flags should match following PMU_FORMAT_ATTR().
9913  *
9914  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9915  *                               if not set, create kprobe/uprobe
9916  *
9917  * The following values specify a reference counter (or semaphore in the
9918  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9919  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9920  *
9921  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9922  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9923  */
9924 enum perf_probe_config {
9925         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9926         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9927         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9928 };
9929
9930 PMU_FORMAT_ATTR(retprobe, "config:0");
9931 #endif
9932
9933 #ifdef CONFIG_KPROBE_EVENTS
9934 static struct attribute *kprobe_attrs[] = {
9935         &format_attr_retprobe.attr,
9936         NULL,
9937 };
9938
9939 static struct attribute_group kprobe_format_group = {
9940         .name = "format",
9941         .attrs = kprobe_attrs,
9942 };
9943
9944 static const struct attribute_group *kprobe_attr_groups[] = {
9945         &kprobe_format_group,
9946         NULL,
9947 };
9948
9949 static int perf_kprobe_event_init(struct perf_event *event);
9950 static struct pmu perf_kprobe = {
9951         .task_ctx_nr    = perf_sw_context,
9952         .event_init     = perf_kprobe_event_init,
9953         .add            = perf_trace_add,
9954         .del            = perf_trace_del,
9955         .start          = perf_swevent_start,
9956         .stop           = perf_swevent_stop,
9957         .read           = perf_swevent_read,
9958         .attr_groups    = kprobe_attr_groups,
9959 };
9960
9961 static int perf_kprobe_event_init(struct perf_event *event)
9962 {
9963         int err;
9964         bool is_retprobe;
9965
9966         if (event->attr.type != perf_kprobe.type)
9967                 return -ENOENT;
9968
9969         if (!perfmon_capable())
9970                 return -EACCES;
9971
9972         /*
9973          * no branch sampling for probe events
9974          */
9975         if (has_branch_stack(event))
9976                 return -EOPNOTSUPP;
9977
9978         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9979         err = perf_kprobe_init(event, is_retprobe);
9980         if (err)
9981                 return err;
9982
9983         event->destroy = perf_kprobe_destroy;
9984
9985         return 0;
9986 }
9987 #endif /* CONFIG_KPROBE_EVENTS */
9988
9989 #ifdef CONFIG_UPROBE_EVENTS
9990 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9991
9992 static struct attribute *uprobe_attrs[] = {
9993         &format_attr_retprobe.attr,
9994         &format_attr_ref_ctr_offset.attr,
9995         NULL,
9996 };
9997
9998 static struct attribute_group uprobe_format_group = {
9999         .name = "format",
10000         .attrs = uprobe_attrs,
10001 };
10002
10003 static const struct attribute_group *uprobe_attr_groups[] = {
10004         &uprobe_format_group,
10005         NULL,
10006 };
10007
10008 static int perf_uprobe_event_init(struct perf_event *event);
10009 static struct pmu perf_uprobe = {
10010         .task_ctx_nr    = perf_sw_context,
10011         .event_init     = perf_uprobe_event_init,
10012         .add            = perf_trace_add,
10013         .del            = perf_trace_del,
10014         .start          = perf_swevent_start,
10015         .stop           = perf_swevent_stop,
10016         .read           = perf_swevent_read,
10017         .attr_groups    = uprobe_attr_groups,
10018 };
10019
10020 static int perf_uprobe_event_init(struct perf_event *event)
10021 {
10022         int err;
10023         unsigned long ref_ctr_offset;
10024         bool is_retprobe;
10025
10026         if (event->attr.type != perf_uprobe.type)
10027                 return -ENOENT;
10028
10029         if (!perfmon_capable())
10030                 return -EACCES;
10031
10032         /*
10033          * no branch sampling for probe events
10034          */
10035         if (has_branch_stack(event))
10036                 return -EOPNOTSUPP;
10037
10038         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10039         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10040         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10041         if (err)
10042                 return err;
10043
10044         event->destroy = perf_uprobe_destroy;
10045
10046         return 0;
10047 }
10048 #endif /* CONFIG_UPROBE_EVENTS */
10049
10050 static inline void perf_tp_register(void)
10051 {
10052         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10053 #ifdef CONFIG_KPROBE_EVENTS
10054         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10055 #endif
10056 #ifdef CONFIG_UPROBE_EVENTS
10057         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10058 #endif
10059 }
10060
10061 static void perf_event_free_filter(struct perf_event *event)
10062 {
10063         ftrace_profile_free_filter(event);
10064 }
10065
10066 #ifdef CONFIG_BPF_SYSCALL
10067 static void bpf_overflow_handler(struct perf_event *event,
10068                                  struct perf_sample_data *data,
10069                                  struct pt_regs *regs)
10070 {
10071         struct bpf_perf_event_data_kern ctx = {
10072                 .data = data,
10073                 .event = event,
10074         };
10075         struct bpf_prog *prog;
10076         int ret = 0;
10077
10078         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10079         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10080                 goto out;
10081         rcu_read_lock();
10082         prog = READ_ONCE(event->prog);
10083         if (prog)
10084                 ret = bpf_prog_run(prog, &ctx);
10085         rcu_read_unlock();
10086 out:
10087         __this_cpu_dec(bpf_prog_active);
10088         if (!ret)
10089                 return;
10090
10091         event->orig_overflow_handler(event, data, regs);
10092 }
10093
10094 static int perf_event_set_bpf_handler(struct perf_event *event,
10095                                       struct bpf_prog *prog,
10096                                       u64 bpf_cookie)
10097 {
10098         if (event->overflow_handler_context)
10099                 /* hw breakpoint or kernel counter */
10100                 return -EINVAL;
10101
10102         if (event->prog)
10103                 return -EEXIST;
10104
10105         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10106                 return -EINVAL;
10107
10108         if (event->attr.precise_ip &&
10109             prog->call_get_stack &&
10110             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10111              event->attr.exclude_callchain_kernel ||
10112              event->attr.exclude_callchain_user)) {
10113                 /*
10114                  * On perf_event with precise_ip, calling bpf_get_stack()
10115                  * may trigger unwinder warnings and occasional crashes.
10116                  * bpf_get_[stack|stackid] works around this issue by using
10117                  * callchain attached to perf_sample_data. If the
10118                  * perf_event does not full (kernel and user) callchain
10119                  * attached to perf_sample_data, do not allow attaching BPF
10120                  * program that calls bpf_get_[stack|stackid].
10121                  */
10122                 return -EPROTO;
10123         }
10124
10125         event->prog = prog;
10126         event->bpf_cookie = bpf_cookie;
10127         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10128         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10129         return 0;
10130 }
10131
10132 static void perf_event_free_bpf_handler(struct perf_event *event)
10133 {
10134         struct bpf_prog *prog = event->prog;
10135
10136         if (!prog)
10137                 return;
10138
10139         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10140         event->prog = NULL;
10141         bpf_prog_put(prog);
10142 }
10143 #else
10144 static int perf_event_set_bpf_handler(struct perf_event *event,
10145                                       struct bpf_prog *prog,
10146                                       u64 bpf_cookie)
10147 {
10148         return -EOPNOTSUPP;
10149 }
10150 static void perf_event_free_bpf_handler(struct perf_event *event)
10151 {
10152 }
10153 #endif
10154
10155 /*
10156  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10157  * with perf_event_open()
10158  */
10159 static inline bool perf_event_is_tracing(struct perf_event *event)
10160 {
10161         if (event->pmu == &perf_tracepoint)
10162                 return true;
10163 #ifdef CONFIG_KPROBE_EVENTS
10164         if (event->pmu == &perf_kprobe)
10165                 return true;
10166 #endif
10167 #ifdef CONFIG_UPROBE_EVENTS
10168         if (event->pmu == &perf_uprobe)
10169                 return true;
10170 #endif
10171         return false;
10172 }
10173
10174 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10175                             u64 bpf_cookie)
10176 {
10177         bool is_kprobe, is_tracepoint, is_syscall_tp;
10178
10179         if (!perf_event_is_tracing(event))
10180                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10181
10182         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10183         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10184         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10185         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10186                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10187                 return -EINVAL;
10188
10189         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10190             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10191             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10192                 return -EINVAL;
10193
10194         /* Kprobe override only works for kprobes, not uprobes. */
10195         if (prog->kprobe_override &&
10196             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10197                 return -EINVAL;
10198
10199         if (is_tracepoint || is_syscall_tp) {
10200                 int off = trace_event_get_offsets(event->tp_event);
10201
10202                 if (prog->aux->max_ctx_offset > off)
10203                         return -EACCES;
10204         }
10205
10206         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10207 }
10208
10209 void perf_event_free_bpf_prog(struct perf_event *event)
10210 {
10211         if (!perf_event_is_tracing(event)) {
10212                 perf_event_free_bpf_handler(event);
10213                 return;
10214         }
10215         perf_event_detach_bpf_prog(event);
10216 }
10217
10218 #else
10219
10220 static inline void perf_tp_register(void)
10221 {
10222 }
10223
10224 static void perf_event_free_filter(struct perf_event *event)
10225 {
10226 }
10227
10228 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10229                             u64 bpf_cookie)
10230 {
10231         return -ENOENT;
10232 }
10233
10234 void perf_event_free_bpf_prog(struct perf_event *event)
10235 {
10236 }
10237 #endif /* CONFIG_EVENT_TRACING */
10238
10239 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10240 void perf_bp_event(struct perf_event *bp, void *data)
10241 {
10242         struct perf_sample_data sample;
10243         struct pt_regs *regs = data;
10244
10245         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10246
10247         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10248                 perf_swevent_event(bp, 1, &sample, regs);
10249 }
10250 #endif
10251
10252 /*
10253  * Allocate a new address filter
10254  */
10255 static struct perf_addr_filter *
10256 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10257 {
10258         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10259         struct perf_addr_filter *filter;
10260
10261         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10262         if (!filter)
10263                 return NULL;
10264
10265         INIT_LIST_HEAD(&filter->entry);
10266         list_add_tail(&filter->entry, filters);
10267
10268         return filter;
10269 }
10270
10271 static void free_filters_list(struct list_head *filters)
10272 {
10273         struct perf_addr_filter *filter, *iter;
10274
10275         list_for_each_entry_safe(filter, iter, filters, entry) {
10276                 path_put(&filter->path);
10277                 list_del(&filter->entry);
10278                 kfree(filter);
10279         }
10280 }
10281
10282 /*
10283  * Free existing address filters and optionally install new ones
10284  */
10285 static void perf_addr_filters_splice(struct perf_event *event,
10286                                      struct list_head *head)
10287 {
10288         unsigned long flags;
10289         LIST_HEAD(list);
10290
10291         if (!has_addr_filter(event))
10292                 return;
10293
10294         /* don't bother with children, they don't have their own filters */
10295         if (event->parent)
10296                 return;
10297
10298         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10299
10300         list_splice_init(&event->addr_filters.list, &list);
10301         if (head)
10302                 list_splice(head, &event->addr_filters.list);
10303
10304         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10305
10306         free_filters_list(&list);
10307 }
10308
10309 /*
10310  * Scan through mm's vmas and see if one of them matches the
10311  * @filter; if so, adjust filter's address range.
10312  * Called with mm::mmap_lock down for reading.
10313  */
10314 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10315                                    struct mm_struct *mm,
10316                                    struct perf_addr_filter_range *fr)
10317 {
10318         struct vm_area_struct *vma;
10319
10320         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10321                 if (!vma->vm_file)
10322                         continue;
10323
10324                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10325                         return;
10326         }
10327 }
10328
10329 /*
10330  * Update event's address range filters based on the
10331  * task's existing mappings, if any.
10332  */
10333 static void perf_event_addr_filters_apply(struct perf_event *event)
10334 {
10335         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10336         struct task_struct *task = READ_ONCE(event->ctx->task);
10337         struct perf_addr_filter *filter;
10338         struct mm_struct *mm = NULL;
10339         unsigned int count = 0;
10340         unsigned long flags;
10341
10342         /*
10343          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10344          * will stop on the parent's child_mutex that our caller is also holding
10345          */
10346         if (task == TASK_TOMBSTONE)
10347                 return;
10348
10349         if (ifh->nr_file_filters) {
10350                 mm = get_task_mm(task);
10351                 if (!mm)
10352                         goto restart;
10353
10354                 mmap_read_lock(mm);
10355         }
10356
10357         raw_spin_lock_irqsave(&ifh->lock, flags);
10358         list_for_each_entry(filter, &ifh->list, entry) {
10359                 if (filter->path.dentry) {
10360                         /*
10361                          * Adjust base offset if the filter is associated to a
10362                          * binary that needs to be mapped:
10363                          */
10364                         event->addr_filter_ranges[count].start = 0;
10365                         event->addr_filter_ranges[count].size = 0;
10366
10367                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10368                 } else {
10369                         event->addr_filter_ranges[count].start = filter->offset;
10370                         event->addr_filter_ranges[count].size  = filter->size;
10371                 }
10372
10373                 count++;
10374         }
10375
10376         event->addr_filters_gen++;
10377         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10378
10379         if (ifh->nr_file_filters) {
10380                 mmap_read_unlock(mm);
10381
10382                 mmput(mm);
10383         }
10384
10385 restart:
10386         perf_event_stop(event, 1);
10387 }
10388
10389 /*
10390  * Address range filtering: limiting the data to certain
10391  * instruction address ranges. Filters are ioctl()ed to us from
10392  * userspace as ascii strings.
10393  *
10394  * Filter string format:
10395  *
10396  * ACTION RANGE_SPEC
10397  * where ACTION is one of the
10398  *  * "filter": limit the trace to this region
10399  *  * "start": start tracing from this address
10400  *  * "stop": stop tracing at this address/region;
10401  * RANGE_SPEC is
10402  *  * for kernel addresses: <start address>[/<size>]
10403  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10404  *
10405  * if <size> is not specified or is zero, the range is treated as a single
10406  * address; not valid for ACTION=="filter".
10407  */
10408 enum {
10409         IF_ACT_NONE = -1,
10410         IF_ACT_FILTER,
10411         IF_ACT_START,
10412         IF_ACT_STOP,
10413         IF_SRC_FILE,
10414         IF_SRC_KERNEL,
10415         IF_SRC_FILEADDR,
10416         IF_SRC_KERNELADDR,
10417 };
10418
10419 enum {
10420         IF_STATE_ACTION = 0,
10421         IF_STATE_SOURCE,
10422         IF_STATE_END,
10423 };
10424
10425 static const match_table_t if_tokens = {
10426         { IF_ACT_FILTER,        "filter" },
10427         { IF_ACT_START,         "start" },
10428         { IF_ACT_STOP,          "stop" },
10429         { IF_SRC_FILE,          "%u/%u@%s" },
10430         { IF_SRC_KERNEL,        "%u/%u" },
10431         { IF_SRC_FILEADDR,      "%u@%s" },
10432         { IF_SRC_KERNELADDR,    "%u" },
10433         { IF_ACT_NONE,          NULL },
10434 };
10435
10436 /*
10437  * Address filter string parser
10438  */
10439 static int
10440 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10441                              struct list_head *filters)
10442 {
10443         struct perf_addr_filter *filter = NULL;
10444         char *start, *orig, *filename = NULL;
10445         substring_t args[MAX_OPT_ARGS];
10446         int state = IF_STATE_ACTION, token;
10447         unsigned int kernel = 0;
10448         int ret = -EINVAL;
10449
10450         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10451         if (!fstr)
10452                 return -ENOMEM;
10453
10454         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10455                 static const enum perf_addr_filter_action_t actions[] = {
10456                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10457                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10458                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10459                 };
10460                 ret = -EINVAL;
10461
10462                 if (!*start)
10463                         continue;
10464
10465                 /* filter definition begins */
10466                 if (state == IF_STATE_ACTION) {
10467                         filter = perf_addr_filter_new(event, filters);
10468                         if (!filter)
10469                                 goto fail;
10470                 }
10471
10472                 token = match_token(start, if_tokens, args);
10473                 switch (token) {
10474                 case IF_ACT_FILTER:
10475                 case IF_ACT_START:
10476                 case IF_ACT_STOP:
10477                         if (state != IF_STATE_ACTION)
10478                                 goto fail;
10479
10480                         filter->action = actions[token];
10481                         state = IF_STATE_SOURCE;
10482                         break;
10483
10484                 case IF_SRC_KERNELADDR:
10485                 case IF_SRC_KERNEL:
10486                         kernel = 1;
10487                         fallthrough;
10488
10489                 case IF_SRC_FILEADDR:
10490                 case IF_SRC_FILE:
10491                         if (state != IF_STATE_SOURCE)
10492                                 goto fail;
10493
10494                         *args[0].to = 0;
10495                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10496                         if (ret)
10497                                 goto fail;
10498
10499                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10500                                 *args[1].to = 0;
10501                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10502                                 if (ret)
10503                                         goto fail;
10504                         }
10505
10506                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10507                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10508
10509                                 kfree(filename);
10510                                 filename = match_strdup(&args[fpos]);
10511                                 if (!filename) {
10512                                         ret = -ENOMEM;
10513                                         goto fail;
10514                                 }
10515                         }
10516
10517                         state = IF_STATE_END;
10518                         break;
10519
10520                 default:
10521                         goto fail;
10522                 }
10523
10524                 /*
10525                  * Filter definition is fully parsed, validate and install it.
10526                  * Make sure that it doesn't contradict itself or the event's
10527                  * attribute.
10528                  */
10529                 if (state == IF_STATE_END) {
10530                         ret = -EINVAL;
10531
10532                         /*
10533                          * ACTION "filter" must have a non-zero length region
10534                          * specified.
10535                          */
10536                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10537                             !filter->size)
10538                                 goto fail;
10539
10540                         if (!kernel) {
10541                                 if (!filename)
10542                                         goto fail;
10543
10544                                 /*
10545                                  * For now, we only support file-based filters
10546                                  * in per-task events; doing so for CPU-wide
10547                                  * events requires additional context switching
10548                                  * trickery, since same object code will be
10549                                  * mapped at different virtual addresses in
10550                                  * different processes.
10551                                  */
10552                                 ret = -EOPNOTSUPP;
10553                                 if (!event->ctx->task)
10554                                         goto fail;
10555
10556                                 /* look up the path and grab its inode */
10557                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10558                                                 &filter->path);
10559                                 if (ret)
10560                                         goto fail;
10561
10562                                 ret = -EINVAL;
10563                                 if (!filter->path.dentry ||
10564                                     !S_ISREG(d_inode(filter->path.dentry)
10565                                              ->i_mode))
10566                                         goto fail;
10567
10568                                 event->addr_filters.nr_file_filters++;
10569                         }
10570
10571                         /* ready to consume more filters */
10572                         kfree(filename);
10573                         filename = NULL;
10574                         state = IF_STATE_ACTION;
10575                         filter = NULL;
10576                         kernel = 0;
10577                 }
10578         }
10579
10580         if (state != IF_STATE_ACTION)
10581                 goto fail;
10582
10583         kfree(filename);
10584         kfree(orig);
10585
10586         return 0;
10587
10588 fail:
10589         kfree(filename);
10590         free_filters_list(filters);
10591         kfree(orig);
10592
10593         return ret;
10594 }
10595
10596 static int
10597 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10598 {
10599         LIST_HEAD(filters);
10600         int ret;
10601
10602         /*
10603          * Since this is called in perf_ioctl() path, we're already holding
10604          * ctx::mutex.
10605          */
10606         lockdep_assert_held(&event->ctx->mutex);
10607
10608         if (WARN_ON_ONCE(event->parent))
10609                 return -EINVAL;
10610
10611         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10612         if (ret)
10613                 goto fail_clear_files;
10614
10615         ret = event->pmu->addr_filters_validate(&filters);
10616         if (ret)
10617                 goto fail_free_filters;
10618
10619         /* remove existing filters, if any */
10620         perf_addr_filters_splice(event, &filters);
10621
10622         /* install new filters */
10623         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10624
10625         return ret;
10626
10627 fail_free_filters:
10628         free_filters_list(&filters);
10629
10630 fail_clear_files:
10631         event->addr_filters.nr_file_filters = 0;
10632
10633         return ret;
10634 }
10635
10636 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10637 {
10638         int ret = -EINVAL;
10639         char *filter_str;
10640
10641         filter_str = strndup_user(arg, PAGE_SIZE);
10642         if (IS_ERR(filter_str))
10643                 return PTR_ERR(filter_str);
10644
10645 #ifdef CONFIG_EVENT_TRACING
10646         if (perf_event_is_tracing(event)) {
10647                 struct perf_event_context *ctx = event->ctx;
10648
10649                 /*
10650                  * Beware, here be dragons!!
10651                  *
10652                  * the tracepoint muck will deadlock against ctx->mutex, but
10653                  * the tracepoint stuff does not actually need it. So
10654                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10655                  * already have a reference on ctx.
10656                  *
10657                  * This can result in event getting moved to a different ctx,
10658                  * but that does not affect the tracepoint state.
10659                  */
10660                 mutex_unlock(&ctx->mutex);
10661                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10662                 mutex_lock(&ctx->mutex);
10663         } else
10664 #endif
10665         if (has_addr_filter(event))
10666                 ret = perf_event_set_addr_filter(event, filter_str);
10667
10668         kfree(filter_str);
10669         return ret;
10670 }
10671
10672 /*
10673  * hrtimer based swevent callback
10674  */
10675
10676 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10677 {
10678         enum hrtimer_restart ret = HRTIMER_RESTART;
10679         struct perf_sample_data data;
10680         struct pt_regs *regs;
10681         struct perf_event *event;
10682         u64 period;
10683
10684         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10685
10686         if (event->state != PERF_EVENT_STATE_ACTIVE)
10687                 return HRTIMER_NORESTART;
10688
10689         event->pmu->read(event);
10690
10691         perf_sample_data_init(&data, 0, event->hw.last_period);
10692         regs = get_irq_regs();
10693
10694         if (regs && !perf_exclude_event(event, regs)) {
10695                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10696                         if (__perf_event_overflow(event, 1, &data, regs))
10697                                 ret = HRTIMER_NORESTART;
10698         }
10699
10700         period = max_t(u64, 10000, event->hw.sample_period);
10701         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10702
10703         return ret;
10704 }
10705
10706 static void perf_swevent_start_hrtimer(struct perf_event *event)
10707 {
10708         struct hw_perf_event *hwc = &event->hw;
10709         s64 period;
10710
10711         if (!is_sampling_event(event))
10712                 return;
10713
10714         period = local64_read(&hwc->period_left);
10715         if (period) {
10716                 if (period < 0)
10717                         period = 10000;
10718
10719                 local64_set(&hwc->period_left, 0);
10720         } else {
10721                 period = max_t(u64, 10000, hwc->sample_period);
10722         }
10723         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10724                       HRTIMER_MODE_REL_PINNED_HARD);
10725 }
10726
10727 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10728 {
10729         struct hw_perf_event *hwc = &event->hw;
10730
10731         if (is_sampling_event(event)) {
10732                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10733                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10734
10735                 hrtimer_cancel(&hwc->hrtimer);
10736         }
10737 }
10738
10739 static void perf_swevent_init_hrtimer(struct perf_event *event)
10740 {
10741         struct hw_perf_event *hwc = &event->hw;
10742
10743         if (!is_sampling_event(event))
10744                 return;
10745
10746         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10747         hwc->hrtimer.function = perf_swevent_hrtimer;
10748
10749         /*
10750          * Since hrtimers have a fixed rate, we can do a static freq->period
10751          * mapping and avoid the whole period adjust feedback stuff.
10752          */
10753         if (event->attr.freq) {
10754                 long freq = event->attr.sample_freq;
10755
10756                 event->attr.sample_period = NSEC_PER_SEC / freq;
10757                 hwc->sample_period = event->attr.sample_period;
10758                 local64_set(&hwc->period_left, hwc->sample_period);
10759                 hwc->last_period = hwc->sample_period;
10760                 event->attr.freq = 0;
10761         }
10762 }
10763
10764 /*
10765  * Software event: cpu wall time clock
10766  */
10767
10768 static void cpu_clock_event_update(struct perf_event *event)
10769 {
10770         s64 prev;
10771         u64 now;
10772
10773         now = local_clock();
10774         prev = local64_xchg(&event->hw.prev_count, now);
10775         local64_add(now - prev, &event->count);
10776 }
10777
10778 static void cpu_clock_event_start(struct perf_event *event, int flags)
10779 {
10780         local64_set(&event->hw.prev_count, local_clock());
10781         perf_swevent_start_hrtimer(event);
10782 }
10783
10784 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10785 {
10786         perf_swevent_cancel_hrtimer(event);
10787         cpu_clock_event_update(event);
10788 }
10789
10790 static int cpu_clock_event_add(struct perf_event *event, int flags)
10791 {
10792         if (flags & PERF_EF_START)
10793                 cpu_clock_event_start(event, flags);
10794         perf_event_update_userpage(event);
10795
10796         return 0;
10797 }
10798
10799 static void cpu_clock_event_del(struct perf_event *event, int flags)
10800 {
10801         cpu_clock_event_stop(event, flags);
10802 }
10803
10804 static void cpu_clock_event_read(struct perf_event *event)
10805 {
10806         cpu_clock_event_update(event);
10807 }
10808
10809 static int cpu_clock_event_init(struct perf_event *event)
10810 {
10811         if (event->attr.type != PERF_TYPE_SOFTWARE)
10812                 return -ENOENT;
10813
10814         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10815                 return -ENOENT;
10816
10817         /*
10818          * no branch sampling for software events
10819          */
10820         if (has_branch_stack(event))
10821                 return -EOPNOTSUPP;
10822
10823         perf_swevent_init_hrtimer(event);
10824
10825         return 0;
10826 }
10827
10828 static struct pmu perf_cpu_clock = {
10829         .task_ctx_nr    = perf_sw_context,
10830
10831         .capabilities   = PERF_PMU_CAP_NO_NMI,
10832
10833         .event_init     = cpu_clock_event_init,
10834         .add            = cpu_clock_event_add,
10835         .del            = cpu_clock_event_del,
10836         .start          = cpu_clock_event_start,
10837         .stop           = cpu_clock_event_stop,
10838         .read           = cpu_clock_event_read,
10839 };
10840
10841 /*
10842  * Software event: task time clock
10843  */
10844
10845 static void task_clock_event_update(struct perf_event *event, u64 now)
10846 {
10847         u64 prev;
10848         s64 delta;
10849
10850         prev = local64_xchg(&event->hw.prev_count, now);
10851         delta = now - prev;
10852         local64_add(delta, &event->count);
10853 }
10854
10855 static void task_clock_event_start(struct perf_event *event, int flags)
10856 {
10857         local64_set(&event->hw.prev_count, event->ctx->time);
10858         perf_swevent_start_hrtimer(event);
10859 }
10860
10861 static void task_clock_event_stop(struct perf_event *event, int flags)
10862 {
10863         perf_swevent_cancel_hrtimer(event);
10864         task_clock_event_update(event, event->ctx->time);
10865 }
10866
10867 static int task_clock_event_add(struct perf_event *event, int flags)
10868 {
10869         if (flags & PERF_EF_START)
10870                 task_clock_event_start(event, flags);
10871         perf_event_update_userpage(event);
10872
10873         return 0;
10874 }
10875
10876 static void task_clock_event_del(struct perf_event *event, int flags)
10877 {
10878         task_clock_event_stop(event, PERF_EF_UPDATE);
10879 }
10880
10881 static void task_clock_event_read(struct perf_event *event)
10882 {
10883         u64 now = perf_clock();
10884         u64 delta = now - event->ctx->timestamp;
10885         u64 time = event->ctx->time + delta;
10886
10887         task_clock_event_update(event, time);
10888 }
10889
10890 static int task_clock_event_init(struct perf_event *event)
10891 {
10892         if (event->attr.type != PERF_TYPE_SOFTWARE)
10893                 return -ENOENT;
10894
10895         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10896                 return -ENOENT;
10897
10898         /*
10899          * no branch sampling for software events
10900          */
10901         if (has_branch_stack(event))
10902                 return -EOPNOTSUPP;
10903
10904         perf_swevent_init_hrtimer(event);
10905
10906         return 0;
10907 }
10908
10909 static struct pmu perf_task_clock = {
10910         .task_ctx_nr    = perf_sw_context,
10911
10912         .capabilities   = PERF_PMU_CAP_NO_NMI,
10913
10914         .event_init     = task_clock_event_init,
10915         .add            = task_clock_event_add,
10916         .del            = task_clock_event_del,
10917         .start          = task_clock_event_start,
10918         .stop           = task_clock_event_stop,
10919         .read           = task_clock_event_read,
10920 };
10921
10922 static void perf_pmu_nop_void(struct pmu *pmu)
10923 {
10924 }
10925
10926 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10927 {
10928 }
10929
10930 static int perf_pmu_nop_int(struct pmu *pmu)
10931 {
10932         return 0;
10933 }
10934
10935 static int perf_event_nop_int(struct perf_event *event, u64 value)
10936 {
10937         return 0;
10938 }
10939
10940 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10941
10942 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10943 {
10944         __this_cpu_write(nop_txn_flags, flags);
10945
10946         if (flags & ~PERF_PMU_TXN_ADD)
10947                 return;
10948
10949         perf_pmu_disable(pmu);
10950 }
10951
10952 static int perf_pmu_commit_txn(struct pmu *pmu)
10953 {
10954         unsigned int flags = __this_cpu_read(nop_txn_flags);
10955
10956         __this_cpu_write(nop_txn_flags, 0);
10957
10958         if (flags & ~PERF_PMU_TXN_ADD)
10959                 return 0;
10960
10961         perf_pmu_enable(pmu);
10962         return 0;
10963 }
10964
10965 static void perf_pmu_cancel_txn(struct pmu *pmu)
10966 {
10967         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10968
10969         __this_cpu_write(nop_txn_flags, 0);
10970
10971         if (flags & ~PERF_PMU_TXN_ADD)
10972                 return;
10973
10974         perf_pmu_enable(pmu);
10975 }
10976
10977 static int perf_event_idx_default(struct perf_event *event)
10978 {
10979         return 0;
10980 }
10981
10982 /*
10983  * Ensures all contexts with the same task_ctx_nr have the same
10984  * pmu_cpu_context too.
10985  */
10986 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10987 {
10988         struct pmu *pmu;
10989
10990         if (ctxn < 0)
10991                 return NULL;
10992
10993         list_for_each_entry(pmu, &pmus, entry) {
10994                 if (pmu->task_ctx_nr == ctxn)
10995                         return pmu->pmu_cpu_context;
10996         }
10997
10998         return NULL;
10999 }
11000
11001 static void free_pmu_context(struct pmu *pmu)
11002 {
11003         /*
11004          * Static contexts such as perf_sw_context have a global lifetime
11005          * and may be shared between different PMUs. Avoid freeing them
11006          * when a single PMU is going away.
11007          */
11008         if (pmu->task_ctx_nr > perf_invalid_context)
11009                 return;
11010
11011         free_percpu(pmu->pmu_cpu_context);
11012 }
11013
11014 /*
11015  * Let userspace know that this PMU supports address range filtering:
11016  */
11017 static ssize_t nr_addr_filters_show(struct device *dev,
11018                                     struct device_attribute *attr,
11019                                     char *page)
11020 {
11021         struct pmu *pmu = dev_get_drvdata(dev);
11022
11023         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11024 }
11025 DEVICE_ATTR_RO(nr_addr_filters);
11026
11027 static struct idr pmu_idr;
11028
11029 static ssize_t
11030 type_show(struct device *dev, struct device_attribute *attr, char *page)
11031 {
11032         struct pmu *pmu = dev_get_drvdata(dev);
11033
11034         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11035 }
11036 static DEVICE_ATTR_RO(type);
11037
11038 static ssize_t
11039 perf_event_mux_interval_ms_show(struct device *dev,
11040                                 struct device_attribute *attr,
11041                                 char *page)
11042 {
11043         struct pmu *pmu = dev_get_drvdata(dev);
11044
11045         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11046 }
11047
11048 static DEFINE_MUTEX(mux_interval_mutex);
11049
11050 static ssize_t
11051 perf_event_mux_interval_ms_store(struct device *dev,
11052                                  struct device_attribute *attr,
11053                                  const char *buf, size_t count)
11054 {
11055         struct pmu *pmu = dev_get_drvdata(dev);
11056         int timer, cpu, ret;
11057
11058         ret = kstrtoint(buf, 0, &timer);
11059         if (ret)
11060                 return ret;
11061
11062         if (timer < 1)
11063                 return -EINVAL;
11064
11065         /* same value, noting to do */
11066         if (timer == pmu->hrtimer_interval_ms)
11067                 return count;
11068
11069         mutex_lock(&mux_interval_mutex);
11070         pmu->hrtimer_interval_ms = timer;
11071
11072         /* update all cpuctx for this PMU */
11073         cpus_read_lock();
11074         for_each_online_cpu(cpu) {
11075                 struct perf_cpu_context *cpuctx;
11076                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11077                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11078
11079                 cpu_function_call(cpu,
11080                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11081         }
11082         cpus_read_unlock();
11083         mutex_unlock(&mux_interval_mutex);
11084
11085         return count;
11086 }
11087 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11088
11089 static struct attribute *pmu_dev_attrs[] = {
11090         &dev_attr_type.attr,
11091         &dev_attr_perf_event_mux_interval_ms.attr,
11092         NULL,
11093 };
11094 ATTRIBUTE_GROUPS(pmu_dev);
11095
11096 static int pmu_bus_running;
11097 static struct bus_type pmu_bus = {
11098         .name           = "event_source",
11099         .dev_groups     = pmu_dev_groups,
11100 };
11101
11102 static void pmu_dev_release(struct device *dev)
11103 {
11104         kfree(dev);
11105 }
11106
11107 static int pmu_dev_alloc(struct pmu *pmu)
11108 {
11109         int ret = -ENOMEM;
11110
11111         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11112         if (!pmu->dev)
11113                 goto out;
11114
11115         pmu->dev->groups = pmu->attr_groups;
11116         device_initialize(pmu->dev);
11117         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11118         if (ret)
11119                 goto free_dev;
11120
11121         dev_set_drvdata(pmu->dev, pmu);
11122         pmu->dev->bus = &pmu_bus;
11123         pmu->dev->release = pmu_dev_release;
11124         ret = device_add(pmu->dev);
11125         if (ret)
11126                 goto free_dev;
11127
11128         /* For PMUs with address filters, throw in an extra attribute: */
11129         if (pmu->nr_addr_filters)
11130                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11131
11132         if (ret)
11133                 goto del_dev;
11134
11135         if (pmu->attr_update)
11136                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11137
11138         if (ret)
11139                 goto del_dev;
11140
11141 out:
11142         return ret;
11143
11144 del_dev:
11145         device_del(pmu->dev);
11146
11147 free_dev:
11148         put_device(pmu->dev);
11149         goto out;
11150 }
11151
11152 static struct lock_class_key cpuctx_mutex;
11153 static struct lock_class_key cpuctx_lock;
11154
11155 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11156 {
11157         int cpu, ret, max = PERF_TYPE_MAX;
11158
11159         mutex_lock(&pmus_lock);
11160         ret = -ENOMEM;
11161         pmu->pmu_disable_count = alloc_percpu(int);
11162         if (!pmu->pmu_disable_count)
11163                 goto unlock;
11164
11165         pmu->type = -1;
11166         if (!name)
11167                 goto skip_type;
11168         pmu->name = name;
11169
11170         if (type != PERF_TYPE_SOFTWARE) {
11171                 if (type >= 0)
11172                         max = type;
11173
11174                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11175                 if (ret < 0)
11176                         goto free_pdc;
11177
11178                 WARN_ON(type >= 0 && ret != type);
11179
11180                 type = ret;
11181         }
11182         pmu->type = type;
11183
11184         if (pmu_bus_running) {
11185                 ret = pmu_dev_alloc(pmu);
11186                 if (ret)
11187                         goto free_idr;
11188         }
11189
11190 skip_type:
11191         if (pmu->task_ctx_nr == perf_hw_context) {
11192                 static int hw_context_taken = 0;
11193
11194                 /*
11195                  * Other than systems with heterogeneous CPUs, it never makes
11196                  * sense for two PMUs to share perf_hw_context. PMUs which are
11197                  * uncore must use perf_invalid_context.
11198                  */
11199                 if (WARN_ON_ONCE(hw_context_taken &&
11200                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11201                         pmu->task_ctx_nr = perf_invalid_context;
11202
11203                 hw_context_taken = 1;
11204         }
11205
11206         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11207         if (pmu->pmu_cpu_context)
11208                 goto got_cpu_context;
11209
11210         ret = -ENOMEM;
11211         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11212         if (!pmu->pmu_cpu_context)
11213                 goto free_dev;
11214
11215         for_each_possible_cpu(cpu) {
11216                 struct perf_cpu_context *cpuctx;
11217
11218                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11219                 __perf_event_init_context(&cpuctx->ctx);
11220                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11221                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11222                 cpuctx->ctx.pmu = pmu;
11223                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11224
11225                 __perf_mux_hrtimer_init(cpuctx, cpu);
11226
11227                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11228                 cpuctx->heap = cpuctx->heap_default;
11229         }
11230
11231 got_cpu_context:
11232         if (!pmu->start_txn) {
11233                 if (pmu->pmu_enable) {
11234                         /*
11235                          * If we have pmu_enable/pmu_disable calls, install
11236                          * transaction stubs that use that to try and batch
11237                          * hardware accesses.
11238                          */
11239                         pmu->start_txn  = perf_pmu_start_txn;
11240                         pmu->commit_txn = perf_pmu_commit_txn;
11241                         pmu->cancel_txn = perf_pmu_cancel_txn;
11242                 } else {
11243                         pmu->start_txn  = perf_pmu_nop_txn;
11244                         pmu->commit_txn = perf_pmu_nop_int;
11245                         pmu->cancel_txn = perf_pmu_nop_void;
11246                 }
11247         }
11248
11249         if (!pmu->pmu_enable) {
11250                 pmu->pmu_enable  = perf_pmu_nop_void;
11251                 pmu->pmu_disable = perf_pmu_nop_void;
11252         }
11253
11254         if (!pmu->check_period)
11255                 pmu->check_period = perf_event_nop_int;
11256
11257         if (!pmu->event_idx)
11258                 pmu->event_idx = perf_event_idx_default;
11259
11260         /*
11261          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11262          * since these cannot be in the IDR. This way the linear search
11263          * is fast, provided a valid software event is provided.
11264          */
11265         if (type == PERF_TYPE_SOFTWARE || !name)
11266                 list_add_rcu(&pmu->entry, &pmus);
11267         else
11268                 list_add_tail_rcu(&pmu->entry, &pmus);
11269
11270         atomic_set(&pmu->exclusive_cnt, 0);
11271         ret = 0;
11272 unlock:
11273         mutex_unlock(&pmus_lock);
11274
11275         return ret;
11276
11277 free_dev:
11278         device_del(pmu->dev);
11279         put_device(pmu->dev);
11280
11281 free_idr:
11282         if (pmu->type != PERF_TYPE_SOFTWARE)
11283                 idr_remove(&pmu_idr, pmu->type);
11284
11285 free_pdc:
11286         free_percpu(pmu->pmu_disable_count);
11287         goto unlock;
11288 }
11289 EXPORT_SYMBOL_GPL(perf_pmu_register);
11290
11291 void perf_pmu_unregister(struct pmu *pmu)
11292 {
11293         mutex_lock(&pmus_lock);
11294         list_del_rcu(&pmu->entry);
11295
11296         /*
11297          * We dereference the pmu list under both SRCU and regular RCU, so
11298          * synchronize against both of those.
11299          */
11300         synchronize_srcu(&pmus_srcu);
11301         synchronize_rcu();
11302
11303         free_percpu(pmu->pmu_disable_count);
11304         if (pmu->type != PERF_TYPE_SOFTWARE)
11305                 idr_remove(&pmu_idr, pmu->type);
11306         if (pmu_bus_running) {
11307                 if (pmu->nr_addr_filters)
11308                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11309                 device_del(pmu->dev);
11310                 put_device(pmu->dev);
11311         }
11312         free_pmu_context(pmu);
11313         mutex_unlock(&pmus_lock);
11314 }
11315 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11316
11317 static inline bool has_extended_regs(struct perf_event *event)
11318 {
11319         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11320                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11321 }
11322
11323 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11324 {
11325         struct perf_event_context *ctx = NULL;
11326         int ret;
11327
11328         if (!try_module_get(pmu->module))
11329                 return -ENODEV;
11330
11331         /*
11332          * A number of pmu->event_init() methods iterate the sibling_list to,
11333          * for example, validate if the group fits on the PMU. Therefore,
11334          * if this is a sibling event, acquire the ctx->mutex to protect
11335          * the sibling_list.
11336          */
11337         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11338                 /*
11339                  * This ctx->mutex can nest when we're called through
11340                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11341                  */
11342                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11343                                                  SINGLE_DEPTH_NESTING);
11344                 BUG_ON(!ctx);
11345         }
11346
11347         event->pmu = pmu;
11348         ret = pmu->event_init(event);
11349
11350         if (ctx)
11351                 perf_event_ctx_unlock(event->group_leader, ctx);
11352
11353         if (!ret) {
11354                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11355                     has_extended_regs(event))
11356                         ret = -EOPNOTSUPP;
11357
11358                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11359                     event_has_any_exclude_flag(event))
11360                         ret = -EINVAL;
11361
11362                 if (ret && event->destroy)
11363                         event->destroy(event);
11364         }
11365
11366         if (ret)
11367                 module_put(pmu->module);
11368
11369         return ret;
11370 }
11371
11372 static struct pmu *perf_init_event(struct perf_event *event)
11373 {
11374         bool extended_type = false;
11375         int idx, type, ret;
11376         struct pmu *pmu;
11377
11378         idx = srcu_read_lock(&pmus_srcu);
11379
11380         /* Try parent's PMU first: */
11381         if (event->parent && event->parent->pmu) {
11382                 pmu = event->parent->pmu;
11383                 ret = perf_try_init_event(pmu, event);
11384                 if (!ret)
11385                         goto unlock;
11386         }
11387
11388         /*
11389          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11390          * are often aliases for PERF_TYPE_RAW.
11391          */
11392         type = event->attr.type;
11393         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11394                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11395                 if (!type) {
11396                         type = PERF_TYPE_RAW;
11397                 } else {
11398                         extended_type = true;
11399                         event->attr.config &= PERF_HW_EVENT_MASK;
11400                 }
11401         }
11402
11403 again:
11404         rcu_read_lock();
11405         pmu = idr_find(&pmu_idr, type);
11406         rcu_read_unlock();
11407         if (pmu) {
11408                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11409                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11410                         goto fail;
11411
11412                 ret = perf_try_init_event(pmu, event);
11413                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11414                         type = event->attr.type;
11415                         goto again;
11416                 }
11417
11418                 if (ret)
11419                         pmu = ERR_PTR(ret);
11420
11421                 goto unlock;
11422         }
11423
11424         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11425                 ret = perf_try_init_event(pmu, event);
11426                 if (!ret)
11427                         goto unlock;
11428
11429                 if (ret != -ENOENT) {
11430                         pmu = ERR_PTR(ret);
11431                         goto unlock;
11432                 }
11433         }
11434 fail:
11435         pmu = ERR_PTR(-ENOENT);
11436 unlock:
11437         srcu_read_unlock(&pmus_srcu, idx);
11438
11439         return pmu;
11440 }
11441
11442 static void attach_sb_event(struct perf_event *event)
11443 {
11444         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11445
11446         raw_spin_lock(&pel->lock);
11447         list_add_rcu(&event->sb_list, &pel->list);
11448         raw_spin_unlock(&pel->lock);
11449 }
11450
11451 /*
11452  * We keep a list of all !task (and therefore per-cpu) events
11453  * that need to receive side-band records.
11454  *
11455  * This avoids having to scan all the various PMU per-cpu contexts
11456  * looking for them.
11457  */
11458 static void account_pmu_sb_event(struct perf_event *event)
11459 {
11460         if (is_sb_event(event))
11461                 attach_sb_event(event);
11462 }
11463
11464 static void account_event_cpu(struct perf_event *event, int cpu)
11465 {
11466         if (event->parent)
11467                 return;
11468
11469         if (is_cgroup_event(event))
11470                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11471 }
11472
11473 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11474 static void account_freq_event_nohz(void)
11475 {
11476 #ifdef CONFIG_NO_HZ_FULL
11477         /* Lock so we don't race with concurrent unaccount */
11478         spin_lock(&nr_freq_lock);
11479         if (atomic_inc_return(&nr_freq_events) == 1)
11480                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11481         spin_unlock(&nr_freq_lock);
11482 #endif
11483 }
11484
11485 static void account_freq_event(void)
11486 {
11487         if (tick_nohz_full_enabled())
11488                 account_freq_event_nohz();
11489         else
11490                 atomic_inc(&nr_freq_events);
11491 }
11492
11493
11494 static void account_event(struct perf_event *event)
11495 {
11496         bool inc = false;
11497
11498         if (event->parent)
11499                 return;
11500
11501         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11502                 inc = true;
11503         if (event->attr.mmap || event->attr.mmap_data)
11504                 atomic_inc(&nr_mmap_events);
11505         if (event->attr.build_id)
11506                 atomic_inc(&nr_build_id_events);
11507         if (event->attr.comm)
11508                 atomic_inc(&nr_comm_events);
11509         if (event->attr.namespaces)
11510                 atomic_inc(&nr_namespaces_events);
11511         if (event->attr.cgroup)
11512                 atomic_inc(&nr_cgroup_events);
11513         if (event->attr.task)
11514                 atomic_inc(&nr_task_events);
11515         if (event->attr.freq)
11516                 account_freq_event();
11517         if (event->attr.context_switch) {
11518                 atomic_inc(&nr_switch_events);
11519                 inc = true;
11520         }
11521         if (has_branch_stack(event))
11522                 inc = true;
11523         if (is_cgroup_event(event))
11524                 inc = true;
11525         if (event->attr.ksymbol)
11526                 atomic_inc(&nr_ksymbol_events);
11527         if (event->attr.bpf_event)
11528                 atomic_inc(&nr_bpf_events);
11529         if (event->attr.text_poke)
11530                 atomic_inc(&nr_text_poke_events);
11531
11532         if (inc) {
11533                 /*
11534                  * We need the mutex here because static_branch_enable()
11535                  * must complete *before* the perf_sched_count increment
11536                  * becomes visible.
11537                  */
11538                 if (atomic_inc_not_zero(&perf_sched_count))
11539                         goto enabled;
11540
11541                 mutex_lock(&perf_sched_mutex);
11542                 if (!atomic_read(&perf_sched_count)) {
11543                         static_branch_enable(&perf_sched_events);
11544                         /*
11545                          * Guarantee that all CPUs observe they key change and
11546                          * call the perf scheduling hooks before proceeding to
11547                          * install events that need them.
11548                          */
11549                         synchronize_rcu();
11550                 }
11551                 /*
11552                  * Now that we have waited for the sync_sched(), allow further
11553                  * increments to by-pass the mutex.
11554                  */
11555                 atomic_inc(&perf_sched_count);
11556                 mutex_unlock(&perf_sched_mutex);
11557         }
11558 enabled:
11559
11560         account_event_cpu(event, event->cpu);
11561
11562         account_pmu_sb_event(event);
11563 }
11564
11565 /*
11566  * Allocate and initialize an event structure
11567  */
11568 static struct perf_event *
11569 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11570                  struct task_struct *task,
11571                  struct perf_event *group_leader,
11572                  struct perf_event *parent_event,
11573                  perf_overflow_handler_t overflow_handler,
11574                  void *context, int cgroup_fd)
11575 {
11576         struct pmu *pmu;
11577         struct perf_event *event;
11578         struct hw_perf_event *hwc;
11579         long err = -EINVAL;
11580         int node;
11581
11582         if ((unsigned)cpu >= nr_cpu_ids) {
11583                 if (!task || cpu != -1)
11584                         return ERR_PTR(-EINVAL);
11585         }
11586         if (attr->sigtrap && !task) {
11587                 /* Requires a task: avoid signalling random tasks. */
11588                 return ERR_PTR(-EINVAL);
11589         }
11590
11591         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11592         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11593                                       node);
11594         if (!event)
11595                 return ERR_PTR(-ENOMEM);
11596
11597         /*
11598          * Single events are their own group leaders, with an
11599          * empty sibling list:
11600          */
11601         if (!group_leader)
11602                 group_leader = event;
11603
11604         mutex_init(&event->child_mutex);
11605         INIT_LIST_HEAD(&event->child_list);
11606
11607         INIT_LIST_HEAD(&event->event_entry);
11608         INIT_LIST_HEAD(&event->sibling_list);
11609         INIT_LIST_HEAD(&event->active_list);
11610         init_event_group(event);
11611         INIT_LIST_HEAD(&event->rb_entry);
11612         INIT_LIST_HEAD(&event->active_entry);
11613         INIT_LIST_HEAD(&event->addr_filters.list);
11614         INIT_HLIST_NODE(&event->hlist_entry);
11615
11616
11617         init_waitqueue_head(&event->waitq);
11618         event->pending_disable = -1;
11619         init_irq_work(&event->pending, perf_pending_event);
11620
11621         mutex_init(&event->mmap_mutex);
11622         raw_spin_lock_init(&event->addr_filters.lock);
11623
11624         atomic_long_set(&event->refcount, 1);
11625         event->cpu              = cpu;
11626         event->attr             = *attr;
11627         event->group_leader     = group_leader;
11628         event->pmu              = NULL;
11629         event->oncpu            = -1;
11630
11631         event->parent           = parent_event;
11632
11633         event->ns               = get_pid_ns(task_active_pid_ns(current));
11634         event->id               = atomic64_inc_return(&perf_event_id);
11635
11636         event->state            = PERF_EVENT_STATE_INACTIVE;
11637
11638         if (event->attr.sigtrap)
11639                 atomic_set(&event->event_limit, 1);
11640
11641         if (task) {
11642                 event->attach_state = PERF_ATTACH_TASK;
11643                 /*
11644                  * XXX pmu::event_init needs to know what task to account to
11645                  * and we cannot use the ctx information because we need the
11646                  * pmu before we get a ctx.
11647                  */
11648                 event->hw.target = get_task_struct(task);
11649         }
11650
11651         event->clock = &local_clock;
11652         if (parent_event)
11653                 event->clock = parent_event->clock;
11654
11655         if (!overflow_handler && parent_event) {
11656                 overflow_handler = parent_event->overflow_handler;
11657                 context = parent_event->overflow_handler_context;
11658 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11659                 if (overflow_handler == bpf_overflow_handler) {
11660                         struct bpf_prog *prog = parent_event->prog;
11661
11662                         bpf_prog_inc(prog);
11663                         event->prog = prog;
11664                         event->orig_overflow_handler =
11665                                 parent_event->orig_overflow_handler;
11666                 }
11667 #endif
11668         }
11669
11670         if (overflow_handler) {
11671                 event->overflow_handler = overflow_handler;
11672                 event->overflow_handler_context = context;
11673         } else if (is_write_backward(event)){
11674                 event->overflow_handler = perf_event_output_backward;
11675                 event->overflow_handler_context = NULL;
11676         } else {
11677                 event->overflow_handler = perf_event_output_forward;
11678                 event->overflow_handler_context = NULL;
11679         }
11680
11681         perf_event__state_init(event);
11682
11683         pmu = NULL;
11684
11685         hwc = &event->hw;
11686         hwc->sample_period = attr->sample_period;
11687         if (attr->freq && attr->sample_freq)
11688                 hwc->sample_period = 1;
11689         hwc->last_period = hwc->sample_period;
11690
11691         local64_set(&hwc->period_left, hwc->sample_period);
11692
11693         /*
11694          * We currently do not support PERF_SAMPLE_READ on inherited events.
11695          * See perf_output_read().
11696          */
11697         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11698                 goto err_ns;
11699
11700         if (!has_branch_stack(event))
11701                 event->attr.branch_sample_type = 0;
11702
11703         pmu = perf_init_event(event);
11704         if (IS_ERR(pmu)) {
11705                 err = PTR_ERR(pmu);
11706                 goto err_ns;
11707         }
11708
11709         /*
11710          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11711          * be different on other CPUs in the uncore mask.
11712          */
11713         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11714                 err = -EINVAL;
11715                 goto err_pmu;
11716         }
11717
11718         if (event->attr.aux_output &&
11719             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11720                 err = -EOPNOTSUPP;
11721                 goto err_pmu;
11722         }
11723
11724         if (cgroup_fd != -1) {
11725                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11726                 if (err)
11727                         goto err_pmu;
11728         }
11729
11730         err = exclusive_event_init(event);
11731         if (err)
11732                 goto err_pmu;
11733
11734         if (has_addr_filter(event)) {
11735                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11736                                                     sizeof(struct perf_addr_filter_range),
11737                                                     GFP_KERNEL);
11738                 if (!event->addr_filter_ranges) {
11739                         err = -ENOMEM;
11740                         goto err_per_task;
11741                 }
11742
11743                 /*
11744                  * Clone the parent's vma offsets: they are valid until exec()
11745                  * even if the mm is not shared with the parent.
11746                  */
11747                 if (event->parent) {
11748                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11749
11750                         raw_spin_lock_irq(&ifh->lock);
11751                         memcpy(event->addr_filter_ranges,
11752                                event->parent->addr_filter_ranges,
11753                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11754                         raw_spin_unlock_irq(&ifh->lock);
11755                 }
11756
11757                 /* force hw sync on the address filters */
11758                 event->addr_filters_gen = 1;
11759         }
11760
11761         if (!event->parent) {
11762                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11763                         err = get_callchain_buffers(attr->sample_max_stack);
11764                         if (err)
11765                                 goto err_addr_filters;
11766                 }
11767         }
11768
11769         err = security_perf_event_alloc(event);
11770         if (err)
11771                 goto err_callchain_buffer;
11772
11773         /* symmetric to unaccount_event() in _free_event() */
11774         account_event(event);
11775
11776         return event;
11777
11778 err_callchain_buffer:
11779         if (!event->parent) {
11780                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11781                         put_callchain_buffers();
11782         }
11783 err_addr_filters:
11784         kfree(event->addr_filter_ranges);
11785
11786 err_per_task:
11787         exclusive_event_destroy(event);
11788
11789 err_pmu:
11790         if (is_cgroup_event(event))
11791                 perf_detach_cgroup(event);
11792         if (event->destroy)
11793                 event->destroy(event);
11794         module_put(pmu->module);
11795 err_ns:
11796         if (event->ns)
11797                 put_pid_ns(event->ns);
11798         if (event->hw.target)
11799                 put_task_struct(event->hw.target);
11800         kmem_cache_free(perf_event_cache, event);
11801
11802         return ERR_PTR(err);
11803 }
11804
11805 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11806                           struct perf_event_attr *attr)
11807 {
11808         u32 size;
11809         int ret;
11810
11811         /* Zero the full structure, so that a short copy will be nice. */
11812         memset(attr, 0, sizeof(*attr));
11813
11814         ret = get_user(size, &uattr->size);
11815         if (ret)
11816                 return ret;
11817
11818         /* ABI compatibility quirk: */
11819         if (!size)
11820                 size = PERF_ATTR_SIZE_VER0;
11821         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11822                 goto err_size;
11823
11824         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11825         if (ret) {
11826                 if (ret == -E2BIG)
11827                         goto err_size;
11828                 return ret;
11829         }
11830
11831         attr->size = size;
11832
11833         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11834                 return -EINVAL;
11835
11836         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11837                 return -EINVAL;
11838
11839         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11840                 return -EINVAL;
11841
11842         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11843                 u64 mask = attr->branch_sample_type;
11844
11845                 /* only using defined bits */
11846                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11847                         return -EINVAL;
11848
11849                 /* at least one branch bit must be set */
11850                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11851                         return -EINVAL;
11852
11853                 /* propagate priv level, when not set for branch */
11854                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11855
11856                         /* exclude_kernel checked on syscall entry */
11857                         if (!attr->exclude_kernel)
11858                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11859
11860                         if (!attr->exclude_user)
11861                                 mask |= PERF_SAMPLE_BRANCH_USER;
11862
11863                         if (!attr->exclude_hv)
11864                                 mask |= PERF_SAMPLE_BRANCH_HV;
11865                         /*
11866                          * adjust user setting (for HW filter setup)
11867                          */
11868                         attr->branch_sample_type = mask;
11869                 }
11870                 /* privileged levels capture (kernel, hv): check permissions */
11871                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11872                         ret = perf_allow_kernel(attr);
11873                         if (ret)
11874                                 return ret;
11875                 }
11876         }
11877
11878         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11879                 ret = perf_reg_validate(attr->sample_regs_user);
11880                 if (ret)
11881                         return ret;
11882         }
11883
11884         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11885                 if (!arch_perf_have_user_stack_dump())
11886                         return -ENOSYS;
11887
11888                 /*
11889                  * We have __u32 type for the size, but so far
11890                  * we can only use __u16 as maximum due to the
11891                  * __u16 sample size limit.
11892                  */
11893                 if (attr->sample_stack_user >= USHRT_MAX)
11894                         return -EINVAL;
11895                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11896                         return -EINVAL;
11897         }
11898
11899         if (!attr->sample_max_stack)
11900                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11901
11902         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11903                 ret = perf_reg_validate(attr->sample_regs_intr);
11904
11905 #ifndef CONFIG_CGROUP_PERF
11906         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11907                 return -EINVAL;
11908 #endif
11909         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11910             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11911                 return -EINVAL;
11912
11913         if (!attr->inherit && attr->inherit_thread)
11914                 return -EINVAL;
11915
11916         if (attr->remove_on_exec && attr->enable_on_exec)
11917                 return -EINVAL;
11918
11919         if (attr->sigtrap && !attr->remove_on_exec)
11920                 return -EINVAL;
11921
11922 out:
11923         return ret;
11924
11925 err_size:
11926         put_user(sizeof(*attr), &uattr->size);
11927         ret = -E2BIG;
11928         goto out;
11929 }
11930
11931 static int
11932 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11933 {
11934         struct perf_buffer *rb = NULL;
11935         int ret = -EINVAL;
11936
11937         if (!output_event)
11938                 goto set;
11939
11940         /* don't allow circular references */
11941         if (event == output_event)
11942                 goto out;
11943
11944         /*
11945          * Don't allow cross-cpu buffers
11946          */
11947         if (output_event->cpu != event->cpu)
11948                 goto out;
11949
11950         /*
11951          * If its not a per-cpu rb, it must be the same task.
11952          */
11953         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11954                 goto out;
11955
11956         /*
11957          * Mixing clocks in the same buffer is trouble you don't need.
11958          */
11959         if (output_event->clock != event->clock)
11960                 goto out;
11961
11962         /*
11963          * Either writing ring buffer from beginning or from end.
11964          * Mixing is not allowed.
11965          */
11966         if (is_write_backward(output_event) != is_write_backward(event))
11967                 goto out;
11968
11969         /*
11970          * If both events generate aux data, they must be on the same PMU
11971          */
11972         if (has_aux(event) && has_aux(output_event) &&
11973             event->pmu != output_event->pmu)
11974                 goto out;
11975
11976 set:
11977         mutex_lock(&event->mmap_mutex);
11978         /* Can't redirect output if we've got an active mmap() */
11979         if (atomic_read(&event->mmap_count))
11980                 goto unlock;
11981
11982         if (output_event) {
11983                 /* get the rb we want to redirect to */
11984                 rb = ring_buffer_get(output_event);
11985                 if (!rb)
11986                         goto unlock;
11987         }
11988
11989         ring_buffer_attach(event, rb);
11990
11991         ret = 0;
11992 unlock:
11993         mutex_unlock(&event->mmap_mutex);
11994
11995 out:
11996         return ret;
11997 }
11998
11999 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12000 {
12001         if (b < a)
12002                 swap(a, b);
12003
12004         mutex_lock(a);
12005         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12006 }
12007
12008 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12009 {
12010         bool nmi_safe = false;
12011
12012         switch (clk_id) {
12013         case CLOCK_MONOTONIC:
12014                 event->clock = &ktime_get_mono_fast_ns;
12015                 nmi_safe = true;
12016                 break;
12017
12018         case CLOCK_MONOTONIC_RAW:
12019                 event->clock = &ktime_get_raw_fast_ns;
12020                 nmi_safe = true;
12021                 break;
12022
12023         case CLOCK_REALTIME:
12024                 event->clock = &ktime_get_real_ns;
12025                 break;
12026
12027         case CLOCK_BOOTTIME:
12028                 event->clock = &ktime_get_boottime_ns;
12029                 break;
12030
12031         case CLOCK_TAI:
12032                 event->clock = &ktime_get_clocktai_ns;
12033                 break;
12034
12035         default:
12036                 return -EINVAL;
12037         }
12038
12039         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12040                 return -EINVAL;
12041
12042         return 0;
12043 }
12044
12045 /*
12046  * Variation on perf_event_ctx_lock_nested(), except we take two context
12047  * mutexes.
12048  */
12049 static struct perf_event_context *
12050 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12051                              struct perf_event_context *ctx)
12052 {
12053         struct perf_event_context *gctx;
12054
12055 again:
12056         rcu_read_lock();
12057         gctx = READ_ONCE(group_leader->ctx);
12058         if (!refcount_inc_not_zero(&gctx->refcount)) {
12059                 rcu_read_unlock();
12060                 goto again;
12061         }
12062         rcu_read_unlock();
12063
12064         mutex_lock_double(&gctx->mutex, &ctx->mutex);
12065
12066         if (group_leader->ctx != gctx) {
12067                 mutex_unlock(&ctx->mutex);
12068                 mutex_unlock(&gctx->mutex);
12069                 put_ctx(gctx);
12070                 goto again;
12071         }
12072
12073         return gctx;
12074 }
12075
12076 static bool
12077 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12078 {
12079         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12080         bool is_capable = perfmon_capable();
12081
12082         if (attr->sigtrap) {
12083                 /*
12084                  * perf_event_attr::sigtrap sends signals to the other task.
12085                  * Require the current task to also have CAP_KILL.
12086                  */
12087                 rcu_read_lock();
12088                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12089                 rcu_read_unlock();
12090
12091                 /*
12092                  * If the required capabilities aren't available, checks for
12093                  * ptrace permissions: upgrade to ATTACH, since sending signals
12094                  * can effectively change the target task.
12095                  */
12096                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12097         }
12098
12099         /*
12100          * Preserve ptrace permission check for backwards compatibility. The
12101          * ptrace check also includes checks that the current task and other
12102          * task have matching uids, and is therefore not done here explicitly.
12103          */
12104         return is_capable || ptrace_may_access(task, ptrace_mode);
12105 }
12106
12107 /**
12108  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12109  *
12110  * @attr_uptr:  event_id type attributes for monitoring/sampling
12111  * @pid:                target pid
12112  * @cpu:                target cpu
12113  * @group_fd:           group leader event fd
12114  * @flags:              perf event open flags
12115  */
12116 SYSCALL_DEFINE5(perf_event_open,
12117                 struct perf_event_attr __user *, attr_uptr,
12118                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12119 {
12120         struct perf_event *group_leader = NULL, *output_event = NULL;
12121         struct perf_event *event, *sibling;
12122         struct perf_event_attr attr;
12123         struct perf_event_context *ctx, *gctx;
12124         struct file *event_file = NULL;
12125         struct fd group = {NULL, 0};
12126         struct task_struct *task = NULL;
12127         struct pmu *pmu;
12128         int event_fd;
12129         int move_group = 0;
12130         int err;
12131         int f_flags = O_RDWR;
12132         int cgroup_fd = -1;
12133
12134         /* for future expandability... */
12135         if (flags & ~PERF_FLAG_ALL)
12136                 return -EINVAL;
12137
12138         /* Do we allow access to perf_event_open(2) ? */
12139         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12140         if (err)
12141                 return err;
12142
12143         err = perf_copy_attr(attr_uptr, &attr);
12144         if (err)
12145                 return err;
12146
12147         if (!attr.exclude_kernel) {
12148                 err = perf_allow_kernel(&attr);
12149                 if (err)
12150                         return err;
12151         }
12152
12153         if (attr.namespaces) {
12154                 if (!perfmon_capable())
12155                         return -EACCES;
12156         }
12157
12158         if (attr.freq) {
12159                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12160                         return -EINVAL;
12161         } else {
12162                 if (attr.sample_period & (1ULL << 63))
12163                         return -EINVAL;
12164         }
12165
12166         /* Only privileged users can get physical addresses */
12167         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12168                 err = perf_allow_kernel(&attr);
12169                 if (err)
12170                         return err;
12171         }
12172
12173         /* REGS_INTR can leak data, lockdown must prevent this */
12174         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12175                 err = security_locked_down(LOCKDOWN_PERF);
12176                 if (err)
12177                         return err;
12178         }
12179
12180         /*
12181          * In cgroup mode, the pid argument is used to pass the fd
12182          * opened to the cgroup directory in cgroupfs. The cpu argument
12183          * designates the cpu on which to monitor threads from that
12184          * cgroup.
12185          */
12186         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12187                 return -EINVAL;
12188
12189         if (flags & PERF_FLAG_FD_CLOEXEC)
12190                 f_flags |= O_CLOEXEC;
12191
12192         event_fd = get_unused_fd_flags(f_flags);
12193         if (event_fd < 0)
12194                 return event_fd;
12195
12196         if (group_fd != -1) {
12197                 err = perf_fget_light(group_fd, &group);
12198                 if (err)
12199                         goto err_fd;
12200                 group_leader = group.file->private_data;
12201                 if (flags & PERF_FLAG_FD_OUTPUT)
12202                         output_event = group_leader;
12203                 if (flags & PERF_FLAG_FD_NO_GROUP)
12204                         group_leader = NULL;
12205         }
12206
12207         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12208                 task = find_lively_task_by_vpid(pid);
12209                 if (IS_ERR(task)) {
12210                         err = PTR_ERR(task);
12211                         goto err_group_fd;
12212                 }
12213         }
12214
12215         if (task && group_leader &&
12216             group_leader->attr.inherit != attr.inherit) {
12217                 err = -EINVAL;
12218                 goto err_task;
12219         }
12220
12221         if (flags & PERF_FLAG_PID_CGROUP)
12222                 cgroup_fd = pid;
12223
12224         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12225                                  NULL, NULL, cgroup_fd);
12226         if (IS_ERR(event)) {
12227                 err = PTR_ERR(event);
12228                 goto err_task;
12229         }
12230
12231         if (is_sampling_event(event)) {
12232                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12233                         err = -EOPNOTSUPP;
12234                         goto err_alloc;
12235                 }
12236         }
12237
12238         /*
12239          * Special case software events and allow them to be part of
12240          * any hardware group.
12241          */
12242         pmu = event->pmu;
12243
12244         if (attr.use_clockid) {
12245                 err = perf_event_set_clock(event, attr.clockid);
12246                 if (err)
12247                         goto err_alloc;
12248         }
12249
12250         if (pmu->task_ctx_nr == perf_sw_context)
12251                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12252
12253         if (group_leader) {
12254                 if (is_software_event(event) &&
12255                     !in_software_context(group_leader)) {
12256                         /*
12257                          * If the event is a sw event, but the group_leader
12258                          * is on hw context.
12259                          *
12260                          * Allow the addition of software events to hw
12261                          * groups, this is safe because software events
12262                          * never fail to schedule.
12263                          */
12264                         pmu = group_leader->ctx->pmu;
12265                 } else if (!is_software_event(event) &&
12266                            is_software_event(group_leader) &&
12267                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12268                         /*
12269                          * In case the group is a pure software group, and we
12270                          * try to add a hardware event, move the whole group to
12271                          * the hardware context.
12272                          */
12273                         move_group = 1;
12274                 }
12275         }
12276
12277         /*
12278          * Get the target context (task or percpu):
12279          */
12280         ctx = find_get_context(pmu, task, event);
12281         if (IS_ERR(ctx)) {
12282                 err = PTR_ERR(ctx);
12283                 goto err_alloc;
12284         }
12285
12286         /*
12287          * Look up the group leader (we will attach this event to it):
12288          */
12289         if (group_leader) {
12290                 err = -EINVAL;
12291
12292                 /*
12293                  * Do not allow a recursive hierarchy (this new sibling
12294                  * becoming part of another group-sibling):
12295                  */
12296                 if (group_leader->group_leader != group_leader)
12297                         goto err_context;
12298
12299                 /* All events in a group should have the same clock */
12300                 if (group_leader->clock != event->clock)
12301                         goto err_context;
12302
12303                 /*
12304                  * Make sure we're both events for the same CPU;
12305                  * grouping events for different CPUs is broken; since
12306                  * you can never concurrently schedule them anyhow.
12307                  */
12308                 if (group_leader->cpu != event->cpu)
12309                         goto err_context;
12310
12311                 /*
12312                  * Make sure we're both on the same task, or both
12313                  * per-CPU events.
12314                  */
12315                 if (group_leader->ctx->task != ctx->task)
12316                         goto err_context;
12317
12318                 /*
12319                  * Do not allow to attach to a group in a different task
12320                  * or CPU context. If we're moving SW events, we'll fix
12321                  * this up later, so allow that.
12322                  */
12323                 if (!move_group && group_leader->ctx != ctx)
12324                         goto err_context;
12325
12326                 /*
12327                  * Only a group leader can be exclusive or pinned
12328                  */
12329                 if (attr.exclusive || attr.pinned)
12330                         goto err_context;
12331         }
12332
12333         if (output_event) {
12334                 err = perf_event_set_output(event, output_event);
12335                 if (err)
12336                         goto err_context;
12337         }
12338
12339         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12340                                         f_flags);
12341         if (IS_ERR(event_file)) {
12342                 err = PTR_ERR(event_file);
12343                 event_file = NULL;
12344                 goto err_context;
12345         }
12346
12347         if (task) {
12348                 err = down_read_interruptible(&task->signal->exec_update_lock);
12349                 if (err)
12350                         goto err_file;
12351
12352                 /*
12353                  * We must hold exec_update_lock across this and any potential
12354                  * perf_install_in_context() call for this new event to
12355                  * serialize against exec() altering our credentials (and the
12356                  * perf_event_exit_task() that could imply).
12357                  */
12358                 err = -EACCES;
12359                 if (!perf_check_permission(&attr, task))
12360                         goto err_cred;
12361         }
12362
12363         if (move_group) {
12364                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12365
12366                 if (gctx->task == TASK_TOMBSTONE) {
12367                         err = -ESRCH;
12368                         goto err_locked;
12369                 }
12370
12371                 /*
12372                  * Check if we raced against another sys_perf_event_open() call
12373                  * moving the software group underneath us.
12374                  */
12375                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12376                         /*
12377                          * If someone moved the group out from under us, check
12378                          * if this new event wound up on the same ctx, if so
12379                          * its the regular !move_group case, otherwise fail.
12380                          */
12381                         if (gctx != ctx) {
12382                                 err = -EINVAL;
12383                                 goto err_locked;
12384                         } else {
12385                                 perf_event_ctx_unlock(group_leader, gctx);
12386                                 move_group = 0;
12387                         }
12388                 }
12389
12390                 /*
12391                  * Failure to create exclusive events returns -EBUSY.
12392                  */
12393                 err = -EBUSY;
12394                 if (!exclusive_event_installable(group_leader, ctx))
12395                         goto err_locked;
12396
12397                 for_each_sibling_event(sibling, group_leader) {
12398                         if (!exclusive_event_installable(sibling, ctx))
12399                                 goto err_locked;
12400                 }
12401         } else {
12402                 mutex_lock(&ctx->mutex);
12403         }
12404
12405         if (ctx->task == TASK_TOMBSTONE) {
12406                 err = -ESRCH;
12407                 goto err_locked;
12408         }
12409
12410         if (!perf_event_validate_size(event)) {
12411                 err = -E2BIG;
12412                 goto err_locked;
12413         }
12414
12415         if (!task) {
12416                 /*
12417                  * Check if the @cpu we're creating an event for is online.
12418                  *
12419                  * We use the perf_cpu_context::ctx::mutex to serialize against
12420                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12421                  */
12422                 struct perf_cpu_context *cpuctx =
12423                         container_of(ctx, struct perf_cpu_context, ctx);
12424
12425                 if (!cpuctx->online) {
12426                         err = -ENODEV;
12427                         goto err_locked;
12428                 }
12429         }
12430
12431         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12432                 err = -EINVAL;
12433                 goto err_locked;
12434         }
12435
12436         /*
12437          * Must be under the same ctx::mutex as perf_install_in_context(),
12438          * because we need to serialize with concurrent event creation.
12439          */
12440         if (!exclusive_event_installable(event, ctx)) {
12441                 err = -EBUSY;
12442                 goto err_locked;
12443         }
12444
12445         WARN_ON_ONCE(ctx->parent_ctx);
12446
12447         /*
12448          * This is the point on no return; we cannot fail hereafter. This is
12449          * where we start modifying current state.
12450          */
12451
12452         if (move_group) {
12453                 /*
12454                  * See perf_event_ctx_lock() for comments on the details
12455                  * of swizzling perf_event::ctx.
12456                  */
12457                 perf_remove_from_context(group_leader, 0);
12458                 put_ctx(gctx);
12459
12460                 for_each_sibling_event(sibling, group_leader) {
12461                         perf_remove_from_context(sibling, 0);
12462                         put_ctx(gctx);
12463                 }
12464
12465                 /*
12466                  * Wait for everybody to stop referencing the events through
12467                  * the old lists, before installing it on new lists.
12468                  */
12469                 synchronize_rcu();
12470
12471                 /*
12472                  * Install the group siblings before the group leader.
12473                  *
12474                  * Because a group leader will try and install the entire group
12475                  * (through the sibling list, which is still in-tact), we can
12476                  * end up with siblings installed in the wrong context.
12477                  *
12478                  * By installing siblings first we NO-OP because they're not
12479                  * reachable through the group lists.
12480                  */
12481                 for_each_sibling_event(sibling, group_leader) {
12482                         perf_event__state_init(sibling);
12483                         perf_install_in_context(ctx, sibling, sibling->cpu);
12484                         get_ctx(ctx);
12485                 }
12486
12487                 /*
12488                  * Removing from the context ends up with disabled
12489                  * event. What we want here is event in the initial
12490                  * startup state, ready to be add into new context.
12491                  */
12492                 perf_event__state_init(group_leader);
12493                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12494                 get_ctx(ctx);
12495         }
12496
12497         /*
12498          * Precalculate sample_data sizes; do while holding ctx::mutex such
12499          * that we're serialized against further additions and before
12500          * perf_install_in_context() which is the point the event is active and
12501          * can use these values.
12502          */
12503         perf_event__header_size(event);
12504         perf_event__id_header_size(event);
12505
12506         event->owner = current;
12507
12508         perf_install_in_context(ctx, event, event->cpu);
12509         perf_unpin_context(ctx);
12510
12511         if (move_group)
12512                 perf_event_ctx_unlock(group_leader, gctx);
12513         mutex_unlock(&ctx->mutex);
12514
12515         if (task) {
12516                 up_read(&task->signal->exec_update_lock);
12517                 put_task_struct(task);
12518         }
12519
12520         mutex_lock(&current->perf_event_mutex);
12521         list_add_tail(&event->owner_entry, &current->perf_event_list);
12522         mutex_unlock(&current->perf_event_mutex);
12523
12524         /*
12525          * Drop the reference on the group_event after placing the
12526          * new event on the sibling_list. This ensures destruction
12527          * of the group leader will find the pointer to itself in
12528          * perf_group_detach().
12529          */
12530         fdput(group);
12531         fd_install(event_fd, event_file);
12532         return event_fd;
12533
12534 err_locked:
12535         if (move_group)
12536                 perf_event_ctx_unlock(group_leader, gctx);
12537         mutex_unlock(&ctx->mutex);
12538 err_cred:
12539         if (task)
12540                 up_read(&task->signal->exec_update_lock);
12541 err_file:
12542         fput(event_file);
12543 err_context:
12544         perf_unpin_context(ctx);
12545         put_ctx(ctx);
12546 err_alloc:
12547         /*
12548          * If event_file is set, the fput() above will have called ->release()
12549          * and that will take care of freeing the event.
12550          */
12551         if (!event_file)
12552                 free_event(event);
12553 err_task:
12554         if (task)
12555                 put_task_struct(task);
12556 err_group_fd:
12557         fdput(group);
12558 err_fd:
12559         put_unused_fd(event_fd);
12560         return err;
12561 }
12562
12563 /**
12564  * perf_event_create_kernel_counter
12565  *
12566  * @attr: attributes of the counter to create
12567  * @cpu: cpu in which the counter is bound
12568  * @task: task to profile (NULL for percpu)
12569  * @overflow_handler: callback to trigger when we hit the event
12570  * @context: context data could be used in overflow_handler callback
12571  */
12572 struct perf_event *
12573 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12574                                  struct task_struct *task,
12575                                  perf_overflow_handler_t overflow_handler,
12576                                  void *context)
12577 {
12578         struct perf_event_context *ctx;
12579         struct perf_event *event;
12580         int err;
12581
12582         /*
12583          * Grouping is not supported for kernel events, neither is 'AUX',
12584          * make sure the caller's intentions are adjusted.
12585          */
12586         if (attr->aux_output)
12587                 return ERR_PTR(-EINVAL);
12588
12589         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12590                                  overflow_handler, context, -1);
12591         if (IS_ERR(event)) {
12592                 err = PTR_ERR(event);
12593                 goto err;
12594         }
12595
12596         /* Mark owner so we could distinguish it from user events. */
12597         event->owner = TASK_TOMBSTONE;
12598
12599         /*
12600          * Get the target context (task or percpu):
12601          */
12602         ctx = find_get_context(event->pmu, task, event);
12603         if (IS_ERR(ctx)) {
12604                 err = PTR_ERR(ctx);
12605                 goto err_free;
12606         }
12607
12608         WARN_ON_ONCE(ctx->parent_ctx);
12609         mutex_lock(&ctx->mutex);
12610         if (ctx->task == TASK_TOMBSTONE) {
12611                 err = -ESRCH;
12612                 goto err_unlock;
12613         }
12614
12615         if (!task) {
12616                 /*
12617                  * Check if the @cpu we're creating an event for is online.
12618                  *
12619                  * We use the perf_cpu_context::ctx::mutex to serialize against
12620                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12621                  */
12622                 struct perf_cpu_context *cpuctx =
12623                         container_of(ctx, struct perf_cpu_context, ctx);
12624                 if (!cpuctx->online) {
12625                         err = -ENODEV;
12626                         goto err_unlock;
12627                 }
12628         }
12629
12630         if (!exclusive_event_installable(event, ctx)) {
12631                 err = -EBUSY;
12632                 goto err_unlock;
12633         }
12634
12635         perf_install_in_context(ctx, event, event->cpu);
12636         perf_unpin_context(ctx);
12637         mutex_unlock(&ctx->mutex);
12638
12639         return event;
12640
12641 err_unlock:
12642         mutex_unlock(&ctx->mutex);
12643         perf_unpin_context(ctx);
12644         put_ctx(ctx);
12645 err_free:
12646         free_event(event);
12647 err:
12648         return ERR_PTR(err);
12649 }
12650 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12651
12652 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12653 {
12654         struct perf_event_context *src_ctx;
12655         struct perf_event_context *dst_ctx;
12656         struct perf_event *event, *tmp;
12657         LIST_HEAD(events);
12658
12659         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12660         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12661
12662         /*
12663          * See perf_event_ctx_lock() for comments on the details
12664          * of swizzling perf_event::ctx.
12665          */
12666         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12667         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12668                                  event_entry) {
12669                 perf_remove_from_context(event, 0);
12670                 unaccount_event_cpu(event, src_cpu);
12671                 put_ctx(src_ctx);
12672                 list_add(&event->migrate_entry, &events);
12673         }
12674
12675         /*
12676          * Wait for the events to quiesce before re-instating them.
12677          */
12678         synchronize_rcu();
12679
12680         /*
12681          * Re-instate events in 2 passes.
12682          *
12683          * Skip over group leaders and only install siblings on this first
12684          * pass, siblings will not get enabled without a leader, however a
12685          * leader will enable its siblings, even if those are still on the old
12686          * context.
12687          */
12688         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12689                 if (event->group_leader == event)
12690                         continue;
12691
12692                 list_del(&event->migrate_entry);
12693                 if (event->state >= PERF_EVENT_STATE_OFF)
12694                         event->state = PERF_EVENT_STATE_INACTIVE;
12695                 account_event_cpu(event, dst_cpu);
12696                 perf_install_in_context(dst_ctx, event, dst_cpu);
12697                 get_ctx(dst_ctx);
12698         }
12699
12700         /*
12701          * Once all the siblings are setup properly, install the group leaders
12702          * to make it go.
12703          */
12704         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12705                 list_del(&event->migrate_entry);
12706                 if (event->state >= PERF_EVENT_STATE_OFF)
12707                         event->state = PERF_EVENT_STATE_INACTIVE;
12708                 account_event_cpu(event, dst_cpu);
12709                 perf_install_in_context(dst_ctx, event, dst_cpu);
12710                 get_ctx(dst_ctx);
12711         }
12712         mutex_unlock(&dst_ctx->mutex);
12713         mutex_unlock(&src_ctx->mutex);
12714 }
12715 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12716
12717 static void sync_child_event(struct perf_event *child_event)
12718 {
12719         struct perf_event *parent_event = child_event->parent;
12720         u64 child_val;
12721
12722         if (child_event->attr.inherit_stat) {
12723                 struct task_struct *task = child_event->ctx->task;
12724
12725                 if (task && task != TASK_TOMBSTONE)
12726                         perf_event_read_event(child_event, task);
12727         }
12728
12729         child_val = perf_event_count(child_event);
12730
12731         /*
12732          * Add back the child's count to the parent's count:
12733          */
12734         atomic64_add(child_val, &parent_event->child_count);
12735         atomic64_add(child_event->total_time_enabled,
12736                      &parent_event->child_total_time_enabled);
12737         atomic64_add(child_event->total_time_running,
12738                      &parent_event->child_total_time_running);
12739 }
12740
12741 static void
12742 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12743 {
12744         struct perf_event *parent_event = event->parent;
12745         unsigned long detach_flags = 0;
12746
12747         if (parent_event) {
12748                 /*
12749                  * Do not destroy the 'original' grouping; because of the
12750                  * context switch optimization the original events could've
12751                  * ended up in a random child task.
12752                  *
12753                  * If we were to destroy the original group, all group related
12754                  * operations would cease to function properly after this
12755                  * random child dies.
12756                  *
12757                  * Do destroy all inherited groups, we don't care about those
12758                  * and being thorough is better.
12759                  */
12760                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12761                 mutex_lock(&parent_event->child_mutex);
12762         }
12763
12764         perf_remove_from_context(event, detach_flags);
12765
12766         raw_spin_lock_irq(&ctx->lock);
12767         if (event->state > PERF_EVENT_STATE_EXIT)
12768                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12769         raw_spin_unlock_irq(&ctx->lock);
12770
12771         /*
12772          * Child events can be freed.
12773          */
12774         if (parent_event) {
12775                 mutex_unlock(&parent_event->child_mutex);
12776                 /*
12777                  * Kick perf_poll() for is_event_hup();
12778                  */
12779                 perf_event_wakeup(parent_event);
12780                 free_event(event);
12781                 put_event(parent_event);
12782                 return;
12783         }
12784
12785         /*
12786          * Parent events are governed by their filedesc, retain them.
12787          */
12788         perf_event_wakeup(event);
12789 }
12790
12791 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12792 {
12793         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12794         struct perf_event *child_event, *next;
12795
12796         WARN_ON_ONCE(child != current);
12797
12798         child_ctx = perf_pin_task_context(child, ctxn);
12799         if (!child_ctx)
12800                 return;
12801
12802         /*
12803          * In order to reduce the amount of tricky in ctx tear-down, we hold
12804          * ctx::mutex over the entire thing. This serializes against almost
12805          * everything that wants to access the ctx.
12806          *
12807          * The exception is sys_perf_event_open() /
12808          * perf_event_create_kernel_count() which does find_get_context()
12809          * without ctx::mutex (it cannot because of the move_group double mutex
12810          * lock thing). See the comments in perf_install_in_context().
12811          */
12812         mutex_lock(&child_ctx->mutex);
12813
12814         /*
12815          * In a single ctx::lock section, de-schedule the events and detach the
12816          * context from the task such that we cannot ever get it scheduled back
12817          * in.
12818          */
12819         raw_spin_lock_irq(&child_ctx->lock);
12820         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12821
12822         /*
12823          * Now that the context is inactive, destroy the task <-> ctx relation
12824          * and mark the context dead.
12825          */
12826         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12827         put_ctx(child_ctx); /* cannot be last */
12828         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12829         put_task_struct(current); /* cannot be last */
12830
12831         clone_ctx = unclone_ctx(child_ctx);
12832         raw_spin_unlock_irq(&child_ctx->lock);
12833
12834         if (clone_ctx)
12835                 put_ctx(clone_ctx);
12836
12837         /*
12838          * Report the task dead after unscheduling the events so that we
12839          * won't get any samples after PERF_RECORD_EXIT. We can however still
12840          * get a few PERF_RECORD_READ events.
12841          */
12842         perf_event_task(child, child_ctx, 0);
12843
12844         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12845                 perf_event_exit_event(child_event, child_ctx);
12846
12847         mutex_unlock(&child_ctx->mutex);
12848
12849         put_ctx(child_ctx);
12850 }
12851
12852 /*
12853  * When a child task exits, feed back event values to parent events.
12854  *
12855  * Can be called with exec_update_lock held when called from
12856  * setup_new_exec().
12857  */
12858 void perf_event_exit_task(struct task_struct *child)
12859 {
12860         struct perf_event *event, *tmp;
12861         int ctxn;
12862
12863         mutex_lock(&child->perf_event_mutex);
12864         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12865                                  owner_entry) {
12866                 list_del_init(&event->owner_entry);
12867
12868                 /*
12869                  * Ensure the list deletion is visible before we clear
12870                  * the owner, closes a race against perf_release() where
12871                  * we need to serialize on the owner->perf_event_mutex.
12872                  */
12873                 smp_store_release(&event->owner, NULL);
12874         }
12875         mutex_unlock(&child->perf_event_mutex);
12876
12877         for_each_task_context_nr(ctxn)
12878                 perf_event_exit_task_context(child, ctxn);
12879
12880         /*
12881          * The perf_event_exit_task_context calls perf_event_task
12882          * with child's task_ctx, which generates EXIT events for
12883          * child contexts and sets child->perf_event_ctxp[] to NULL.
12884          * At this point we need to send EXIT events to cpu contexts.
12885          */
12886         perf_event_task(child, NULL, 0);
12887 }
12888
12889 static void perf_free_event(struct perf_event *event,
12890                             struct perf_event_context *ctx)
12891 {
12892         struct perf_event *parent = event->parent;
12893
12894         if (WARN_ON_ONCE(!parent))
12895                 return;
12896
12897         mutex_lock(&parent->child_mutex);
12898         list_del_init(&event->child_list);
12899         mutex_unlock(&parent->child_mutex);
12900
12901         put_event(parent);
12902
12903         raw_spin_lock_irq(&ctx->lock);
12904         perf_group_detach(event);
12905         list_del_event(event, ctx);
12906         raw_spin_unlock_irq(&ctx->lock);
12907         free_event(event);
12908 }
12909
12910 /*
12911  * Free a context as created by inheritance by perf_event_init_task() below,
12912  * used by fork() in case of fail.
12913  *
12914  * Even though the task has never lived, the context and events have been
12915  * exposed through the child_list, so we must take care tearing it all down.
12916  */
12917 void perf_event_free_task(struct task_struct *task)
12918 {
12919         struct perf_event_context *ctx;
12920         struct perf_event *event, *tmp;
12921         int ctxn;
12922
12923         for_each_task_context_nr(ctxn) {
12924                 ctx = task->perf_event_ctxp[ctxn];
12925                 if (!ctx)
12926                         continue;
12927
12928                 mutex_lock(&ctx->mutex);
12929                 raw_spin_lock_irq(&ctx->lock);
12930                 /*
12931                  * Destroy the task <-> ctx relation and mark the context dead.
12932                  *
12933                  * This is important because even though the task hasn't been
12934                  * exposed yet the context has been (through child_list).
12935                  */
12936                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12937                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12938                 put_task_struct(task); /* cannot be last */
12939                 raw_spin_unlock_irq(&ctx->lock);
12940
12941                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12942                         perf_free_event(event, ctx);
12943
12944                 mutex_unlock(&ctx->mutex);
12945
12946                 /*
12947                  * perf_event_release_kernel() could've stolen some of our
12948                  * child events and still have them on its free_list. In that
12949                  * case we must wait for these events to have been freed (in
12950                  * particular all their references to this task must've been
12951                  * dropped).
12952                  *
12953                  * Without this copy_process() will unconditionally free this
12954                  * task (irrespective of its reference count) and
12955                  * _free_event()'s put_task_struct(event->hw.target) will be a
12956                  * use-after-free.
12957                  *
12958                  * Wait for all events to drop their context reference.
12959                  */
12960                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12961                 put_ctx(ctx); /* must be last */
12962         }
12963 }
12964
12965 void perf_event_delayed_put(struct task_struct *task)
12966 {
12967         int ctxn;
12968
12969         for_each_task_context_nr(ctxn)
12970                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12971 }
12972
12973 struct file *perf_event_get(unsigned int fd)
12974 {
12975         struct file *file = fget(fd);
12976         if (!file)
12977                 return ERR_PTR(-EBADF);
12978
12979         if (file->f_op != &perf_fops) {
12980                 fput(file);
12981                 return ERR_PTR(-EBADF);
12982         }
12983
12984         return file;
12985 }
12986
12987 const struct perf_event *perf_get_event(struct file *file)
12988 {
12989         if (file->f_op != &perf_fops)
12990                 return ERR_PTR(-EINVAL);
12991
12992         return file->private_data;
12993 }
12994
12995 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12996 {
12997         if (!event)
12998                 return ERR_PTR(-EINVAL);
12999
13000         return &event->attr;
13001 }
13002
13003 /*
13004  * Inherit an event from parent task to child task.
13005  *
13006  * Returns:
13007  *  - valid pointer on success
13008  *  - NULL for orphaned events
13009  *  - IS_ERR() on error
13010  */
13011 static struct perf_event *
13012 inherit_event(struct perf_event *parent_event,
13013               struct task_struct *parent,
13014               struct perf_event_context *parent_ctx,
13015               struct task_struct *child,
13016               struct perf_event *group_leader,
13017               struct perf_event_context *child_ctx)
13018 {
13019         enum perf_event_state parent_state = parent_event->state;
13020         struct perf_event *child_event;
13021         unsigned long flags;
13022
13023         /*
13024          * Instead of creating recursive hierarchies of events,
13025          * we link inherited events back to the original parent,
13026          * which has a filp for sure, which we use as the reference
13027          * count:
13028          */
13029         if (parent_event->parent)
13030                 parent_event = parent_event->parent;
13031
13032         child_event = perf_event_alloc(&parent_event->attr,
13033                                            parent_event->cpu,
13034                                            child,
13035                                            group_leader, parent_event,
13036                                            NULL, NULL, -1);
13037         if (IS_ERR(child_event))
13038                 return child_event;
13039
13040
13041         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13042             !child_ctx->task_ctx_data) {
13043                 struct pmu *pmu = child_event->pmu;
13044
13045                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13046                 if (!child_ctx->task_ctx_data) {
13047                         free_event(child_event);
13048                         return ERR_PTR(-ENOMEM);
13049                 }
13050         }
13051
13052         /*
13053          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13054          * must be under the same lock in order to serialize against
13055          * perf_event_release_kernel(), such that either we must observe
13056          * is_orphaned_event() or they will observe us on the child_list.
13057          */
13058         mutex_lock(&parent_event->child_mutex);
13059         if (is_orphaned_event(parent_event) ||
13060             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13061                 mutex_unlock(&parent_event->child_mutex);
13062                 /* task_ctx_data is freed with child_ctx */
13063                 free_event(child_event);
13064                 return NULL;
13065         }
13066
13067         get_ctx(child_ctx);
13068
13069         /*
13070          * Make the child state follow the state of the parent event,
13071          * not its attr.disabled bit.  We hold the parent's mutex,
13072          * so we won't race with perf_event_{en, dis}able_family.
13073          */
13074         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13075                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13076         else
13077                 child_event->state = PERF_EVENT_STATE_OFF;
13078
13079         if (parent_event->attr.freq) {
13080                 u64 sample_period = parent_event->hw.sample_period;
13081                 struct hw_perf_event *hwc = &child_event->hw;
13082
13083                 hwc->sample_period = sample_period;
13084                 hwc->last_period   = sample_period;
13085
13086                 local64_set(&hwc->period_left, sample_period);
13087         }
13088
13089         child_event->ctx = child_ctx;
13090         child_event->overflow_handler = parent_event->overflow_handler;
13091         child_event->overflow_handler_context
13092                 = parent_event->overflow_handler_context;
13093
13094         /*
13095          * Precalculate sample_data sizes
13096          */
13097         perf_event__header_size(child_event);
13098         perf_event__id_header_size(child_event);
13099
13100         /*
13101          * Link it up in the child's context:
13102          */
13103         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13104         add_event_to_ctx(child_event, child_ctx);
13105         child_event->attach_state |= PERF_ATTACH_CHILD;
13106         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13107
13108         /*
13109          * Link this into the parent event's child list
13110          */
13111         list_add_tail(&child_event->child_list, &parent_event->child_list);
13112         mutex_unlock(&parent_event->child_mutex);
13113
13114         return child_event;
13115 }
13116
13117 /*
13118  * Inherits an event group.
13119  *
13120  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13121  * This matches with perf_event_release_kernel() removing all child events.
13122  *
13123  * Returns:
13124  *  - 0 on success
13125  *  - <0 on error
13126  */
13127 static int inherit_group(struct perf_event *parent_event,
13128               struct task_struct *parent,
13129               struct perf_event_context *parent_ctx,
13130               struct task_struct *child,
13131               struct perf_event_context *child_ctx)
13132 {
13133         struct perf_event *leader;
13134         struct perf_event *sub;
13135         struct perf_event *child_ctr;
13136
13137         leader = inherit_event(parent_event, parent, parent_ctx,
13138                                  child, NULL, child_ctx);
13139         if (IS_ERR(leader))
13140                 return PTR_ERR(leader);
13141         /*
13142          * @leader can be NULL here because of is_orphaned_event(). In this
13143          * case inherit_event() will create individual events, similar to what
13144          * perf_group_detach() would do anyway.
13145          */
13146         for_each_sibling_event(sub, parent_event) {
13147                 child_ctr = inherit_event(sub, parent, parent_ctx,
13148                                             child, leader, child_ctx);
13149                 if (IS_ERR(child_ctr))
13150                         return PTR_ERR(child_ctr);
13151
13152                 if (sub->aux_event == parent_event && child_ctr &&
13153                     !perf_get_aux_event(child_ctr, leader))
13154                         return -EINVAL;
13155         }
13156         return 0;
13157 }
13158
13159 /*
13160  * Creates the child task context and tries to inherit the event-group.
13161  *
13162  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13163  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13164  * consistent with perf_event_release_kernel() removing all child events.
13165  *
13166  * Returns:
13167  *  - 0 on success
13168  *  - <0 on error
13169  */
13170 static int
13171 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13172                    struct perf_event_context *parent_ctx,
13173                    struct task_struct *child, int ctxn,
13174                    u64 clone_flags, int *inherited_all)
13175 {
13176         int ret;
13177         struct perf_event_context *child_ctx;
13178
13179         if (!event->attr.inherit ||
13180             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13181             /* Do not inherit if sigtrap and signal handlers were cleared. */
13182             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13183                 *inherited_all = 0;
13184                 return 0;
13185         }
13186
13187         child_ctx = child->perf_event_ctxp[ctxn];
13188         if (!child_ctx) {
13189                 /*
13190                  * This is executed from the parent task context, so
13191                  * inherit events that have been marked for cloning.
13192                  * First allocate and initialize a context for the
13193                  * child.
13194                  */
13195                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13196                 if (!child_ctx)
13197                         return -ENOMEM;
13198
13199                 child->perf_event_ctxp[ctxn] = child_ctx;
13200         }
13201
13202         ret = inherit_group(event, parent, parent_ctx,
13203                             child, child_ctx);
13204
13205         if (ret)
13206                 *inherited_all = 0;
13207
13208         return ret;
13209 }
13210
13211 /*
13212  * Initialize the perf_event context in task_struct
13213  */
13214 static int perf_event_init_context(struct task_struct *child, int ctxn,
13215                                    u64 clone_flags)
13216 {
13217         struct perf_event_context *child_ctx, *parent_ctx;
13218         struct perf_event_context *cloned_ctx;
13219         struct perf_event *event;
13220         struct task_struct *parent = current;
13221         int inherited_all = 1;
13222         unsigned long flags;
13223         int ret = 0;
13224
13225         if (likely(!parent->perf_event_ctxp[ctxn]))
13226                 return 0;
13227
13228         /*
13229          * If the parent's context is a clone, pin it so it won't get
13230          * swapped under us.
13231          */
13232         parent_ctx = perf_pin_task_context(parent, ctxn);
13233         if (!parent_ctx)
13234                 return 0;
13235
13236         /*
13237          * No need to check if parent_ctx != NULL here; since we saw
13238          * it non-NULL earlier, the only reason for it to become NULL
13239          * is if we exit, and since we're currently in the middle of
13240          * a fork we can't be exiting at the same time.
13241          */
13242
13243         /*
13244          * Lock the parent list. No need to lock the child - not PID
13245          * hashed yet and not running, so nobody can access it.
13246          */
13247         mutex_lock(&parent_ctx->mutex);
13248
13249         /*
13250          * We dont have to disable NMIs - we are only looking at
13251          * the list, not manipulating it:
13252          */
13253         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13254                 ret = inherit_task_group(event, parent, parent_ctx,
13255                                          child, ctxn, clone_flags,
13256                                          &inherited_all);
13257                 if (ret)
13258                         goto out_unlock;
13259         }
13260
13261         /*
13262          * We can't hold ctx->lock when iterating the ->flexible_group list due
13263          * to allocations, but we need to prevent rotation because
13264          * rotate_ctx() will change the list from interrupt context.
13265          */
13266         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13267         parent_ctx->rotate_disable = 1;
13268         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13269
13270         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13271                 ret = inherit_task_group(event, parent, parent_ctx,
13272                                          child, ctxn, clone_flags,
13273                                          &inherited_all);
13274                 if (ret)
13275                         goto out_unlock;
13276         }
13277
13278         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13279         parent_ctx->rotate_disable = 0;
13280
13281         child_ctx = child->perf_event_ctxp[ctxn];
13282
13283         if (child_ctx && inherited_all) {
13284                 /*
13285                  * Mark the child context as a clone of the parent
13286                  * context, or of whatever the parent is a clone of.
13287                  *
13288                  * Note that if the parent is a clone, the holding of
13289                  * parent_ctx->lock avoids it from being uncloned.
13290                  */
13291                 cloned_ctx = parent_ctx->parent_ctx;
13292                 if (cloned_ctx) {
13293                         child_ctx->parent_ctx = cloned_ctx;
13294                         child_ctx->parent_gen = parent_ctx->parent_gen;
13295                 } else {
13296                         child_ctx->parent_ctx = parent_ctx;
13297                         child_ctx->parent_gen = parent_ctx->generation;
13298                 }
13299                 get_ctx(child_ctx->parent_ctx);
13300         }
13301
13302         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13303 out_unlock:
13304         mutex_unlock(&parent_ctx->mutex);
13305
13306         perf_unpin_context(parent_ctx);
13307         put_ctx(parent_ctx);
13308
13309         return ret;
13310 }
13311
13312 /*
13313  * Initialize the perf_event context in task_struct
13314  */
13315 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13316 {
13317         int ctxn, ret;
13318
13319         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13320         mutex_init(&child->perf_event_mutex);
13321         INIT_LIST_HEAD(&child->perf_event_list);
13322
13323         for_each_task_context_nr(ctxn) {
13324                 ret = perf_event_init_context(child, ctxn, clone_flags);
13325                 if (ret) {
13326                         perf_event_free_task(child);
13327                         return ret;
13328                 }
13329         }
13330
13331         return 0;
13332 }
13333
13334 static void __init perf_event_init_all_cpus(void)
13335 {
13336         struct swevent_htable *swhash;
13337         int cpu;
13338
13339         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13340
13341         for_each_possible_cpu(cpu) {
13342                 swhash = &per_cpu(swevent_htable, cpu);
13343                 mutex_init(&swhash->hlist_mutex);
13344                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13345
13346                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13347                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13348
13349 #ifdef CONFIG_CGROUP_PERF
13350                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13351 #endif
13352                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13353         }
13354 }
13355
13356 static void perf_swevent_init_cpu(unsigned int cpu)
13357 {
13358         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13359
13360         mutex_lock(&swhash->hlist_mutex);
13361         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13362                 struct swevent_hlist *hlist;
13363
13364                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13365                 WARN_ON(!hlist);
13366                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13367         }
13368         mutex_unlock(&swhash->hlist_mutex);
13369 }
13370
13371 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13372 static void __perf_event_exit_context(void *__info)
13373 {
13374         struct perf_event_context *ctx = __info;
13375         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13376         struct perf_event *event;
13377
13378         raw_spin_lock(&ctx->lock);
13379         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13380         list_for_each_entry(event, &ctx->event_list, event_entry)
13381                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13382         raw_spin_unlock(&ctx->lock);
13383 }
13384
13385 static void perf_event_exit_cpu_context(int cpu)
13386 {
13387         struct perf_cpu_context *cpuctx;
13388         struct perf_event_context *ctx;
13389         struct pmu *pmu;
13390
13391         mutex_lock(&pmus_lock);
13392         list_for_each_entry(pmu, &pmus, entry) {
13393                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13394                 ctx = &cpuctx->ctx;
13395
13396                 mutex_lock(&ctx->mutex);
13397                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13398                 cpuctx->online = 0;
13399                 mutex_unlock(&ctx->mutex);
13400         }
13401         cpumask_clear_cpu(cpu, perf_online_mask);
13402         mutex_unlock(&pmus_lock);
13403 }
13404 #else
13405
13406 static void perf_event_exit_cpu_context(int cpu) { }
13407
13408 #endif
13409
13410 int perf_event_init_cpu(unsigned int cpu)
13411 {
13412         struct perf_cpu_context *cpuctx;
13413         struct perf_event_context *ctx;
13414         struct pmu *pmu;
13415
13416         perf_swevent_init_cpu(cpu);
13417
13418         mutex_lock(&pmus_lock);
13419         cpumask_set_cpu(cpu, perf_online_mask);
13420         list_for_each_entry(pmu, &pmus, entry) {
13421                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13422                 ctx = &cpuctx->ctx;
13423
13424                 mutex_lock(&ctx->mutex);
13425                 cpuctx->online = 1;
13426                 mutex_unlock(&ctx->mutex);
13427         }
13428         mutex_unlock(&pmus_lock);
13429
13430         return 0;
13431 }
13432
13433 int perf_event_exit_cpu(unsigned int cpu)
13434 {
13435         perf_event_exit_cpu_context(cpu);
13436         return 0;
13437 }
13438
13439 static int
13440 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13441 {
13442         int cpu;
13443
13444         for_each_online_cpu(cpu)
13445                 perf_event_exit_cpu(cpu);
13446
13447         return NOTIFY_OK;
13448 }
13449
13450 /*
13451  * Run the perf reboot notifier at the very last possible moment so that
13452  * the generic watchdog code runs as long as possible.
13453  */
13454 static struct notifier_block perf_reboot_notifier = {
13455         .notifier_call = perf_reboot,
13456         .priority = INT_MIN,
13457 };
13458
13459 void __init perf_event_init(void)
13460 {
13461         int ret;
13462
13463         idr_init(&pmu_idr);
13464
13465         perf_event_init_all_cpus();
13466         init_srcu_struct(&pmus_srcu);
13467         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13468         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13469         perf_pmu_register(&perf_task_clock, NULL, -1);
13470         perf_tp_register();
13471         perf_event_init_cpu(smp_processor_id());
13472         register_reboot_notifier(&perf_reboot_notifier);
13473
13474         ret = init_hw_breakpoint();
13475         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13476
13477         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13478
13479         /*
13480          * Build time assertion that we keep the data_head at the intended
13481          * location.  IOW, validation we got the __reserved[] size right.
13482          */
13483         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13484                      != 1024);
13485 }
13486
13487 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13488                               char *page)
13489 {
13490         struct perf_pmu_events_attr *pmu_attr =
13491                 container_of(attr, struct perf_pmu_events_attr, attr);
13492
13493         if (pmu_attr->event_str)
13494                 return sprintf(page, "%s\n", pmu_attr->event_str);
13495
13496         return 0;
13497 }
13498 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13499
13500 static int __init perf_event_sysfs_init(void)
13501 {
13502         struct pmu *pmu;
13503         int ret;
13504
13505         mutex_lock(&pmus_lock);
13506
13507         ret = bus_register(&pmu_bus);
13508         if (ret)
13509                 goto unlock;
13510
13511         list_for_each_entry(pmu, &pmus, entry) {
13512                 if (!pmu->name || pmu->type < 0)
13513                         continue;
13514
13515                 ret = pmu_dev_alloc(pmu);
13516                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13517         }
13518         pmu_bus_running = 1;
13519         ret = 0;
13520
13521 unlock:
13522         mutex_unlock(&pmus_lock);
13523
13524         return ret;
13525 }
13526 device_initcall(perf_event_sysfs_init);
13527
13528 #ifdef CONFIG_CGROUP_PERF
13529 static struct cgroup_subsys_state *
13530 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13531 {
13532         struct perf_cgroup *jc;
13533
13534         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13535         if (!jc)
13536                 return ERR_PTR(-ENOMEM);
13537
13538         jc->info = alloc_percpu(struct perf_cgroup_info);
13539         if (!jc->info) {
13540                 kfree(jc);
13541                 return ERR_PTR(-ENOMEM);
13542         }
13543
13544         return &jc->css;
13545 }
13546
13547 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13548 {
13549         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13550
13551         free_percpu(jc->info);
13552         kfree(jc);
13553 }
13554
13555 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13556 {
13557         perf_event_cgroup(css->cgroup);
13558         return 0;
13559 }
13560
13561 static int __perf_cgroup_move(void *info)
13562 {
13563         struct task_struct *task = info;
13564         rcu_read_lock();
13565         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13566         rcu_read_unlock();
13567         return 0;
13568 }
13569
13570 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13571 {
13572         struct task_struct *task;
13573         struct cgroup_subsys_state *css;
13574
13575         cgroup_taskset_for_each(task, css, tset)
13576                 task_function_call(task, __perf_cgroup_move, task);
13577 }
13578
13579 struct cgroup_subsys perf_event_cgrp_subsys = {
13580         .css_alloc      = perf_cgroup_css_alloc,
13581         .css_free       = perf_cgroup_css_free,
13582         .css_online     = perf_cgroup_css_online,
13583         .attach         = perf_cgroup_attach,
13584         /*
13585          * Implicitly enable on dfl hierarchy so that perf events can
13586          * always be filtered by cgroup2 path as long as perf_event
13587          * controller is not mounted on a legacy hierarchy.
13588          */
13589         .implicit_on_dfl = true,
13590         .threaded       = true,
13591 };
13592 #endif /* CONFIG_CGROUP_PERF */
13593
13594 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);