OSDN Git Service

perf/cgroups: Don't rotate events for cgroups unnecessarily
[android-x86/kernel.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 /*
592  * State based event timekeeping...
593  *
594  * The basic idea is to use event->state to determine which (if any) time
595  * fields to increment with the current delta. This means we only need to
596  * update timestamps when we change state or when they are explicitly requested
597  * (read).
598  *
599  * Event groups make things a little more complicated, but not terribly so. The
600  * rules for a group are that if the group leader is OFF the entire group is
601  * OFF, irrespecive of what the group member states are. This results in
602  * __perf_effective_state().
603  *
604  * A futher ramification is that when a group leader flips between OFF and
605  * !OFF, we need to update all group member times.
606  *
607  *
608  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
609  * need to make sure the relevant context time is updated before we try and
610  * update our timestamps.
611  */
612
613 static __always_inline enum perf_event_state
614 __perf_effective_state(struct perf_event *event)
615 {
616         struct perf_event *leader = event->group_leader;
617
618         if (leader->state <= PERF_EVENT_STATE_OFF)
619                 return leader->state;
620
621         return event->state;
622 }
623
624 static __always_inline void
625 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
626 {
627         enum perf_event_state state = __perf_effective_state(event);
628         u64 delta = now - event->tstamp;
629
630         *enabled = event->total_time_enabled;
631         if (state >= PERF_EVENT_STATE_INACTIVE)
632                 *enabled += delta;
633
634         *running = event->total_time_running;
635         if (state >= PERF_EVENT_STATE_ACTIVE)
636                 *running += delta;
637 }
638
639 static void perf_event_update_time(struct perf_event *event)
640 {
641         u64 now = perf_event_time(event);
642
643         __perf_update_times(event, now, &event->total_time_enabled,
644                                         &event->total_time_running);
645         event->tstamp = now;
646 }
647
648 static void perf_event_update_sibling_time(struct perf_event *leader)
649 {
650         struct perf_event *sibling;
651
652         for_each_sibling_event(sibling, leader)
653                 perf_event_update_time(sibling);
654 }
655
656 static void
657 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
658 {
659         if (event->state == state)
660                 return;
661
662         perf_event_update_time(event);
663         /*
664          * If a group leader gets enabled/disabled all its siblings
665          * are affected too.
666          */
667         if ((event->state < 0) ^ (state < 0))
668                 perf_event_update_sibling_time(event);
669
670         WRITE_ONCE(event->state, state);
671 }
672
673 #ifdef CONFIG_CGROUP_PERF
674
675 static inline bool
676 perf_cgroup_match(struct perf_event *event)
677 {
678         struct perf_event_context *ctx = event->ctx;
679         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
680
681         /* @event doesn't care about cgroup */
682         if (!event->cgrp)
683                 return true;
684
685         /* wants specific cgroup scope but @cpuctx isn't associated with any */
686         if (!cpuctx->cgrp)
687                 return false;
688
689         /*
690          * Cgroup scoping is recursive.  An event enabled for a cgroup is
691          * also enabled for all its descendant cgroups.  If @cpuctx's
692          * cgroup is a descendant of @event's (the test covers identity
693          * case), it's a match.
694          */
695         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
696                                     event->cgrp->css.cgroup);
697 }
698
699 static inline void perf_detach_cgroup(struct perf_event *event)
700 {
701         css_put(&event->cgrp->css);
702         event->cgrp = NULL;
703 }
704
705 static inline int is_cgroup_event(struct perf_event *event)
706 {
707         return event->cgrp != NULL;
708 }
709
710 static inline u64 perf_cgroup_event_time(struct perf_event *event)
711 {
712         struct perf_cgroup_info *t;
713
714         t = per_cpu_ptr(event->cgrp->info, event->cpu);
715         return t->time;
716 }
717
718 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
719 {
720         struct perf_cgroup_info *info;
721         u64 now;
722
723         now = perf_clock();
724
725         info = this_cpu_ptr(cgrp->info);
726
727         info->time += now - info->timestamp;
728         info->timestamp = now;
729 }
730
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733         struct perf_cgroup *cgrp = cpuctx->cgrp;
734         struct cgroup_subsys_state *css;
735
736         if (cgrp) {
737                 for (css = &cgrp->css; css; css = css->parent) {
738                         cgrp = container_of(css, struct perf_cgroup, css);
739                         __update_cgrp_time(cgrp);
740                 }
741         }
742 }
743
744 static inline void update_cgrp_time_from_event(struct perf_event *event)
745 {
746         struct perf_cgroup *cgrp;
747
748         /*
749          * ensure we access cgroup data only when needed and
750          * when we know the cgroup is pinned (css_get)
751          */
752         if (!is_cgroup_event(event))
753                 return;
754
755         cgrp = perf_cgroup_from_task(current, event->ctx);
756         /*
757          * Do not update time when cgroup is not active
758          */
759        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
760                 __update_cgrp_time(event->cgrp);
761 }
762
763 static inline void
764 perf_cgroup_set_timestamp(struct task_struct *task,
765                           struct perf_event_context *ctx)
766 {
767         struct perf_cgroup *cgrp;
768         struct perf_cgroup_info *info;
769         struct cgroup_subsys_state *css;
770
771         /*
772          * ctx->lock held by caller
773          * ensure we do not access cgroup data
774          * unless we have the cgroup pinned (css_get)
775          */
776         if (!task || !ctx->nr_cgroups)
777                 return;
778
779         cgrp = perf_cgroup_from_task(task, ctx);
780
781         for (css = &cgrp->css; css; css = css->parent) {
782                 cgrp = container_of(css, struct perf_cgroup, css);
783                 info = this_cpu_ptr(cgrp->info);
784                 info->timestamp = ctx->timestamp;
785         }
786 }
787
788 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
789
790 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
791 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
792
793 /*
794  * reschedule events based on the cgroup constraint of task.
795  *
796  * mode SWOUT : schedule out everything
797  * mode SWIN : schedule in based on cgroup for next
798  */
799 static void perf_cgroup_switch(struct task_struct *task, int mode)
800 {
801         struct perf_cpu_context *cpuctx;
802         struct list_head *list;
803         unsigned long flags;
804
805         /*
806          * Disable interrupts and preemption to avoid this CPU's
807          * cgrp_cpuctx_entry to change under us.
808          */
809         local_irq_save(flags);
810
811         list = this_cpu_ptr(&cgrp_cpuctx_list);
812         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
813                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
814
815                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
816                 perf_pmu_disable(cpuctx->ctx.pmu);
817
818                 if (mode & PERF_CGROUP_SWOUT) {
819                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
820                         /*
821                          * must not be done before ctxswout due
822                          * to event_filter_match() in event_sched_out()
823                          */
824                         cpuctx->cgrp = NULL;
825                 }
826
827                 if (mode & PERF_CGROUP_SWIN) {
828                         WARN_ON_ONCE(cpuctx->cgrp);
829                         /*
830                          * set cgrp before ctxsw in to allow
831                          * event_filter_match() to not have to pass
832                          * task around
833                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
834                          * because cgorup events are only per-cpu
835                          */
836                         cpuctx->cgrp = perf_cgroup_from_task(task,
837                                                              &cpuctx->ctx);
838                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
839                 }
840                 perf_pmu_enable(cpuctx->ctx.pmu);
841                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
842         }
843
844         local_irq_restore(flags);
845 }
846
847 static inline void perf_cgroup_sched_out(struct task_struct *task,
848                                          struct task_struct *next)
849 {
850         struct perf_cgroup *cgrp1;
851         struct perf_cgroup *cgrp2 = NULL;
852
853         rcu_read_lock();
854         /*
855          * we come here when we know perf_cgroup_events > 0
856          * we do not need to pass the ctx here because we know
857          * we are holding the rcu lock
858          */
859         cgrp1 = perf_cgroup_from_task(task, NULL);
860         cgrp2 = perf_cgroup_from_task(next, NULL);
861
862         /*
863          * only schedule out current cgroup events if we know
864          * that we are switching to a different cgroup. Otherwise,
865          * do no touch the cgroup events.
866          */
867         if (cgrp1 != cgrp2)
868                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
869
870         rcu_read_unlock();
871 }
872
873 static inline void perf_cgroup_sched_in(struct task_struct *prev,
874                                         struct task_struct *task)
875 {
876         struct perf_cgroup *cgrp1;
877         struct perf_cgroup *cgrp2 = NULL;
878
879         rcu_read_lock();
880         /*
881          * we come here when we know perf_cgroup_events > 0
882          * we do not need to pass the ctx here because we know
883          * we are holding the rcu lock
884          */
885         cgrp1 = perf_cgroup_from_task(task, NULL);
886         cgrp2 = perf_cgroup_from_task(prev, NULL);
887
888         /*
889          * only need to schedule in cgroup events if we are changing
890          * cgroup during ctxsw. Cgroup events were not scheduled
891          * out of ctxsw out if that was not the case.
892          */
893         if (cgrp1 != cgrp2)
894                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
895
896         rcu_read_unlock();
897 }
898
899 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
900                                       struct perf_event_attr *attr,
901                                       struct perf_event *group_leader)
902 {
903         struct perf_cgroup *cgrp;
904         struct cgroup_subsys_state *css;
905         struct fd f = fdget(fd);
906         int ret = 0;
907
908         if (!f.file)
909                 return -EBADF;
910
911         css = css_tryget_online_from_dir(f.file->f_path.dentry,
912                                          &perf_event_cgrp_subsys);
913         if (IS_ERR(css)) {
914                 ret = PTR_ERR(css);
915                 goto out;
916         }
917
918         cgrp = container_of(css, struct perf_cgroup, css);
919         event->cgrp = cgrp;
920
921         /*
922          * all events in a group must monitor
923          * the same cgroup because a task belongs
924          * to only one perf cgroup at a time
925          */
926         if (group_leader && group_leader->cgrp != cgrp) {
927                 perf_detach_cgroup(event);
928                 ret = -EINVAL;
929         }
930 out:
931         fdput(f);
932         return ret;
933 }
934
935 static inline void
936 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
937 {
938         struct perf_cgroup_info *t;
939         t = per_cpu_ptr(event->cgrp->info, event->cpu);
940         event->shadow_ctx_time = now - t->timestamp;
941 }
942
943 /*
944  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
945  * cleared when last cgroup event is removed.
946  */
947 static inline void
948 list_update_cgroup_event(struct perf_event *event,
949                          struct perf_event_context *ctx, bool add)
950 {
951         struct perf_cpu_context *cpuctx;
952         struct list_head *cpuctx_entry;
953
954         if (!is_cgroup_event(event))
955                 return;
956
957         /*
958          * Because cgroup events are always per-cpu events,
959          * this will always be called from the right CPU.
960          */
961         cpuctx = __get_cpu_context(ctx);
962
963         /*
964          * Since setting cpuctx->cgrp is conditional on the current @cgrp
965          * matching the event's cgroup, we must do this for every new event,
966          * because if the first would mismatch, the second would not try again
967          * and we would leave cpuctx->cgrp unset.
968          */
969         if (add && !cpuctx->cgrp) {
970                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
971
972                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
973                         cpuctx->cgrp = cgrp;
974         }
975
976         if (add && ctx->nr_cgroups++)
977                 return;
978         else if (!add && --ctx->nr_cgroups)
979                 return;
980
981         /* no cgroup running */
982         if (!add)
983                 cpuctx->cgrp = NULL;
984
985         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
986         if (add)
987                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
988         else
989                 list_del(cpuctx_entry);
990 }
991
992 #else /* !CONFIG_CGROUP_PERF */
993
994 static inline bool
995 perf_cgroup_match(struct perf_event *event)
996 {
997         return true;
998 }
999
1000 static inline void perf_detach_cgroup(struct perf_event *event)
1001 {}
1002
1003 static inline int is_cgroup_event(struct perf_event *event)
1004 {
1005         return 0;
1006 }
1007
1008 static inline void update_cgrp_time_from_event(struct perf_event *event)
1009 {
1010 }
1011
1012 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_out(struct task_struct *task,
1017                                          struct task_struct *next)
1018 {
1019 }
1020
1021 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1022                                         struct task_struct *task)
1023 {
1024 }
1025
1026 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1027                                       struct perf_event_attr *attr,
1028                                       struct perf_event *group_leader)
1029 {
1030         return -EINVAL;
1031 }
1032
1033 static inline void
1034 perf_cgroup_set_timestamp(struct task_struct *task,
1035                           struct perf_event_context *ctx)
1036 {
1037 }
1038
1039 void
1040 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1041 {
1042 }
1043
1044 static inline void
1045 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1046 {
1047 }
1048
1049 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1050 {
1051         return 0;
1052 }
1053
1054 static inline void
1055 list_update_cgroup_event(struct perf_event *event,
1056                          struct perf_event_context *ctx, bool add)
1057 {
1058 }
1059
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_context *cpuctx;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078         rotations = perf_rotate_context(cpuctx);
1079
1080         raw_spin_lock(&cpuctx->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083         else
1084                 cpuctx->hrtimer_active = 0;
1085         raw_spin_unlock(&cpuctx->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092         struct hrtimer *timer = &cpuctx->hrtimer;
1093         struct pmu *pmu = cpuctx->ctx.pmu;
1094         u64 interval;
1095
1096         /* no multiplexing needed for SW PMU */
1097         if (pmu->task_ctx_nr == perf_sw_context)
1098                 return;
1099
1100         /*
1101          * check default is sane, if not set then force to
1102          * default interval (1/tick)
1103          */
1104         interval = pmu->hrtimer_interval_ms;
1105         if (interval < 1)
1106                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107
1108         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109
1110         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1112         timer->function = perf_mux_hrtimer_handler;
1113 }
1114
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117         struct hrtimer *timer = &cpuctx->hrtimer;
1118         struct pmu *pmu = cpuctx->ctx.pmu;
1119         unsigned long flags;
1120
1121         /* not for SW PMU */
1122         if (pmu->task_ctx_nr == perf_sw_context)
1123                 return 0;
1124
1125         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126         if (!cpuctx->hrtimer_active) {
1127                 cpuctx->hrtimer_active = 1;
1128                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1130         }
1131         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132
1133         return 0;
1134 }
1135
1136 void perf_pmu_disable(struct pmu *pmu)
1137 {
1138         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1139         if (!(*count)++)
1140                 pmu->pmu_disable(pmu);
1141 }
1142
1143 void perf_pmu_enable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!--(*count))
1147                 pmu->pmu_enable(pmu);
1148 }
1149
1150 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1151
1152 /*
1153  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1154  * perf_event_task_tick() are fully serialized because they're strictly cpu
1155  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1156  * disabled, while perf_event_task_tick is called from IRQ context.
1157  */
1158 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1159 {
1160         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1161
1162         lockdep_assert_irqs_disabled();
1163
1164         WARN_ON(!list_empty(&ctx->active_ctx_list));
1165
1166         list_add(&ctx->active_ctx_list, head);
1167 }
1168
1169 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1170 {
1171         lockdep_assert_irqs_disabled();
1172
1173         WARN_ON(list_empty(&ctx->active_ctx_list));
1174
1175         list_del_init(&ctx->active_ctx_list);
1176 }
1177
1178 static void get_ctx(struct perf_event_context *ctx)
1179 {
1180         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1181 }
1182
1183 static void free_ctx(struct rcu_head *head)
1184 {
1185         struct perf_event_context *ctx;
1186
1187         ctx = container_of(head, struct perf_event_context, rcu_head);
1188         kfree(ctx->task_ctx_data);
1189         kfree(ctx);
1190 }
1191
1192 static void put_ctx(struct perf_event_context *ctx)
1193 {
1194         if (atomic_dec_and_test(&ctx->refcount)) {
1195                 if (ctx->parent_ctx)
1196                         put_ctx(ctx->parent_ctx);
1197                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1198                         put_task_struct(ctx->task);
1199                 call_rcu(&ctx->rcu_head, free_ctx);
1200         }
1201 }
1202
1203 /*
1204  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1205  * perf_pmu_migrate_context() we need some magic.
1206  *
1207  * Those places that change perf_event::ctx will hold both
1208  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1209  *
1210  * Lock ordering is by mutex address. There are two other sites where
1211  * perf_event_context::mutex nests and those are:
1212  *
1213  *  - perf_event_exit_task_context()    [ child , 0 ]
1214  *      perf_event_exit_event()
1215  *        put_event()                   [ parent, 1 ]
1216  *
1217  *  - perf_event_init_context()         [ parent, 0 ]
1218  *      inherit_task_group()
1219  *        inherit_group()
1220  *          inherit_event()
1221  *            perf_event_alloc()
1222  *              perf_init_event()
1223  *                perf_try_init_event() [ child , 1 ]
1224  *
1225  * While it appears there is an obvious deadlock here -- the parent and child
1226  * nesting levels are inverted between the two. This is in fact safe because
1227  * life-time rules separate them. That is an exiting task cannot fork, and a
1228  * spawning task cannot (yet) exit.
1229  *
1230  * But remember that that these are parent<->child context relations, and
1231  * migration does not affect children, therefore these two orderings should not
1232  * interact.
1233  *
1234  * The change in perf_event::ctx does not affect children (as claimed above)
1235  * because the sys_perf_event_open() case will install a new event and break
1236  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1237  * concerned with cpuctx and that doesn't have children.
1238  *
1239  * The places that change perf_event::ctx will issue:
1240  *
1241  *   perf_remove_from_context();
1242  *   synchronize_rcu();
1243  *   perf_install_in_context();
1244  *
1245  * to affect the change. The remove_from_context() + synchronize_rcu() should
1246  * quiesce the event, after which we can install it in the new location. This
1247  * means that only external vectors (perf_fops, prctl) can perturb the event
1248  * while in transit. Therefore all such accessors should also acquire
1249  * perf_event_context::mutex to serialize against this.
1250  *
1251  * However; because event->ctx can change while we're waiting to acquire
1252  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1253  * function.
1254  *
1255  * Lock order:
1256  *    cred_guard_mutex
1257  *      task_struct::perf_event_mutex
1258  *        perf_event_context::mutex
1259  *          perf_event::child_mutex;
1260  *            perf_event_context::lock
1261  *          perf_event::mmap_mutex
1262  *          mmap_sem
1263  *            perf_addr_filters_head::lock
1264  *
1265  *    cpu_hotplug_lock
1266  *      pmus_lock
1267  *        cpuctx->mutex / perf_event_context::mutex
1268  */
1269 static struct perf_event_context *
1270 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1271 {
1272         struct perf_event_context *ctx;
1273
1274 again:
1275         rcu_read_lock();
1276         ctx = READ_ONCE(event->ctx);
1277         if (!atomic_inc_not_zero(&ctx->refcount)) {
1278                 rcu_read_unlock();
1279                 goto again;
1280         }
1281         rcu_read_unlock();
1282
1283         mutex_lock_nested(&ctx->mutex, nesting);
1284         if (event->ctx != ctx) {
1285                 mutex_unlock(&ctx->mutex);
1286                 put_ctx(ctx);
1287                 goto again;
1288         }
1289
1290         return ctx;
1291 }
1292
1293 static inline struct perf_event_context *
1294 perf_event_ctx_lock(struct perf_event *event)
1295 {
1296         return perf_event_ctx_lock_nested(event, 0);
1297 }
1298
1299 static void perf_event_ctx_unlock(struct perf_event *event,
1300                                   struct perf_event_context *ctx)
1301 {
1302         mutex_unlock(&ctx->mutex);
1303         put_ctx(ctx);
1304 }
1305
1306 /*
1307  * This must be done under the ctx->lock, such as to serialize against
1308  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1309  * calling scheduler related locks and ctx->lock nests inside those.
1310  */
1311 static __must_check struct perf_event_context *
1312 unclone_ctx(struct perf_event_context *ctx)
1313 {
1314         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1315
1316         lockdep_assert_held(&ctx->lock);
1317
1318         if (parent_ctx)
1319                 ctx->parent_ctx = NULL;
1320         ctx->generation++;
1321
1322         return parent_ctx;
1323 }
1324
1325 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1326                                 enum pid_type type)
1327 {
1328         u32 nr;
1329         /*
1330          * only top level events have the pid namespace they were created in
1331          */
1332         if (event->parent)
1333                 event = event->parent;
1334
1335         nr = __task_pid_nr_ns(p, type, event->ns);
1336         /* avoid -1 if it is idle thread or runs in another ns */
1337         if (!nr && !pid_alive(p))
1338                 nr = -1;
1339         return nr;
1340 }
1341
1342 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1345 }
1346
1347 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1348 {
1349         return perf_event_pid_type(event, p, PIDTYPE_PID);
1350 }
1351
1352 /*
1353  * If we inherit events we want to return the parent event id
1354  * to userspace.
1355  */
1356 static u64 primary_event_id(struct perf_event *event)
1357 {
1358         u64 id = event->id;
1359
1360         if (event->parent)
1361                 id = event->parent->id;
1362
1363         return id;
1364 }
1365
1366 /*
1367  * Get the perf_event_context for a task and lock it.
1368  *
1369  * This has to cope with with the fact that until it is locked,
1370  * the context could get moved to another task.
1371  */
1372 static struct perf_event_context *
1373 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1374 {
1375         struct perf_event_context *ctx;
1376
1377 retry:
1378         /*
1379          * One of the few rules of preemptible RCU is that one cannot do
1380          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1381          * part of the read side critical section was irqs-enabled -- see
1382          * rcu_read_unlock_special().
1383          *
1384          * Since ctx->lock nests under rq->lock we must ensure the entire read
1385          * side critical section has interrupts disabled.
1386          */
1387         local_irq_save(*flags);
1388         rcu_read_lock();
1389         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1390         if (ctx) {
1391                 /*
1392                  * If this context is a clone of another, it might
1393                  * get swapped for another underneath us by
1394                  * perf_event_task_sched_out, though the
1395                  * rcu_read_lock() protects us from any context
1396                  * getting freed.  Lock the context and check if it
1397                  * got swapped before we could get the lock, and retry
1398                  * if so.  If we locked the right context, then it
1399                  * can't get swapped on us any more.
1400                  */
1401                 raw_spin_lock(&ctx->lock);
1402                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1403                         raw_spin_unlock(&ctx->lock);
1404                         rcu_read_unlock();
1405                         local_irq_restore(*flags);
1406                         goto retry;
1407                 }
1408
1409                 if (ctx->task == TASK_TOMBSTONE ||
1410                     !atomic_inc_not_zero(&ctx->refcount)) {
1411                         raw_spin_unlock(&ctx->lock);
1412                         ctx = NULL;
1413                 } else {
1414                         WARN_ON_ONCE(ctx->task != task);
1415                 }
1416         }
1417         rcu_read_unlock();
1418         if (!ctx)
1419                 local_irq_restore(*flags);
1420         return ctx;
1421 }
1422
1423 /*
1424  * Get the context for a task and increment its pin_count so it
1425  * can't get swapped to another task.  This also increments its
1426  * reference count so that the context can't get freed.
1427  */
1428 static struct perf_event_context *
1429 perf_pin_task_context(struct task_struct *task, int ctxn)
1430 {
1431         struct perf_event_context *ctx;
1432         unsigned long flags;
1433
1434         ctx = perf_lock_task_context(task, ctxn, &flags);
1435         if (ctx) {
1436                 ++ctx->pin_count;
1437                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1438         }
1439         return ctx;
1440 }
1441
1442 static void perf_unpin_context(struct perf_event_context *ctx)
1443 {
1444         unsigned long flags;
1445
1446         raw_spin_lock_irqsave(&ctx->lock, flags);
1447         --ctx->pin_count;
1448         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1449 }
1450
1451 /*
1452  * Update the record of the current time in a context.
1453  */
1454 static void update_context_time(struct perf_event_context *ctx)
1455 {
1456         u64 now = perf_clock();
1457
1458         ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460 }
1461
1462 static u64 perf_event_time(struct perf_event *event)
1463 {
1464         struct perf_event_context *ctx = event->ctx;
1465
1466         if (is_cgroup_event(event))
1467                 return perf_cgroup_event_time(event);
1468
1469         return ctx ? ctx->time : 0;
1470 }
1471
1472 static enum event_type_t get_event_type(struct perf_event *event)
1473 {
1474         struct perf_event_context *ctx = event->ctx;
1475         enum event_type_t event_type;
1476
1477         lockdep_assert_held(&ctx->lock);
1478
1479         /*
1480          * It's 'group type', really, because if our group leader is
1481          * pinned, so are we.
1482          */
1483         if (event->group_leader != event)
1484                 event = event->group_leader;
1485
1486         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1487         if (!ctx->task)
1488                 event_type |= EVENT_CPU;
1489
1490         return event_type;
1491 }
1492
1493 /*
1494  * Helper function to initialize event group nodes.
1495  */
1496 static void init_event_group(struct perf_event *event)
1497 {
1498         RB_CLEAR_NODE(&event->group_node);
1499         event->group_index = 0;
1500 }
1501
1502 /*
1503  * Extract pinned or flexible groups from the context
1504  * based on event attrs bits.
1505  */
1506 static struct perf_event_groups *
1507 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1508 {
1509         if (event->attr.pinned)
1510                 return &ctx->pinned_groups;
1511         else
1512                 return &ctx->flexible_groups;
1513 }
1514
1515 /*
1516  * Helper function to initializes perf_event_group trees.
1517  */
1518 static void perf_event_groups_init(struct perf_event_groups *groups)
1519 {
1520         groups->tree = RB_ROOT;
1521         groups->index = 0;
1522 }
1523
1524 /*
1525  * Compare function for event groups;
1526  *
1527  * Implements complex key that first sorts by CPU and then by virtual index
1528  * which provides ordering when rotating groups for the same CPU.
1529  */
1530 static bool
1531 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1532 {
1533         if (left->cpu < right->cpu)
1534                 return true;
1535         if (left->cpu > right->cpu)
1536                 return false;
1537
1538         if (left->group_index < right->group_index)
1539                 return true;
1540         if (left->group_index > right->group_index)
1541                 return false;
1542
1543         return false;
1544 }
1545
1546 /*
1547  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1548  * key (see perf_event_groups_less). This places it last inside the CPU
1549  * subtree.
1550  */
1551 static void
1552 perf_event_groups_insert(struct perf_event_groups *groups,
1553                          struct perf_event *event)
1554 {
1555         struct perf_event *node_event;
1556         struct rb_node *parent;
1557         struct rb_node **node;
1558
1559         event->group_index = ++groups->index;
1560
1561         node = &groups->tree.rb_node;
1562         parent = *node;
1563
1564         while (*node) {
1565                 parent = *node;
1566                 node_event = container_of(*node, struct perf_event, group_node);
1567
1568                 if (perf_event_groups_less(event, node_event))
1569                         node = &parent->rb_left;
1570                 else
1571                         node = &parent->rb_right;
1572         }
1573
1574         rb_link_node(&event->group_node, parent, node);
1575         rb_insert_color(&event->group_node, &groups->tree);
1576 }
1577
1578 /*
1579  * Helper function to insert event into the pinned or flexible groups.
1580  */
1581 static void
1582 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584         struct perf_event_groups *groups;
1585
1586         groups = get_event_groups(event, ctx);
1587         perf_event_groups_insert(groups, event);
1588 }
1589
1590 /*
1591  * Delete a group from a tree.
1592  */
1593 static void
1594 perf_event_groups_delete(struct perf_event_groups *groups,
1595                          struct perf_event *event)
1596 {
1597         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1598                      RB_EMPTY_ROOT(&groups->tree));
1599
1600         rb_erase(&event->group_node, &groups->tree);
1601         init_event_group(event);
1602 }
1603
1604 /*
1605  * Helper function to delete event from its groups.
1606  */
1607 static void
1608 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1609 {
1610         struct perf_event_groups *groups;
1611
1612         groups = get_event_groups(event, ctx);
1613         perf_event_groups_delete(groups, event);
1614 }
1615
1616 /*
1617  * Get the leftmost event in the @cpu subtree.
1618  */
1619 static struct perf_event *
1620 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1621 {
1622         struct perf_event *node_event = NULL, *match = NULL;
1623         struct rb_node *node = groups->tree.rb_node;
1624
1625         while (node) {
1626                 node_event = container_of(node, struct perf_event, group_node);
1627
1628                 if (cpu < node_event->cpu) {
1629                         node = node->rb_left;
1630                 } else if (cpu > node_event->cpu) {
1631                         node = node->rb_right;
1632                 } else {
1633                         match = node_event;
1634                         node = node->rb_left;
1635                 }
1636         }
1637
1638         return match;
1639 }
1640
1641 /*
1642  * Like rb_entry_next_safe() for the @cpu subtree.
1643  */
1644 static struct perf_event *
1645 perf_event_groups_next(struct perf_event *event)
1646 {
1647         struct perf_event *next;
1648
1649         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1650         if (next && next->cpu == event->cpu)
1651                 return next;
1652
1653         return NULL;
1654 }
1655
1656 /*
1657  * Iterate through the whole groups tree.
1658  */
1659 #define perf_event_groups_for_each(event, groups)                       \
1660         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1661                                 typeof(*event), group_node); event;     \
1662                 event = rb_entry_safe(rb_next(&event->group_node),      \
1663                                 typeof(*event), group_node))
1664
1665 /*
1666  * Add an event from the lists for its context.
1667  * Must be called with ctx->mutex and ctx->lock held.
1668  */
1669 static void
1670 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672         lockdep_assert_held(&ctx->lock);
1673
1674         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1675         event->attach_state |= PERF_ATTACH_CONTEXT;
1676
1677         event->tstamp = perf_event_time(event);
1678
1679         /*
1680          * If we're a stand alone event or group leader, we go to the context
1681          * list, group events are kept attached to the group so that
1682          * perf_group_detach can, at all times, locate all siblings.
1683          */
1684         if (event->group_leader == event) {
1685                 event->group_caps = event->event_caps;
1686                 add_event_to_groups(event, ctx);
1687         }
1688
1689         list_update_cgroup_event(event, ctx, true);
1690
1691         list_add_rcu(&event->event_entry, &ctx->event_list);
1692         ctx->nr_events++;
1693         if (event->attr.inherit_stat)
1694                 ctx->nr_stat++;
1695
1696         ctx->generation++;
1697 }
1698
1699 /*
1700  * Initialize event state based on the perf_event_attr::disabled.
1701  */
1702 static inline void perf_event__state_init(struct perf_event *event)
1703 {
1704         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1705                                               PERF_EVENT_STATE_INACTIVE;
1706 }
1707
1708 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1709 {
1710         int entry = sizeof(u64); /* value */
1711         int size = 0;
1712         int nr = 1;
1713
1714         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1715                 size += sizeof(u64);
1716
1717         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1718                 size += sizeof(u64);
1719
1720         if (event->attr.read_format & PERF_FORMAT_ID)
1721                 entry += sizeof(u64);
1722
1723         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1724                 nr += nr_siblings;
1725                 size += sizeof(u64);
1726         }
1727
1728         size += entry * nr;
1729         event->read_size = size;
1730 }
1731
1732 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1733 {
1734         struct perf_sample_data *data;
1735         u16 size = 0;
1736
1737         if (sample_type & PERF_SAMPLE_IP)
1738                 size += sizeof(data->ip);
1739
1740         if (sample_type & PERF_SAMPLE_ADDR)
1741                 size += sizeof(data->addr);
1742
1743         if (sample_type & PERF_SAMPLE_PERIOD)
1744                 size += sizeof(data->period);
1745
1746         if (sample_type & PERF_SAMPLE_WEIGHT)
1747                 size += sizeof(data->weight);
1748
1749         if (sample_type & PERF_SAMPLE_READ)
1750                 size += event->read_size;
1751
1752         if (sample_type & PERF_SAMPLE_DATA_SRC)
1753                 size += sizeof(data->data_src.val);
1754
1755         if (sample_type & PERF_SAMPLE_TRANSACTION)
1756                 size += sizeof(data->txn);
1757
1758         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1759                 size += sizeof(data->phys_addr);
1760
1761         event->header_size = size;
1762 }
1763
1764 /*
1765  * Called at perf_event creation and when events are attached/detached from a
1766  * group.
1767  */
1768 static void perf_event__header_size(struct perf_event *event)
1769 {
1770         __perf_event_read_size(event,
1771                                event->group_leader->nr_siblings);
1772         __perf_event_header_size(event, event->attr.sample_type);
1773 }
1774
1775 static void perf_event__id_header_size(struct perf_event *event)
1776 {
1777         struct perf_sample_data *data;
1778         u64 sample_type = event->attr.sample_type;
1779         u16 size = 0;
1780
1781         if (sample_type & PERF_SAMPLE_TID)
1782                 size += sizeof(data->tid_entry);
1783
1784         if (sample_type & PERF_SAMPLE_TIME)
1785                 size += sizeof(data->time);
1786
1787         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1788                 size += sizeof(data->id);
1789
1790         if (sample_type & PERF_SAMPLE_ID)
1791                 size += sizeof(data->id);
1792
1793         if (sample_type & PERF_SAMPLE_STREAM_ID)
1794                 size += sizeof(data->stream_id);
1795
1796         if (sample_type & PERF_SAMPLE_CPU)
1797                 size += sizeof(data->cpu_entry);
1798
1799         event->id_header_size = size;
1800 }
1801
1802 static bool perf_event_validate_size(struct perf_event *event)
1803 {
1804         /*
1805          * The values computed here will be over-written when we actually
1806          * attach the event.
1807          */
1808         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1809         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1810         perf_event__id_header_size(event);
1811
1812         /*
1813          * Sum the lot; should not exceed the 64k limit we have on records.
1814          * Conservative limit to allow for callchains and other variable fields.
1815          */
1816         if (event->read_size + event->header_size +
1817             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1818                 return false;
1819
1820         return true;
1821 }
1822
1823 static void perf_group_attach(struct perf_event *event)
1824 {
1825         struct perf_event *group_leader = event->group_leader, *pos;
1826
1827         lockdep_assert_held(&event->ctx->lock);
1828
1829         /*
1830          * We can have double attach due to group movement in perf_event_open.
1831          */
1832         if (event->attach_state & PERF_ATTACH_GROUP)
1833                 return;
1834
1835         event->attach_state |= PERF_ATTACH_GROUP;
1836
1837         if (group_leader == event)
1838                 return;
1839
1840         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1841
1842         group_leader->group_caps &= event->event_caps;
1843
1844         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1845         group_leader->nr_siblings++;
1846
1847         perf_event__header_size(group_leader);
1848
1849         for_each_sibling_event(pos, group_leader)
1850                 perf_event__header_size(pos);
1851 }
1852
1853 /*
1854  * Remove an event from the lists for its context.
1855  * Must be called with ctx->mutex and ctx->lock held.
1856  */
1857 static void
1858 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1859 {
1860         WARN_ON_ONCE(event->ctx != ctx);
1861         lockdep_assert_held(&ctx->lock);
1862
1863         /*
1864          * We can have double detach due to exit/hot-unplug + close.
1865          */
1866         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1867                 return;
1868
1869         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1870
1871         list_update_cgroup_event(event, ctx, false);
1872
1873         ctx->nr_events--;
1874         if (event->attr.inherit_stat)
1875                 ctx->nr_stat--;
1876
1877         list_del_rcu(&event->event_entry);
1878
1879         if (event->group_leader == event)
1880                 del_event_from_groups(event, ctx);
1881
1882         /*
1883          * If event was in error state, then keep it
1884          * that way, otherwise bogus counts will be
1885          * returned on read(). The only way to get out
1886          * of error state is by explicit re-enabling
1887          * of the event
1888          */
1889         if (event->state > PERF_EVENT_STATE_OFF)
1890                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1891
1892         ctx->generation++;
1893 }
1894
1895 static void perf_group_detach(struct perf_event *event)
1896 {
1897         struct perf_event *sibling, *tmp;
1898         struct perf_event_context *ctx = event->ctx;
1899
1900         lockdep_assert_held(&ctx->lock);
1901
1902         /*
1903          * We can have double detach due to exit/hot-unplug + close.
1904          */
1905         if (!(event->attach_state & PERF_ATTACH_GROUP))
1906                 return;
1907
1908         event->attach_state &= ~PERF_ATTACH_GROUP;
1909
1910         /*
1911          * If this is a sibling, remove it from its group.
1912          */
1913         if (event->group_leader != event) {
1914                 list_del_init(&event->sibling_list);
1915                 event->group_leader->nr_siblings--;
1916                 goto out;
1917         }
1918
1919         /*
1920          * If this was a group event with sibling events then
1921          * upgrade the siblings to singleton events by adding them
1922          * to whatever list we are on.
1923          */
1924         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1925
1926                 sibling->group_leader = sibling;
1927                 list_del_init(&sibling->sibling_list);
1928
1929                 /* Inherit group flags from the previous leader */
1930                 sibling->group_caps = event->group_caps;
1931
1932                 if (!RB_EMPTY_NODE(&event->group_node)) {
1933                         add_event_to_groups(sibling, event->ctx);
1934
1935                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1936                                 struct list_head *list = sibling->attr.pinned ?
1937                                         &ctx->pinned_active : &ctx->flexible_active;
1938
1939                                 list_add_tail(&sibling->active_list, list);
1940                         }
1941                 }
1942
1943                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1944         }
1945
1946 out:
1947         perf_event__header_size(event->group_leader);
1948
1949         for_each_sibling_event(tmp, event->group_leader)
1950                 perf_event__header_size(tmp);
1951 }
1952
1953 static bool is_orphaned_event(struct perf_event *event)
1954 {
1955         return event->state == PERF_EVENT_STATE_DEAD;
1956 }
1957
1958 static inline int __pmu_filter_match(struct perf_event *event)
1959 {
1960         struct pmu *pmu = event->pmu;
1961         return pmu->filter_match ? pmu->filter_match(event) : 1;
1962 }
1963
1964 /*
1965  * Check whether we should attempt to schedule an event group based on
1966  * PMU-specific filtering. An event group can consist of HW and SW events,
1967  * potentially with a SW leader, so we must check all the filters, to
1968  * determine whether a group is schedulable:
1969  */
1970 static inline int pmu_filter_match(struct perf_event *event)
1971 {
1972         struct perf_event *sibling;
1973
1974         if (!__pmu_filter_match(event))
1975                 return 0;
1976
1977         for_each_sibling_event(sibling, event) {
1978                 if (!__pmu_filter_match(sibling))
1979                         return 0;
1980         }
1981
1982         return 1;
1983 }
1984
1985 static inline int
1986 event_filter_match(struct perf_event *event)
1987 {
1988         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1989                perf_cgroup_match(event) && pmu_filter_match(event);
1990 }
1991
1992 static void
1993 event_sched_out(struct perf_event *event,
1994                   struct perf_cpu_context *cpuctx,
1995                   struct perf_event_context *ctx)
1996 {
1997         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1998
1999         WARN_ON_ONCE(event->ctx != ctx);
2000         lockdep_assert_held(&ctx->lock);
2001
2002         if (event->state != PERF_EVENT_STATE_ACTIVE)
2003                 return;
2004
2005         /*
2006          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2007          * we can schedule events _OUT_ individually through things like
2008          * __perf_remove_from_context().
2009          */
2010         list_del_init(&event->active_list);
2011
2012         perf_pmu_disable(event->pmu);
2013
2014         event->pmu->del(event, 0);
2015         event->oncpu = -1;
2016
2017         if (READ_ONCE(event->pending_disable) >= 0) {
2018                 WRITE_ONCE(event->pending_disable, -1);
2019                 state = PERF_EVENT_STATE_OFF;
2020         }
2021         perf_event_set_state(event, state);
2022
2023         if (!is_software_event(event))
2024                 cpuctx->active_oncpu--;
2025         if (!--ctx->nr_active)
2026                 perf_event_ctx_deactivate(ctx);
2027         if (event->attr.freq && event->attr.sample_freq)
2028                 ctx->nr_freq--;
2029         if (event->attr.exclusive || !cpuctx->active_oncpu)
2030                 cpuctx->exclusive = 0;
2031
2032         perf_pmu_enable(event->pmu);
2033 }
2034
2035 static void
2036 group_sched_out(struct perf_event *group_event,
2037                 struct perf_cpu_context *cpuctx,
2038                 struct perf_event_context *ctx)
2039 {
2040         struct perf_event *event;
2041
2042         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2043                 return;
2044
2045         perf_pmu_disable(ctx->pmu);
2046
2047         event_sched_out(group_event, cpuctx, ctx);
2048
2049         /*
2050          * Schedule out siblings (if any):
2051          */
2052         for_each_sibling_event(event, group_event)
2053                 event_sched_out(event, cpuctx, ctx);
2054
2055         perf_pmu_enable(ctx->pmu);
2056
2057         if (group_event->attr.exclusive)
2058                 cpuctx->exclusive = 0;
2059 }
2060
2061 #define DETACH_GROUP    0x01UL
2062
2063 /*
2064  * Cross CPU call to remove a performance event
2065  *
2066  * We disable the event on the hardware level first. After that we
2067  * remove it from the context list.
2068  */
2069 static void
2070 __perf_remove_from_context(struct perf_event *event,
2071                            struct perf_cpu_context *cpuctx,
2072                            struct perf_event_context *ctx,
2073                            void *info)
2074 {
2075         unsigned long flags = (unsigned long)info;
2076
2077         if (ctx->is_active & EVENT_TIME) {
2078                 update_context_time(ctx);
2079                 update_cgrp_time_from_cpuctx(cpuctx);
2080         }
2081
2082         event_sched_out(event, cpuctx, ctx);
2083         if (flags & DETACH_GROUP)
2084                 perf_group_detach(event);
2085         list_del_event(event, ctx);
2086
2087         if (!ctx->nr_events && ctx->is_active) {
2088                 ctx->is_active = 0;
2089                 if (ctx->task) {
2090                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2091                         cpuctx->task_ctx = NULL;
2092                 }
2093         }
2094 }
2095
2096 /*
2097  * Remove the event from a task's (or a CPU's) list of events.
2098  *
2099  * If event->ctx is a cloned context, callers must make sure that
2100  * every task struct that event->ctx->task could possibly point to
2101  * remains valid.  This is OK when called from perf_release since
2102  * that only calls us on the top-level context, which can't be a clone.
2103  * When called from perf_event_exit_task, it's OK because the
2104  * context has been detached from its task.
2105  */
2106 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2107 {
2108         struct perf_event_context *ctx = event->ctx;
2109
2110         lockdep_assert_held(&ctx->mutex);
2111
2112         event_function_call(event, __perf_remove_from_context, (void *)flags);
2113
2114         /*
2115          * The above event_function_call() can NO-OP when it hits
2116          * TASK_TOMBSTONE. In that case we must already have been detached
2117          * from the context (by perf_event_exit_event()) but the grouping
2118          * might still be in-tact.
2119          */
2120         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2121         if ((flags & DETACH_GROUP) &&
2122             (event->attach_state & PERF_ATTACH_GROUP)) {
2123                 /*
2124                  * Since in that case we cannot possibly be scheduled, simply
2125                  * detach now.
2126                  */
2127                 raw_spin_lock_irq(&ctx->lock);
2128                 perf_group_detach(event);
2129                 raw_spin_unlock_irq(&ctx->lock);
2130         }
2131 }
2132
2133 /*
2134  * Cross CPU call to disable a performance event
2135  */
2136 static void __perf_event_disable(struct perf_event *event,
2137                                  struct perf_cpu_context *cpuctx,
2138                                  struct perf_event_context *ctx,
2139                                  void *info)
2140 {
2141         if (event->state < PERF_EVENT_STATE_INACTIVE)
2142                 return;
2143
2144         if (ctx->is_active & EVENT_TIME) {
2145                 update_context_time(ctx);
2146                 update_cgrp_time_from_event(event);
2147         }
2148
2149         if (event == event->group_leader)
2150                 group_sched_out(event, cpuctx, ctx);
2151         else
2152                 event_sched_out(event, cpuctx, ctx);
2153
2154         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2155 }
2156
2157 /*
2158  * Disable an event.
2159  *
2160  * If event->ctx is a cloned context, callers must make sure that
2161  * every task struct that event->ctx->task could possibly point to
2162  * remains valid.  This condition is satisifed when called through
2163  * perf_event_for_each_child or perf_event_for_each because they
2164  * hold the top-level event's child_mutex, so any descendant that
2165  * goes to exit will block in perf_event_exit_event().
2166  *
2167  * When called from perf_pending_event it's OK because event->ctx
2168  * is the current context on this CPU and preemption is disabled,
2169  * hence we can't get into perf_event_task_sched_out for this context.
2170  */
2171 static void _perf_event_disable(struct perf_event *event)
2172 {
2173         struct perf_event_context *ctx = event->ctx;
2174
2175         raw_spin_lock_irq(&ctx->lock);
2176         if (event->state <= PERF_EVENT_STATE_OFF) {
2177                 raw_spin_unlock_irq(&ctx->lock);
2178                 return;
2179         }
2180         raw_spin_unlock_irq(&ctx->lock);
2181
2182         event_function_call(event, __perf_event_disable, NULL);
2183 }
2184
2185 void perf_event_disable_local(struct perf_event *event)
2186 {
2187         event_function_local(event, __perf_event_disable, NULL);
2188 }
2189
2190 /*
2191  * Strictly speaking kernel users cannot create groups and therefore this
2192  * interface does not need the perf_event_ctx_lock() magic.
2193  */
2194 void perf_event_disable(struct perf_event *event)
2195 {
2196         struct perf_event_context *ctx;
2197
2198         ctx = perf_event_ctx_lock(event);
2199         _perf_event_disable(event);
2200         perf_event_ctx_unlock(event, ctx);
2201 }
2202 EXPORT_SYMBOL_GPL(perf_event_disable);
2203
2204 void perf_event_disable_inatomic(struct perf_event *event)
2205 {
2206         WRITE_ONCE(event->pending_disable, smp_processor_id());
2207         /* can fail, see perf_pending_event_disable() */
2208         irq_work_queue(&event->pending);
2209 }
2210
2211 static void perf_set_shadow_time(struct perf_event *event,
2212                                  struct perf_event_context *ctx)
2213 {
2214         /*
2215          * use the correct time source for the time snapshot
2216          *
2217          * We could get by without this by leveraging the
2218          * fact that to get to this function, the caller
2219          * has most likely already called update_context_time()
2220          * and update_cgrp_time_xx() and thus both timestamp
2221          * are identical (or very close). Given that tstamp is,
2222          * already adjusted for cgroup, we could say that:
2223          *    tstamp - ctx->timestamp
2224          * is equivalent to
2225          *    tstamp - cgrp->timestamp.
2226          *
2227          * Then, in perf_output_read(), the calculation would
2228          * work with no changes because:
2229          * - event is guaranteed scheduled in
2230          * - no scheduled out in between
2231          * - thus the timestamp would be the same
2232          *
2233          * But this is a bit hairy.
2234          *
2235          * So instead, we have an explicit cgroup call to remain
2236          * within the time time source all along. We believe it
2237          * is cleaner and simpler to understand.
2238          */
2239         if (is_cgroup_event(event))
2240                 perf_cgroup_set_shadow_time(event, event->tstamp);
2241         else
2242                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2243 }
2244
2245 #define MAX_INTERRUPTS (~0ULL)
2246
2247 static void perf_log_throttle(struct perf_event *event, int enable);
2248 static void perf_log_itrace_start(struct perf_event *event);
2249
2250 static int
2251 event_sched_in(struct perf_event *event,
2252                  struct perf_cpu_context *cpuctx,
2253                  struct perf_event_context *ctx)
2254 {
2255         int ret = 0;
2256
2257         lockdep_assert_held(&ctx->lock);
2258
2259         if (event->state <= PERF_EVENT_STATE_OFF)
2260                 return 0;
2261
2262         WRITE_ONCE(event->oncpu, smp_processor_id());
2263         /*
2264          * Order event::oncpu write to happen before the ACTIVE state is
2265          * visible. This allows perf_event_{stop,read}() to observe the correct
2266          * ->oncpu if it sees ACTIVE.
2267          */
2268         smp_wmb();
2269         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2270
2271         /*
2272          * Unthrottle events, since we scheduled we might have missed several
2273          * ticks already, also for a heavily scheduling task there is little
2274          * guarantee it'll get a tick in a timely manner.
2275          */
2276         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2277                 perf_log_throttle(event, 1);
2278                 event->hw.interrupts = 0;
2279         }
2280
2281         perf_pmu_disable(event->pmu);
2282
2283         perf_set_shadow_time(event, ctx);
2284
2285         perf_log_itrace_start(event);
2286
2287         if (event->pmu->add(event, PERF_EF_START)) {
2288                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2289                 event->oncpu = -1;
2290                 ret = -EAGAIN;
2291                 goto out;
2292         }
2293
2294         if (!is_software_event(event))
2295                 cpuctx->active_oncpu++;
2296         if (!ctx->nr_active++)
2297                 perf_event_ctx_activate(ctx);
2298         if (event->attr.freq && event->attr.sample_freq)
2299                 ctx->nr_freq++;
2300
2301         if (event->attr.exclusive)
2302                 cpuctx->exclusive = 1;
2303
2304 out:
2305         perf_pmu_enable(event->pmu);
2306
2307         return ret;
2308 }
2309
2310 static int
2311 group_sched_in(struct perf_event *group_event,
2312                struct perf_cpu_context *cpuctx,
2313                struct perf_event_context *ctx)
2314 {
2315         struct perf_event *event, *partial_group = NULL;
2316         struct pmu *pmu = ctx->pmu;
2317
2318         if (group_event->state == PERF_EVENT_STATE_OFF)
2319                 return 0;
2320
2321         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2322
2323         if (event_sched_in(group_event, cpuctx, ctx)) {
2324                 pmu->cancel_txn(pmu);
2325                 perf_mux_hrtimer_restart(cpuctx);
2326                 return -EAGAIN;
2327         }
2328
2329         /*
2330          * Schedule in siblings as one group (if any):
2331          */
2332         for_each_sibling_event(event, group_event) {
2333                 if (event_sched_in(event, cpuctx, ctx)) {
2334                         partial_group = event;
2335                         goto group_error;
2336                 }
2337         }
2338
2339         if (!pmu->commit_txn(pmu))
2340                 return 0;
2341
2342 group_error:
2343         /*
2344          * Groups can be scheduled in as one unit only, so undo any
2345          * partial group before returning:
2346          * The events up to the failed event are scheduled out normally.
2347          */
2348         for_each_sibling_event(event, group_event) {
2349                 if (event == partial_group)
2350                         break;
2351
2352                 event_sched_out(event, cpuctx, ctx);
2353         }
2354         event_sched_out(group_event, cpuctx, ctx);
2355
2356         pmu->cancel_txn(pmu);
2357
2358         perf_mux_hrtimer_restart(cpuctx);
2359
2360         return -EAGAIN;
2361 }
2362
2363 /*
2364  * Work out whether we can put this event group on the CPU now.
2365  */
2366 static int group_can_go_on(struct perf_event *event,
2367                            struct perf_cpu_context *cpuctx,
2368                            int can_add_hw)
2369 {
2370         /*
2371          * Groups consisting entirely of software events can always go on.
2372          */
2373         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2374                 return 1;
2375         /*
2376          * If an exclusive group is already on, no other hardware
2377          * events can go on.
2378          */
2379         if (cpuctx->exclusive)
2380                 return 0;
2381         /*
2382          * If this group is exclusive and there are already
2383          * events on the CPU, it can't go on.
2384          */
2385         if (event->attr.exclusive && cpuctx->active_oncpu)
2386                 return 0;
2387         /*
2388          * Otherwise, try to add it if all previous groups were able
2389          * to go on.
2390          */
2391         return can_add_hw;
2392 }
2393
2394 static void add_event_to_ctx(struct perf_event *event,
2395                                struct perf_event_context *ctx)
2396 {
2397         list_add_event(event, ctx);
2398         perf_group_attach(event);
2399 }
2400
2401 static void ctx_sched_out(struct perf_event_context *ctx,
2402                           struct perf_cpu_context *cpuctx,
2403                           enum event_type_t event_type);
2404 static void
2405 ctx_sched_in(struct perf_event_context *ctx,
2406              struct perf_cpu_context *cpuctx,
2407              enum event_type_t event_type,
2408              struct task_struct *task);
2409
2410 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2411                                struct perf_event_context *ctx,
2412                                enum event_type_t event_type)
2413 {
2414         if (!cpuctx->task_ctx)
2415                 return;
2416
2417         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2418                 return;
2419
2420         ctx_sched_out(ctx, cpuctx, event_type);
2421 }
2422
2423 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2424                                 struct perf_event_context *ctx,
2425                                 struct task_struct *task)
2426 {
2427         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2428         if (ctx)
2429                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2430         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2431         if (ctx)
2432                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2433 }
2434
2435 /*
2436  * We want to maintain the following priority of scheduling:
2437  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2438  *  - task pinned (EVENT_PINNED)
2439  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2440  *  - task flexible (EVENT_FLEXIBLE).
2441  *
2442  * In order to avoid unscheduling and scheduling back in everything every
2443  * time an event is added, only do it for the groups of equal priority and
2444  * below.
2445  *
2446  * This can be called after a batch operation on task events, in which case
2447  * event_type is a bit mask of the types of events involved. For CPU events,
2448  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2449  */
2450 static void ctx_resched(struct perf_cpu_context *cpuctx,
2451                         struct perf_event_context *task_ctx,
2452                         enum event_type_t event_type)
2453 {
2454         enum event_type_t ctx_event_type;
2455         bool cpu_event = !!(event_type & EVENT_CPU);
2456
2457         /*
2458          * If pinned groups are involved, flexible groups also need to be
2459          * scheduled out.
2460          */
2461         if (event_type & EVENT_PINNED)
2462                 event_type |= EVENT_FLEXIBLE;
2463
2464         ctx_event_type = event_type & EVENT_ALL;
2465
2466         perf_pmu_disable(cpuctx->ctx.pmu);
2467         if (task_ctx)
2468                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2469
2470         /*
2471          * Decide which cpu ctx groups to schedule out based on the types
2472          * of events that caused rescheduling:
2473          *  - EVENT_CPU: schedule out corresponding groups;
2474          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2475          *  - otherwise, do nothing more.
2476          */
2477         if (cpu_event)
2478                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2479         else if (ctx_event_type & EVENT_PINNED)
2480                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2481
2482         perf_event_sched_in(cpuctx, task_ctx, current);
2483         perf_pmu_enable(cpuctx->ctx.pmu);
2484 }
2485
2486 /*
2487  * Cross CPU call to install and enable a performance event
2488  *
2489  * Very similar to remote_function() + event_function() but cannot assume that
2490  * things like ctx->is_active and cpuctx->task_ctx are set.
2491  */
2492 static int  __perf_install_in_context(void *info)
2493 {
2494         struct perf_event *event = info;
2495         struct perf_event_context *ctx = event->ctx;
2496         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2497         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2498         bool reprogram = true;
2499         int ret = 0;
2500
2501         raw_spin_lock(&cpuctx->ctx.lock);
2502         if (ctx->task) {
2503                 raw_spin_lock(&ctx->lock);
2504                 task_ctx = ctx;
2505
2506                 reprogram = (ctx->task == current);
2507
2508                 /*
2509                  * If the task is running, it must be running on this CPU,
2510                  * otherwise we cannot reprogram things.
2511                  *
2512                  * If its not running, we don't care, ctx->lock will
2513                  * serialize against it becoming runnable.
2514                  */
2515                 if (task_curr(ctx->task) && !reprogram) {
2516                         ret = -ESRCH;
2517                         goto unlock;
2518                 }
2519
2520                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2521         } else if (task_ctx) {
2522                 raw_spin_lock(&task_ctx->lock);
2523         }
2524
2525 #ifdef CONFIG_CGROUP_PERF
2526         if (is_cgroup_event(event)) {
2527                 /*
2528                  * If the current cgroup doesn't match the event's
2529                  * cgroup, we should not try to schedule it.
2530                  */
2531                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2532                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2533                                         event->cgrp->css.cgroup);
2534         }
2535 #endif
2536
2537         if (reprogram) {
2538                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2539                 add_event_to_ctx(event, ctx);
2540                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2541         } else {
2542                 add_event_to_ctx(event, ctx);
2543         }
2544
2545 unlock:
2546         perf_ctx_unlock(cpuctx, task_ctx);
2547
2548         return ret;
2549 }
2550
2551 static bool exclusive_event_installable(struct perf_event *event,
2552                                         struct perf_event_context *ctx);
2553
2554 /*
2555  * Attach a performance event to a context.
2556  *
2557  * Very similar to event_function_call, see comment there.
2558  */
2559 static void
2560 perf_install_in_context(struct perf_event_context *ctx,
2561                         struct perf_event *event,
2562                         int cpu)
2563 {
2564         struct task_struct *task = READ_ONCE(ctx->task);
2565
2566         lockdep_assert_held(&ctx->mutex);
2567
2568         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2569
2570         if (event->cpu != -1)
2571                 event->cpu = cpu;
2572
2573         /*
2574          * Ensures that if we can observe event->ctx, both the event and ctx
2575          * will be 'complete'. See perf_iterate_sb_cpu().
2576          */
2577         smp_store_release(&event->ctx, ctx);
2578
2579         if (!task) {
2580                 cpu_function_call(cpu, __perf_install_in_context, event);
2581                 return;
2582         }
2583
2584         /*
2585          * Should not happen, we validate the ctx is still alive before calling.
2586          */
2587         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2588                 return;
2589
2590         /*
2591          * Installing events is tricky because we cannot rely on ctx->is_active
2592          * to be set in case this is the nr_events 0 -> 1 transition.
2593          *
2594          * Instead we use task_curr(), which tells us if the task is running.
2595          * However, since we use task_curr() outside of rq::lock, we can race
2596          * against the actual state. This means the result can be wrong.
2597          *
2598          * If we get a false positive, we retry, this is harmless.
2599          *
2600          * If we get a false negative, things are complicated. If we are after
2601          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2602          * value must be correct. If we're before, it doesn't matter since
2603          * perf_event_context_sched_in() will program the counter.
2604          *
2605          * However, this hinges on the remote context switch having observed
2606          * our task->perf_event_ctxp[] store, such that it will in fact take
2607          * ctx::lock in perf_event_context_sched_in().
2608          *
2609          * We do this by task_function_call(), if the IPI fails to hit the task
2610          * we know any future context switch of task must see the
2611          * perf_event_ctpx[] store.
2612          */
2613
2614         /*
2615          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2616          * task_cpu() load, such that if the IPI then does not find the task
2617          * running, a future context switch of that task must observe the
2618          * store.
2619          */
2620         smp_mb();
2621 again:
2622         if (!task_function_call(task, __perf_install_in_context, event))
2623                 return;
2624
2625         raw_spin_lock_irq(&ctx->lock);
2626         task = ctx->task;
2627         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2628                 /*
2629                  * Cannot happen because we already checked above (which also
2630                  * cannot happen), and we hold ctx->mutex, which serializes us
2631                  * against perf_event_exit_task_context().
2632                  */
2633                 raw_spin_unlock_irq(&ctx->lock);
2634                 return;
2635         }
2636         /*
2637          * If the task is not running, ctx->lock will avoid it becoming so,
2638          * thus we can safely install the event.
2639          */
2640         if (task_curr(task)) {
2641                 raw_spin_unlock_irq(&ctx->lock);
2642                 goto again;
2643         }
2644         add_event_to_ctx(event, ctx);
2645         raw_spin_unlock_irq(&ctx->lock);
2646 }
2647
2648 /*
2649  * Cross CPU call to enable a performance event
2650  */
2651 static void __perf_event_enable(struct perf_event *event,
2652                                 struct perf_cpu_context *cpuctx,
2653                                 struct perf_event_context *ctx,
2654                                 void *info)
2655 {
2656         struct perf_event *leader = event->group_leader;
2657         struct perf_event_context *task_ctx;
2658
2659         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2660             event->state <= PERF_EVENT_STATE_ERROR)
2661                 return;
2662
2663         if (ctx->is_active)
2664                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2665
2666         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2667
2668         if (!ctx->is_active)
2669                 return;
2670
2671         if (!event_filter_match(event)) {
2672                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2673                 return;
2674         }
2675
2676         /*
2677          * If the event is in a group and isn't the group leader,
2678          * then don't put it on unless the group is on.
2679          */
2680         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2681                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2682                 return;
2683         }
2684
2685         task_ctx = cpuctx->task_ctx;
2686         if (ctx->task)
2687                 WARN_ON_ONCE(task_ctx != ctx);
2688
2689         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2690 }
2691
2692 /*
2693  * Enable an event.
2694  *
2695  * If event->ctx is a cloned context, callers must make sure that
2696  * every task struct that event->ctx->task could possibly point to
2697  * remains valid.  This condition is satisfied when called through
2698  * perf_event_for_each_child or perf_event_for_each as described
2699  * for perf_event_disable.
2700  */
2701 static void _perf_event_enable(struct perf_event *event)
2702 {
2703         struct perf_event_context *ctx = event->ctx;
2704
2705         raw_spin_lock_irq(&ctx->lock);
2706         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2707             event->state <  PERF_EVENT_STATE_ERROR) {
2708                 raw_spin_unlock_irq(&ctx->lock);
2709                 return;
2710         }
2711
2712         /*
2713          * If the event is in error state, clear that first.
2714          *
2715          * That way, if we see the event in error state below, we know that it
2716          * has gone back into error state, as distinct from the task having
2717          * been scheduled away before the cross-call arrived.
2718          */
2719         if (event->state == PERF_EVENT_STATE_ERROR)
2720                 event->state = PERF_EVENT_STATE_OFF;
2721         raw_spin_unlock_irq(&ctx->lock);
2722
2723         event_function_call(event, __perf_event_enable, NULL);
2724 }
2725
2726 /*
2727  * See perf_event_disable();
2728  */
2729 void perf_event_enable(struct perf_event *event)
2730 {
2731         struct perf_event_context *ctx;
2732
2733         ctx = perf_event_ctx_lock(event);
2734         _perf_event_enable(event);
2735         perf_event_ctx_unlock(event, ctx);
2736 }
2737 EXPORT_SYMBOL_GPL(perf_event_enable);
2738
2739 struct stop_event_data {
2740         struct perf_event       *event;
2741         unsigned int            restart;
2742 };
2743
2744 static int __perf_event_stop(void *info)
2745 {
2746         struct stop_event_data *sd = info;
2747         struct perf_event *event = sd->event;
2748
2749         /* if it's already INACTIVE, do nothing */
2750         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2751                 return 0;
2752
2753         /* matches smp_wmb() in event_sched_in() */
2754         smp_rmb();
2755
2756         /*
2757          * There is a window with interrupts enabled before we get here,
2758          * so we need to check again lest we try to stop another CPU's event.
2759          */
2760         if (READ_ONCE(event->oncpu) != smp_processor_id())
2761                 return -EAGAIN;
2762
2763         event->pmu->stop(event, PERF_EF_UPDATE);
2764
2765         /*
2766          * May race with the actual stop (through perf_pmu_output_stop()),
2767          * but it is only used for events with AUX ring buffer, and such
2768          * events will refuse to restart because of rb::aux_mmap_count==0,
2769          * see comments in perf_aux_output_begin().
2770          *
2771          * Since this is happening on an event-local CPU, no trace is lost
2772          * while restarting.
2773          */
2774         if (sd->restart)
2775                 event->pmu->start(event, 0);
2776
2777         return 0;
2778 }
2779
2780 static int perf_event_stop(struct perf_event *event, int restart)
2781 {
2782         struct stop_event_data sd = {
2783                 .event          = event,
2784                 .restart        = restart,
2785         };
2786         int ret = 0;
2787
2788         do {
2789                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2790                         return 0;
2791
2792                 /* matches smp_wmb() in event_sched_in() */
2793                 smp_rmb();
2794
2795                 /*
2796                  * We only want to restart ACTIVE events, so if the event goes
2797                  * inactive here (event->oncpu==-1), there's nothing more to do;
2798                  * fall through with ret==-ENXIO.
2799                  */
2800                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2801                                         __perf_event_stop, &sd);
2802         } while (ret == -EAGAIN);
2803
2804         return ret;
2805 }
2806
2807 /*
2808  * In order to contain the amount of racy and tricky in the address filter
2809  * configuration management, it is a two part process:
2810  *
2811  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2812  *      we update the addresses of corresponding vmas in
2813  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2814  * (p2) when an event is scheduled in (pmu::add), it calls
2815  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2816  *      if the generation has changed since the previous call.
2817  *
2818  * If (p1) happens while the event is active, we restart it to force (p2).
2819  *
2820  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2821  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2822  *     ioctl;
2823  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2824  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2825  *     for reading;
2826  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2827  *     of exec.
2828  */
2829 void perf_event_addr_filters_sync(struct perf_event *event)
2830 {
2831         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2832
2833         if (!has_addr_filter(event))
2834                 return;
2835
2836         raw_spin_lock(&ifh->lock);
2837         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2838                 event->pmu->addr_filters_sync(event);
2839                 event->hw.addr_filters_gen = event->addr_filters_gen;
2840         }
2841         raw_spin_unlock(&ifh->lock);
2842 }
2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2844
2845 static int _perf_event_refresh(struct perf_event *event, int refresh)
2846 {
2847         /*
2848          * not supported on inherited events
2849          */
2850         if (event->attr.inherit || !is_sampling_event(event))
2851                 return -EINVAL;
2852
2853         atomic_add(refresh, &event->event_limit);
2854         _perf_event_enable(event);
2855
2856         return 0;
2857 }
2858
2859 /*
2860  * See perf_event_disable()
2861  */
2862 int perf_event_refresh(struct perf_event *event, int refresh)
2863 {
2864         struct perf_event_context *ctx;
2865         int ret;
2866
2867         ctx = perf_event_ctx_lock(event);
2868         ret = _perf_event_refresh(event, refresh);
2869         perf_event_ctx_unlock(event, ctx);
2870
2871         return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(perf_event_refresh);
2874
2875 static int perf_event_modify_breakpoint(struct perf_event *bp,
2876                                          struct perf_event_attr *attr)
2877 {
2878         int err;
2879
2880         _perf_event_disable(bp);
2881
2882         err = modify_user_hw_breakpoint_check(bp, attr, true);
2883
2884         if (!bp->attr.disabled)
2885                 _perf_event_enable(bp);
2886
2887         return err;
2888 }
2889
2890 static int perf_event_modify_attr(struct perf_event *event,
2891                                   struct perf_event_attr *attr)
2892 {
2893         if (event->attr.type != attr->type)
2894                 return -EINVAL;
2895
2896         switch (event->attr.type) {
2897         case PERF_TYPE_BREAKPOINT:
2898                 return perf_event_modify_breakpoint(event, attr);
2899         default:
2900                 /* Place holder for future additions. */
2901                 return -EOPNOTSUPP;
2902         }
2903 }
2904
2905 static void ctx_sched_out(struct perf_event_context *ctx,
2906                           struct perf_cpu_context *cpuctx,
2907                           enum event_type_t event_type)
2908 {
2909         struct perf_event *event, *tmp;
2910         int is_active = ctx->is_active;
2911
2912         lockdep_assert_held(&ctx->lock);
2913
2914         if (likely(!ctx->nr_events)) {
2915                 /*
2916                  * See __perf_remove_from_context().
2917                  */
2918                 WARN_ON_ONCE(ctx->is_active);
2919                 if (ctx->task)
2920                         WARN_ON_ONCE(cpuctx->task_ctx);
2921                 return;
2922         }
2923
2924         ctx->is_active &= ~event_type;
2925         if (!(ctx->is_active & EVENT_ALL))
2926                 ctx->is_active = 0;
2927
2928         if (ctx->task) {
2929                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930                 if (!ctx->is_active)
2931                         cpuctx->task_ctx = NULL;
2932         }
2933
2934         /*
2935          * Always update time if it was set; not only when it changes.
2936          * Otherwise we can 'forget' to update time for any but the last
2937          * context we sched out. For example:
2938          *
2939          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2940          *   ctx_sched_out(.event_type = EVENT_PINNED)
2941          *
2942          * would only update time for the pinned events.
2943          */
2944         if (is_active & EVENT_TIME) {
2945                 /* update (and stop) ctx time */
2946                 update_context_time(ctx);
2947                 update_cgrp_time_from_cpuctx(cpuctx);
2948         }
2949
2950         is_active ^= ctx->is_active; /* changed bits */
2951
2952         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2953                 return;
2954
2955         /*
2956          * If we had been multiplexing, no rotations are necessary, now no events
2957          * are active.
2958          */
2959         ctx->rotate_necessary = 0;
2960
2961         perf_pmu_disable(ctx->pmu);
2962         if (is_active & EVENT_PINNED) {
2963                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2964                         group_sched_out(event, cpuctx, ctx);
2965         }
2966
2967         if (is_active & EVENT_FLEXIBLE) {
2968                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2969                         group_sched_out(event, cpuctx, ctx);
2970         }
2971         perf_pmu_enable(ctx->pmu);
2972 }
2973
2974 /*
2975  * Test whether two contexts are equivalent, i.e. whether they have both been
2976  * cloned from the same version of the same context.
2977  *
2978  * Equivalence is measured using a generation number in the context that is
2979  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2980  * and list_del_event().
2981  */
2982 static int context_equiv(struct perf_event_context *ctx1,
2983                          struct perf_event_context *ctx2)
2984 {
2985         lockdep_assert_held(&ctx1->lock);
2986         lockdep_assert_held(&ctx2->lock);
2987
2988         /* Pinning disables the swap optimization */
2989         if (ctx1->pin_count || ctx2->pin_count)
2990                 return 0;
2991
2992         /* If ctx1 is the parent of ctx2 */
2993         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2994                 return 1;
2995
2996         /* If ctx2 is the parent of ctx1 */
2997         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2998                 return 1;
2999
3000         /*
3001          * If ctx1 and ctx2 have the same parent; we flatten the parent
3002          * hierarchy, see perf_event_init_context().
3003          */
3004         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3005                         ctx1->parent_gen == ctx2->parent_gen)
3006                 return 1;
3007
3008         /* Unmatched */
3009         return 0;
3010 }
3011
3012 static void __perf_event_sync_stat(struct perf_event *event,
3013                                      struct perf_event *next_event)
3014 {
3015         u64 value;
3016
3017         if (!event->attr.inherit_stat)
3018                 return;
3019
3020         /*
3021          * Update the event value, we cannot use perf_event_read()
3022          * because we're in the middle of a context switch and have IRQs
3023          * disabled, which upsets smp_call_function_single(), however
3024          * we know the event must be on the current CPU, therefore we
3025          * don't need to use it.
3026          */
3027         if (event->state == PERF_EVENT_STATE_ACTIVE)
3028                 event->pmu->read(event);
3029
3030         perf_event_update_time(event);
3031
3032         /*
3033          * In order to keep per-task stats reliable we need to flip the event
3034          * values when we flip the contexts.
3035          */
3036         value = local64_read(&next_event->count);
3037         value = local64_xchg(&event->count, value);
3038         local64_set(&next_event->count, value);
3039
3040         swap(event->total_time_enabled, next_event->total_time_enabled);
3041         swap(event->total_time_running, next_event->total_time_running);
3042
3043         /*
3044          * Since we swizzled the values, update the user visible data too.
3045          */
3046         perf_event_update_userpage(event);
3047         perf_event_update_userpage(next_event);
3048 }
3049
3050 static void perf_event_sync_stat(struct perf_event_context *ctx,
3051                                    struct perf_event_context *next_ctx)
3052 {
3053         struct perf_event *event, *next_event;
3054
3055         if (!ctx->nr_stat)
3056                 return;
3057
3058         update_context_time(ctx);
3059
3060         event = list_first_entry(&ctx->event_list,
3061                                    struct perf_event, event_entry);
3062
3063         next_event = list_first_entry(&next_ctx->event_list,
3064                                         struct perf_event, event_entry);
3065
3066         while (&event->event_entry != &ctx->event_list &&
3067                &next_event->event_entry != &next_ctx->event_list) {
3068
3069                 __perf_event_sync_stat(event, next_event);
3070
3071                 event = list_next_entry(event, event_entry);
3072                 next_event = list_next_entry(next_event, event_entry);
3073         }
3074 }
3075
3076 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3077                                          struct task_struct *next)
3078 {
3079         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3080         struct perf_event_context *next_ctx;
3081         struct perf_event_context *parent, *next_parent;
3082         struct perf_cpu_context *cpuctx;
3083         int do_switch = 1;
3084
3085         if (likely(!ctx))
3086                 return;
3087
3088         cpuctx = __get_cpu_context(ctx);
3089         if (!cpuctx->task_ctx)
3090                 return;
3091
3092         rcu_read_lock();
3093         next_ctx = next->perf_event_ctxp[ctxn];
3094         if (!next_ctx)
3095                 goto unlock;
3096
3097         parent = rcu_dereference(ctx->parent_ctx);
3098         next_parent = rcu_dereference(next_ctx->parent_ctx);
3099
3100         /* If neither context have a parent context; they cannot be clones. */
3101         if (!parent && !next_parent)
3102                 goto unlock;
3103
3104         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3105                 /*
3106                  * Looks like the two contexts are clones, so we might be
3107                  * able to optimize the context switch.  We lock both
3108                  * contexts and check that they are clones under the
3109                  * lock (including re-checking that neither has been
3110                  * uncloned in the meantime).  It doesn't matter which
3111                  * order we take the locks because no other cpu could
3112                  * be trying to lock both of these tasks.
3113                  */
3114                 raw_spin_lock(&ctx->lock);
3115                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3116                 if (context_equiv(ctx, next_ctx)) {
3117                         WRITE_ONCE(ctx->task, next);
3118                         WRITE_ONCE(next_ctx->task, task);
3119
3120                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3121
3122                         /*
3123                          * RCU_INIT_POINTER here is safe because we've not
3124                          * modified the ctx and the above modification of
3125                          * ctx->task and ctx->task_ctx_data are immaterial
3126                          * since those values are always verified under
3127                          * ctx->lock which we're now holding.
3128                          */
3129                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3130                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3131
3132                         do_switch = 0;
3133
3134                         perf_event_sync_stat(ctx, next_ctx);
3135                 }
3136                 raw_spin_unlock(&next_ctx->lock);
3137                 raw_spin_unlock(&ctx->lock);
3138         }
3139 unlock:
3140         rcu_read_unlock();
3141
3142         if (do_switch) {
3143                 raw_spin_lock(&ctx->lock);
3144                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3145                 raw_spin_unlock(&ctx->lock);
3146         }
3147 }
3148
3149 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3150
3151 void perf_sched_cb_dec(struct pmu *pmu)
3152 {
3153         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3154
3155         this_cpu_dec(perf_sched_cb_usages);
3156
3157         if (!--cpuctx->sched_cb_usage)
3158                 list_del(&cpuctx->sched_cb_entry);
3159 }
3160
3161
3162 void perf_sched_cb_inc(struct pmu *pmu)
3163 {
3164         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3165
3166         if (!cpuctx->sched_cb_usage++)
3167                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3168
3169         this_cpu_inc(perf_sched_cb_usages);
3170 }
3171
3172 /*
3173  * This function provides the context switch callback to the lower code
3174  * layer. It is invoked ONLY when the context switch callback is enabled.
3175  *
3176  * This callback is relevant even to per-cpu events; for example multi event
3177  * PEBS requires this to provide PID/TID information. This requires we flush
3178  * all queued PEBS records before we context switch to a new task.
3179  */
3180 static void perf_pmu_sched_task(struct task_struct *prev,
3181                                 struct task_struct *next,
3182                                 bool sched_in)
3183 {
3184         struct perf_cpu_context *cpuctx;
3185         struct pmu *pmu;
3186
3187         if (prev == next)
3188                 return;
3189
3190         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3191                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3192
3193                 if (WARN_ON_ONCE(!pmu->sched_task))
3194                         continue;
3195
3196                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3197                 perf_pmu_disable(pmu);
3198
3199                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3200
3201                 perf_pmu_enable(pmu);
3202                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3203         }
3204 }
3205
3206 static void perf_event_switch(struct task_struct *task,
3207                               struct task_struct *next_prev, bool sched_in);
3208
3209 #define for_each_task_context_nr(ctxn)                                  \
3210         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3211
3212 /*
3213  * Called from scheduler to remove the events of the current task,
3214  * with interrupts disabled.
3215  *
3216  * We stop each event and update the event value in event->count.
3217  *
3218  * This does not protect us against NMI, but disable()
3219  * sets the disabled bit in the control field of event _before_
3220  * accessing the event control register. If a NMI hits, then it will
3221  * not restart the event.
3222  */
3223 void __perf_event_task_sched_out(struct task_struct *task,
3224                                  struct task_struct *next)
3225 {
3226         int ctxn;
3227
3228         if (__this_cpu_read(perf_sched_cb_usages))
3229                 perf_pmu_sched_task(task, next, false);
3230
3231         if (atomic_read(&nr_switch_events))
3232                 perf_event_switch(task, next, false);
3233
3234         for_each_task_context_nr(ctxn)
3235                 perf_event_context_sched_out(task, ctxn, next);
3236
3237         /*
3238          * if cgroup events exist on this CPU, then we need
3239          * to check if we have to switch out PMU state.
3240          * cgroup event are system-wide mode only
3241          */
3242         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3243                 perf_cgroup_sched_out(task, next);
3244 }
3245
3246 /*
3247  * Called with IRQs disabled
3248  */
3249 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3250                               enum event_type_t event_type)
3251 {
3252         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3253 }
3254
3255 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3256                               int (*func)(struct perf_event *, void *), void *data)
3257 {
3258         struct perf_event **evt, *evt1, *evt2;
3259         int ret;
3260
3261         evt1 = perf_event_groups_first(groups, -1);
3262         evt2 = perf_event_groups_first(groups, cpu);
3263
3264         while (evt1 || evt2) {
3265                 if (evt1 && evt2) {
3266                         if (evt1->group_index < evt2->group_index)
3267                                 evt = &evt1;
3268                         else
3269                                 evt = &evt2;
3270                 } else if (evt1) {
3271                         evt = &evt1;
3272                 } else {
3273                         evt = &evt2;
3274                 }
3275
3276                 ret = func(*evt, data);
3277                 if (ret)
3278                         return ret;
3279
3280                 *evt = perf_event_groups_next(*evt);
3281         }
3282
3283         return 0;
3284 }
3285
3286 struct sched_in_data {
3287         struct perf_event_context *ctx;
3288         struct perf_cpu_context *cpuctx;
3289         int can_add_hw;
3290 };
3291
3292 static int pinned_sched_in(struct perf_event *event, void *data)
3293 {
3294         struct sched_in_data *sid = data;
3295
3296         if (event->state <= PERF_EVENT_STATE_OFF)
3297                 return 0;
3298
3299         if (!event_filter_match(event))
3300                 return 0;
3301
3302         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3303                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3304                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3305         }
3306
3307         /*
3308          * If this pinned group hasn't been scheduled,
3309          * put it in error state.
3310          */
3311         if (event->state == PERF_EVENT_STATE_INACTIVE)
3312                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3313
3314         return 0;
3315 }
3316
3317 static int flexible_sched_in(struct perf_event *event, void *data)
3318 {
3319         struct sched_in_data *sid = data;
3320
3321         if (event->state <= PERF_EVENT_STATE_OFF)
3322                 return 0;
3323
3324         if (!event_filter_match(event))
3325                 return 0;
3326
3327         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3328                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3329                 if (ret) {
3330                         sid->can_add_hw = 0;
3331                         sid->ctx->rotate_necessary = 1;
3332                         return 0;
3333                 }
3334                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3335         }
3336
3337         return 0;
3338 }
3339
3340 static void
3341 ctx_pinned_sched_in(struct perf_event_context *ctx,
3342                     struct perf_cpu_context *cpuctx)
3343 {
3344         struct sched_in_data sid = {
3345                 .ctx = ctx,
3346                 .cpuctx = cpuctx,
3347                 .can_add_hw = 1,
3348         };
3349
3350         visit_groups_merge(&ctx->pinned_groups,
3351                            smp_processor_id(),
3352                            pinned_sched_in, &sid);
3353 }
3354
3355 static void
3356 ctx_flexible_sched_in(struct perf_event_context *ctx,
3357                       struct perf_cpu_context *cpuctx)
3358 {
3359         struct sched_in_data sid = {
3360                 .ctx = ctx,
3361                 .cpuctx = cpuctx,
3362                 .can_add_hw = 1,
3363         };
3364
3365         visit_groups_merge(&ctx->flexible_groups,
3366                            smp_processor_id(),
3367                            flexible_sched_in, &sid);
3368 }
3369
3370 static void
3371 ctx_sched_in(struct perf_event_context *ctx,
3372              struct perf_cpu_context *cpuctx,
3373              enum event_type_t event_type,
3374              struct task_struct *task)
3375 {
3376         int is_active = ctx->is_active;
3377         u64 now;
3378
3379         lockdep_assert_held(&ctx->lock);
3380
3381         if (likely(!ctx->nr_events))
3382                 return;
3383
3384         ctx->is_active |= (event_type | EVENT_TIME);
3385         if (ctx->task) {
3386                 if (!is_active)
3387                         cpuctx->task_ctx = ctx;
3388                 else
3389                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3390         }
3391
3392         is_active ^= ctx->is_active; /* changed bits */
3393
3394         if (is_active & EVENT_TIME) {
3395                 /* start ctx time */
3396                 now = perf_clock();
3397                 ctx->timestamp = now;
3398                 perf_cgroup_set_timestamp(task, ctx);
3399         }
3400
3401         /*
3402          * First go through the list and put on any pinned groups
3403          * in order to give them the best chance of going on.
3404          */
3405         if (is_active & EVENT_PINNED)
3406                 ctx_pinned_sched_in(ctx, cpuctx);
3407
3408         /* Then walk through the lower prio flexible groups */
3409         if (is_active & EVENT_FLEXIBLE)
3410                 ctx_flexible_sched_in(ctx, cpuctx);
3411 }
3412
3413 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3414                              enum event_type_t event_type,
3415                              struct task_struct *task)
3416 {
3417         struct perf_event_context *ctx = &cpuctx->ctx;
3418
3419         ctx_sched_in(ctx, cpuctx, event_type, task);
3420 }
3421
3422 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3423                                         struct task_struct *task)
3424 {
3425         struct perf_cpu_context *cpuctx;
3426
3427         cpuctx = __get_cpu_context(ctx);
3428         if (cpuctx->task_ctx == ctx)
3429                 return;
3430
3431         perf_ctx_lock(cpuctx, ctx);
3432         /*
3433          * We must check ctx->nr_events while holding ctx->lock, such
3434          * that we serialize against perf_install_in_context().
3435          */
3436         if (!ctx->nr_events)
3437                 goto unlock;
3438
3439         perf_pmu_disable(ctx->pmu);
3440         /*
3441          * We want to keep the following priority order:
3442          * cpu pinned (that don't need to move), task pinned,
3443          * cpu flexible, task flexible.
3444          *
3445          * However, if task's ctx is not carrying any pinned
3446          * events, no need to flip the cpuctx's events around.
3447          */
3448         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3449                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3450         perf_event_sched_in(cpuctx, ctx, task);
3451         perf_pmu_enable(ctx->pmu);
3452
3453 unlock:
3454         perf_ctx_unlock(cpuctx, ctx);
3455 }
3456
3457 /*
3458  * Called from scheduler to add the events of the current task
3459  * with interrupts disabled.
3460  *
3461  * We restore the event value and then enable it.
3462  *
3463  * This does not protect us against NMI, but enable()
3464  * sets the enabled bit in the control field of event _before_
3465  * accessing the event control register. If a NMI hits, then it will
3466  * keep the event running.
3467  */
3468 void __perf_event_task_sched_in(struct task_struct *prev,
3469                                 struct task_struct *task)
3470 {
3471         struct perf_event_context *ctx;
3472         int ctxn;
3473
3474         /*
3475          * If cgroup events exist on this CPU, then we need to check if we have
3476          * to switch in PMU state; cgroup event are system-wide mode only.
3477          *
3478          * Since cgroup events are CPU events, we must schedule these in before
3479          * we schedule in the task events.
3480          */
3481         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3482                 perf_cgroup_sched_in(prev, task);
3483
3484         for_each_task_context_nr(ctxn) {
3485                 ctx = task->perf_event_ctxp[ctxn];
3486                 if (likely(!ctx))
3487                         continue;
3488
3489                 perf_event_context_sched_in(ctx, task);
3490         }
3491
3492         if (atomic_read(&nr_switch_events))
3493                 perf_event_switch(task, prev, true);
3494
3495         if (__this_cpu_read(perf_sched_cb_usages))
3496                 perf_pmu_sched_task(prev, task, true);
3497 }
3498
3499 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3500 {
3501         u64 frequency = event->attr.sample_freq;
3502         u64 sec = NSEC_PER_SEC;
3503         u64 divisor, dividend;
3504
3505         int count_fls, nsec_fls, frequency_fls, sec_fls;
3506
3507         count_fls = fls64(count);
3508         nsec_fls = fls64(nsec);
3509         frequency_fls = fls64(frequency);
3510         sec_fls = 30;
3511
3512         /*
3513          * We got @count in @nsec, with a target of sample_freq HZ
3514          * the target period becomes:
3515          *
3516          *             @count * 10^9
3517          * period = -------------------
3518          *          @nsec * sample_freq
3519          *
3520          */
3521
3522         /*
3523          * Reduce accuracy by one bit such that @a and @b converge
3524          * to a similar magnitude.
3525          */
3526 #define REDUCE_FLS(a, b)                \
3527 do {                                    \
3528         if (a##_fls > b##_fls) {        \
3529                 a >>= 1;                \
3530                 a##_fls--;              \
3531         } else {                        \
3532                 b >>= 1;                \
3533                 b##_fls--;              \
3534         }                               \
3535 } while (0)
3536
3537         /*
3538          * Reduce accuracy until either term fits in a u64, then proceed with
3539          * the other, so that finally we can do a u64/u64 division.
3540          */
3541         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3542                 REDUCE_FLS(nsec, frequency);
3543                 REDUCE_FLS(sec, count);
3544         }
3545
3546         if (count_fls + sec_fls > 64) {
3547                 divisor = nsec * frequency;
3548
3549                 while (count_fls + sec_fls > 64) {
3550                         REDUCE_FLS(count, sec);
3551                         divisor >>= 1;
3552                 }
3553
3554                 dividend = count * sec;
3555         } else {
3556                 dividend = count * sec;
3557
3558                 while (nsec_fls + frequency_fls > 64) {
3559                         REDUCE_FLS(nsec, frequency);
3560                         dividend >>= 1;
3561                 }
3562
3563                 divisor = nsec * frequency;
3564         }
3565
3566         if (!divisor)
3567                 return dividend;
3568
3569         return div64_u64(dividend, divisor);
3570 }
3571
3572 static DEFINE_PER_CPU(int, perf_throttled_count);
3573 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3574
3575 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3576 {
3577         struct hw_perf_event *hwc = &event->hw;
3578         s64 period, sample_period;
3579         s64 delta;
3580
3581         period = perf_calculate_period(event, nsec, count);
3582
3583         delta = (s64)(period - hwc->sample_period);
3584         delta = (delta + 7) / 8; /* low pass filter */
3585
3586         sample_period = hwc->sample_period + delta;
3587
3588         if (!sample_period)
3589                 sample_period = 1;
3590
3591         hwc->sample_period = sample_period;
3592
3593         if (local64_read(&hwc->period_left) > 8*sample_period) {
3594                 if (disable)
3595                         event->pmu->stop(event, PERF_EF_UPDATE);
3596
3597                 local64_set(&hwc->period_left, 0);
3598
3599                 if (disable)
3600                         event->pmu->start(event, PERF_EF_RELOAD);
3601         }
3602 }
3603
3604 /*
3605  * combine freq adjustment with unthrottling to avoid two passes over the
3606  * events. At the same time, make sure, having freq events does not change
3607  * the rate of unthrottling as that would introduce bias.
3608  */
3609 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3610                                            int needs_unthr)
3611 {
3612         struct perf_event *event;
3613         struct hw_perf_event *hwc;
3614         u64 now, period = TICK_NSEC;
3615         s64 delta;
3616
3617         /*
3618          * only need to iterate over all events iff:
3619          * - context have events in frequency mode (needs freq adjust)
3620          * - there are events to unthrottle on this cpu
3621          */
3622         if (!(ctx->nr_freq || needs_unthr))
3623                 return;
3624
3625         raw_spin_lock(&ctx->lock);
3626         perf_pmu_disable(ctx->pmu);
3627
3628         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3629                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3630                         continue;
3631
3632                 if (!event_filter_match(event))
3633                         continue;
3634
3635                 perf_pmu_disable(event->pmu);
3636
3637                 hwc = &event->hw;
3638
3639                 if (hwc->interrupts == MAX_INTERRUPTS) {
3640                         hwc->interrupts = 0;
3641                         perf_log_throttle(event, 1);
3642                         event->pmu->start(event, 0);
3643                 }
3644
3645                 if (!event->attr.freq || !event->attr.sample_freq)
3646                         goto next;
3647
3648                 /*
3649                  * stop the event and update event->count
3650                  */
3651                 event->pmu->stop(event, PERF_EF_UPDATE);
3652
3653                 now = local64_read(&event->count);
3654                 delta = now - hwc->freq_count_stamp;
3655                 hwc->freq_count_stamp = now;
3656
3657                 /*
3658                  * restart the event
3659                  * reload only if value has changed
3660                  * we have stopped the event so tell that
3661                  * to perf_adjust_period() to avoid stopping it
3662                  * twice.
3663                  */
3664                 if (delta > 0)
3665                         perf_adjust_period(event, period, delta, false);
3666
3667                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3668         next:
3669                 perf_pmu_enable(event->pmu);
3670         }
3671
3672         perf_pmu_enable(ctx->pmu);
3673         raw_spin_unlock(&ctx->lock);
3674 }
3675
3676 /*
3677  * Move @event to the tail of the @ctx's elegible events.
3678  */
3679 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3680 {
3681         /*
3682          * Rotate the first entry last of non-pinned groups. Rotation might be
3683          * disabled by the inheritance code.
3684          */
3685         if (ctx->rotate_disable)
3686                 return;
3687
3688         perf_event_groups_delete(&ctx->flexible_groups, event);
3689         perf_event_groups_insert(&ctx->flexible_groups, event);
3690 }
3691
3692 static inline struct perf_event *
3693 ctx_first_active(struct perf_event_context *ctx)
3694 {
3695         return list_first_entry_or_null(&ctx->flexible_active,
3696                                         struct perf_event, active_list);
3697 }
3698
3699 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3700 {
3701         struct perf_event *cpu_event = NULL, *task_event = NULL;
3702         struct perf_event_context *task_ctx = NULL;
3703         int cpu_rotate, task_rotate;
3704
3705         /*
3706          * Since we run this from IRQ context, nobody can install new
3707          * events, thus the event count values are stable.
3708          */
3709
3710         cpu_rotate = cpuctx->ctx.rotate_necessary;
3711         task_ctx = cpuctx->task_ctx;
3712         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3713
3714         if (!(cpu_rotate || task_rotate))
3715                 return false;
3716
3717         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3718         perf_pmu_disable(cpuctx->ctx.pmu);
3719
3720         if (task_rotate)
3721                 task_event = ctx_first_active(task_ctx);
3722         if (cpu_rotate)
3723                 cpu_event = ctx_first_active(&cpuctx->ctx);
3724
3725         /*
3726          * As per the order given at ctx_resched() first 'pop' task flexible
3727          * and then, if needed CPU flexible.
3728          */
3729         if (task_event || (task_ctx && cpu_event))
3730                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3731         if (cpu_event)
3732                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3733
3734         if (task_event)
3735                 rotate_ctx(task_ctx, task_event);
3736         if (cpu_event)
3737                 rotate_ctx(&cpuctx->ctx, cpu_event);
3738
3739         perf_event_sched_in(cpuctx, task_ctx, current);
3740
3741         perf_pmu_enable(cpuctx->ctx.pmu);
3742         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3743
3744         return true;
3745 }
3746
3747 void perf_event_task_tick(void)
3748 {
3749         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3750         struct perf_event_context *ctx, *tmp;
3751         int throttled;
3752
3753         lockdep_assert_irqs_disabled();
3754
3755         __this_cpu_inc(perf_throttled_seq);
3756         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3757         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3758
3759         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3760                 perf_adjust_freq_unthr_context(ctx, throttled);
3761 }
3762
3763 static int event_enable_on_exec(struct perf_event *event,
3764                                 struct perf_event_context *ctx)
3765 {
3766         if (!event->attr.enable_on_exec)
3767                 return 0;
3768
3769         event->attr.enable_on_exec = 0;
3770         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3771                 return 0;
3772
3773         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3774
3775         return 1;
3776 }
3777
3778 /*
3779  * Enable all of a task's events that have been marked enable-on-exec.
3780  * This expects task == current.
3781  */
3782 static void perf_event_enable_on_exec(int ctxn)
3783 {
3784         struct perf_event_context *ctx, *clone_ctx = NULL;
3785         enum event_type_t event_type = 0;
3786         struct perf_cpu_context *cpuctx;
3787         struct perf_event *event;
3788         unsigned long flags;
3789         int enabled = 0;
3790
3791         local_irq_save(flags);
3792         ctx = current->perf_event_ctxp[ctxn];
3793         if (!ctx || !ctx->nr_events)
3794                 goto out;
3795
3796         cpuctx = __get_cpu_context(ctx);
3797         perf_ctx_lock(cpuctx, ctx);
3798         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3799         list_for_each_entry(event, &ctx->event_list, event_entry) {
3800                 enabled |= event_enable_on_exec(event, ctx);
3801                 event_type |= get_event_type(event);
3802         }
3803
3804         /*
3805          * Unclone and reschedule this context if we enabled any event.
3806          */
3807         if (enabled) {
3808                 clone_ctx = unclone_ctx(ctx);
3809                 ctx_resched(cpuctx, ctx, event_type);
3810         } else {
3811                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3812         }
3813         perf_ctx_unlock(cpuctx, ctx);
3814
3815 out:
3816         local_irq_restore(flags);
3817
3818         if (clone_ctx)
3819                 put_ctx(clone_ctx);
3820 }
3821
3822 struct perf_read_data {
3823         struct perf_event *event;
3824         bool group;
3825         int ret;
3826 };
3827
3828 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3829 {
3830         u16 local_pkg, event_pkg;
3831
3832         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3833                 int local_cpu = smp_processor_id();
3834
3835                 event_pkg = topology_physical_package_id(event_cpu);
3836                 local_pkg = topology_physical_package_id(local_cpu);
3837
3838                 if (event_pkg == local_pkg)
3839                         return local_cpu;
3840         }
3841
3842         return event_cpu;
3843 }
3844
3845 /*
3846  * Cross CPU call to read the hardware event
3847  */
3848 static void __perf_event_read(void *info)
3849 {
3850         struct perf_read_data *data = info;
3851         struct perf_event *sub, *event = data->event;
3852         struct perf_event_context *ctx = event->ctx;
3853         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3854         struct pmu *pmu = event->pmu;
3855
3856         /*
3857          * If this is a task context, we need to check whether it is
3858          * the current task context of this cpu.  If not it has been
3859          * scheduled out before the smp call arrived.  In that case
3860          * event->count would have been updated to a recent sample
3861          * when the event was scheduled out.
3862          */
3863         if (ctx->task && cpuctx->task_ctx != ctx)
3864                 return;
3865
3866         raw_spin_lock(&ctx->lock);
3867         if (ctx->is_active & EVENT_TIME) {
3868                 update_context_time(ctx);
3869                 update_cgrp_time_from_event(event);
3870         }
3871
3872         perf_event_update_time(event);
3873         if (data->group)
3874                 perf_event_update_sibling_time(event);
3875
3876         if (event->state != PERF_EVENT_STATE_ACTIVE)
3877                 goto unlock;
3878
3879         if (!data->group) {
3880                 pmu->read(event);
3881                 data->ret = 0;
3882                 goto unlock;
3883         }
3884
3885         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3886
3887         pmu->read(event);
3888
3889         for_each_sibling_event(sub, event) {
3890                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3891                         /*
3892                          * Use sibling's PMU rather than @event's since
3893                          * sibling could be on different (eg: software) PMU.
3894                          */
3895                         sub->pmu->read(sub);
3896                 }
3897         }
3898
3899         data->ret = pmu->commit_txn(pmu);
3900
3901 unlock:
3902         raw_spin_unlock(&ctx->lock);
3903 }
3904
3905 static inline u64 perf_event_count(struct perf_event *event)
3906 {
3907         return local64_read(&event->count) + atomic64_read(&event->child_count);
3908 }
3909
3910 /*
3911  * NMI-safe method to read a local event, that is an event that
3912  * is:
3913  *   - either for the current task, or for this CPU
3914  *   - does not have inherit set, for inherited task events
3915  *     will not be local and we cannot read them atomically
3916  *   - must not have a pmu::count method
3917  */
3918 int perf_event_read_local(struct perf_event *event, u64 *value,
3919                           u64 *enabled, u64 *running)
3920 {
3921         unsigned long flags;
3922         int ret = 0;
3923
3924         /*
3925          * Disabling interrupts avoids all counter scheduling (context
3926          * switches, timer based rotation and IPIs).
3927          */
3928         local_irq_save(flags);
3929
3930         /*
3931          * It must not be an event with inherit set, we cannot read
3932          * all child counters from atomic context.
3933          */
3934         if (event->attr.inherit) {
3935                 ret = -EOPNOTSUPP;
3936                 goto out;
3937         }
3938
3939         /* If this is a per-task event, it must be for current */
3940         if ((event->attach_state & PERF_ATTACH_TASK) &&
3941             event->hw.target != current) {
3942                 ret = -EINVAL;
3943                 goto out;
3944         }
3945
3946         /* If this is a per-CPU event, it must be for this CPU */
3947         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3948             event->cpu != smp_processor_id()) {
3949                 ret = -EINVAL;
3950                 goto out;
3951         }
3952
3953         /* If this is a pinned event it must be running on this CPU */
3954         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3955                 ret = -EBUSY;
3956                 goto out;
3957         }
3958
3959         /*
3960          * If the event is currently on this CPU, its either a per-task event,
3961          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3962          * oncpu == -1).
3963          */
3964         if (event->oncpu == smp_processor_id())
3965                 event->pmu->read(event);
3966
3967         *value = local64_read(&event->count);
3968         if (enabled || running) {
3969                 u64 now = event->shadow_ctx_time + perf_clock();
3970                 u64 __enabled, __running;
3971
3972                 __perf_update_times(event, now, &__enabled, &__running);
3973                 if (enabled)
3974                         *enabled = __enabled;
3975                 if (running)
3976                         *running = __running;
3977         }
3978 out:
3979         local_irq_restore(flags);
3980
3981         return ret;
3982 }
3983
3984 static int perf_event_read(struct perf_event *event, bool group)
3985 {
3986         enum perf_event_state state = READ_ONCE(event->state);
3987         int event_cpu, ret = 0;
3988
3989         /*
3990          * If event is enabled and currently active on a CPU, update the
3991          * value in the event structure:
3992          */
3993 again:
3994         if (state == PERF_EVENT_STATE_ACTIVE) {
3995                 struct perf_read_data data;
3996
3997                 /*
3998                  * Orders the ->state and ->oncpu loads such that if we see
3999                  * ACTIVE we must also see the right ->oncpu.
4000                  *
4001                  * Matches the smp_wmb() from event_sched_in().
4002                  */
4003                 smp_rmb();
4004
4005                 event_cpu = READ_ONCE(event->oncpu);
4006                 if ((unsigned)event_cpu >= nr_cpu_ids)
4007                         return 0;
4008
4009                 data = (struct perf_read_data){
4010                         .event = event,
4011                         .group = group,
4012                         .ret = 0,
4013                 };
4014
4015                 preempt_disable();
4016                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4017
4018                 /*
4019                  * Purposely ignore the smp_call_function_single() return
4020                  * value.
4021                  *
4022                  * If event_cpu isn't a valid CPU it means the event got
4023                  * scheduled out and that will have updated the event count.
4024                  *
4025                  * Therefore, either way, we'll have an up-to-date event count
4026                  * after this.
4027                  */
4028                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4029                 preempt_enable();
4030                 ret = data.ret;
4031
4032         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4033                 struct perf_event_context *ctx = event->ctx;
4034                 unsigned long flags;
4035
4036                 raw_spin_lock_irqsave(&ctx->lock, flags);
4037                 state = event->state;
4038                 if (state != PERF_EVENT_STATE_INACTIVE) {
4039                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040                         goto again;
4041                 }
4042
4043                 /*
4044                  * May read while context is not active (e.g., thread is
4045                  * blocked), in that case we cannot update context time
4046                  */
4047                 if (ctx->is_active & EVENT_TIME) {
4048                         update_context_time(ctx);
4049                         update_cgrp_time_from_event(event);
4050                 }
4051
4052                 perf_event_update_time(event);
4053                 if (group)
4054                         perf_event_update_sibling_time(event);
4055                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4056         }
4057
4058         return ret;
4059 }
4060
4061 /*
4062  * Initialize the perf_event context in a task_struct:
4063  */
4064 static void __perf_event_init_context(struct perf_event_context *ctx)
4065 {
4066         raw_spin_lock_init(&ctx->lock);
4067         mutex_init(&ctx->mutex);
4068         INIT_LIST_HEAD(&ctx->active_ctx_list);
4069         perf_event_groups_init(&ctx->pinned_groups);
4070         perf_event_groups_init(&ctx->flexible_groups);
4071         INIT_LIST_HEAD(&ctx->event_list);
4072         INIT_LIST_HEAD(&ctx->pinned_active);
4073         INIT_LIST_HEAD(&ctx->flexible_active);
4074         atomic_set(&ctx->refcount, 1);
4075 }
4076
4077 static struct perf_event_context *
4078 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4079 {
4080         struct perf_event_context *ctx;
4081
4082         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4083         if (!ctx)
4084                 return NULL;
4085
4086         __perf_event_init_context(ctx);
4087         if (task) {
4088                 ctx->task = task;
4089                 get_task_struct(task);
4090         }
4091         ctx->pmu = pmu;
4092
4093         return ctx;
4094 }
4095
4096 static struct task_struct *
4097 find_lively_task_by_vpid(pid_t vpid)
4098 {
4099         struct task_struct *task;
4100
4101         rcu_read_lock();
4102         if (!vpid)
4103                 task = current;
4104         else
4105                 task = find_task_by_vpid(vpid);
4106         if (task)
4107                 get_task_struct(task);
4108         rcu_read_unlock();
4109
4110         if (!task)
4111                 return ERR_PTR(-ESRCH);
4112
4113         return task;
4114 }
4115
4116 /*
4117  * Returns a matching context with refcount and pincount.
4118  */
4119 static struct perf_event_context *
4120 find_get_context(struct pmu *pmu, struct task_struct *task,
4121                 struct perf_event *event)
4122 {
4123         struct perf_event_context *ctx, *clone_ctx = NULL;
4124         struct perf_cpu_context *cpuctx;
4125         void *task_ctx_data = NULL;
4126         unsigned long flags;
4127         int ctxn, err;
4128         int cpu = event->cpu;
4129
4130         if (!task) {
4131                 /* Must be root to operate on a CPU event: */
4132                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4133                         return ERR_PTR(-EACCES);
4134
4135                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4136                 ctx = &cpuctx->ctx;
4137                 get_ctx(ctx);
4138                 ++ctx->pin_count;
4139
4140                 return ctx;
4141         }
4142
4143         err = -EINVAL;
4144         ctxn = pmu->task_ctx_nr;
4145         if (ctxn < 0)
4146                 goto errout;
4147
4148         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4149                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4150                 if (!task_ctx_data) {
4151                         err = -ENOMEM;
4152                         goto errout;
4153                 }
4154         }
4155
4156 retry:
4157         ctx = perf_lock_task_context(task, ctxn, &flags);
4158         if (ctx) {
4159                 clone_ctx = unclone_ctx(ctx);
4160                 ++ctx->pin_count;
4161
4162                 if (task_ctx_data && !ctx->task_ctx_data) {
4163                         ctx->task_ctx_data = task_ctx_data;
4164                         task_ctx_data = NULL;
4165                 }
4166                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4167
4168                 if (clone_ctx)
4169                         put_ctx(clone_ctx);
4170         } else {
4171                 ctx = alloc_perf_context(pmu, task);
4172                 err = -ENOMEM;
4173                 if (!ctx)
4174                         goto errout;
4175
4176                 if (task_ctx_data) {
4177                         ctx->task_ctx_data = task_ctx_data;
4178                         task_ctx_data = NULL;
4179                 }
4180
4181                 err = 0;
4182                 mutex_lock(&task->perf_event_mutex);
4183                 /*
4184                  * If it has already passed perf_event_exit_task().
4185                  * we must see PF_EXITING, it takes this mutex too.
4186                  */
4187                 if (task->flags & PF_EXITING)
4188                         err = -ESRCH;
4189                 else if (task->perf_event_ctxp[ctxn])
4190                         err = -EAGAIN;
4191                 else {
4192                         get_ctx(ctx);
4193                         ++ctx->pin_count;
4194                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4195                 }
4196                 mutex_unlock(&task->perf_event_mutex);
4197
4198                 if (unlikely(err)) {
4199                         put_ctx(ctx);
4200
4201                         if (err == -EAGAIN)
4202                                 goto retry;
4203                         goto errout;
4204                 }
4205         }
4206
4207         kfree(task_ctx_data);
4208         return ctx;
4209
4210 errout:
4211         kfree(task_ctx_data);
4212         return ERR_PTR(err);
4213 }
4214
4215 static void perf_event_free_filter(struct perf_event *event);
4216 static void perf_event_free_bpf_prog(struct perf_event *event);
4217
4218 static void free_event_rcu(struct rcu_head *head)
4219 {
4220         struct perf_event *event;
4221
4222         event = container_of(head, struct perf_event, rcu_head);
4223         if (event->ns)
4224                 put_pid_ns(event->ns);
4225         perf_event_free_filter(event);
4226         kfree(event);
4227 }
4228
4229 static void ring_buffer_attach(struct perf_event *event,
4230                                struct ring_buffer *rb);
4231
4232 static void detach_sb_event(struct perf_event *event)
4233 {
4234         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4235
4236         raw_spin_lock(&pel->lock);
4237         list_del_rcu(&event->sb_list);
4238         raw_spin_unlock(&pel->lock);
4239 }
4240
4241 static bool is_sb_event(struct perf_event *event)
4242 {
4243         struct perf_event_attr *attr = &event->attr;
4244
4245         if (event->parent)
4246                 return false;
4247
4248         if (event->attach_state & PERF_ATTACH_TASK)
4249                 return false;
4250
4251         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4252             attr->comm || attr->comm_exec ||
4253             attr->task ||
4254             attr->context_switch)
4255                 return true;
4256         return false;
4257 }
4258
4259 static void unaccount_pmu_sb_event(struct perf_event *event)
4260 {
4261         if (is_sb_event(event))
4262                 detach_sb_event(event);
4263 }
4264
4265 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4266 {
4267         if (event->parent)
4268                 return;
4269
4270         if (is_cgroup_event(event))
4271                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4272 }
4273
4274 #ifdef CONFIG_NO_HZ_FULL
4275 static DEFINE_SPINLOCK(nr_freq_lock);
4276 #endif
4277
4278 static void unaccount_freq_event_nohz(void)
4279 {
4280 #ifdef CONFIG_NO_HZ_FULL
4281         spin_lock(&nr_freq_lock);
4282         if (atomic_dec_and_test(&nr_freq_events))
4283                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4284         spin_unlock(&nr_freq_lock);
4285 #endif
4286 }
4287
4288 static void unaccount_freq_event(void)
4289 {
4290         if (tick_nohz_full_enabled())
4291                 unaccount_freq_event_nohz();
4292         else
4293                 atomic_dec(&nr_freq_events);
4294 }
4295
4296 static void unaccount_event(struct perf_event *event)
4297 {
4298         bool dec = false;
4299
4300         if (event->parent)
4301                 return;
4302
4303         if (event->attach_state & PERF_ATTACH_TASK)
4304                 dec = true;
4305         if (event->attr.mmap || event->attr.mmap_data)
4306                 atomic_dec(&nr_mmap_events);
4307         if (event->attr.comm)
4308                 atomic_dec(&nr_comm_events);
4309         if (event->attr.namespaces)
4310                 atomic_dec(&nr_namespaces_events);
4311         if (event->attr.task)
4312                 atomic_dec(&nr_task_events);
4313         if (event->attr.freq)
4314                 unaccount_freq_event();
4315         if (event->attr.context_switch) {
4316                 dec = true;
4317                 atomic_dec(&nr_switch_events);
4318         }
4319         if (is_cgroup_event(event))
4320                 dec = true;
4321         if (has_branch_stack(event))
4322                 dec = true;
4323
4324         if (dec) {
4325                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4326                         schedule_delayed_work(&perf_sched_work, HZ);
4327         }
4328
4329         unaccount_event_cpu(event, event->cpu);
4330
4331         unaccount_pmu_sb_event(event);
4332 }
4333
4334 static void perf_sched_delayed(struct work_struct *work)
4335 {
4336         mutex_lock(&perf_sched_mutex);
4337         if (atomic_dec_and_test(&perf_sched_count))
4338                 static_branch_disable(&perf_sched_events);
4339         mutex_unlock(&perf_sched_mutex);
4340 }
4341
4342 /*
4343  * The following implement mutual exclusion of events on "exclusive" pmus
4344  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4345  * at a time, so we disallow creating events that might conflict, namely:
4346  *
4347  *  1) cpu-wide events in the presence of per-task events,
4348  *  2) per-task events in the presence of cpu-wide events,
4349  *  3) two matching events on the same context.
4350  *
4351  * The former two cases are handled in the allocation path (perf_event_alloc(),
4352  * _free_event()), the latter -- before the first perf_install_in_context().
4353  */
4354 static int exclusive_event_init(struct perf_event *event)
4355 {
4356         struct pmu *pmu = event->pmu;
4357
4358         if (!is_exclusive_pmu(pmu))
4359                 return 0;
4360
4361         /*
4362          * Prevent co-existence of per-task and cpu-wide events on the
4363          * same exclusive pmu.
4364          *
4365          * Negative pmu::exclusive_cnt means there are cpu-wide
4366          * events on this "exclusive" pmu, positive means there are
4367          * per-task events.
4368          *
4369          * Since this is called in perf_event_alloc() path, event::ctx
4370          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4371          * to mean "per-task event", because unlike other attach states it
4372          * never gets cleared.
4373          */
4374         if (event->attach_state & PERF_ATTACH_TASK) {
4375                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4376                         return -EBUSY;
4377         } else {
4378                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4379                         return -EBUSY;
4380         }
4381
4382         return 0;
4383 }
4384
4385 static void exclusive_event_destroy(struct perf_event *event)
4386 {
4387         struct pmu *pmu = event->pmu;
4388
4389         if (!is_exclusive_pmu(pmu))
4390                 return;
4391
4392         /* see comment in exclusive_event_init() */
4393         if (event->attach_state & PERF_ATTACH_TASK)
4394                 atomic_dec(&pmu->exclusive_cnt);
4395         else
4396                 atomic_inc(&pmu->exclusive_cnt);
4397 }
4398
4399 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4400 {
4401         if ((e1->pmu == e2->pmu) &&
4402             (e1->cpu == e2->cpu ||
4403              e1->cpu == -1 ||
4404              e2->cpu == -1))
4405                 return true;
4406         return false;
4407 }
4408
4409 static bool exclusive_event_installable(struct perf_event *event,
4410                                         struct perf_event_context *ctx)
4411 {
4412         struct perf_event *iter_event;
4413         struct pmu *pmu = event->pmu;
4414
4415         lockdep_assert_held(&ctx->mutex);
4416
4417         if (!is_exclusive_pmu(pmu))
4418                 return true;
4419
4420         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4421                 if (exclusive_event_match(iter_event, event))
4422                         return false;
4423         }
4424
4425         return true;
4426 }
4427
4428 static void perf_addr_filters_splice(struct perf_event *event,
4429                                        struct list_head *head);
4430
4431 static void _free_event(struct perf_event *event)
4432 {
4433         irq_work_sync(&event->pending);
4434
4435         unaccount_event(event);
4436
4437         if (event->rb) {
4438                 /*
4439                  * Can happen when we close an event with re-directed output.
4440                  *
4441                  * Since we have a 0 refcount, perf_mmap_close() will skip
4442                  * over us; possibly making our ring_buffer_put() the last.
4443                  */
4444                 mutex_lock(&event->mmap_mutex);
4445                 ring_buffer_attach(event, NULL);
4446                 mutex_unlock(&event->mmap_mutex);
4447         }
4448
4449         if (is_cgroup_event(event))
4450                 perf_detach_cgroup(event);
4451
4452         if (!event->parent) {
4453                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4454                         put_callchain_buffers();
4455         }
4456
4457         perf_event_free_bpf_prog(event);
4458         perf_addr_filters_splice(event, NULL);
4459         kfree(event->addr_filter_ranges);
4460
4461         if (event->destroy)
4462                 event->destroy(event);
4463
4464         /*
4465          * Must be after ->destroy(), due to uprobe_perf_close() using
4466          * hw.target.
4467          */
4468         if (event->hw.target)
4469                 put_task_struct(event->hw.target);
4470
4471         /*
4472          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4473          * all task references must be cleaned up.
4474          */
4475         if (event->ctx)
4476                 put_ctx(event->ctx);
4477
4478         exclusive_event_destroy(event);
4479         module_put(event->pmu->module);
4480
4481         call_rcu(&event->rcu_head, free_event_rcu);
4482 }
4483
4484 /*
4485  * Used to free events which have a known refcount of 1, such as in error paths
4486  * where the event isn't exposed yet and inherited events.
4487  */
4488 static void free_event(struct perf_event *event)
4489 {
4490         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4491                                 "unexpected event refcount: %ld; ptr=%p\n",
4492                                 atomic_long_read(&event->refcount), event)) {
4493                 /* leak to avoid use-after-free */
4494                 return;
4495         }
4496
4497         _free_event(event);
4498 }
4499
4500 /*
4501  * Remove user event from the owner task.
4502  */
4503 static void perf_remove_from_owner(struct perf_event *event)
4504 {
4505         struct task_struct *owner;
4506
4507         rcu_read_lock();
4508         /*
4509          * Matches the smp_store_release() in perf_event_exit_task(). If we
4510          * observe !owner it means the list deletion is complete and we can
4511          * indeed free this event, otherwise we need to serialize on
4512          * owner->perf_event_mutex.
4513          */
4514         owner = READ_ONCE(event->owner);
4515         if (owner) {
4516                 /*
4517                  * Since delayed_put_task_struct() also drops the last
4518                  * task reference we can safely take a new reference
4519                  * while holding the rcu_read_lock().
4520                  */
4521                 get_task_struct(owner);
4522         }
4523         rcu_read_unlock();
4524
4525         if (owner) {
4526                 /*
4527                  * If we're here through perf_event_exit_task() we're already
4528                  * holding ctx->mutex which would be an inversion wrt. the
4529                  * normal lock order.
4530                  *
4531                  * However we can safely take this lock because its the child
4532                  * ctx->mutex.
4533                  */
4534                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4535
4536                 /*
4537                  * We have to re-check the event->owner field, if it is cleared
4538                  * we raced with perf_event_exit_task(), acquiring the mutex
4539                  * ensured they're done, and we can proceed with freeing the
4540                  * event.
4541                  */
4542                 if (event->owner) {
4543                         list_del_init(&event->owner_entry);
4544                         smp_store_release(&event->owner, NULL);
4545                 }
4546                 mutex_unlock(&owner->perf_event_mutex);
4547                 put_task_struct(owner);
4548         }
4549 }
4550
4551 static void put_event(struct perf_event *event)
4552 {
4553         if (!atomic_long_dec_and_test(&event->refcount))
4554                 return;
4555
4556         _free_event(event);
4557 }
4558
4559 /*
4560  * Kill an event dead; while event:refcount will preserve the event
4561  * object, it will not preserve its functionality. Once the last 'user'
4562  * gives up the object, we'll destroy the thing.
4563  */
4564 int perf_event_release_kernel(struct perf_event *event)
4565 {
4566         struct perf_event_context *ctx = event->ctx;
4567         struct perf_event *child, *tmp;
4568         LIST_HEAD(free_list);
4569
4570         /*
4571          * If we got here through err_file: fput(event_file); we will not have
4572          * attached to a context yet.
4573          */
4574         if (!ctx) {
4575                 WARN_ON_ONCE(event->attach_state &
4576                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4577                 goto no_ctx;
4578         }
4579
4580         if (!is_kernel_event(event))
4581                 perf_remove_from_owner(event);
4582
4583         ctx = perf_event_ctx_lock(event);
4584         WARN_ON_ONCE(ctx->parent_ctx);
4585         perf_remove_from_context(event, DETACH_GROUP);
4586
4587         raw_spin_lock_irq(&ctx->lock);
4588         /*
4589          * Mark this event as STATE_DEAD, there is no external reference to it
4590          * anymore.
4591          *
4592          * Anybody acquiring event->child_mutex after the below loop _must_
4593          * also see this, most importantly inherit_event() which will avoid
4594          * placing more children on the list.
4595          *
4596          * Thus this guarantees that we will in fact observe and kill _ALL_
4597          * child events.
4598          */
4599         event->state = PERF_EVENT_STATE_DEAD;
4600         raw_spin_unlock_irq(&ctx->lock);
4601
4602         perf_event_ctx_unlock(event, ctx);
4603
4604 again:
4605         mutex_lock(&event->child_mutex);
4606         list_for_each_entry(child, &event->child_list, child_list) {
4607
4608                 /*
4609                  * Cannot change, child events are not migrated, see the
4610                  * comment with perf_event_ctx_lock_nested().
4611                  */
4612                 ctx = READ_ONCE(child->ctx);
4613                 /*
4614                  * Since child_mutex nests inside ctx::mutex, we must jump
4615                  * through hoops. We start by grabbing a reference on the ctx.
4616                  *
4617                  * Since the event cannot get freed while we hold the
4618                  * child_mutex, the context must also exist and have a !0
4619                  * reference count.
4620                  */
4621                 get_ctx(ctx);
4622
4623                 /*
4624                  * Now that we have a ctx ref, we can drop child_mutex, and
4625                  * acquire ctx::mutex without fear of it going away. Then we
4626                  * can re-acquire child_mutex.
4627                  */
4628                 mutex_unlock(&event->child_mutex);
4629                 mutex_lock(&ctx->mutex);
4630                 mutex_lock(&event->child_mutex);
4631
4632                 /*
4633                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4634                  * state, if child is still the first entry, it didn't get freed
4635                  * and we can continue doing so.
4636                  */
4637                 tmp = list_first_entry_or_null(&event->child_list,
4638                                                struct perf_event, child_list);
4639                 if (tmp == child) {
4640                         perf_remove_from_context(child, DETACH_GROUP);
4641                         list_move(&child->child_list, &free_list);
4642                         /*
4643                          * This matches the refcount bump in inherit_event();
4644                          * this can't be the last reference.
4645                          */
4646                         put_event(event);
4647                 }
4648
4649                 mutex_unlock(&event->child_mutex);
4650                 mutex_unlock(&ctx->mutex);
4651                 put_ctx(ctx);
4652                 goto again;
4653         }
4654         mutex_unlock(&event->child_mutex);
4655
4656         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4657                 void *var = &child->ctx->refcount;
4658
4659                 list_del(&child->child_list);
4660                 free_event(child);
4661
4662                 /*
4663                  * Wake any perf_event_free_task() waiting for this event to be
4664                  * freed.
4665                  */
4666                 smp_mb(); /* pairs with wait_var_event() */
4667                 wake_up_var(var);
4668         }
4669
4670 no_ctx:
4671         put_event(event); /* Must be the 'last' reference */
4672         return 0;
4673 }
4674 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4675
4676 /*
4677  * Called when the last reference to the file is gone.
4678  */
4679 static int perf_release(struct inode *inode, struct file *file)
4680 {
4681         perf_event_release_kernel(file->private_data);
4682         return 0;
4683 }
4684
4685 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4686 {
4687         struct perf_event *child;
4688         u64 total = 0;
4689
4690         *enabled = 0;
4691         *running = 0;
4692
4693         mutex_lock(&event->child_mutex);
4694
4695         (void)perf_event_read(event, false);
4696         total += perf_event_count(event);
4697
4698         *enabled += event->total_time_enabled +
4699                         atomic64_read(&event->child_total_time_enabled);
4700         *running += event->total_time_running +
4701                         atomic64_read(&event->child_total_time_running);
4702
4703         list_for_each_entry(child, &event->child_list, child_list) {
4704                 (void)perf_event_read(child, false);
4705                 total += perf_event_count(child);
4706                 *enabled += child->total_time_enabled;
4707                 *running += child->total_time_running;
4708         }
4709         mutex_unlock(&event->child_mutex);
4710
4711         return total;
4712 }
4713
4714 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4715 {
4716         struct perf_event_context *ctx;
4717         u64 count;
4718
4719         ctx = perf_event_ctx_lock(event);
4720         count = __perf_event_read_value(event, enabled, running);
4721         perf_event_ctx_unlock(event, ctx);
4722
4723         return count;
4724 }
4725 EXPORT_SYMBOL_GPL(perf_event_read_value);
4726
4727 static int __perf_read_group_add(struct perf_event *leader,
4728                                         u64 read_format, u64 *values)
4729 {
4730         struct perf_event_context *ctx = leader->ctx;
4731         struct perf_event *sub;
4732         unsigned long flags;
4733         int n = 1; /* skip @nr */
4734         int ret;
4735
4736         ret = perf_event_read(leader, true);
4737         if (ret)
4738                 return ret;
4739
4740         raw_spin_lock_irqsave(&ctx->lock, flags);
4741
4742         /*
4743          * Since we co-schedule groups, {enabled,running} times of siblings
4744          * will be identical to those of the leader, so we only publish one
4745          * set.
4746          */
4747         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4748                 values[n++] += leader->total_time_enabled +
4749                         atomic64_read(&leader->child_total_time_enabled);
4750         }
4751
4752         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4753                 values[n++] += leader->total_time_running +
4754                         atomic64_read(&leader->child_total_time_running);
4755         }
4756
4757         /*
4758          * Write {count,id} tuples for every sibling.
4759          */
4760         values[n++] += perf_event_count(leader);
4761         if (read_format & PERF_FORMAT_ID)
4762                 values[n++] = primary_event_id(leader);
4763
4764         for_each_sibling_event(sub, leader) {
4765                 values[n++] += perf_event_count(sub);
4766                 if (read_format & PERF_FORMAT_ID)
4767                         values[n++] = primary_event_id(sub);
4768         }
4769
4770         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4771         return 0;
4772 }
4773
4774 static int perf_read_group(struct perf_event *event,
4775                                    u64 read_format, char __user *buf)
4776 {
4777         struct perf_event *leader = event->group_leader, *child;
4778         struct perf_event_context *ctx = leader->ctx;
4779         int ret;
4780         u64 *values;
4781
4782         lockdep_assert_held(&ctx->mutex);
4783
4784         values = kzalloc(event->read_size, GFP_KERNEL);
4785         if (!values)
4786                 return -ENOMEM;
4787
4788         values[0] = 1 + leader->nr_siblings;
4789
4790         /*
4791          * By locking the child_mutex of the leader we effectively
4792          * lock the child list of all siblings.. XXX explain how.
4793          */
4794         mutex_lock(&leader->child_mutex);
4795
4796         ret = __perf_read_group_add(leader, read_format, values);
4797         if (ret)
4798                 goto unlock;
4799
4800         list_for_each_entry(child, &leader->child_list, child_list) {
4801                 ret = __perf_read_group_add(child, read_format, values);
4802                 if (ret)
4803                         goto unlock;
4804         }
4805
4806         mutex_unlock(&leader->child_mutex);
4807
4808         ret = event->read_size;
4809         if (copy_to_user(buf, values, event->read_size))
4810                 ret = -EFAULT;
4811         goto out;
4812
4813 unlock:
4814         mutex_unlock(&leader->child_mutex);
4815 out:
4816         kfree(values);
4817         return ret;
4818 }
4819
4820 static int perf_read_one(struct perf_event *event,
4821                                  u64 read_format, char __user *buf)
4822 {
4823         u64 enabled, running;
4824         u64 values[4];
4825         int n = 0;
4826
4827         values[n++] = __perf_event_read_value(event, &enabled, &running);
4828         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4829                 values[n++] = enabled;
4830         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4831                 values[n++] = running;
4832         if (read_format & PERF_FORMAT_ID)
4833                 values[n++] = primary_event_id(event);
4834
4835         if (copy_to_user(buf, values, n * sizeof(u64)))
4836                 return -EFAULT;
4837
4838         return n * sizeof(u64);
4839 }
4840
4841 static bool is_event_hup(struct perf_event *event)
4842 {
4843         bool no_children;
4844
4845         if (event->state > PERF_EVENT_STATE_EXIT)
4846                 return false;
4847
4848         mutex_lock(&event->child_mutex);
4849         no_children = list_empty(&event->child_list);
4850         mutex_unlock(&event->child_mutex);
4851         return no_children;
4852 }
4853
4854 /*
4855  * Read the performance event - simple non blocking version for now
4856  */
4857 static ssize_t
4858 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4859 {
4860         u64 read_format = event->attr.read_format;
4861         int ret;
4862
4863         /*
4864          * Return end-of-file for a read on an event that is in
4865          * error state (i.e. because it was pinned but it couldn't be
4866          * scheduled on to the CPU at some point).
4867          */
4868         if (event->state == PERF_EVENT_STATE_ERROR)
4869                 return 0;
4870
4871         if (count < event->read_size)
4872                 return -ENOSPC;
4873
4874         WARN_ON_ONCE(event->ctx->parent_ctx);
4875         if (read_format & PERF_FORMAT_GROUP)
4876                 ret = perf_read_group(event, read_format, buf);
4877         else
4878                 ret = perf_read_one(event, read_format, buf);
4879
4880         return ret;
4881 }
4882
4883 static ssize_t
4884 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4885 {
4886         struct perf_event *event = file->private_data;
4887         struct perf_event_context *ctx;
4888         int ret;
4889
4890         ctx = perf_event_ctx_lock(event);
4891         ret = __perf_read(event, buf, count);
4892         perf_event_ctx_unlock(event, ctx);
4893
4894         return ret;
4895 }
4896
4897 static __poll_t perf_poll(struct file *file, poll_table *wait)
4898 {
4899         struct perf_event *event = file->private_data;
4900         struct ring_buffer *rb;
4901         __poll_t events = EPOLLHUP;
4902
4903         poll_wait(file, &event->waitq, wait);
4904
4905         if (is_event_hup(event))
4906                 return events;
4907
4908         /*
4909          * Pin the event->rb by taking event->mmap_mutex; otherwise
4910          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4911          */
4912         mutex_lock(&event->mmap_mutex);
4913         rb = event->rb;
4914         if (rb)
4915                 events = atomic_xchg(&rb->poll, 0);
4916         mutex_unlock(&event->mmap_mutex);
4917         return events;
4918 }
4919
4920 static void _perf_event_reset(struct perf_event *event)
4921 {
4922         (void)perf_event_read(event, false);
4923         local64_set(&event->count, 0);
4924         perf_event_update_userpage(event);
4925 }
4926
4927 /*
4928  * Holding the top-level event's child_mutex means that any
4929  * descendant process that has inherited this event will block
4930  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4931  * task existence requirements of perf_event_enable/disable.
4932  */
4933 static void perf_event_for_each_child(struct perf_event *event,
4934                                         void (*func)(struct perf_event *))
4935 {
4936         struct perf_event *child;
4937
4938         WARN_ON_ONCE(event->ctx->parent_ctx);
4939
4940         mutex_lock(&event->child_mutex);
4941         func(event);
4942         list_for_each_entry(child, &event->child_list, child_list)
4943                 func(child);
4944         mutex_unlock(&event->child_mutex);
4945 }
4946
4947 static void perf_event_for_each(struct perf_event *event,
4948                                   void (*func)(struct perf_event *))
4949 {
4950         struct perf_event_context *ctx = event->ctx;
4951         struct perf_event *sibling;
4952
4953         lockdep_assert_held(&ctx->mutex);
4954
4955         event = event->group_leader;
4956
4957         perf_event_for_each_child(event, func);
4958         for_each_sibling_event(sibling, event)
4959                 perf_event_for_each_child(sibling, func);
4960 }
4961
4962 static void __perf_event_period(struct perf_event *event,
4963                                 struct perf_cpu_context *cpuctx,
4964                                 struct perf_event_context *ctx,
4965                                 void *info)
4966 {
4967         u64 value = *((u64 *)info);
4968         bool active;
4969
4970         if (event->attr.freq) {
4971                 event->attr.sample_freq = value;
4972         } else {
4973                 event->attr.sample_period = value;
4974                 event->hw.sample_period = value;
4975         }
4976
4977         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4978         if (active) {
4979                 perf_pmu_disable(ctx->pmu);
4980                 /*
4981                  * We could be throttled; unthrottle now to avoid the tick
4982                  * trying to unthrottle while we already re-started the event.
4983                  */
4984                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4985                         event->hw.interrupts = 0;
4986                         perf_log_throttle(event, 1);
4987                 }
4988                 event->pmu->stop(event, PERF_EF_UPDATE);
4989         }
4990
4991         local64_set(&event->hw.period_left, 0);
4992
4993         if (active) {
4994                 event->pmu->start(event, PERF_EF_RELOAD);
4995                 perf_pmu_enable(ctx->pmu);
4996         }
4997 }
4998
4999 static int perf_event_check_period(struct perf_event *event, u64 value)
5000 {
5001         return event->pmu->check_period(event, value);
5002 }
5003
5004 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5005 {
5006         u64 value;
5007
5008         if (!is_sampling_event(event))
5009                 return -EINVAL;
5010
5011         if (copy_from_user(&value, arg, sizeof(value)))
5012                 return -EFAULT;
5013
5014         if (!value)
5015                 return -EINVAL;
5016
5017         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5018                 return -EINVAL;
5019
5020         if (perf_event_check_period(event, value))
5021                 return -EINVAL;
5022
5023         if (!event->attr.freq && (value & (1ULL << 63)))
5024                 return -EINVAL;
5025
5026         event_function_call(event, __perf_event_period, &value);
5027
5028         return 0;
5029 }
5030
5031 static const struct file_operations perf_fops;
5032
5033 static inline int perf_fget_light(int fd, struct fd *p)
5034 {
5035         struct fd f = fdget(fd);
5036         if (!f.file)
5037                 return -EBADF;
5038
5039         if (f.file->f_op != &perf_fops) {
5040                 fdput(f);
5041                 return -EBADF;
5042         }
5043         *p = f;
5044         return 0;
5045 }
5046
5047 static int perf_event_set_output(struct perf_event *event,
5048                                  struct perf_event *output_event);
5049 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5050 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5051 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5052                           struct perf_event_attr *attr);
5053
5054 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5055 {
5056         void (*func)(struct perf_event *);
5057         u32 flags = arg;
5058
5059         switch (cmd) {
5060         case PERF_EVENT_IOC_ENABLE:
5061                 func = _perf_event_enable;
5062                 break;
5063         case PERF_EVENT_IOC_DISABLE:
5064                 func = _perf_event_disable;
5065                 break;
5066         case PERF_EVENT_IOC_RESET:
5067                 func = _perf_event_reset;
5068                 break;
5069
5070         case PERF_EVENT_IOC_REFRESH:
5071                 return _perf_event_refresh(event, arg);
5072
5073         case PERF_EVENT_IOC_PERIOD:
5074                 return perf_event_period(event, (u64 __user *)arg);
5075
5076         case PERF_EVENT_IOC_ID:
5077         {
5078                 u64 id = primary_event_id(event);
5079
5080                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5081                         return -EFAULT;
5082                 return 0;
5083         }
5084
5085         case PERF_EVENT_IOC_SET_OUTPUT:
5086         {
5087                 int ret;
5088                 if (arg != -1) {
5089                         struct perf_event *output_event;
5090                         struct fd output;
5091                         ret = perf_fget_light(arg, &output);
5092                         if (ret)
5093                                 return ret;
5094                         output_event = output.file->private_data;
5095                         ret = perf_event_set_output(event, output_event);
5096                         fdput(output);
5097                 } else {
5098                         ret = perf_event_set_output(event, NULL);
5099                 }
5100                 return ret;
5101         }
5102
5103         case PERF_EVENT_IOC_SET_FILTER:
5104                 return perf_event_set_filter(event, (void __user *)arg);
5105
5106         case PERF_EVENT_IOC_SET_BPF:
5107                 return perf_event_set_bpf_prog(event, arg);
5108
5109         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5110                 struct ring_buffer *rb;
5111
5112                 rcu_read_lock();
5113                 rb = rcu_dereference(event->rb);
5114                 if (!rb || !rb->nr_pages) {
5115                         rcu_read_unlock();
5116                         return -EINVAL;
5117                 }
5118                 rb_toggle_paused(rb, !!arg);
5119                 rcu_read_unlock();
5120                 return 0;
5121         }
5122
5123         case PERF_EVENT_IOC_QUERY_BPF:
5124                 return perf_event_query_prog_array(event, (void __user *)arg);
5125
5126         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5127                 struct perf_event_attr new_attr;
5128                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5129                                          &new_attr);
5130
5131                 if (err)
5132                         return err;
5133
5134                 return perf_event_modify_attr(event,  &new_attr);
5135         }
5136         default:
5137                 return -ENOTTY;
5138         }
5139
5140         if (flags & PERF_IOC_FLAG_GROUP)
5141                 perf_event_for_each(event, func);
5142         else
5143                 perf_event_for_each_child(event, func);
5144
5145         return 0;
5146 }
5147
5148 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5149 {
5150         struct perf_event *event = file->private_data;
5151         struct perf_event_context *ctx;
5152         long ret;
5153
5154         ctx = perf_event_ctx_lock(event);
5155         ret = _perf_ioctl(event, cmd, arg);
5156         perf_event_ctx_unlock(event, ctx);
5157
5158         return ret;
5159 }
5160
5161 #ifdef CONFIG_COMPAT
5162 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5163                                 unsigned long arg)
5164 {
5165         switch (_IOC_NR(cmd)) {
5166         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5167         case _IOC_NR(PERF_EVENT_IOC_ID):
5168         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5169         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5170                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5171                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5172                         cmd &= ~IOCSIZE_MASK;
5173                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5174                 }
5175                 break;
5176         }
5177         return perf_ioctl(file, cmd, arg);
5178 }
5179 #else
5180 # define perf_compat_ioctl NULL
5181 #endif
5182
5183 int perf_event_task_enable(void)
5184 {
5185         struct perf_event_context *ctx;
5186         struct perf_event *event;
5187
5188         mutex_lock(&current->perf_event_mutex);
5189         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5190                 ctx = perf_event_ctx_lock(event);
5191                 perf_event_for_each_child(event, _perf_event_enable);
5192                 perf_event_ctx_unlock(event, ctx);
5193         }
5194         mutex_unlock(&current->perf_event_mutex);
5195
5196         return 0;
5197 }
5198
5199 int perf_event_task_disable(void)
5200 {
5201         struct perf_event_context *ctx;
5202         struct perf_event *event;
5203
5204         mutex_lock(&current->perf_event_mutex);
5205         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5206                 ctx = perf_event_ctx_lock(event);
5207                 perf_event_for_each_child(event, _perf_event_disable);
5208                 perf_event_ctx_unlock(event, ctx);
5209         }
5210         mutex_unlock(&current->perf_event_mutex);
5211
5212         return 0;
5213 }
5214
5215 static int perf_event_index(struct perf_event *event)
5216 {
5217         if (event->hw.state & PERF_HES_STOPPED)
5218                 return 0;
5219
5220         if (event->state != PERF_EVENT_STATE_ACTIVE)
5221                 return 0;
5222
5223         return event->pmu->event_idx(event);
5224 }
5225
5226 static void calc_timer_values(struct perf_event *event,
5227                                 u64 *now,
5228                                 u64 *enabled,
5229                                 u64 *running)
5230 {
5231         u64 ctx_time;
5232
5233         *now = perf_clock();
5234         ctx_time = event->shadow_ctx_time + *now;
5235         __perf_update_times(event, ctx_time, enabled, running);
5236 }
5237
5238 static void perf_event_init_userpage(struct perf_event *event)
5239 {
5240         struct perf_event_mmap_page *userpg;
5241         struct ring_buffer *rb;
5242
5243         rcu_read_lock();
5244         rb = rcu_dereference(event->rb);
5245         if (!rb)
5246                 goto unlock;
5247
5248         userpg = rb->user_page;
5249
5250         /* Allow new userspace to detect that bit 0 is deprecated */
5251         userpg->cap_bit0_is_deprecated = 1;
5252         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5253         userpg->data_offset = PAGE_SIZE;
5254         userpg->data_size = perf_data_size(rb);
5255
5256 unlock:
5257         rcu_read_unlock();
5258 }
5259
5260 void __weak arch_perf_update_userpage(
5261         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5262 {
5263 }
5264
5265 /*
5266  * Callers need to ensure there can be no nesting of this function, otherwise
5267  * the seqlock logic goes bad. We can not serialize this because the arch
5268  * code calls this from NMI context.
5269  */
5270 void perf_event_update_userpage(struct perf_event *event)
5271 {
5272         struct perf_event_mmap_page *userpg;
5273         struct ring_buffer *rb;
5274         u64 enabled, running, now;
5275
5276         rcu_read_lock();
5277         rb = rcu_dereference(event->rb);
5278         if (!rb)
5279                 goto unlock;
5280
5281         /*
5282          * compute total_time_enabled, total_time_running
5283          * based on snapshot values taken when the event
5284          * was last scheduled in.
5285          *
5286          * we cannot simply called update_context_time()
5287          * because of locking issue as we can be called in
5288          * NMI context
5289          */
5290         calc_timer_values(event, &now, &enabled, &running);
5291
5292         userpg = rb->user_page;
5293         /*
5294          * Disable preemption to guarantee consistent time stamps are stored to
5295          * the user page.
5296          */
5297         preempt_disable();
5298         ++userpg->lock;
5299         barrier();
5300         userpg->index = perf_event_index(event);
5301         userpg->offset = perf_event_count(event);
5302         if (userpg->index)
5303                 userpg->offset -= local64_read(&event->hw.prev_count);
5304
5305         userpg->time_enabled = enabled +
5306                         atomic64_read(&event->child_total_time_enabled);
5307
5308         userpg->time_running = running +
5309                         atomic64_read(&event->child_total_time_running);
5310
5311         arch_perf_update_userpage(event, userpg, now);
5312
5313         barrier();
5314         ++userpg->lock;
5315         preempt_enable();
5316 unlock:
5317         rcu_read_unlock();
5318 }
5319 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5320
5321 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5322 {
5323         struct perf_event *event = vmf->vma->vm_file->private_data;
5324         struct ring_buffer *rb;
5325         vm_fault_t ret = VM_FAULT_SIGBUS;
5326
5327         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5328                 if (vmf->pgoff == 0)
5329                         ret = 0;
5330                 return ret;
5331         }
5332
5333         rcu_read_lock();
5334         rb = rcu_dereference(event->rb);
5335         if (!rb)
5336                 goto unlock;
5337
5338         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5339                 goto unlock;
5340
5341         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5342         if (!vmf->page)
5343                 goto unlock;
5344
5345         get_page(vmf->page);
5346         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5347         vmf->page->index   = vmf->pgoff;
5348
5349         ret = 0;
5350 unlock:
5351         rcu_read_unlock();
5352
5353         return ret;
5354 }
5355
5356 static void ring_buffer_attach(struct perf_event *event,
5357                                struct ring_buffer *rb)
5358 {
5359         struct ring_buffer *old_rb = NULL;
5360         unsigned long flags;
5361
5362         if (event->rb) {
5363                 /*
5364                  * Should be impossible, we set this when removing
5365                  * event->rb_entry and wait/clear when adding event->rb_entry.
5366                  */
5367                 WARN_ON_ONCE(event->rcu_pending);
5368
5369                 old_rb = event->rb;
5370                 spin_lock_irqsave(&old_rb->event_lock, flags);
5371                 list_del_rcu(&event->rb_entry);
5372                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5373
5374                 event->rcu_batches = get_state_synchronize_rcu();
5375                 event->rcu_pending = 1;
5376         }
5377
5378         if (rb) {
5379                 if (event->rcu_pending) {
5380                         cond_synchronize_rcu(event->rcu_batches);
5381                         event->rcu_pending = 0;
5382                 }
5383
5384                 spin_lock_irqsave(&rb->event_lock, flags);
5385                 list_add_rcu(&event->rb_entry, &rb->event_list);
5386                 spin_unlock_irqrestore(&rb->event_lock, flags);
5387         }
5388
5389         /*
5390          * Avoid racing with perf_mmap_close(AUX): stop the event
5391          * before swizzling the event::rb pointer; if it's getting
5392          * unmapped, its aux_mmap_count will be 0 and it won't
5393          * restart. See the comment in __perf_pmu_output_stop().
5394          *
5395          * Data will inevitably be lost when set_output is done in
5396          * mid-air, but then again, whoever does it like this is
5397          * not in for the data anyway.
5398          */
5399         if (has_aux(event))
5400                 perf_event_stop(event, 0);
5401
5402         rcu_assign_pointer(event->rb, rb);
5403
5404         if (old_rb) {
5405                 ring_buffer_put(old_rb);
5406                 /*
5407                  * Since we detached before setting the new rb, so that we
5408                  * could attach the new rb, we could have missed a wakeup.
5409                  * Provide it now.
5410                  */
5411                 wake_up_all(&event->waitq);
5412         }
5413 }
5414
5415 static void ring_buffer_wakeup(struct perf_event *event)
5416 {
5417         struct ring_buffer *rb;
5418
5419         rcu_read_lock();
5420         rb = rcu_dereference(event->rb);
5421         if (rb) {
5422                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5423                         wake_up_all(&event->waitq);
5424         }
5425         rcu_read_unlock();
5426 }
5427
5428 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5429 {
5430         struct ring_buffer *rb;
5431
5432         rcu_read_lock();
5433         rb = rcu_dereference(event->rb);
5434         if (rb) {
5435                 if (!atomic_inc_not_zero(&rb->refcount))
5436                         rb = NULL;
5437         }
5438         rcu_read_unlock();
5439
5440         return rb;
5441 }
5442
5443 void ring_buffer_put(struct ring_buffer *rb)
5444 {
5445         if (!atomic_dec_and_test(&rb->refcount))
5446                 return;
5447
5448         WARN_ON_ONCE(!list_empty(&rb->event_list));
5449
5450         call_rcu(&rb->rcu_head, rb_free_rcu);
5451 }
5452
5453 static void perf_mmap_open(struct vm_area_struct *vma)
5454 {
5455         struct perf_event *event = vma->vm_file->private_data;
5456
5457         atomic_inc(&event->mmap_count);
5458         atomic_inc(&event->rb->mmap_count);
5459
5460         if (vma->vm_pgoff)
5461                 atomic_inc(&event->rb->aux_mmap_count);
5462
5463         if (event->pmu->event_mapped)
5464                 event->pmu->event_mapped(event, vma->vm_mm);
5465 }
5466
5467 static void perf_pmu_output_stop(struct perf_event *event);
5468
5469 /*
5470  * A buffer can be mmap()ed multiple times; either directly through the same
5471  * event, or through other events by use of perf_event_set_output().
5472  *
5473  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5474  * the buffer here, where we still have a VM context. This means we need
5475  * to detach all events redirecting to us.
5476  */
5477 static void perf_mmap_close(struct vm_area_struct *vma)
5478 {
5479         struct perf_event *event = vma->vm_file->private_data;
5480         struct ring_buffer *rb = ring_buffer_get(event);
5481         struct user_struct *mmap_user = rb->mmap_user;
5482         int mmap_locked = rb->mmap_locked;
5483         unsigned long size = perf_data_size(rb);
5484         bool detach_rest = false;
5485
5486         if (event->pmu->event_unmapped)
5487                 event->pmu->event_unmapped(event, vma->vm_mm);
5488
5489         /*
5490          * rb->aux_mmap_count will always drop before rb->mmap_count and
5491          * event->mmap_count, so it is ok to use event->mmap_mutex to
5492          * serialize with perf_mmap here.
5493          */
5494         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5495             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5496                 /*
5497                  * Stop all AUX events that are writing to this buffer,
5498                  * so that we can free its AUX pages and corresponding PMU
5499                  * data. Note that after rb::aux_mmap_count dropped to zero,
5500                  * they won't start any more (see perf_aux_output_begin()).
5501                  */
5502                 perf_pmu_output_stop(event);
5503
5504                 /* now it's safe to free the pages */
5505                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5506                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5507
5508                 /* this has to be the last one */
5509                 rb_free_aux(rb);
5510                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5511
5512                 mutex_unlock(&event->mmap_mutex);
5513         }
5514
5515         if (atomic_dec_and_test(&rb->mmap_count))
5516                 detach_rest = true;
5517
5518         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5519                 goto out_put;
5520
5521         ring_buffer_attach(event, NULL);
5522         mutex_unlock(&event->mmap_mutex);
5523
5524         /* If there's still other mmap()s of this buffer, we're done. */
5525         if (!detach_rest)
5526                 goto out_put;
5527
5528         /*
5529          * No other mmap()s, detach from all other events that might redirect
5530          * into the now unreachable buffer. Somewhat complicated by the
5531          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5532          */
5533 again:
5534         rcu_read_lock();
5535         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5536                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5537                         /*
5538                          * This event is en-route to free_event() which will
5539                          * detach it and remove it from the list.
5540                          */
5541                         continue;
5542                 }
5543                 rcu_read_unlock();
5544
5545                 mutex_lock(&event->mmap_mutex);
5546                 /*
5547                  * Check we didn't race with perf_event_set_output() which can
5548                  * swizzle the rb from under us while we were waiting to
5549                  * acquire mmap_mutex.
5550                  *
5551                  * If we find a different rb; ignore this event, a next
5552                  * iteration will no longer find it on the list. We have to
5553                  * still restart the iteration to make sure we're not now
5554                  * iterating the wrong list.
5555                  */
5556                 if (event->rb == rb)
5557                         ring_buffer_attach(event, NULL);
5558
5559                 mutex_unlock(&event->mmap_mutex);
5560                 put_event(event);
5561
5562                 /*
5563                  * Restart the iteration; either we're on the wrong list or
5564                  * destroyed its integrity by doing a deletion.
5565                  */
5566                 goto again;
5567         }
5568         rcu_read_unlock();
5569
5570         /*
5571          * It could be there's still a few 0-ref events on the list; they'll
5572          * get cleaned up by free_event() -- they'll also still have their
5573          * ref on the rb and will free it whenever they are done with it.
5574          *
5575          * Aside from that, this buffer is 'fully' detached and unmapped,
5576          * undo the VM accounting.
5577          */
5578
5579         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5580         vma->vm_mm->pinned_vm -= mmap_locked;
5581         free_uid(mmap_user);
5582
5583 out_put:
5584         ring_buffer_put(rb); /* could be last */
5585 }
5586
5587 static const struct vm_operations_struct perf_mmap_vmops = {
5588         .open           = perf_mmap_open,
5589         .close          = perf_mmap_close, /* non mergable */
5590         .fault          = perf_mmap_fault,
5591         .page_mkwrite   = perf_mmap_fault,
5592 };
5593
5594 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5595 {
5596         struct perf_event *event = file->private_data;
5597         unsigned long user_locked, user_lock_limit;
5598         struct user_struct *user = current_user();
5599         unsigned long locked, lock_limit;
5600         struct ring_buffer *rb = NULL;
5601         unsigned long vma_size;
5602         unsigned long nr_pages;
5603         long user_extra = 0, extra = 0;
5604         int ret = 0, flags = 0;
5605
5606         /*
5607          * Don't allow mmap() of inherited per-task counters. This would
5608          * create a performance issue due to all children writing to the
5609          * same rb.
5610          */
5611         if (event->cpu == -1 && event->attr.inherit)
5612                 return -EINVAL;
5613
5614         if (!(vma->vm_flags & VM_SHARED))
5615                 return -EINVAL;
5616
5617         vma_size = vma->vm_end - vma->vm_start;
5618
5619         if (vma->vm_pgoff == 0) {
5620                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5621         } else {
5622                 /*
5623                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5624                  * mapped, all subsequent mappings should have the same size
5625                  * and offset. Must be above the normal perf buffer.
5626                  */
5627                 u64 aux_offset, aux_size;
5628
5629                 if (!event->rb)
5630                         return -EINVAL;
5631
5632                 nr_pages = vma_size / PAGE_SIZE;
5633
5634                 mutex_lock(&event->mmap_mutex);
5635                 ret = -EINVAL;
5636
5637                 rb = event->rb;
5638                 if (!rb)
5639                         goto aux_unlock;
5640
5641                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5642                 aux_size = READ_ONCE(rb->user_page->aux_size);
5643
5644                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5645                         goto aux_unlock;
5646
5647                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5648                         goto aux_unlock;
5649
5650                 /* already mapped with a different offset */
5651                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5652                         goto aux_unlock;
5653
5654                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5655                         goto aux_unlock;
5656
5657                 /* already mapped with a different size */
5658                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5659                         goto aux_unlock;
5660
5661                 if (!is_power_of_2(nr_pages))
5662                         goto aux_unlock;
5663
5664                 if (!atomic_inc_not_zero(&rb->mmap_count))
5665                         goto aux_unlock;
5666
5667                 if (rb_has_aux(rb)) {
5668                         atomic_inc(&rb->aux_mmap_count);
5669                         ret = 0;
5670                         goto unlock;
5671                 }
5672
5673                 atomic_set(&rb->aux_mmap_count, 1);
5674                 user_extra = nr_pages;
5675
5676                 goto accounting;
5677         }
5678
5679         /*
5680          * If we have rb pages ensure they're a power-of-two number, so we
5681          * can do bitmasks instead of modulo.
5682          */
5683         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5684                 return -EINVAL;
5685
5686         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5687                 return -EINVAL;
5688
5689         WARN_ON_ONCE(event->ctx->parent_ctx);
5690 again:
5691         mutex_lock(&event->mmap_mutex);
5692         if (event->rb) {
5693                 if (event->rb->nr_pages != nr_pages) {
5694                         ret = -EINVAL;
5695                         goto unlock;
5696                 }
5697
5698                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5699                         /*
5700                          * Raced against perf_mmap_close() through
5701                          * perf_event_set_output(). Try again, hope for better
5702                          * luck.
5703                          */
5704                         mutex_unlock(&event->mmap_mutex);
5705                         goto again;
5706                 }
5707
5708                 goto unlock;
5709         }
5710
5711         user_extra = nr_pages + 1;
5712
5713 accounting:
5714         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5715
5716         /*
5717          * Increase the limit linearly with more CPUs:
5718          */
5719         user_lock_limit *= num_online_cpus();
5720
5721         user_locked = atomic_long_read(&user->locked_vm);
5722
5723         /*
5724          * sysctl_perf_event_mlock may have changed, so that
5725          *     user->locked_vm > user_lock_limit
5726          */
5727         if (user_locked > user_lock_limit)
5728                 user_locked = user_lock_limit;
5729         user_locked += user_extra;
5730
5731         if (user_locked > user_lock_limit)
5732                 extra = user_locked - user_lock_limit;
5733
5734         lock_limit = rlimit(RLIMIT_MEMLOCK);
5735         lock_limit >>= PAGE_SHIFT;
5736         locked = vma->vm_mm->pinned_vm + extra;
5737
5738         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5739                 !capable(CAP_IPC_LOCK)) {
5740                 ret = -EPERM;
5741                 goto unlock;
5742         }
5743
5744         WARN_ON(!rb && event->rb);
5745
5746         if (vma->vm_flags & VM_WRITE)
5747                 flags |= RING_BUFFER_WRITABLE;
5748
5749         if (!rb) {
5750                 rb = rb_alloc(nr_pages,
5751                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5752                               event->cpu, flags);
5753
5754                 if (!rb) {
5755                         ret = -ENOMEM;
5756                         goto unlock;
5757                 }
5758
5759                 atomic_set(&rb->mmap_count, 1);
5760                 rb->mmap_user = get_current_user();
5761                 rb->mmap_locked = extra;
5762
5763                 ring_buffer_attach(event, rb);
5764
5765                 perf_event_init_userpage(event);
5766                 perf_event_update_userpage(event);
5767         } else {
5768                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5769                                    event->attr.aux_watermark, flags);
5770                 if (!ret)
5771                         rb->aux_mmap_locked = extra;
5772         }
5773
5774 unlock:
5775         if (!ret) {
5776                 atomic_long_add(user_extra, &user->locked_vm);
5777                 vma->vm_mm->pinned_vm += extra;
5778
5779                 atomic_inc(&event->mmap_count);
5780         } else if (rb) {
5781                 atomic_dec(&rb->mmap_count);
5782         }
5783 aux_unlock:
5784         mutex_unlock(&event->mmap_mutex);
5785
5786         /*
5787          * Since pinned accounting is per vm we cannot allow fork() to copy our
5788          * vma.
5789          */
5790         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5791         vma->vm_ops = &perf_mmap_vmops;
5792
5793         if (event->pmu->event_mapped)
5794                 event->pmu->event_mapped(event, vma->vm_mm);
5795
5796         return ret;
5797 }
5798
5799 static int perf_fasync(int fd, struct file *filp, int on)
5800 {
5801         struct inode *inode = file_inode(filp);
5802         struct perf_event *event = filp->private_data;
5803         int retval;
5804
5805         inode_lock(inode);
5806         retval = fasync_helper(fd, filp, on, &event->fasync);
5807         inode_unlock(inode);
5808
5809         if (retval < 0)
5810                 return retval;
5811
5812         return 0;
5813 }
5814
5815 static const struct file_operations perf_fops = {
5816         .llseek                 = no_llseek,
5817         .release                = perf_release,
5818         .read                   = perf_read,
5819         .poll                   = perf_poll,
5820         .unlocked_ioctl         = perf_ioctl,
5821         .compat_ioctl           = perf_compat_ioctl,
5822         .mmap                   = perf_mmap,
5823         .fasync                 = perf_fasync,
5824 };
5825
5826 /*
5827  * Perf event wakeup
5828  *
5829  * If there's data, ensure we set the poll() state and publish everything
5830  * to user-space before waking everybody up.
5831  */
5832
5833 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5834 {
5835         /* only the parent has fasync state */
5836         if (event->parent)
5837                 event = event->parent;
5838         return &event->fasync;
5839 }
5840
5841 void perf_event_wakeup(struct perf_event *event)
5842 {
5843         ring_buffer_wakeup(event);
5844
5845         if (event->pending_kill) {
5846                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5847                 event->pending_kill = 0;
5848         }
5849 }
5850
5851 static void perf_pending_event_disable(struct perf_event *event)
5852 {
5853         int cpu = READ_ONCE(event->pending_disable);
5854
5855         if (cpu < 0)
5856                 return;
5857
5858         if (cpu == smp_processor_id()) {
5859                 WRITE_ONCE(event->pending_disable, -1);
5860                 perf_event_disable_local(event);
5861                 return;
5862         }
5863
5864         /*
5865          *  CPU-A                       CPU-B
5866          *
5867          *  perf_event_disable_inatomic()
5868          *    @pending_disable = CPU-A;
5869          *    irq_work_queue();
5870          *
5871          *  sched-out
5872          *    @pending_disable = -1;
5873          *
5874          *                              sched-in
5875          *                              perf_event_disable_inatomic()
5876          *                                @pending_disable = CPU-B;
5877          *                                irq_work_queue(); // FAILS
5878          *
5879          *  irq_work_run()
5880          *    perf_pending_event()
5881          *
5882          * But the event runs on CPU-B and wants disabling there.
5883          */
5884         irq_work_queue_on(&event->pending, cpu);
5885 }
5886
5887 static void perf_pending_event(struct irq_work *entry)
5888 {
5889         struct perf_event *event = container_of(entry, struct perf_event, pending);
5890         int rctx;
5891
5892         rctx = perf_swevent_get_recursion_context();
5893         /*
5894          * If we 'fail' here, that's OK, it means recursion is already disabled
5895          * and we won't recurse 'further'.
5896          */
5897
5898         perf_pending_event_disable(event);
5899
5900         if (event->pending_wakeup) {
5901                 event->pending_wakeup = 0;
5902                 perf_event_wakeup(event);
5903         }
5904
5905         if (rctx >= 0)
5906                 perf_swevent_put_recursion_context(rctx);
5907 }
5908
5909 /*
5910  * We assume there is only KVM supporting the callbacks.
5911  * Later on, we might change it to a list if there is
5912  * another virtualization implementation supporting the callbacks.
5913  */
5914 struct perf_guest_info_callbacks *perf_guest_cbs;
5915
5916 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5917 {
5918         perf_guest_cbs = cbs;
5919         return 0;
5920 }
5921 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5922
5923 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5924 {
5925         perf_guest_cbs = NULL;
5926         return 0;
5927 }
5928 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5929
5930 static void
5931 perf_output_sample_regs(struct perf_output_handle *handle,
5932                         struct pt_regs *regs, u64 mask)
5933 {
5934         int bit;
5935         DECLARE_BITMAP(_mask, 64);
5936
5937         bitmap_from_u64(_mask, mask);
5938         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5939                 u64 val;
5940
5941                 val = perf_reg_value(regs, bit);
5942                 perf_output_put(handle, val);
5943         }
5944 }
5945
5946 static void perf_sample_regs_user(struct perf_regs *regs_user,
5947                                   struct pt_regs *regs,
5948                                   struct pt_regs *regs_user_copy)
5949 {
5950         if (user_mode(regs)) {
5951                 regs_user->abi = perf_reg_abi(current);
5952                 regs_user->regs = regs;
5953         } else if (!(current->flags & PF_KTHREAD)) {
5954                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5955         } else {
5956                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5957                 regs_user->regs = NULL;
5958         }
5959 }
5960
5961 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5962                                   struct pt_regs *regs)
5963 {
5964         regs_intr->regs = regs;
5965         regs_intr->abi  = perf_reg_abi(current);
5966 }
5967
5968
5969 /*
5970  * Get remaining task size from user stack pointer.
5971  *
5972  * It'd be better to take stack vma map and limit this more
5973  * precisly, but there's no way to get it safely under interrupt,
5974  * so using TASK_SIZE as limit.
5975  */
5976 static u64 perf_ustack_task_size(struct pt_regs *regs)
5977 {
5978         unsigned long addr = perf_user_stack_pointer(regs);
5979
5980         if (!addr || addr >= TASK_SIZE)
5981                 return 0;
5982
5983         return TASK_SIZE - addr;
5984 }
5985
5986 static u16
5987 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5988                         struct pt_regs *regs)
5989 {
5990         u64 task_size;
5991
5992         /* No regs, no stack pointer, no dump. */
5993         if (!regs)
5994                 return 0;
5995
5996         /*
5997          * Check if we fit in with the requested stack size into the:
5998          * - TASK_SIZE
5999          *   If we don't, we limit the size to the TASK_SIZE.
6000          *
6001          * - remaining sample size
6002          *   If we don't, we customize the stack size to
6003          *   fit in to the remaining sample size.
6004          */
6005
6006         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6007         stack_size = min(stack_size, (u16) task_size);
6008
6009         /* Current header size plus static size and dynamic size. */
6010         header_size += 2 * sizeof(u64);
6011
6012         /* Do we fit in with the current stack dump size? */
6013         if ((u16) (header_size + stack_size) < header_size) {
6014                 /*
6015                  * If we overflow the maximum size for the sample,
6016                  * we customize the stack dump size to fit in.
6017                  */
6018                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6019                 stack_size = round_up(stack_size, sizeof(u64));
6020         }
6021
6022         return stack_size;
6023 }
6024
6025 static void
6026 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6027                           struct pt_regs *regs)
6028 {
6029         /* Case of a kernel thread, nothing to dump */
6030         if (!regs) {
6031                 u64 size = 0;
6032                 perf_output_put(handle, size);
6033         } else {
6034                 unsigned long sp;
6035                 unsigned int rem;
6036                 u64 dyn_size;
6037                 mm_segment_t fs;
6038
6039                 /*
6040                  * We dump:
6041                  * static size
6042                  *   - the size requested by user or the best one we can fit
6043                  *     in to the sample max size
6044                  * data
6045                  *   - user stack dump data
6046                  * dynamic size
6047                  *   - the actual dumped size
6048                  */
6049
6050                 /* Static size. */
6051                 perf_output_put(handle, dump_size);
6052
6053                 /* Data. */
6054                 sp = perf_user_stack_pointer(regs);
6055                 fs = get_fs();
6056                 set_fs(USER_DS);
6057                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6058                 set_fs(fs);
6059                 dyn_size = dump_size - rem;
6060
6061                 perf_output_skip(handle, rem);
6062
6063                 /* Dynamic size. */
6064                 perf_output_put(handle, dyn_size);
6065         }
6066 }
6067
6068 static void __perf_event_header__init_id(struct perf_event_header *header,
6069                                          struct perf_sample_data *data,
6070                                          struct perf_event *event)
6071 {
6072         u64 sample_type = event->attr.sample_type;
6073
6074         data->type = sample_type;
6075         header->size += event->id_header_size;
6076
6077         if (sample_type & PERF_SAMPLE_TID) {
6078                 /* namespace issues */
6079                 data->tid_entry.pid = perf_event_pid(event, current);
6080                 data->tid_entry.tid = perf_event_tid(event, current);
6081         }
6082
6083         if (sample_type & PERF_SAMPLE_TIME)
6084                 data->time = perf_event_clock(event);
6085
6086         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6087                 data->id = primary_event_id(event);
6088
6089         if (sample_type & PERF_SAMPLE_STREAM_ID)
6090                 data->stream_id = event->id;
6091
6092         if (sample_type & PERF_SAMPLE_CPU) {
6093                 data->cpu_entry.cpu      = raw_smp_processor_id();
6094                 data->cpu_entry.reserved = 0;
6095         }
6096 }
6097
6098 void perf_event_header__init_id(struct perf_event_header *header,
6099                                 struct perf_sample_data *data,
6100                                 struct perf_event *event)
6101 {
6102         if (event->attr.sample_id_all)
6103                 __perf_event_header__init_id(header, data, event);
6104 }
6105
6106 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6107                                            struct perf_sample_data *data)
6108 {
6109         u64 sample_type = data->type;
6110
6111         if (sample_type & PERF_SAMPLE_TID)
6112                 perf_output_put(handle, data->tid_entry);
6113
6114         if (sample_type & PERF_SAMPLE_TIME)
6115                 perf_output_put(handle, data->time);
6116
6117         if (sample_type & PERF_SAMPLE_ID)
6118                 perf_output_put(handle, data->id);
6119
6120         if (sample_type & PERF_SAMPLE_STREAM_ID)
6121                 perf_output_put(handle, data->stream_id);
6122
6123         if (sample_type & PERF_SAMPLE_CPU)
6124                 perf_output_put(handle, data->cpu_entry);
6125
6126         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6127                 perf_output_put(handle, data->id);
6128 }
6129
6130 void perf_event__output_id_sample(struct perf_event *event,
6131                                   struct perf_output_handle *handle,
6132                                   struct perf_sample_data *sample)
6133 {
6134         if (event->attr.sample_id_all)
6135                 __perf_event__output_id_sample(handle, sample);
6136 }
6137
6138 static void perf_output_read_one(struct perf_output_handle *handle,
6139                                  struct perf_event *event,
6140                                  u64 enabled, u64 running)
6141 {
6142         u64 read_format = event->attr.read_format;
6143         u64 values[4];
6144         int n = 0;
6145
6146         values[n++] = perf_event_count(event);
6147         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6148                 values[n++] = enabled +
6149                         atomic64_read(&event->child_total_time_enabled);
6150         }
6151         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6152                 values[n++] = running +
6153                         atomic64_read(&event->child_total_time_running);
6154         }
6155         if (read_format & PERF_FORMAT_ID)
6156                 values[n++] = primary_event_id(event);
6157
6158         __output_copy(handle, values, n * sizeof(u64));
6159 }
6160
6161 static void perf_output_read_group(struct perf_output_handle *handle,
6162                             struct perf_event *event,
6163                             u64 enabled, u64 running)
6164 {
6165         struct perf_event *leader = event->group_leader, *sub;
6166         u64 read_format = event->attr.read_format;
6167         u64 values[5];
6168         int n = 0;
6169
6170         values[n++] = 1 + leader->nr_siblings;
6171
6172         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6173                 values[n++] = enabled;
6174
6175         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6176                 values[n++] = running;
6177
6178         if ((leader != event) &&
6179             (leader->state == PERF_EVENT_STATE_ACTIVE))
6180                 leader->pmu->read(leader);
6181
6182         values[n++] = perf_event_count(leader);
6183         if (read_format & PERF_FORMAT_ID)
6184                 values[n++] = primary_event_id(leader);
6185
6186         __output_copy(handle, values, n * sizeof(u64));
6187
6188         for_each_sibling_event(sub, leader) {
6189                 n = 0;
6190
6191                 if ((sub != event) &&
6192                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6193                         sub->pmu->read(sub);
6194
6195                 values[n++] = perf_event_count(sub);
6196                 if (read_format & PERF_FORMAT_ID)
6197                         values[n++] = primary_event_id(sub);
6198
6199                 __output_copy(handle, values, n * sizeof(u64));
6200         }
6201 }
6202
6203 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6204                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6205
6206 /*
6207  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6208  *
6209  * The problem is that its both hard and excessively expensive to iterate the
6210  * child list, not to mention that its impossible to IPI the children running
6211  * on another CPU, from interrupt/NMI context.
6212  */
6213 static void perf_output_read(struct perf_output_handle *handle,
6214                              struct perf_event *event)
6215 {
6216         u64 enabled = 0, running = 0, now;
6217         u64 read_format = event->attr.read_format;
6218
6219         /*
6220          * compute total_time_enabled, total_time_running
6221          * based on snapshot values taken when the event
6222          * was last scheduled in.
6223          *
6224          * we cannot simply called update_context_time()
6225          * because of locking issue as we are called in
6226          * NMI context
6227          */
6228         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6229                 calc_timer_values(event, &now, &enabled, &running);
6230
6231         if (event->attr.read_format & PERF_FORMAT_GROUP)
6232                 perf_output_read_group(handle, event, enabled, running);
6233         else
6234                 perf_output_read_one(handle, event, enabled, running);
6235 }
6236
6237 void perf_output_sample(struct perf_output_handle *handle,
6238                         struct perf_event_header *header,
6239                         struct perf_sample_data *data,
6240                         struct perf_event *event)
6241 {
6242         u64 sample_type = data->type;
6243
6244         perf_output_put(handle, *header);
6245
6246         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6247                 perf_output_put(handle, data->id);
6248
6249         if (sample_type & PERF_SAMPLE_IP)
6250                 perf_output_put(handle, data->ip);
6251
6252         if (sample_type & PERF_SAMPLE_TID)
6253                 perf_output_put(handle, data->tid_entry);
6254
6255         if (sample_type & PERF_SAMPLE_TIME)
6256                 perf_output_put(handle, data->time);
6257
6258         if (sample_type & PERF_SAMPLE_ADDR)
6259                 perf_output_put(handle, data->addr);
6260
6261         if (sample_type & PERF_SAMPLE_ID)
6262                 perf_output_put(handle, data->id);
6263
6264         if (sample_type & PERF_SAMPLE_STREAM_ID)
6265                 perf_output_put(handle, data->stream_id);
6266
6267         if (sample_type & PERF_SAMPLE_CPU)
6268                 perf_output_put(handle, data->cpu_entry);
6269
6270         if (sample_type & PERF_SAMPLE_PERIOD)
6271                 perf_output_put(handle, data->period);
6272
6273         if (sample_type & PERF_SAMPLE_READ)
6274                 perf_output_read(handle, event);
6275
6276         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6277                 int size = 1;
6278
6279                 size += data->callchain->nr;
6280                 size *= sizeof(u64);
6281                 __output_copy(handle, data->callchain, size);
6282         }
6283
6284         if (sample_type & PERF_SAMPLE_RAW) {
6285                 struct perf_raw_record *raw = data->raw;
6286
6287                 if (raw) {
6288                         struct perf_raw_frag *frag = &raw->frag;
6289
6290                         perf_output_put(handle, raw->size);
6291                         do {
6292                                 if (frag->copy) {
6293                                         __output_custom(handle, frag->copy,
6294                                                         frag->data, frag->size);
6295                                 } else {
6296                                         __output_copy(handle, frag->data,
6297                                                       frag->size);
6298                                 }
6299                                 if (perf_raw_frag_last(frag))
6300                                         break;
6301                                 frag = frag->next;
6302                         } while (1);
6303                         if (frag->pad)
6304                                 __output_skip(handle, NULL, frag->pad);
6305                 } else {
6306                         struct {
6307                                 u32     size;
6308                                 u32     data;
6309                         } raw = {
6310                                 .size = sizeof(u32),
6311                                 .data = 0,
6312                         };
6313                         perf_output_put(handle, raw);
6314                 }
6315         }
6316
6317         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6318                 if (data->br_stack) {
6319                         size_t size;
6320
6321                         size = data->br_stack->nr
6322                              * sizeof(struct perf_branch_entry);
6323
6324                         perf_output_put(handle, data->br_stack->nr);
6325                         perf_output_copy(handle, data->br_stack->entries, size);
6326                 } else {
6327                         /*
6328                          * we always store at least the value of nr
6329                          */
6330                         u64 nr = 0;
6331                         perf_output_put(handle, nr);
6332                 }
6333         }
6334
6335         if (sample_type & PERF_SAMPLE_REGS_USER) {
6336                 u64 abi = data->regs_user.abi;
6337
6338                 /*
6339                  * If there are no regs to dump, notice it through
6340                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6341                  */
6342                 perf_output_put(handle, abi);
6343
6344                 if (abi) {
6345                         u64 mask = event->attr.sample_regs_user;
6346                         perf_output_sample_regs(handle,
6347                                                 data->regs_user.regs,
6348                                                 mask);
6349                 }
6350         }
6351
6352         if (sample_type & PERF_SAMPLE_STACK_USER) {
6353                 perf_output_sample_ustack(handle,
6354                                           data->stack_user_size,
6355                                           data->regs_user.regs);
6356         }
6357
6358         if (sample_type & PERF_SAMPLE_WEIGHT)
6359                 perf_output_put(handle, data->weight);
6360
6361         if (sample_type & PERF_SAMPLE_DATA_SRC)
6362                 perf_output_put(handle, data->data_src.val);
6363
6364         if (sample_type & PERF_SAMPLE_TRANSACTION)
6365                 perf_output_put(handle, data->txn);
6366
6367         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6368                 u64 abi = data->regs_intr.abi;
6369                 /*
6370                  * If there are no regs to dump, notice it through
6371                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6372                  */
6373                 perf_output_put(handle, abi);
6374
6375                 if (abi) {
6376                         u64 mask = event->attr.sample_regs_intr;
6377
6378                         perf_output_sample_regs(handle,
6379                                                 data->regs_intr.regs,
6380                                                 mask);
6381                 }
6382         }
6383
6384         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6385                 perf_output_put(handle, data->phys_addr);
6386
6387         if (!event->attr.watermark) {
6388                 int wakeup_events = event->attr.wakeup_events;
6389
6390                 if (wakeup_events) {
6391                         struct ring_buffer *rb = handle->rb;
6392                         int events = local_inc_return(&rb->events);
6393
6394                         if (events >= wakeup_events) {
6395                                 local_sub(wakeup_events, &rb->events);
6396                                 local_inc(&rb->wakeup);
6397                         }
6398                 }
6399         }
6400 }
6401
6402 static u64 perf_virt_to_phys(u64 virt)
6403 {
6404         u64 phys_addr = 0;
6405         struct page *p = NULL;
6406
6407         if (!virt)
6408                 return 0;
6409
6410         if (virt >= TASK_SIZE) {
6411                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6412                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6413                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6414                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6415         } else {
6416                 /*
6417                  * Walking the pages tables for user address.
6418                  * Interrupts are disabled, so it prevents any tear down
6419                  * of the page tables.
6420                  * Try IRQ-safe __get_user_pages_fast first.
6421                  * If failed, leave phys_addr as 0.
6422                  */
6423                 if (current->mm != NULL) {
6424                         pagefault_disable();
6425                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6426                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6427                         pagefault_enable();
6428                 }
6429
6430                 if (p)
6431                         put_page(p);
6432         }
6433
6434         return phys_addr;
6435 }
6436
6437 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6438
6439 struct perf_callchain_entry *
6440 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6441 {
6442         bool kernel = !event->attr.exclude_callchain_kernel;
6443         bool user   = !event->attr.exclude_callchain_user;
6444         /* Disallow cross-task user callchains. */
6445         bool crosstask = event->ctx->task && event->ctx->task != current;
6446         const u32 max_stack = event->attr.sample_max_stack;
6447         struct perf_callchain_entry *callchain;
6448
6449         if (!kernel && !user)
6450                 return &__empty_callchain;
6451
6452         callchain = get_perf_callchain(regs, 0, kernel, user,
6453                                        max_stack, crosstask, true);
6454         return callchain ?: &__empty_callchain;
6455 }
6456
6457 void perf_prepare_sample(struct perf_event_header *header,
6458                          struct perf_sample_data *data,
6459                          struct perf_event *event,
6460                          struct pt_regs *regs)
6461 {
6462         u64 sample_type = event->attr.sample_type;
6463
6464         header->type = PERF_RECORD_SAMPLE;
6465         header->size = sizeof(*header) + event->header_size;
6466
6467         header->misc = 0;
6468         header->misc |= perf_misc_flags(regs);
6469
6470         __perf_event_header__init_id(header, data, event);
6471
6472         if (sample_type & PERF_SAMPLE_IP)
6473                 data->ip = perf_instruction_pointer(regs);
6474
6475         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6476                 int size = 1;
6477
6478                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6479                         data->callchain = perf_callchain(event, regs);
6480
6481                 size += data->callchain->nr;
6482
6483                 header->size += size * sizeof(u64);
6484         }
6485
6486         if (sample_type & PERF_SAMPLE_RAW) {
6487                 struct perf_raw_record *raw = data->raw;
6488                 int size;
6489
6490                 if (raw) {
6491                         struct perf_raw_frag *frag = &raw->frag;
6492                         u32 sum = 0;
6493
6494                         do {
6495                                 sum += frag->size;
6496                                 if (perf_raw_frag_last(frag))
6497                                         break;
6498                                 frag = frag->next;
6499                         } while (1);
6500
6501                         size = round_up(sum + sizeof(u32), sizeof(u64));
6502                         raw->size = size - sizeof(u32);
6503                         frag->pad = raw->size - sum;
6504                 } else {
6505                         size = sizeof(u64);
6506                 }
6507
6508                 header->size += size;
6509         }
6510
6511         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6512                 int size = sizeof(u64); /* nr */
6513                 if (data->br_stack) {
6514                         size += data->br_stack->nr
6515                               * sizeof(struct perf_branch_entry);
6516                 }
6517                 header->size += size;
6518         }
6519
6520         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6521                 perf_sample_regs_user(&data->regs_user, regs,
6522                                       &data->regs_user_copy);
6523
6524         if (sample_type & PERF_SAMPLE_REGS_USER) {
6525                 /* regs dump ABI info */
6526                 int size = sizeof(u64);
6527
6528                 if (data->regs_user.regs) {
6529                         u64 mask = event->attr.sample_regs_user;
6530                         size += hweight64(mask) * sizeof(u64);
6531                 }
6532
6533                 header->size += size;
6534         }
6535
6536         if (sample_type & PERF_SAMPLE_STACK_USER) {
6537                 /*
6538                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6539                  * processed as the last one or have additional check added
6540                  * in case new sample type is added, because we could eat
6541                  * up the rest of the sample size.
6542                  */
6543                 u16 stack_size = event->attr.sample_stack_user;
6544                 u16 size = sizeof(u64);
6545
6546                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6547                                                      data->regs_user.regs);
6548
6549                 /*
6550                  * If there is something to dump, add space for the dump
6551                  * itself and for the field that tells the dynamic size,
6552                  * which is how many have been actually dumped.
6553                  */
6554                 if (stack_size)
6555                         size += sizeof(u64) + stack_size;
6556
6557                 data->stack_user_size = stack_size;
6558                 header->size += size;
6559         }
6560
6561         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6562                 /* regs dump ABI info */
6563                 int size = sizeof(u64);
6564
6565                 perf_sample_regs_intr(&data->regs_intr, regs);
6566
6567                 if (data->regs_intr.regs) {
6568                         u64 mask = event->attr.sample_regs_intr;
6569
6570                         size += hweight64(mask) * sizeof(u64);
6571                 }
6572
6573                 header->size += size;
6574         }
6575
6576         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6577                 data->phys_addr = perf_virt_to_phys(data->addr);
6578 }
6579
6580 static __always_inline void
6581 __perf_event_output(struct perf_event *event,
6582                     struct perf_sample_data *data,
6583                     struct pt_regs *regs,
6584                     int (*output_begin)(struct perf_output_handle *,
6585                                         struct perf_event *,
6586                                         unsigned int))
6587 {
6588         struct perf_output_handle handle;
6589         struct perf_event_header header;
6590
6591         /* protect the callchain buffers */
6592         rcu_read_lock();
6593
6594         perf_prepare_sample(&header, data, event, regs);
6595
6596         if (output_begin(&handle, event, header.size))
6597                 goto exit;
6598
6599         perf_output_sample(&handle, &header, data, event);
6600
6601         perf_output_end(&handle);
6602
6603 exit:
6604         rcu_read_unlock();
6605 }
6606
6607 void
6608 perf_event_output_forward(struct perf_event *event,
6609                          struct perf_sample_data *data,
6610                          struct pt_regs *regs)
6611 {
6612         __perf_event_output(event, data, regs, perf_output_begin_forward);
6613 }
6614
6615 void
6616 perf_event_output_backward(struct perf_event *event,
6617                            struct perf_sample_data *data,
6618                            struct pt_regs *regs)
6619 {
6620         __perf_event_output(event, data, regs, perf_output_begin_backward);
6621 }
6622
6623 void
6624 perf_event_output(struct perf_event *event,
6625                   struct perf_sample_data *data,
6626                   struct pt_regs *regs)
6627 {
6628         __perf_event_output(event, data, regs, perf_output_begin);
6629 }
6630
6631 /*
6632  * read event_id
6633  */
6634
6635 struct perf_read_event {
6636         struct perf_event_header        header;
6637
6638         u32                             pid;
6639         u32                             tid;
6640 };
6641
6642 static void
6643 perf_event_read_event(struct perf_event *event,
6644                         struct task_struct *task)
6645 {
6646         struct perf_output_handle handle;
6647         struct perf_sample_data sample;
6648         struct perf_read_event read_event = {
6649                 .header = {
6650                         .type = PERF_RECORD_READ,
6651                         .misc = 0,
6652                         .size = sizeof(read_event) + event->read_size,
6653                 },
6654                 .pid = perf_event_pid(event, task),
6655                 .tid = perf_event_tid(event, task),
6656         };
6657         int ret;
6658
6659         perf_event_header__init_id(&read_event.header, &sample, event);
6660         ret = perf_output_begin(&handle, event, read_event.header.size);
6661         if (ret)
6662                 return;
6663
6664         perf_output_put(&handle, read_event);
6665         perf_output_read(&handle, event);
6666         perf_event__output_id_sample(event, &handle, &sample);
6667
6668         perf_output_end(&handle);
6669 }
6670
6671 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6672
6673 static void
6674 perf_iterate_ctx(struct perf_event_context *ctx,
6675                    perf_iterate_f output,
6676                    void *data, bool all)
6677 {
6678         struct perf_event *event;
6679
6680         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6681                 if (!all) {
6682                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6683                                 continue;
6684                         if (!event_filter_match(event))
6685                                 continue;
6686                 }
6687
6688                 output(event, data);
6689         }
6690 }
6691
6692 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6693 {
6694         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6695         struct perf_event *event;
6696
6697         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6698                 /*
6699                  * Skip events that are not fully formed yet; ensure that
6700                  * if we observe event->ctx, both event and ctx will be
6701                  * complete enough. See perf_install_in_context().
6702                  */
6703                 if (!smp_load_acquire(&event->ctx))
6704                         continue;
6705
6706                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6707                         continue;
6708                 if (!event_filter_match(event))
6709                         continue;
6710                 output(event, data);
6711         }
6712 }
6713
6714 /*
6715  * Iterate all events that need to receive side-band events.
6716  *
6717  * For new callers; ensure that account_pmu_sb_event() includes
6718  * your event, otherwise it might not get delivered.
6719  */
6720 static void
6721 perf_iterate_sb(perf_iterate_f output, void *data,
6722                struct perf_event_context *task_ctx)
6723 {
6724         struct perf_event_context *ctx;
6725         int ctxn;
6726
6727         rcu_read_lock();
6728         preempt_disable();
6729
6730         /*
6731          * If we have task_ctx != NULL we only notify the task context itself.
6732          * The task_ctx is set only for EXIT events before releasing task
6733          * context.
6734          */
6735         if (task_ctx) {
6736                 perf_iterate_ctx(task_ctx, output, data, false);
6737                 goto done;
6738         }
6739
6740         perf_iterate_sb_cpu(output, data);
6741
6742         for_each_task_context_nr(ctxn) {
6743                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6744                 if (ctx)
6745                         perf_iterate_ctx(ctx, output, data, false);
6746         }
6747 done:
6748         preempt_enable();
6749         rcu_read_unlock();
6750 }
6751
6752 /*
6753  * Clear all file-based filters at exec, they'll have to be
6754  * re-instated when/if these objects are mmapped again.
6755  */
6756 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6757 {
6758         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6759         struct perf_addr_filter *filter;
6760         unsigned int restart = 0, count = 0;
6761         unsigned long flags;
6762
6763         if (!has_addr_filter(event))
6764                 return;
6765
6766         raw_spin_lock_irqsave(&ifh->lock, flags);
6767         list_for_each_entry(filter, &ifh->list, entry) {
6768                 if (filter->path.dentry) {
6769                         event->addr_filter_ranges[count].start = 0;
6770                         event->addr_filter_ranges[count].size = 0;
6771                         restart++;
6772                 }
6773
6774                 count++;
6775         }
6776
6777         if (restart)
6778                 event->addr_filters_gen++;
6779         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6780
6781         if (restart)
6782                 perf_event_stop(event, 1);
6783 }
6784
6785 void perf_event_exec(void)
6786 {
6787         struct perf_event_context *ctx;
6788         int ctxn;
6789
6790         rcu_read_lock();
6791         for_each_task_context_nr(ctxn) {
6792                 ctx = current->perf_event_ctxp[ctxn];
6793                 if (!ctx)
6794                         continue;
6795
6796                 perf_event_enable_on_exec(ctxn);
6797
6798                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6799                                    true);
6800         }
6801         rcu_read_unlock();
6802 }
6803
6804 struct remote_output {
6805         struct ring_buffer      *rb;
6806         int                     err;
6807 };
6808
6809 static void __perf_event_output_stop(struct perf_event *event, void *data)
6810 {
6811         struct perf_event *parent = event->parent;
6812         struct remote_output *ro = data;
6813         struct ring_buffer *rb = ro->rb;
6814         struct stop_event_data sd = {
6815                 .event  = event,
6816         };
6817
6818         if (!has_aux(event))
6819                 return;
6820
6821         if (!parent)
6822                 parent = event;
6823
6824         /*
6825          * In case of inheritance, it will be the parent that links to the
6826          * ring-buffer, but it will be the child that's actually using it.
6827          *
6828          * We are using event::rb to determine if the event should be stopped,
6829          * however this may race with ring_buffer_attach() (through set_output),
6830          * which will make us skip the event that actually needs to be stopped.
6831          * So ring_buffer_attach() has to stop an aux event before re-assigning
6832          * its rb pointer.
6833          */
6834         if (rcu_dereference(parent->rb) == rb)
6835                 ro->err = __perf_event_stop(&sd);
6836 }
6837
6838 static int __perf_pmu_output_stop(void *info)
6839 {
6840         struct perf_event *event = info;
6841         struct pmu *pmu = event->ctx->pmu;
6842         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6843         struct remote_output ro = {
6844                 .rb     = event->rb,
6845         };
6846
6847         rcu_read_lock();
6848         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6849         if (cpuctx->task_ctx)
6850                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6851                                    &ro, false);
6852         rcu_read_unlock();
6853
6854         return ro.err;
6855 }
6856
6857 static void perf_pmu_output_stop(struct perf_event *event)
6858 {
6859         struct perf_event *iter;
6860         int err, cpu;
6861
6862 restart:
6863         rcu_read_lock();
6864         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6865                 /*
6866                  * For per-CPU events, we need to make sure that neither they
6867                  * nor their children are running; for cpu==-1 events it's
6868                  * sufficient to stop the event itself if it's active, since
6869                  * it can't have children.
6870                  */
6871                 cpu = iter->cpu;
6872                 if (cpu == -1)
6873                         cpu = READ_ONCE(iter->oncpu);
6874
6875                 if (cpu == -1)
6876                         continue;
6877
6878                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6879                 if (err == -EAGAIN) {
6880                         rcu_read_unlock();
6881                         goto restart;
6882                 }
6883         }
6884         rcu_read_unlock();
6885 }
6886
6887 /*
6888  * task tracking -- fork/exit
6889  *
6890  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6891  */
6892
6893 struct perf_task_event {
6894         struct task_struct              *task;
6895         struct perf_event_context       *task_ctx;
6896
6897         struct {
6898                 struct perf_event_header        header;
6899
6900                 u32                             pid;
6901                 u32                             ppid;
6902                 u32                             tid;
6903                 u32                             ptid;
6904                 u64                             time;
6905         } event_id;
6906 };
6907
6908 static int perf_event_task_match(struct perf_event *event)
6909 {
6910         return event->attr.comm  || event->attr.mmap ||
6911                event->attr.mmap2 || event->attr.mmap_data ||
6912                event->attr.task;
6913 }
6914
6915 static void perf_event_task_output(struct perf_event *event,
6916                                    void *data)
6917 {
6918         struct perf_task_event *task_event = data;
6919         struct perf_output_handle handle;
6920         struct perf_sample_data sample;
6921         struct task_struct *task = task_event->task;
6922         int ret, size = task_event->event_id.header.size;
6923
6924         if (!perf_event_task_match(event))
6925                 return;
6926
6927         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6928
6929         ret = perf_output_begin(&handle, event,
6930                                 task_event->event_id.header.size);
6931         if (ret)
6932                 goto out;
6933
6934         task_event->event_id.pid = perf_event_pid(event, task);
6935         task_event->event_id.tid = perf_event_tid(event, task);
6936
6937         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
6938                 task_event->event_id.ppid = perf_event_pid(event,
6939                                                         task->real_parent);
6940                 task_event->event_id.ptid = perf_event_pid(event,
6941                                                         task->real_parent);
6942         } else {  /* PERF_RECORD_FORK */
6943                 task_event->event_id.ppid = perf_event_pid(event, current);
6944                 task_event->event_id.ptid = perf_event_tid(event, current);
6945         }
6946
6947         task_event->event_id.time = perf_event_clock(event);
6948
6949         perf_output_put(&handle, task_event->event_id);
6950
6951         perf_event__output_id_sample(event, &handle, &sample);
6952
6953         perf_output_end(&handle);
6954 out:
6955         task_event->event_id.header.size = size;
6956 }
6957
6958 static void perf_event_task(struct task_struct *task,
6959                               struct perf_event_context *task_ctx,
6960                               int new)
6961 {
6962         struct perf_task_event task_event;
6963
6964         if (!atomic_read(&nr_comm_events) &&
6965             !atomic_read(&nr_mmap_events) &&
6966             !atomic_read(&nr_task_events))
6967                 return;
6968
6969         task_event = (struct perf_task_event){
6970                 .task     = task,
6971                 .task_ctx = task_ctx,
6972                 .event_id    = {
6973                         .header = {
6974                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6975                                 .misc = 0,
6976                                 .size = sizeof(task_event.event_id),
6977                         },
6978                         /* .pid  */
6979                         /* .ppid */
6980                         /* .tid  */
6981                         /* .ptid */
6982                         /* .time */
6983                 },
6984         };
6985
6986         perf_iterate_sb(perf_event_task_output,
6987                        &task_event,
6988                        task_ctx);
6989 }
6990
6991 void perf_event_fork(struct task_struct *task)
6992 {
6993         perf_event_task(task, NULL, 1);
6994         perf_event_namespaces(task);
6995 }
6996
6997 /*
6998  * comm tracking
6999  */
7000
7001 struct perf_comm_event {
7002         struct task_struct      *task;
7003         char                    *comm;
7004         int                     comm_size;
7005
7006         struct {
7007                 struct perf_event_header        header;
7008
7009                 u32                             pid;
7010                 u32                             tid;
7011         } event_id;
7012 };
7013
7014 static int perf_event_comm_match(struct perf_event *event)
7015 {
7016         return event->attr.comm;
7017 }
7018
7019 static void perf_event_comm_output(struct perf_event *event,
7020                                    void *data)
7021 {
7022         struct perf_comm_event *comm_event = data;
7023         struct perf_output_handle handle;
7024         struct perf_sample_data sample;
7025         int size = comm_event->event_id.header.size;
7026         int ret;
7027
7028         if (!perf_event_comm_match(event))
7029                 return;
7030
7031         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7032         ret = perf_output_begin(&handle, event,
7033                                 comm_event->event_id.header.size);
7034
7035         if (ret)
7036                 goto out;
7037
7038         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7039         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7040
7041         perf_output_put(&handle, comm_event->event_id);
7042         __output_copy(&handle, comm_event->comm,
7043                                    comm_event->comm_size);
7044
7045         perf_event__output_id_sample(event, &handle, &sample);
7046
7047         perf_output_end(&handle);
7048 out:
7049         comm_event->event_id.header.size = size;
7050 }
7051
7052 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7053 {
7054         char comm[TASK_COMM_LEN];
7055         unsigned int size;
7056
7057         memset(comm, 0, sizeof(comm));
7058         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7059         size = ALIGN(strlen(comm)+1, sizeof(u64));
7060
7061         comm_event->comm = comm;
7062         comm_event->comm_size = size;
7063
7064         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7065
7066         perf_iterate_sb(perf_event_comm_output,
7067                        comm_event,
7068                        NULL);
7069 }
7070
7071 void perf_event_comm(struct task_struct *task, bool exec)
7072 {
7073         struct perf_comm_event comm_event;
7074
7075         if (!atomic_read(&nr_comm_events))
7076                 return;
7077
7078         comm_event = (struct perf_comm_event){
7079                 .task   = task,
7080                 /* .comm      */
7081                 /* .comm_size */
7082                 .event_id  = {
7083                         .header = {
7084                                 .type = PERF_RECORD_COMM,
7085                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7086                                 /* .size */
7087                         },
7088                         /* .pid */
7089                         /* .tid */
7090                 },
7091         };
7092
7093         perf_event_comm_event(&comm_event);
7094 }
7095
7096 /*
7097  * namespaces tracking
7098  */
7099
7100 struct perf_namespaces_event {
7101         struct task_struct              *task;
7102
7103         struct {
7104                 struct perf_event_header        header;
7105
7106                 u32                             pid;
7107                 u32                             tid;
7108                 u64                             nr_namespaces;
7109                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7110         } event_id;
7111 };
7112
7113 static int perf_event_namespaces_match(struct perf_event *event)
7114 {
7115         return event->attr.namespaces;
7116 }
7117
7118 static void perf_event_namespaces_output(struct perf_event *event,
7119                                          void *data)
7120 {
7121         struct perf_namespaces_event *namespaces_event = data;
7122         struct perf_output_handle handle;
7123         struct perf_sample_data sample;
7124         u16 header_size = namespaces_event->event_id.header.size;
7125         int ret;
7126
7127         if (!perf_event_namespaces_match(event))
7128                 return;
7129
7130         perf_event_header__init_id(&namespaces_event->event_id.header,
7131                                    &sample, event);
7132         ret = perf_output_begin(&handle, event,
7133                                 namespaces_event->event_id.header.size);
7134         if (ret)
7135                 goto out;
7136
7137         namespaces_event->event_id.pid = perf_event_pid(event,
7138                                                         namespaces_event->task);
7139         namespaces_event->event_id.tid = perf_event_tid(event,
7140                                                         namespaces_event->task);
7141
7142         perf_output_put(&handle, namespaces_event->event_id);
7143
7144         perf_event__output_id_sample(event, &handle, &sample);
7145
7146         perf_output_end(&handle);
7147 out:
7148         namespaces_event->event_id.header.size = header_size;
7149 }
7150
7151 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7152                                    struct task_struct *task,
7153                                    const struct proc_ns_operations *ns_ops)
7154 {
7155         struct path ns_path;
7156         struct inode *ns_inode;
7157         void *error;
7158
7159         error = ns_get_path(&ns_path, task, ns_ops);
7160         if (!error) {
7161                 ns_inode = ns_path.dentry->d_inode;
7162                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7163                 ns_link_info->ino = ns_inode->i_ino;
7164                 path_put(&ns_path);
7165         }
7166 }
7167
7168 void perf_event_namespaces(struct task_struct *task)
7169 {
7170         struct perf_namespaces_event namespaces_event;
7171         struct perf_ns_link_info *ns_link_info;
7172
7173         if (!atomic_read(&nr_namespaces_events))
7174                 return;
7175
7176         namespaces_event = (struct perf_namespaces_event){
7177                 .task   = task,
7178                 .event_id  = {
7179                         .header = {
7180                                 .type = PERF_RECORD_NAMESPACES,
7181                                 .misc = 0,
7182                                 .size = sizeof(namespaces_event.event_id),
7183                         },
7184                         /* .pid */
7185                         /* .tid */
7186                         .nr_namespaces = NR_NAMESPACES,
7187                         /* .link_info[NR_NAMESPACES] */
7188                 },
7189         };
7190
7191         ns_link_info = namespaces_event.event_id.link_info;
7192
7193         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7194                                task, &mntns_operations);
7195
7196 #ifdef CONFIG_USER_NS
7197         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7198                                task, &userns_operations);
7199 #endif
7200 #ifdef CONFIG_NET_NS
7201         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7202                                task, &netns_operations);
7203 #endif
7204 #ifdef CONFIG_UTS_NS
7205         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7206                                task, &utsns_operations);
7207 #endif
7208 #ifdef CONFIG_IPC_NS
7209         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7210                                task, &ipcns_operations);
7211 #endif
7212 #ifdef CONFIG_PID_NS
7213         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7214                                task, &pidns_operations);
7215 #endif
7216 #ifdef CONFIG_CGROUPS
7217         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7218                                task, &cgroupns_operations);
7219 #endif
7220
7221         perf_iterate_sb(perf_event_namespaces_output,
7222                         &namespaces_event,
7223                         NULL);
7224 }
7225
7226 /*
7227  * mmap tracking
7228  */
7229
7230 struct perf_mmap_event {
7231         struct vm_area_struct   *vma;
7232
7233         const char              *file_name;
7234         int                     file_size;
7235         int                     maj, min;
7236         u64                     ino;
7237         u64                     ino_generation;
7238         u32                     prot, flags;
7239
7240         struct {
7241                 struct perf_event_header        header;
7242
7243                 u32                             pid;
7244                 u32                             tid;
7245                 u64                             start;
7246                 u64                             len;
7247                 u64                             pgoff;
7248         } event_id;
7249 };
7250
7251 static int perf_event_mmap_match(struct perf_event *event,
7252                                  void *data)
7253 {
7254         struct perf_mmap_event *mmap_event = data;
7255         struct vm_area_struct *vma = mmap_event->vma;
7256         int executable = vma->vm_flags & VM_EXEC;
7257
7258         return (!executable && event->attr.mmap_data) ||
7259                (executable && (event->attr.mmap || event->attr.mmap2));
7260 }
7261
7262 static void perf_event_mmap_output(struct perf_event *event,
7263                                    void *data)
7264 {
7265         struct perf_mmap_event *mmap_event = data;
7266         struct perf_output_handle handle;
7267         struct perf_sample_data sample;
7268         int size = mmap_event->event_id.header.size;
7269         u32 type = mmap_event->event_id.header.type;
7270         int ret;
7271
7272         if (!perf_event_mmap_match(event, data))
7273                 return;
7274
7275         if (event->attr.mmap2) {
7276                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7277                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7278                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7279                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7280                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7281                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7282                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7283         }
7284
7285         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7286         ret = perf_output_begin(&handle, event,
7287                                 mmap_event->event_id.header.size);
7288         if (ret)
7289                 goto out;
7290
7291         mmap_event->event_id.pid = perf_event_pid(event, current);
7292         mmap_event->event_id.tid = perf_event_tid(event, current);
7293
7294         perf_output_put(&handle, mmap_event->event_id);
7295
7296         if (event->attr.mmap2) {
7297                 perf_output_put(&handle, mmap_event->maj);
7298                 perf_output_put(&handle, mmap_event->min);
7299                 perf_output_put(&handle, mmap_event->ino);
7300                 perf_output_put(&handle, mmap_event->ino_generation);
7301                 perf_output_put(&handle, mmap_event->prot);
7302                 perf_output_put(&handle, mmap_event->flags);
7303         }
7304
7305         __output_copy(&handle, mmap_event->file_name,
7306                                    mmap_event->file_size);
7307
7308         perf_event__output_id_sample(event, &handle, &sample);
7309
7310         perf_output_end(&handle);
7311 out:
7312         mmap_event->event_id.header.size = size;
7313         mmap_event->event_id.header.type = type;
7314 }
7315
7316 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7317 {
7318         struct vm_area_struct *vma = mmap_event->vma;
7319         struct file *file = vma->vm_file;
7320         int maj = 0, min = 0;
7321         u64 ino = 0, gen = 0;
7322         u32 prot = 0, flags = 0;
7323         unsigned int size;
7324         char tmp[16];
7325         char *buf = NULL;
7326         char *name;
7327
7328         if (vma->vm_flags & VM_READ)
7329                 prot |= PROT_READ;
7330         if (vma->vm_flags & VM_WRITE)
7331                 prot |= PROT_WRITE;
7332         if (vma->vm_flags & VM_EXEC)
7333                 prot |= PROT_EXEC;
7334
7335         if (vma->vm_flags & VM_MAYSHARE)
7336                 flags = MAP_SHARED;
7337         else
7338                 flags = MAP_PRIVATE;
7339
7340         if (vma->vm_flags & VM_DENYWRITE)
7341                 flags |= MAP_DENYWRITE;
7342         if (vma->vm_flags & VM_MAYEXEC)
7343                 flags |= MAP_EXECUTABLE;
7344         if (vma->vm_flags & VM_LOCKED)
7345                 flags |= MAP_LOCKED;
7346         if (vma->vm_flags & VM_HUGETLB)
7347                 flags |= MAP_HUGETLB;
7348
7349         if (file) {
7350                 struct inode *inode;
7351                 dev_t dev;
7352
7353                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7354                 if (!buf) {
7355                         name = "//enomem";
7356                         goto cpy_name;
7357                 }
7358                 /*
7359                  * d_path() works from the end of the rb backwards, so we
7360                  * need to add enough zero bytes after the string to handle
7361                  * the 64bit alignment we do later.
7362                  */
7363                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7364                 if (IS_ERR(name)) {
7365                         name = "//toolong";
7366                         goto cpy_name;
7367                 }
7368                 inode = file_inode(vma->vm_file);
7369                 dev = inode->i_sb->s_dev;
7370                 ino = inode->i_ino;
7371                 gen = inode->i_generation;
7372                 maj = MAJOR(dev);
7373                 min = MINOR(dev);
7374
7375                 goto got_name;
7376         } else {
7377                 if (vma->vm_ops && vma->vm_ops->name) {
7378                         name = (char *) vma->vm_ops->name(vma);
7379                         if (name)
7380                                 goto cpy_name;
7381                 }
7382
7383                 name = (char *)arch_vma_name(vma);
7384                 if (name)
7385                         goto cpy_name;
7386
7387                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7388                                 vma->vm_end >= vma->vm_mm->brk) {
7389                         name = "[heap]";
7390                         goto cpy_name;
7391                 }
7392                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7393                                 vma->vm_end >= vma->vm_mm->start_stack) {
7394                         name = "[stack]";
7395                         goto cpy_name;
7396                 }
7397
7398                 name = "//anon";
7399                 goto cpy_name;
7400         }
7401
7402 cpy_name:
7403         strlcpy(tmp, name, sizeof(tmp));
7404         name = tmp;
7405 got_name:
7406         /*
7407          * Since our buffer works in 8 byte units we need to align our string
7408          * size to a multiple of 8. However, we must guarantee the tail end is
7409          * zero'd out to avoid leaking random bits to userspace.
7410          */
7411         size = strlen(name)+1;
7412         while (!IS_ALIGNED(size, sizeof(u64)))
7413                 name[size++] = '\0';
7414
7415         mmap_event->file_name = name;
7416         mmap_event->file_size = size;
7417         mmap_event->maj = maj;
7418         mmap_event->min = min;
7419         mmap_event->ino = ino;
7420         mmap_event->ino_generation = gen;
7421         mmap_event->prot = prot;
7422         mmap_event->flags = flags;
7423
7424         if (!(vma->vm_flags & VM_EXEC))
7425                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7426
7427         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7428
7429         perf_iterate_sb(perf_event_mmap_output,
7430                        mmap_event,
7431                        NULL);
7432
7433         kfree(buf);
7434 }
7435
7436 /*
7437  * Check whether inode and address range match filter criteria.
7438  */
7439 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7440                                      struct file *file, unsigned long offset,
7441                                      unsigned long size)
7442 {
7443         /* d_inode(NULL) won't be equal to any mapped user-space file */
7444         if (!filter->path.dentry)
7445                 return false;
7446
7447         if (d_inode(filter->path.dentry) != file_inode(file))
7448                 return false;
7449
7450         if (filter->offset > offset + size)
7451                 return false;
7452
7453         if (filter->offset + filter->size < offset)
7454                 return false;
7455
7456         return true;
7457 }
7458
7459 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7460                                         struct vm_area_struct *vma,
7461                                         struct perf_addr_filter_range *fr)
7462 {
7463         unsigned long vma_size = vma->vm_end - vma->vm_start;
7464         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7465         struct file *file = vma->vm_file;
7466
7467         if (!perf_addr_filter_match(filter, file, off, vma_size))
7468                 return false;
7469
7470         if (filter->offset < off) {
7471                 fr->start = vma->vm_start;
7472                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7473         } else {
7474                 fr->start = vma->vm_start + filter->offset - off;
7475                 fr->size = min(vma->vm_end - fr->start, filter->size);
7476         }
7477
7478         return true;
7479 }
7480
7481 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7482 {
7483         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7484         struct vm_area_struct *vma = data;
7485         struct perf_addr_filter *filter;
7486         unsigned int restart = 0, count = 0;
7487         unsigned long flags;
7488
7489         if (!has_addr_filter(event))
7490                 return;
7491
7492         if (!vma->vm_file)
7493                 return;
7494
7495         raw_spin_lock_irqsave(&ifh->lock, flags);
7496         list_for_each_entry(filter, &ifh->list, entry) {
7497                 if (perf_addr_filter_vma_adjust(filter, vma,
7498                                                 &event->addr_filter_ranges[count]))
7499                         restart++;
7500
7501                 count++;
7502         }
7503
7504         if (restart)
7505                 event->addr_filters_gen++;
7506         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7507
7508         if (restart)
7509                 perf_event_stop(event, 1);
7510 }
7511
7512 /*
7513  * Adjust all task's events' filters to the new vma
7514  */
7515 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7516 {
7517         struct perf_event_context *ctx;
7518         int ctxn;
7519
7520         /*
7521          * Data tracing isn't supported yet and as such there is no need
7522          * to keep track of anything that isn't related to executable code:
7523          */
7524         if (!(vma->vm_flags & VM_EXEC))
7525                 return;
7526
7527         rcu_read_lock();
7528         for_each_task_context_nr(ctxn) {
7529                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7530                 if (!ctx)
7531                         continue;
7532
7533                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7534         }
7535         rcu_read_unlock();
7536 }
7537
7538 void perf_event_mmap(struct vm_area_struct *vma)
7539 {
7540         struct perf_mmap_event mmap_event;
7541
7542         if (!atomic_read(&nr_mmap_events))
7543                 return;
7544
7545         mmap_event = (struct perf_mmap_event){
7546                 .vma    = vma,
7547                 /* .file_name */
7548                 /* .file_size */
7549                 .event_id  = {
7550                         .header = {
7551                                 .type = PERF_RECORD_MMAP,
7552                                 .misc = PERF_RECORD_MISC_USER,
7553                                 /* .size */
7554                         },
7555                         /* .pid */
7556                         /* .tid */
7557                         .start  = vma->vm_start,
7558                         .len    = vma->vm_end - vma->vm_start,
7559                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7560                 },
7561                 /* .maj (attr_mmap2 only) */
7562                 /* .min (attr_mmap2 only) */
7563                 /* .ino (attr_mmap2 only) */
7564                 /* .ino_generation (attr_mmap2 only) */
7565                 /* .prot (attr_mmap2 only) */
7566                 /* .flags (attr_mmap2 only) */
7567         };
7568
7569         perf_addr_filters_adjust(vma);
7570         perf_event_mmap_event(&mmap_event);
7571 }
7572
7573 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7574                           unsigned long size, u64 flags)
7575 {
7576         struct perf_output_handle handle;
7577         struct perf_sample_data sample;
7578         struct perf_aux_event {
7579                 struct perf_event_header        header;
7580                 u64                             offset;
7581                 u64                             size;
7582                 u64                             flags;
7583         } rec = {
7584                 .header = {
7585                         .type = PERF_RECORD_AUX,
7586                         .misc = 0,
7587                         .size = sizeof(rec),
7588                 },
7589                 .offset         = head,
7590                 .size           = size,
7591                 .flags          = flags,
7592         };
7593         int ret;
7594
7595         perf_event_header__init_id(&rec.header, &sample, event);
7596         ret = perf_output_begin(&handle, event, rec.header.size);
7597
7598         if (ret)
7599                 return;
7600
7601         perf_output_put(&handle, rec);
7602         perf_event__output_id_sample(event, &handle, &sample);
7603
7604         perf_output_end(&handle);
7605 }
7606
7607 /*
7608  * Lost/dropped samples logging
7609  */
7610 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7611 {
7612         struct perf_output_handle handle;
7613         struct perf_sample_data sample;
7614         int ret;
7615
7616         struct {
7617                 struct perf_event_header        header;
7618                 u64                             lost;
7619         } lost_samples_event = {
7620                 .header = {
7621                         .type = PERF_RECORD_LOST_SAMPLES,
7622                         .misc = 0,
7623                         .size = sizeof(lost_samples_event),
7624                 },
7625                 .lost           = lost,
7626         };
7627
7628         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7629
7630         ret = perf_output_begin(&handle, event,
7631                                 lost_samples_event.header.size);
7632         if (ret)
7633                 return;
7634
7635         perf_output_put(&handle, lost_samples_event);
7636         perf_event__output_id_sample(event, &handle, &sample);
7637         perf_output_end(&handle);
7638 }
7639
7640 /*
7641  * context_switch tracking
7642  */
7643
7644 struct perf_switch_event {
7645         struct task_struct      *task;
7646         struct task_struct      *next_prev;
7647
7648         struct {
7649                 struct perf_event_header        header;
7650                 u32                             next_prev_pid;
7651                 u32                             next_prev_tid;
7652         } event_id;
7653 };
7654
7655 static int perf_event_switch_match(struct perf_event *event)
7656 {
7657         return event->attr.context_switch;
7658 }
7659
7660 static void perf_event_switch_output(struct perf_event *event, void *data)
7661 {
7662         struct perf_switch_event *se = data;
7663         struct perf_output_handle handle;
7664         struct perf_sample_data sample;
7665         int ret;
7666
7667         if (!perf_event_switch_match(event))
7668                 return;
7669
7670         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7671         if (event->ctx->task) {
7672                 se->event_id.header.type = PERF_RECORD_SWITCH;
7673                 se->event_id.header.size = sizeof(se->event_id.header);
7674         } else {
7675                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7676                 se->event_id.header.size = sizeof(se->event_id);
7677                 se->event_id.next_prev_pid =
7678                                         perf_event_pid(event, se->next_prev);
7679                 se->event_id.next_prev_tid =
7680                                         perf_event_tid(event, se->next_prev);
7681         }
7682
7683         perf_event_header__init_id(&se->event_id.header, &sample, event);
7684
7685         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7686         if (ret)
7687                 return;
7688
7689         if (event->ctx->task)
7690                 perf_output_put(&handle, se->event_id.header);
7691         else
7692                 perf_output_put(&handle, se->event_id);
7693
7694         perf_event__output_id_sample(event, &handle, &sample);
7695
7696         perf_output_end(&handle);
7697 }
7698
7699 static void perf_event_switch(struct task_struct *task,
7700                               struct task_struct *next_prev, bool sched_in)
7701 {
7702         struct perf_switch_event switch_event;
7703
7704         /* N.B. caller checks nr_switch_events != 0 */
7705
7706         switch_event = (struct perf_switch_event){
7707                 .task           = task,
7708                 .next_prev      = next_prev,
7709                 .event_id       = {
7710                         .header = {
7711                                 /* .type */
7712                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7713                                 /* .size */
7714                         },
7715                         /* .next_prev_pid */
7716                         /* .next_prev_tid */
7717                 },
7718         };
7719
7720         if (!sched_in && task->state == TASK_RUNNING)
7721                 switch_event.event_id.header.misc |=
7722                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7723
7724         perf_iterate_sb(perf_event_switch_output,
7725                        &switch_event,
7726                        NULL);
7727 }
7728
7729 /*
7730  * IRQ throttle logging
7731  */
7732
7733 static void perf_log_throttle(struct perf_event *event, int enable)
7734 {
7735         struct perf_output_handle handle;
7736         struct perf_sample_data sample;
7737         int ret;
7738
7739         struct {
7740                 struct perf_event_header        header;
7741                 u64                             time;
7742                 u64                             id;
7743                 u64                             stream_id;
7744         } throttle_event = {
7745                 .header = {
7746                         .type = PERF_RECORD_THROTTLE,
7747                         .misc = 0,
7748                         .size = sizeof(throttle_event),
7749                 },
7750                 .time           = perf_event_clock(event),
7751                 .id             = primary_event_id(event),
7752                 .stream_id      = event->id,
7753         };
7754
7755         if (enable)
7756                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7757
7758         perf_event_header__init_id(&throttle_event.header, &sample, event);
7759
7760         ret = perf_output_begin(&handle, event,
7761                                 throttle_event.header.size);
7762         if (ret)
7763                 return;
7764
7765         perf_output_put(&handle, throttle_event);
7766         perf_event__output_id_sample(event, &handle, &sample);
7767         perf_output_end(&handle);
7768 }
7769
7770 void perf_event_itrace_started(struct perf_event *event)
7771 {
7772         event->attach_state |= PERF_ATTACH_ITRACE;
7773 }
7774
7775 static void perf_log_itrace_start(struct perf_event *event)
7776 {
7777         struct perf_output_handle handle;
7778         struct perf_sample_data sample;
7779         struct perf_aux_event {
7780                 struct perf_event_header        header;
7781                 u32                             pid;
7782                 u32                             tid;
7783         } rec;
7784         int ret;
7785
7786         if (event->parent)
7787                 event = event->parent;
7788
7789         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7790             event->attach_state & PERF_ATTACH_ITRACE)
7791                 return;
7792
7793         rec.header.type = PERF_RECORD_ITRACE_START;
7794         rec.header.misc = 0;
7795         rec.header.size = sizeof(rec);
7796         rec.pid = perf_event_pid(event, current);
7797         rec.tid = perf_event_tid(event, current);
7798
7799         perf_event_header__init_id(&rec.header, &sample, event);
7800         ret = perf_output_begin(&handle, event, rec.header.size);
7801
7802         if (ret)
7803                 return;
7804
7805         perf_output_put(&handle, rec);
7806         perf_event__output_id_sample(event, &handle, &sample);
7807
7808         perf_output_end(&handle);
7809 }
7810
7811 static int
7812 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7813 {
7814         struct hw_perf_event *hwc = &event->hw;
7815         int ret = 0;
7816         u64 seq;
7817
7818         seq = __this_cpu_read(perf_throttled_seq);
7819         if (seq != hwc->interrupts_seq) {
7820                 hwc->interrupts_seq = seq;
7821                 hwc->interrupts = 1;
7822         } else {
7823                 hwc->interrupts++;
7824                 if (unlikely(throttle
7825                              && hwc->interrupts >= max_samples_per_tick)) {
7826                         __this_cpu_inc(perf_throttled_count);
7827                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7828                         hwc->interrupts = MAX_INTERRUPTS;
7829                         perf_log_throttle(event, 0);
7830                         ret = 1;
7831                 }
7832         }
7833
7834         if (event->attr.freq) {
7835                 u64 now = perf_clock();
7836                 s64 delta = now - hwc->freq_time_stamp;
7837
7838                 hwc->freq_time_stamp = now;
7839
7840                 if (delta > 0 && delta < 2*TICK_NSEC)
7841                         perf_adjust_period(event, delta, hwc->last_period, true);
7842         }
7843
7844         return ret;
7845 }
7846
7847 int perf_event_account_interrupt(struct perf_event *event)
7848 {
7849         return __perf_event_account_interrupt(event, 1);
7850 }
7851
7852 /*
7853  * Generic event overflow handling, sampling.
7854  */
7855
7856 static int __perf_event_overflow(struct perf_event *event,
7857                                    int throttle, struct perf_sample_data *data,
7858                                    struct pt_regs *regs)
7859 {
7860         int events = atomic_read(&event->event_limit);
7861         int ret = 0;
7862
7863         /*
7864          * Non-sampling counters might still use the PMI to fold short
7865          * hardware counters, ignore those.
7866          */
7867         if (unlikely(!is_sampling_event(event)))
7868                 return 0;
7869
7870         ret = __perf_event_account_interrupt(event, throttle);
7871
7872         /*
7873          * XXX event_limit might not quite work as expected on inherited
7874          * events
7875          */
7876
7877         event->pending_kill = POLL_IN;
7878         if (events && atomic_dec_and_test(&event->event_limit)) {
7879                 ret = 1;
7880                 event->pending_kill = POLL_HUP;
7881
7882                 perf_event_disable_inatomic(event);
7883         }
7884
7885         READ_ONCE(event->overflow_handler)(event, data, regs);
7886
7887         if (*perf_event_fasync(event) && event->pending_kill) {
7888                 event->pending_wakeup = 1;
7889                 irq_work_queue(&event->pending);
7890         }
7891
7892         return ret;
7893 }
7894
7895 int perf_event_overflow(struct perf_event *event,
7896                           struct perf_sample_data *data,
7897                           struct pt_regs *regs)
7898 {
7899         return __perf_event_overflow(event, 1, data, regs);
7900 }
7901
7902 /*
7903  * Generic software event infrastructure
7904  */
7905
7906 struct swevent_htable {
7907         struct swevent_hlist            *swevent_hlist;
7908         struct mutex                    hlist_mutex;
7909         int                             hlist_refcount;
7910
7911         /* Recursion avoidance in each contexts */
7912         int                             recursion[PERF_NR_CONTEXTS];
7913 };
7914
7915 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7916
7917 /*
7918  * We directly increment event->count and keep a second value in
7919  * event->hw.period_left to count intervals. This period event
7920  * is kept in the range [-sample_period, 0] so that we can use the
7921  * sign as trigger.
7922  */
7923
7924 u64 perf_swevent_set_period(struct perf_event *event)
7925 {
7926         struct hw_perf_event *hwc = &event->hw;
7927         u64 period = hwc->last_period;
7928         u64 nr, offset;
7929         s64 old, val;
7930
7931         hwc->last_period = hwc->sample_period;
7932
7933 again:
7934         old = val = local64_read(&hwc->period_left);
7935         if (val < 0)
7936                 return 0;
7937
7938         nr = div64_u64(period + val, period);
7939         offset = nr * period;
7940         val -= offset;
7941         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7942                 goto again;
7943
7944         return nr;
7945 }
7946
7947 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7948                                     struct perf_sample_data *data,
7949                                     struct pt_regs *regs)
7950 {
7951         struct hw_perf_event *hwc = &event->hw;
7952         int throttle = 0;
7953
7954         if (!overflow)
7955                 overflow = perf_swevent_set_period(event);
7956
7957         if (hwc->interrupts == MAX_INTERRUPTS)
7958                 return;
7959
7960         for (; overflow; overflow--) {
7961                 if (__perf_event_overflow(event, throttle,
7962                                             data, regs)) {
7963                         /*
7964                          * We inhibit the overflow from happening when
7965                          * hwc->interrupts == MAX_INTERRUPTS.
7966                          */
7967                         break;
7968                 }
7969                 throttle = 1;
7970         }
7971 }
7972
7973 static void perf_swevent_event(struct perf_event *event, u64 nr,
7974                                struct perf_sample_data *data,
7975                                struct pt_regs *regs)
7976 {
7977         struct hw_perf_event *hwc = &event->hw;
7978
7979         local64_add(nr, &event->count);
7980
7981         if (!regs)
7982                 return;
7983
7984         if (!is_sampling_event(event))
7985                 return;
7986
7987         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7988                 data->period = nr;
7989                 return perf_swevent_overflow(event, 1, data, regs);
7990         } else
7991                 data->period = event->hw.last_period;
7992
7993         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7994                 return perf_swevent_overflow(event, 1, data, regs);
7995
7996         if (local64_add_negative(nr, &hwc->period_left))
7997                 return;
7998
7999         perf_swevent_overflow(event, 0, data, regs);
8000 }
8001
8002 static int perf_exclude_event(struct perf_event *event,
8003                               struct pt_regs *regs)
8004 {
8005         if (event->hw.state & PERF_HES_STOPPED)
8006                 return 1;
8007
8008         if (regs) {
8009                 if (event->attr.exclude_user && user_mode(regs))
8010                         return 1;
8011
8012                 if (event->attr.exclude_kernel && !user_mode(regs))
8013                         return 1;
8014         }
8015
8016         return 0;
8017 }
8018
8019 static int perf_swevent_match(struct perf_event *event,
8020                                 enum perf_type_id type,
8021                                 u32 event_id,
8022                                 struct perf_sample_data *data,
8023                                 struct pt_regs *regs)
8024 {
8025         if (event->attr.type != type)
8026                 return 0;
8027
8028         if (event->attr.config != event_id)
8029                 return 0;
8030
8031         if (perf_exclude_event(event, regs))
8032                 return 0;
8033
8034         return 1;
8035 }
8036
8037 static inline u64 swevent_hash(u64 type, u32 event_id)
8038 {
8039         u64 val = event_id | (type << 32);
8040
8041         return hash_64(val, SWEVENT_HLIST_BITS);
8042 }
8043
8044 static inline struct hlist_head *
8045 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8046 {
8047         u64 hash = swevent_hash(type, event_id);
8048
8049         return &hlist->heads[hash];
8050 }
8051
8052 /* For the read side: events when they trigger */
8053 static inline struct hlist_head *
8054 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8055 {
8056         struct swevent_hlist *hlist;
8057
8058         hlist = rcu_dereference(swhash->swevent_hlist);
8059         if (!hlist)
8060                 return NULL;
8061
8062         return __find_swevent_head(hlist, type, event_id);
8063 }
8064
8065 /* For the event head insertion and removal in the hlist */
8066 static inline struct hlist_head *
8067 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8068 {
8069         struct swevent_hlist *hlist;
8070         u32 event_id = event->attr.config;
8071         u64 type = event->attr.type;
8072
8073         /*
8074          * Event scheduling is always serialized against hlist allocation
8075          * and release. Which makes the protected version suitable here.
8076          * The context lock guarantees that.
8077          */
8078         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8079                                           lockdep_is_held(&event->ctx->lock));
8080         if (!hlist)
8081                 return NULL;
8082
8083         return __find_swevent_head(hlist, type, event_id);
8084 }
8085
8086 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8087                                     u64 nr,
8088                                     struct perf_sample_data *data,
8089                                     struct pt_regs *regs)
8090 {
8091         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8092         struct perf_event *event;
8093         struct hlist_head *head;
8094
8095         rcu_read_lock();
8096         head = find_swevent_head_rcu(swhash, type, event_id);
8097         if (!head)
8098                 goto end;
8099
8100         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8101                 if (perf_swevent_match(event, type, event_id, data, regs))
8102                         perf_swevent_event(event, nr, data, regs);
8103         }
8104 end:
8105         rcu_read_unlock();
8106 }
8107
8108 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8109
8110 int perf_swevent_get_recursion_context(void)
8111 {
8112         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8113
8114         return get_recursion_context(swhash->recursion);
8115 }
8116 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8117
8118 void perf_swevent_put_recursion_context(int rctx)
8119 {
8120         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8121
8122         put_recursion_context(swhash->recursion, rctx);
8123 }
8124
8125 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8126 {
8127         struct perf_sample_data data;
8128
8129         if (WARN_ON_ONCE(!regs))
8130                 return;
8131
8132         perf_sample_data_init(&data, addr, 0);
8133         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8134 }
8135
8136 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8137 {
8138         int rctx;
8139
8140         preempt_disable_notrace();
8141         rctx = perf_swevent_get_recursion_context();
8142         if (unlikely(rctx < 0))
8143                 goto fail;
8144
8145         ___perf_sw_event(event_id, nr, regs, addr);
8146
8147         perf_swevent_put_recursion_context(rctx);
8148 fail:
8149         preempt_enable_notrace();
8150 }
8151
8152 static void perf_swevent_read(struct perf_event *event)
8153 {
8154 }
8155
8156 static int perf_swevent_add(struct perf_event *event, int flags)
8157 {
8158         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8159         struct hw_perf_event *hwc = &event->hw;
8160         struct hlist_head *head;
8161
8162         if (is_sampling_event(event)) {
8163                 hwc->last_period = hwc->sample_period;
8164                 perf_swevent_set_period(event);
8165         }
8166
8167         hwc->state = !(flags & PERF_EF_START);
8168
8169         head = find_swevent_head(swhash, event);
8170         if (WARN_ON_ONCE(!head))
8171                 return -EINVAL;
8172
8173         hlist_add_head_rcu(&event->hlist_entry, head);
8174         perf_event_update_userpage(event);
8175
8176         return 0;
8177 }
8178
8179 static void perf_swevent_del(struct perf_event *event, int flags)
8180 {
8181         hlist_del_rcu(&event->hlist_entry);
8182 }
8183
8184 static void perf_swevent_start(struct perf_event *event, int flags)
8185 {
8186         event->hw.state = 0;
8187 }
8188
8189 static void perf_swevent_stop(struct perf_event *event, int flags)
8190 {
8191         event->hw.state = PERF_HES_STOPPED;
8192 }
8193
8194 /* Deref the hlist from the update side */
8195 static inline struct swevent_hlist *
8196 swevent_hlist_deref(struct swevent_htable *swhash)
8197 {
8198         return rcu_dereference_protected(swhash->swevent_hlist,
8199                                          lockdep_is_held(&swhash->hlist_mutex));
8200 }
8201
8202 static void swevent_hlist_release(struct swevent_htable *swhash)
8203 {
8204         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8205
8206         if (!hlist)
8207                 return;
8208
8209         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8210         kfree_rcu(hlist, rcu_head);
8211 }
8212
8213 static void swevent_hlist_put_cpu(int cpu)
8214 {
8215         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8216
8217         mutex_lock(&swhash->hlist_mutex);
8218
8219         if (!--swhash->hlist_refcount)
8220                 swevent_hlist_release(swhash);
8221
8222         mutex_unlock(&swhash->hlist_mutex);
8223 }
8224
8225 static void swevent_hlist_put(void)
8226 {
8227         int cpu;
8228
8229         for_each_possible_cpu(cpu)
8230                 swevent_hlist_put_cpu(cpu);
8231 }
8232
8233 static int swevent_hlist_get_cpu(int cpu)
8234 {
8235         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8236         int err = 0;
8237
8238         mutex_lock(&swhash->hlist_mutex);
8239         if (!swevent_hlist_deref(swhash) &&
8240             cpumask_test_cpu(cpu, perf_online_mask)) {
8241                 struct swevent_hlist *hlist;
8242
8243                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8244                 if (!hlist) {
8245                         err = -ENOMEM;
8246                         goto exit;
8247                 }
8248                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8249         }
8250         swhash->hlist_refcount++;
8251 exit:
8252         mutex_unlock(&swhash->hlist_mutex);
8253
8254         return err;
8255 }
8256
8257 static int swevent_hlist_get(void)
8258 {
8259         int err, cpu, failed_cpu;
8260
8261         mutex_lock(&pmus_lock);
8262         for_each_possible_cpu(cpu) {
8263                 err = swevent_hlist_get_cpu(cpu);
8264                 if (err) {
8265                         failed_cpu = cpu;
8266                         goto fail;
8267                 }
8268         }
8269         mutex_unlock(&pmus_lock);
8270         return 0;
8271 fail:
8272         for_each_possible_cpu(cpu) {
8273                 if (cpu == failed_cpu)
8274                         break;
8275                 swevent_hlist_put_cpu(cpu);
8276         }
8277         mutex_unlock(&pmus_lock);
8278         return err;
8279 }
8280
8281 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8282
8283 static void sw_perf_event_destroy(struct perf_event *event)
8284 {
8285         u64 event_id = event->attr.config;
8286
8287         WARN_ON(event->parent);
8288
8289         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8290         swevent_hlist_put();
8291 }
8292
8293 static int perf_swevent_init(struct perf_event *event)
8294 {
8295         u64 event_id = event->attr.config;
8296
8297         if (event->attr.type != PERF_TYPE_SOFTWARE)
8298                 return -ENOENT;
8299
8300         /*
8301          * no branch sampling for software events
8302          */
8303         if (has_branch_stack(event))
8304                 return -EOPNOTSUPP;
8305
8306         switch (event_id) {
8307         case PERF_COUNT_SW_CPU_CLOCK:
8308         case PERF_COUNT_SW_TASK_CLOCK:
8309                 return -ENOENT;
8310
8311         default:
8312                 break;
8313         }
8314
8315         if (event_id >= PERF_COUNT_SW_MAX)
8316                 return -ENOENT;
8317
8318         if (!event->parent) {
8319                 int err;
8320
8321                 err = swevent_hlist_get();
8322                 if (err)
8323                         return err;
8324
8325                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8326                 event->destroy = sw_perf_event_destroy;
8327         }
8328
8329         return 0;
8330 }
8331
8332 static struct pmu perf_swevent = {
8333         .task_ctx_nr    = perf_sw_context,
8334
8335         .capabilities   = PERF_PMU_CAP_NO_NMI,
8336
8337         .event_init     = perf_swevent_init,
8338         .add            = perf_swevent_add,
8339         .del            = perf_swevent_del,
8340         .start          = perf_swevent_start,
8341         .stop           = perf_swevent_stop,
8342         .read           = perf_swevent_read,
8343 };
8344
8345 #ifdef CONFIG_EVENT_TRACING
8346
8347 static int perf_tp_filter_match(struct perf_event *event,
8348                                 struct perf_sample_data *data)
8349 {
8350         void *record = data->raw->frag.data;
8351
8352         /* only top level events have filters set */
8353         if (event->parent)
8354                 event = event->parent;
8355
8356         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8357                 return 1;
8358         return 0;
8359 }
8360
8361 static int perf_tp_event_match(struct perf_event *event,
8362                                 struct perf_sample_data *data,
8363                                 struct pt_regs *regs)
8364 {
8365         if (event->hw.state & PERF_HES_STOPPED)
8366                 return 0;
8367         /*
8368          * All tracepoints are from kernel-space.
8369          */
8370         if (event->attr.exclude_kernel)
8371                 return 0;
8372
8373         if (!perf_tp_filter_match(event, data))
8374                 return 0;
8375
8376         return 1;
8377 }
8378
8379 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8380                                struct trace_event_call *call, u64 count,
8381                                struct pt_regs *regs, struct hlist_head *head,
8382                                struct task_struct *task)
8383 {
8384         if (bpf_prog_array_valid(call)) {
8385                 *(struct pt_regs **)raw_data = regs;
8386                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8387                         perf_swevent_put_recursion_context(rctx);
8388                         return;
8389                 }
8390         }
8391         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8392                       rctx, task);
8393 }
8394 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8395
8396 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8397                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8398                    struct task_struct *task)
8399 {
8400         struct perf_sample_data data;
8401         struct perf_event *event;
8402
8403         struct perf_raw_record raw = {
8404                 .frag = {
8405                         .size = entry_size,
8406                         .data = record,
8407                 },
8408         };
8409
8410         perf_sample_data_init(&data, 0, 0);
8411         data.raw = &raw;
8412
8413         perf_trace_buf_update(record, event_type);
8414
8415         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8416                 if (perf_tp_event_match(event, &data, regs))
8417                         perf_swevent_event(event, count, &data, regs);
8418         }
8419
8420         /*
8421          * If we got specified a target task, also iterate its context and
8422          * deliver this event there too.
8423          */
8424         if (task && task != current) {
8425                 struct perf_event_context *ctx;
8426                 struct trace_entry *entry = record;
8427
8428                 rcu_read_lock();
8429                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8430                 if (!ctx)
8431                         goto unlock;
8432
8433                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8434                         if (event->cpu != smp_processor_id())
8435                                 continue;
8436                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8437                                 continue;
8438                         if (event->attr.config != entry->type)
8439                                 continue;
8440                         if (perf_tp_event_match(event, &data, regs))
8441                                 perf_swevent_event(event, count, &data, regs);
8442                 }
8443 unlock:
8444                 rcu_read_unlock();
8445         }
8446
8447         perf_swevent_put_recursion_context(rctx);
8448 }
8449 EXPORT_SYMBOL_GPL(perf_tp_event);
8450
8451 static void tp_perf_event_destroy(struct perf_event *event)
8452 {
8453         perf_trace_destroy(event);
8454 }
8455
8456 static int perf_tp_event_init(struct perf_event *event)
8457 {
8458         int err;
8459
8460         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8461                 return -ENOENT;
8462
8463         /*
8464          * no branch sampling for tracepoint events
8465          */
8466         if (has_branch_stack(event))
8467                 return -EOPNOTSUPP;
8468
8469         err = perf_trace_init(event);
8470         if (err)
8471                 return err;
8472
8473         event->destroy = tp_perf_event_destroy;
8474
8475         return 0;
8476 }
8477
8478 static struct pmu perf_tracepoint = {
8479         .task_ctx_nr    = perf_sw_context,
8480
8481         .event_init     = perf_tp_event_init,
8482         .add            = perf_trace_add,
8483         .del            = perf_trace_del,
8484         .start          = perf_swevent_start,
8485         .stop           = perf_swevent_stop,
8486         .read           = perf_swevent_read,
8487 };
8488
8489 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8490 /*
8491  * Flags in config, used by dynamic PMU kprobe and uprobe
8492  * The flags should match following PMU_FORMAT_ATTR().
8493  *
8494  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8495  *                               if not set, create kprobe/uprobe
8496  */
8497 enum perf_probe_config {
8498         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8499 };
8500
8501 PMU_FORMAT_ATTR(retprobe, "config:0");
8502
8503 static struct attribute *probe_attrs[] = {
8504         &format_attr_retprobe.attr,
8505         NULL,
8506 };
8507
8508 static struct attribute_group probe_format_group = {
8509         .name = "format",
8510         .attrs = probe_attrs,
8511 };
8512
8513 static const struct attribute_group *probe_attr_groups[] = {
8514         &probe_format_group,
8515         NULL,
8516 };
8517 #endif
8518
8519 #ifdef CONFIG_KPROBE_EVENTS
8520 static int perf_kprobe_event_init(struct perf_event *event);
8521 static struct pmu perf_kprobe = {
8522         .task_ctx_nr    = perf_sw_context,
8523         .event_init     = perf_kprobe_event_init,
8524         .add            = perf_trace_add,
8525         .del            = perf_trace_del,
8526         .start          = perf_swevent_start,
8527         .stop           = perf_swevent_stop,
8528         .read           = perf_swevent_read,
8529         .attr_groups    = probe_attr_groups,
8530 };
8531
8532 static int perf_kprobe_event_init(struct perf_event *event)
8533 {
8534         int err;
8535         bool is_retprobe;
8536
8537         if (event->attr.type != perf_kprobe.type)
8538                 return -ENOENT;
8539
8540         if (!capable(CAP_SYS_ADMIN))
8541                 return -EACCES;
8542
8543         /*
8544          * no branch sampling for probe events
8545          */
8546         if (has_branch_stack(event))
8547                 return -EOPNOTSUPP;
8548
8549         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8550         err = perf_kprobe_init(event, is_retprobe);
8551         if (err)
8552                 return err;
8553
8554         event->destroy = perf_kprobe_destroy;
8555
8556         return 0;
8557 }
8558 #endif /* CONFIG_KPROBE_EVENTS */
8559
8560 #ifdef CONFIG_UPROBE_EVENTS
8561 static int perf_uprobe_event_init(struct perf_event *event);
8562 static struct pmu perf_uprobe = {
8563         .task_ctx_nr    = perf_sw_context,
8564         .event_init     = perf_uprobe_event_init,
8565         .add            = perf_trace_add,
8566         .del            = perf_trace_del,
8567         .start          = perf_swevent_start,
8568         .stop           = perf_swevent_stop,
8569         .read           = perf_swevent_read,
8570         .attr_groups    = probe_attr_groups,
8571 };
8572
8573 static int perf_uprobe_event_init(struct perf_event *event)
8574 {
8575         int err;
8576         bool is_retprobe;
8577
8578         if (event->attr.type != perf_uprobe.type)
8579                 return -ENOENT;
8580
8581         if (!capable(CAP_SYS_ADMIN))
8582                 return -EACCES;
8583
8584         /*
8585          * no branch sampling for probe events
8586          */
8587         if (has_branch_stack(event))
8588                 return -EOPNOTSUPP;
8589
8590         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8591         err = perf_uprobe_init(event, is_retprobe);
8592         if (err)
8593                 return err;
8594
8595         event->destroy = perf_uprobe_destroy;
8596
8597         return 0;
8598 }
8599 #endif /* CONFIG_UPROBE_EVENTS */
8600
8601 static inline void perf_tp_register(void)
8602 {
8603         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8604 #ifdef CONFIG_KPROBE_EVENTS
8605         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8606 #endif
8607 #ifdef CONFIG_UPROBE_EVENTS
8608         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8609 #endif
8610 }
8611
8612 static void perf_event_free_filter(struct perf_event *event)
8613 {
8614         ftrace_profile_free_filter(event);
8615 }
8616
8617 #ifdef CONFIG_BPF_SYSCALL
8618 static void bpf_overflow_handler(struct perf_event *event,
8619                                  struct perf_sample_data *data,
8620                                  struct pt_regs *regs)
8621 {
8622         struct bpf_perf_event_data_kern ctx = {
8623                 .data = data,
8624                 .event = event,
8625         };
8626         int ret = 0;
8627
8628         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8629         preempt_disable();
8630         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8631                 goto out;
8632         rcu_read_lock();
8633         ret = BPF_PROG_RUN(event->prog, &ctx);
8634         rcu_read_unlock();
8635 out:
8636         __this_cpu_dec(bpf_prog_active);
8637         preempt_enable();
8638         if (!ret)
8639                 return;
8640
8641         event->orig_overflow_handler(event, data, regs);
8642 }
8643
8644 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8645 {
8646         struct bpf_prog *prog;
8647
8648         if (event->overflow_handler_context)
8649                 /* hw breakpoint or kernel counter */
8650                 return -EINVAL;
8651
8652         if (event->prog)
8653                 return -EEXIST;
8654
8655         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8656         if (IS_ERR(prog))
8657                 return PTR_ERR(prog);
8658
8659         event->prog = prog;
8660         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8661         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8662         return 0;
8663 }
8664
8665 static void perf_event_free_bpf_handler(struct perf_event *event)
8666 {
8667         struct bpf_prog *prog = event->prog;
8668
8669         if (!prog)
8670                 return;
8671
8672         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8673         event->prog = NULL;
8674         bpf_prog_put(prog);
8675 }
8676 #else
8677 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8678 {
8679         return -EOPNOTSUPP;
8680 }
8681 static void perf_event_free_bpf_handler(struct perf_event *event)
8682 {
8683 }
8684 #endif
8685
8686 /*
8687  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8688  * with perf_event_open()
8689  */
8690 static inline bool perf_event_is_tracing(struct perf_event *event)
8691 {
8692         if (event->pmu == &perf_tracepoint)
8693                 return true;
8694 #ifdef CONFIG_KPROBE_EVENTS
8695         if (event->pmu == &perf_kprobe)
8696                 return true;
8697 #endif
8698 #ifdef CONFIG_UPROBE_EVENTS
8699         if (event->pmu == &perf_uprobe)
8700                 return true;
8701 #endif
8702         return false;
8703 }
8704
8705 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8706 {
8707         bool is_kprobe, is_tracepoint, is_syscall_tp;
8708         struct bpf_prog *prog;
8709         int ret;
8710
8711         if (!perf_event_is_tracing(event))
8712                 return perf_event_set_bpf_handler(event, prog_fd);
8713
8714         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8715         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8716         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8717         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8718                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8719                 return -EINVAL;
8720
8721         prog = bpf_prog_get(prog_fd);
8722         if (IS_ERR(prog))
8723                 return PTR_ERR(prog);
8724
8725         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8726             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8727             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8728                 /* valid fd, but invalid bpf program type */
8729                 bpf_prog_put(prog);
8730                 return -EINVAL;
8731         }
8732
8733         /* Kprobe override only works for kprobes, not uprobes. */
8734         if (prog->kprobe_override &&
8735             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8736                 bpf_prog_put(prog);
8737                 return -EINVAL;
8738         }
8739
8740         if (is_tracepoint || is_syscall_tp) {
8741                 int off = trace_event_get_offsets(event->tp_event);
8742
8743                 if (prog->aux->max_ctx_offset > off) {
8744                         bpf_prog_put(prog);
8745                         return -EACCES;
8746                 }
8747         }
8748
8749         ret = perf_event_attach_bpf_prog(event, prog);
8750         if (ret)
8751                 bpf_prog_put(prog);
8752         return ret;
8753 }
8754
8755 static void perf_event_free_bpf_prog(struct perf_event *event)
8756 {
8757         if (!perf_event_is_tracing(event)) {
8758                 perf_event_free_bpf_handler(event);
8759                 return;
8760         }
8761         perf_event_detach_bpf_prog(event);
8762 }
8763
8764 #else
8765
8766 static inline void perf_tp_register(void)
8767 {
8768 }
8769
8770 static void perf_event_free_filter(struct perf_event *event)
8771 {
8772 }
8773
8774 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8775 {
8776         return -ENOENT;
8777 }
8778
8779 static void perf_event_free_bpf_prog(struct perf_event *event)
8780 {
8781 }
8782 #endif /* CONFIG_EVENT_TRACING */
8783
8784 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8785 void perf_bp_event(struct perf_event *bp, void *data)
8786 {
8787         struct perf_sample_data sample;
8788         struct pt_regs *regs = data;
8789
8790         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8791
8792         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8793                 perf_swevent_event(bp, 1, &sample, regs);
8794 }
8795 #endif
8796
8797 /*
8798  * Allocate a new address filter
8799  */
8800 static struct perf_addr_filter *
8801 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8802 {
8803         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8804         struct perf_addr_filter *filter;
8805
8806         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8807         if (!filter)
8808                 return NULL;
8809
8810         INIT_LIST_HEAD(&filter->entry);
8811         list_add_tail(&filter->entry, filters);
8812
8813         return filter;
8814 }
8815
8816 static void free_filters_list(struct list_head *filters)
8817 {
8818         struct perf_addr_filter *filter, *iter;
8819
8820         list_for_each_entry_safe(filter, iter, filters, entry) {
8821                 path_put(&filter->path);
8822                 list_del(&filter->entry);
8823                 kfree(filter);
8824         }
8825 }
8826
8827 /*
8828  * Free existing address filters and optionally install new ones
8829  */
8830 static void perf_addr_filters_splice(struct perf_event *event,
8831                                      struct list_head *head)
8832 {
8833         unsigned long flags;
8834         LIST_HEAD(list);
8835
8836         if (!has_addr_filter(event))
8837                 return;
8838
8839         /* don't bother with children, they don't have their own filters */
8840         if (event->parent)
8841                 return;
8842
8843         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8844
8845         list_splice_init(&event->addr_filters.list, &list);
8846         if (head)
8847                 list_splice(head, &event->addr_filters.list);
8848
8849         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8850
8851         free_filters_list(&list);
8852 }
8853
8854 /*
8855  * Scan through mm's vmas and see if one of them matches the
8856  * @filter; if so, adjust filter's address range.
8857  * Called with mm::mmap_sem down for reading.
8858  */
8859 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
8860                                    struct mm_struct *mm,
8861                                    struct perf_addr_filter_range *fr)
8862 {
8863         struct vm_area_struct *vma;
8864
8865         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8866                 if (!vma->vm_file)
8867                         continue;
8868
8869                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
8870                         return;
8871         }
8872 }
8873
8874 /*
8875  * Update event's address range filters based on the
8876  * task's existing mappings, if any.
8877  */
8878 static void perf_event_addr_filters_apply(struct perf_event *event)
8879 {
8880         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8881         struct task_struct *task = READ_ONCE(event->ctx->task);
8882         struct perf_addr_filter *filter;
8883         struct mm_struct *mm = NULL;
8884         unsigned int count = 0;
8885         unsigned long flags;
8886
8887         /*
8888          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8889          * will stop on the parent's child_mutex that our caller is also holding
8890          */
8891         if (task == TASK_TOMBSTONE)
8892                 return;
8893
8894         if (ifh->nr_file_filters) {
8895                 mm = get_task_mm(event->ctx->task);
8896                 if (!mm)
8897                         goto restart;
8898
8899                 down_read(&mm->mmap_sem);
8900         }
8901
8902         raw_spin_lock_irqsave(&ifh->lock, flags);
8903         list_for_each_entry(filter, &ifh->list, entry) {
8904                 if (filter->path.dentry) {
8905                         /*
8906                          * Adjust base offset if the filter is associated to a
8907                          * binary that needs to be mapped:
8908                          */
8909                         event->addr_filter_ranges[count].start = 0;
8910                         event->addr_filter_ranges[count].size = 0;
8911
8912                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
8913                 } else {
8914                         event->addr_filter_ranges[count].start = filter->offset;
8915                         event->addr_filter_ranges[count].size  = filter->size;
8916                 }
8917
8918                 count++;
8919         }
8920
8921         event->addr_filters_gen++;
8922         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8923
8924         if (ifh->nr_file_filters) {
8925                 up_read(&mm->mmap_sem);
8926
8927                 mmput(mm);
8928         }
8929
8930 restart:
8931         perf_event_stop(event, 1);
8932 }
8933
8934 /*
8935  * Address range filtering: limiting the data to certain
8936  * instruction address ranges. Filters are ioctl()ed to us from
8937  * userspace as ascii strings.
8938  *
8939  * Filter string format:
8940  *
8941  * ACTION RANGE_SPEC
8942  * where ACTION is one of the
8943  *  * "filter": limit the trace to this region
8944  *  * "start": start tracing from this address
8945  *  * "stop": stop tracing at this address/region;
8946  * RANGE_SPEC is
8947  *  * for kernel addresses: <start address>[/<size>]
8948  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8949  *
8950  * if <size> is not specified or is zero, the range is treated as a single
8951  * address; not valid for ACTION=="filter".
8952  */
8953 enum {
8954         IF_ACT_NONE = -1,
8955         IF_ACT_FILTER,
8956         IF_ACT_START,
8957         IF_ACT_STOP,
8958         IF_SRC_FILE,
8959         IF_SRC_KERNEL,
8960         IF_SRC_FILEADDR,
8961         IF_SRC_KERNELADDR,
8962 };
8963
8964 enum {
8965         IF_STATE_ACTION = 0,
8966         IF_STATE_SOURCE,
8967         IF_STATE_END,
8968 };
8969
8970 static const match_table_t if_tokens = {
8971         { IF_ACT_FILTER,        "filter" },
8972         { IF_ACT_START,         "start" },
8973         { IF_ACT_STOP,          "stop" },
8974         { IF_SRC_FILE,          "%u/%u@%s" },
8975         { IF_SRC_KERNEL,        "%u/%u" },
8976         { IF_SRC_FILEADDR,      "%u@%s" },
8977         { IF_SRC_KERNELADDR,    "%u" },
8978         { IF_ACT_NONE,          NULL },
8979 };
8980
8981 /*
8982  * Address filter string parser
8983  */
8984 static int
8985 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8986                              struct list_head *filters)
8987 {
8988         struct perf_addr_filter *filter = NULL;
8989         char *start, *orig, *filename = NULL;
8990         substring_t args[MAX_OPT_ARGS];
8991         int state = IF_STATE_ACTION, token;
8992         unsigned int kernel = 0;
8993         int ret = -EINVAL;
8994
8995         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8996         if (!fstr)
8997                 return -ENOMEM;
8998
8999         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9000                 static const enum perf_addr_filter_action_t actions[] = {
9001                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9002                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9003                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9004                 };
9005                 ret = -EINVAL;
9006
9007                 if (!*start)
9008                         continue;
9009
9010                 /* filter definition begins */
9011                 if (state == IF_STATE_ACTION) {
9012                         filter = perf_addr_filter_new(event, filters);
9013                         if (!filter)
9014                                 goto fail;
9015                 }
9016
9017                 token = match_token(start, if_tokens, args);
9018                 switch (token) {
9019                 case IF_ACT_FILTER:
9020                 case IF_ACT_START:
9021                 case IF_ACT_STOP:
9022                         if (state != IF_STATE_ACTION)
9023                                 goto fail;
9024
9025                         filter->action = actions[token];
9026                         state = IF_STATE_SOURCE;
9027                         break;
9028
9029                 case IF_SRC_KERNELADDR:
9030                 case IF_SRC_KERNEL:
9031                         kernel = 1;
9032
9033                 case IF_SRC_FILEADDR:
9034                 case IF_SRC_FILE:
9035                         if (state != IF_STATE_SOURCE)
9036                                 goto fail;
9037
9038                         *args[0].to = 0;
9039                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9040                         if (ret)
9041                                 goto fail;
9042
9043                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9044                                 *args[1].to = 0;
9045                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9046                                 if (ret)
9047                                         goto fail;
9048                         }
9049
9050                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9051                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9052
9053                                 kfree(filename);
9054                                 filename = match_strdup(&args[fpos]);
9055                                 if (!filename) {
9056                                         ret = -ENOMEM;
9057                                         goto fail;
9058                                 }
9059                         }
9060
9061                         state = IF_STATE_END;
9062                         break;
9063
9064                 default:
9065                         goto fail;
9066                 }
9067
9068                 /*
9069                  * Filter definition is fully parsed, validate and install it.
9070                  * Make sure that it doesn't contradict itself or the event's
9071                  * attribute.
9072                  */
9073                 if (state == IF_STATE_END) {
9074                         ret = -EINVAL;
9075                         if (kernel && event->attr.exclude_kernel)
9076                                 goto fail;
9077
9078                         /*
9079                          * ACTION "filter" must have a non-zero length region
9080                          * specified.
9081                          */
9082                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9083                             !filter->size)
9084                                 goto fail;
9085
9086                         if (!kernel) {
9087                                 if (!filename)
9088                                         goto fail;
9089
9090                                 /*
9091                                  * For now, we only support file-based filters
9092                                  * in per-task events; doing so for CPU-wide
9093                                  * events requires additional context switching
9094                                  * trickery, since same object code will be
9095                                  * mapped at different virtual addresses in
9096                                  * different processes.
9097                                  */
9098                                 ret = -EOPNOTSUPP;
9099                                 if (!event->ctx->task)
9100                                         goto fail;
9101
9102                                 /* look up the path and grab its inode */
9103                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9104                                                 &filter->path);
9105                                 if (ret)
9106                                         goto fail;
9107
9108                                 ret = -EINVAL;
9109                                 if (!filter->path.dentry ||
9110                                     !S_ISREG(d_inode(filter->path.dentry)
9111                                              ->i_mode))
9112                                         goto fail;
9113
9114                                 event->addr_filters.nr_file_filters++;
9115                         }
9116
9117                         /* ready to consume more filters */
9118                         state = IF_STATE_ACTION;
9119                         filter = NULL;
9120                 }
9121         }
9122
9123         if (state != IF_STATE_ACTION)
9124                 goto fail;
9125
9126         kfree(filename);
9127         kfree(orig);
9128
9129         return 0;
9130
9131 fail:
9132         kfree(filename);
9133         free_filters_list(filters);
9134         kfree(orig);
9135
9136         return ret;
9137 }
9138
9139 static int
9140 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9141 {
9142         LIST_HEAD(filters);
9143         int ret;
9144
9145         /*
9146          * Since this is called in perf_ioctl() path, we're already holding
9147          * ctx::mutex.
9148          */
9149         lockdep_assert_held(&event->ctx->mutex);
9150
9151         if (WARN_ON_ONCE(event->parent))
9152                 return -EINVAL;
9153
9154         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9155         if (ret)
9156                 goto fail_clear_files;
9157
9158         ret = event->pmu->addr_filters_validate(&filters);
9159         if (ret)
9160                 goto fail_free_filters;
9161
9162         /* remove existing filters, if any */
9163         perf_addr_filters_splice(event, &filters);
9164
9165         /* install new filters */
9166         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9167
9168         return ret;
9169
9170 fail_free_filters:
9171         free_filters_list(&filters);
9172
9173 fail_clear_files:
9174         event->addr_filters.nr_file_filters = 0;
9175
9176         return ret;
9177 }
9178
9179 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9180 {
9181         int ret = -EINVAL;
9182         char *filter_str;
9183
9184         filter_str = strndup_user(arg, PAGE_SIZE);
9185         if (IS_ERR(filter_str))
9186                 return PTR_ERR(filter_str);
9187
9188 #ifdef CONFIG_EVENT_TRACING
9189         if (perf_event_is_tracing(event)) {
9190                 struct perf_event_context *ctx = event->ctx;
9191
9192                 /*
9193                  * Beware, here be dragons!!
9194                  *
9195                  * the tracepoint muck will deadlock against ctx->mutex, but
9196                  * the tracepoint stuff does not actually need it. So
9197                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9198                  * already have a reference on ctx.
9199                  *
9200                  * This can result in event getting moved to a different ctx,
9201                  * but that does not affect the tracepoint state.
9202                  */
9203                 mutex_unlock(&ctx->mutex);
9204                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9205                 mutex_lock(&ctx->mutex);
9206         } else
9207 #endif
9208         if (has_addr_filter(event))
9209                 ret = perf_event_set_addr_filter(event, filter_str);
9210
9211         kfree(filter_str);
9212         return ret;
9213 }
9214
9215 /*
9216  * hrtimer based swevent callback
9217  */
9218
9219 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9220 {
9221         enum hrtimer_restart ret = HRTIMER_RESTART;
9222         struct perf_sample_data data;
9223         struct pt_regs *regs;
9224         struct perf_event *event;
9225         u64 period;
9226
9227         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9228
9229         if (event->state != PERF_EVENT_STATE_ACTIVE)
9230                 return HRTIMER_NORESTART;
9231
9232         event->pmu->read(event);
9233
9234         perf_sample_data_init(&data, 0, event->hw.last_period);
9235         regs = get_irq_regs();
9236
9237         if (regs && !perf_exclude_event(event, regs)) {
9238                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9239                         if (__perf_event_overflow(event, 1, &data, regs))
9240                                 ret = HRTIMER_NORESTART;
9241         }
9242
9243         period = max_t(u64, 10000, event->hw.sample_period);
9244         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9245
9246         return ret;
9247 }
9248
9249 static void perf_swevent_start_hrtimer(struct perf_event *event)
9250 {
9251         struct hw_perf_event *hwc = &event->hw;
9252         s64 period;
9253
9254         if (!is_sampling_event(event))
9255                 return;
9256
9257         period = local64_read(&hwc->period_left);
9258         if (period) {
9259                 if (period < 0)
9260                         period = 10000;
9261
9262                 local64_set(&hwc->period_left, 0);
9263         } else {
9264                 period = max_t(u64, 10000, hwc->sample_period);
9265         }
9266         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9267                       HRTIMER_MODE_REL_PINNED);
9268 }
9269
9270 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9271 {
9272         struct hw_perf_event *hwc = &event->hw;
9273
9274         if (is_sampling_event(event)) {
9275                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9276                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9277
9278                 hrtimer_cancel(&hwc->hrtimer);
9279         }
9280 }
9281
9282 static void perf_swevent_init_hrtimer(struct perf_event *event)
9283 {
9284         struct hw_perf_event *hwc = &event->hw;
9285
9286         if (!is_sampling_event(event))
9287                 return;
9288
9289         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9290         hwc->hrtimer.function = perf_swevent_hrtimer;
9291
9292         /*
9293          * Since hrtimers have a fixed rate, we can do a static freq->period
9294          * mapping and avoid the whole period adjust feedback stuff.
9295          */
9296         if (event->attr.freq) {
9297                 long freq = event->attr.sample_freq;
9298
9299                 event->attr.sample_period = NSEC_PER_SEC / freq;
9300                 hwc->sample_period = event->attr.sample_period;
9301                 local64_set(&hwc->period_left, hwc->sample_period);
9302                 hwc->last_period = hwc->sample_period;
9303                 event->attr.freq = 0;
9304         }
9305 }
9306
9307 /*
9308  * Software event: cpu wall time clock
9309  */
9310
9311 static void cpu_clock_event_update(struct perf_event *event)
9312 {
9313         s64 prev;
9314         u64 now;
9315
9316         now = local_clock();
9317         prev = local64_xchg(&event->hw.prev_count, now);
9318         local64_add(now - prev, &event->count);
9319 }
9320
9321 static void cpu_clock_event_start(struct perf_event *event, int flags)
9322 {
9323         local64_set(&event->hw.prev_count, local_clock());
9324         perf_swevent_start_hrtimer(event);
9325 }
9326
9327 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9328 {
9329         perf_swevent_cancel_hrtimer(event);
9330         cpu_clock_event_update(event);
9331 }
9332
9333 static int cpu_clock_event_add(struct perf_event *event, int flags)
9334 {
9335         if (flags & PERF_EF_START)
9336                 cpu_clock_event_start(event, flags);
9337         perf_event_update_userpage(event);
9338
9339         return 0;
9340 }
9341
9342 static void cpu_clock_event_del(struct perf_event *event, int flags)
9343 {
9344         cpu_clock_event_stop(event, flags);
9345 }
9346
9347 static void cpu_clock_event_read(struct perf_event *event)
9348 {
9349         cpu_clock_event_update(event);
9350 }
9351
9352 static int cpu_clock_event_init(struct perf_event *event)
9353 {
9354         if (event->attr.type != PERF_TYPE_SOFTWARE)
9355                 return -ENOENT;
9356
9357         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9358                 return -ENOENT;
9359
9360         /*
9361          * no branch sampling for software events
9362          */
9363         if (has_branch_stack(event))
9364                 return -EOPNOTSUPP;
9365
9366         perf_swevent_init_hrtimer(event);
9367
9368         return 0;
9369 }
9370
9371 static struct pmu perf_cpu_clock = {
9372         .task_ctx_nr    = perf_sw_context,
9373
9374         .capabilities   = PERF_PMU_CAP_NO_NMI,
9375
9376         .event_init     = cpu_clock_event_init,
9377         .add            = cpu_clock_event_add,
9378         .del            = cpu_clock_event_del,
9379         .start          = cpu_clock_event_start,
9380         .stop           = cpu_clock_event_stop,
9381         .read           = cpu_clock_event_read,
9382 };
9383
9384 /*
9385  * Software event: task time clock
9386  */
9387
9388 static void task_clock_event_update(struct perf_event *event, u64 now)
9389 {
9390         u64 prev;
9391         s64 delta;
9392
9393         prev = local64_xchg(&event->hw.prev_count, now);
9394         delta = now - prev;
9395         local64_add(delta, &event->count);
9396 }
9397
9398 static void task_clock_event_start(struct perf_event *event, int flags)
9399 {
9400         local64_set(&event->hw.prev_count, event->ctx->time);
9401         perf_swevent_start_hrtimer(event);
9402 }
9403
9404 static void task_clock_event_stop(struct perf_event *event, int flags)
9405 {
9406         perf_swevent_cancel_hrtimer(event);
9407         task_clock_event_update(event, event->ctx->time);
9408 }
9409
9410 static int task_clock_event_add(struct perf_event *event, int flags)
9411 {
9412         if (flags & PERF_EF_START)
9413                 task_clock_event_start(event, flags);
9414         perf_event_update_userpage(event);
9415
9416         return 0;
9417 }
9418
9419 static void task_clock_event_del(struct perf_event *event, int flags)
9420 {
9421         task_clock_event_stop(event, PERF_EF_UPDATE);
9422 }
9423
9424 static void task_clock_event_read(struct perf_event *event)
9425 {
9426         u64 now = perf_clock();
9427         u64 delta = now - event->ctx->timestamp;
9428         u64 time = event->ctx->time + delta;
9429
9430         task_clock_event_update(event, time);
9431 }
9432
9433 static int task_clock_event_init(struct perf_event *event)
9434 {
9435         if (event->attr.type != PERF_TYPE_SOFTWARE)
9436                 return -ENOENT;
9437
9438         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9439                 return -ENOENT;
9440
9441         /*
9442          * no branch sampling for software events
9443          */
9444         if (has_branch_stack(event))
9445                 return -EOPNOTSUPP;
9446
9447         perf_swevent_init_hrtimer(event);
9448
9449         return 0;
9450 }
9451
9452 static struct pmu perf_task_clock = {
9453         .task_ctx_nr    = perf_sw_context,
9454
9455         .capabilities   = PERF_PMU_CAP_NO_NMI,
9456
9457         .event_init     = task_clock_event_init,
9458         .add            = task_clock_event_add,
9459         .del            = task_clock_event_del,
9460         .start          = task_clock_event_start,
9461         .stop           = task_clock_event_stop,
9462         .read           = task_clock_event_read,
9463 };
9464
9465 static void perf_pmu_nop_void(struct pmu *pmu)
9466 {
9467 }
9468
9469 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9470 {
9471 }
9472
9473 static int perf_pmu_nop_int(struct pmu *pmu)
9474 {
9475         return 0;
9476 }
9477
9478 static int perf_event_nop_int(struct perf_event *event, u64 value)
9479 {
9480         return 0;
9481 }
9482
9483 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9484
9485 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9486 {
9487         __this_cpu_write(nop_txn_flags, flags);
9488
9489         if (flags & ~PERF_PMU_TXN_ADD)
9490                 return;
9491
9492         perf_pmu_disable(pmu);
9493 }
9494
9495 static int perf_pmu_commit_txn(struct pmu *pmu)
9496 {
9497         unsigned int flags = __this_cpu_read(nop_txn_flags);
9498
9499         __this_cpu_write(nop_txn_flags, 0);
9500
9501         if (flags & ~PERF_PMU_TXN_ADD)
9502                 return 0;
9503
9504         perf_pmu_enable(pmu);
9505         return 0;
9506 }
9507
9508 static void perf_pmu_cancel_txn(struct pmu *pmu)
9509 {
9510         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9511
9512         __this_cpu_write(nop_txn_flags, 0);
9513
9514         if (flags & ~PERF_PMU_TXN_ADD)
9515                 return;
9516
9517         perf_pmu_enable(pmu);
9518 }
9519
9520 static int perf_event_idx_default(struct perf_event *event)
9521 {
9522         return 0;
9523 }
9524
9525 /*
9526  * Ensures all contexts with the same task_ctx_nr have the same
9527  * pmu_cpu_context too.
9528  */
9529 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9530 {
9531         struct pmu *pmu;
9532
9533         if (ctxn < 0)
9534                 return NULL;
9535
9536         list_for_each_entry(pmu, &pmus, entry) {
9537                 if (pmu->task_ctx_nr == ctxn)
9538                         return pmu->pmu_cpu_context;
9539         }
9540
9541         return NULL;
9542 }
9543
9544 static void free_pmu_context(struct pmu *pmu)
9545 {
9546         /*
9547          * Static contexts such as perf_sw_context have a global lifetime
9548          * and may be shared between different PMUs. Avoid freeing them
9549          * when a single PMU is going away.
9550          */
9551         if (pmu->task_ctx_nr > perf_invalid_context)
9552                 return;
9553
9554         free_percpu(pmu->pmu_cpu_context);
9555 }
9556
9557 /*
9558  * Let userspace know that this PMU supports address range filtering:
9559  */
9560 static ssize_t nr_addr_filters_show(struct device *dev,
9561                                     struct device_attribute *attr,
9562                                     char *page)
9563 {
9564         struct pmu *pmu = dev_get_drvdata(dev);
9565
9566         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9567 }
9568 DEVICE_ATTR_RO(nr_addr_filters);
9569
9570 static struct idr pmu_idr;
9571
9572 static ssize_t
9573 type_show(struct device *dev, struct device_attribute *attr, char *page)
9574 {
9575         struct pmu *pmu = dev_get_drvdata(dev);
9576
9577         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9578 }
9579 static DEVICE_ATTR_RO(type);
9580
9581 static ssize_t
9582 perf_event_mux_interval_ms_show(struct device *dev,
9583                                 struct device_attribute *attr,
9584                                 char *page)
9585 {
9586         struct pmu *pmu = dev_get_drvdata(dev);
9587
9588         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9589 }
9590
9591 static DEFINE_MUTEX(mux_interval_mutex);
9592
9593 static ssize_t
9594 perf_event_mux_interval_ms_store(struct device *dev,
9595                                  struct device_attribute *attr,
9596                                  const char *buf, size_t count)
9597 {
9598         struct pmu *pmu = dev_get_drvdata(dev);
9599         int timer, cpu, ret;
9600
9601         ret = kstrtoint(buf, 0, &timer);
9602         if (ret)
9603                 return ret;
9604
9605         if (timer < 1)
9606                 return -EINVAL;
9607
9608         /* same value, noting to do */
9609         if (timer == pmu->hrtimer_interval_ms)
9610                 return count;
9611
9612         mutex_lock(&mux_interval_mutex);
9613         pmu->hrtimer_interval_ms = timer;
9614
9615         /* update all cpuctx for this PMU */
9616         cpus_read_lock();
9617         for_each_online_cpu(cpu) {
9618                 struct perf_cpu_context *cpuctx;
9619                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9620                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9621
9622                 cpu_function_call(cpu,
9623                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9624         }
9625         cpus_read_unlock();
9626         mutex_unlock(&mux_interval_mutex);
9627
9628         return count;
9629 }
9630 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9631
9632 static struct attribute *pmu_dev_attrs[] = {
9633         &dev_attr_type.attr,
9634         &dev_attr_perf_event_mux_interval_ms.attr,
9635         NULL,
9636 };
9637 ATTRIBUTE_GROUPS(pmu_dev);
9638
9639 static int pmu_bus_running;
9640 static struct bus_type pmu_bus = {
9641         .name           = "event_source",
9642         .dev_groups     = pmu_dev_groups,
9643 };
9644
9645 static void pmu_dev_release(struct device *dev)
9646 {
9647         kfree(dev);
9648 }
9649
9650 static int pmu_dev_alloc(struct pmu *pmu)
9651 {
9652         int ret = -ENOMEM;
9653
9654         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9655         if (!pmu->dev)
9656                 goto out;
9657
9658         pmu->dev->groups = pmu->attr_groups;
9659         device_initialize(pmu->dev);
9660         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9661         if (ret)
9662                 goto free_dev;
9663
9664         dev_set_drvdata(pmu->dev, pmu);
9665         pmu->dev->bus = &pmu_bus;
9666         pmu->dev->release = pmu_dev_release;
9667         ret = device_add(pmu->dev);
9668         if (ret)
9669                 goto free_dev;
9670
9671         /* For PMUs with address filters, throw in an extra attribute: */
9672         if (pmu->nr_addr_filters)
9673                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9674
9675         if (ret)
9676                 goto del_dev;
9677
9678 out:
9679         return ret;
9680
9681 del_dev:
9682         device_del(pmu->dev);
9683
9684 free_dev:
9685         put_device(pmu->dev);
9686         goto out;
9687 }
9688
9689 static struct lock_class_key cpuctx_mutex;
9690 static struct lock_class_key cpuctx_lock;
9691
9692 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9693 {
9694         int cpu, ret;
9695
9696         mutex_lock(&pmus_lock);
9697         ret = -ENOMEM;
9698         pmu->pmu_disable_count = alloc_percpu(int);
9699         if (!pmu->pmu_disable_count)
9700                 goto unlock;
9701
9702         pmu->type = -1;
9703         if (!name)
9704                 goto skip_type;
9705         pmu->name = name;
9706
9707         if (type < 0) {
9708                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9709                 if (type < 0) {
9710                         ret = type;
9711                         goto free_pdc;
9712                 }
9713         }
9714         pmu->type = type;
9715
9716         if (pmu_bus_running) {
9717                 ret = pmu_dev_alloc(pmu);
9718                 if (ret)
9719                         goto free_idr;
9720         }
9721
9722 skip_type:
9723         if (pmu->task_ctx_nr == perf_hw_context) {
9724                 static int hw_context_taken = 0;
9725
9726                 /*
9727                  * Other than systems with heterogeneous CPUs, it never makes
9728                  * sense for two PMUs to share perf_hw_context. PMUs which are
9729                  * uncore must use perf_invalid_context.
9730                  */
9731                 if (WARN_ON_ONCE(hw_context_taken &&
9732                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9733                         pmu->task_ctx_nr = perf_invalid_context;
9734
9735                 hw_context_taken = 1;
9736         }
9737
9738         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9739         if (pmu->pmu_cpu_context)
9740                 goto got_cpu_context;
9741
9742         ret = -ENOMEM;
9743         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9744         if (!pmu->pmu_cpu_context)
9745                 goto free_dev;
9746
9747         for_each_possible_cpu(cpu) {
9748                 struct perf_cpu_context *cpuctx;
9749
9750                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9751                 __perf_event_init_context(&cpuctx->ctx);
9752                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9753                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9754                 cpuctx->ctx.pmu = pmu;
9755                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9756
9757                 __perf_mux_hrtimer_init(cpuctx, cpu);
9758         }
9759
9760 got_cpu_context:
9761         if (!pmu->start_txn) {
9762                 if (pmu->pmu_enable) {
9763                         /*
9764                          * If we have pmu_enable/pmu_disable calls, install
9765                          * transaction stubs that use that to try and batch
9766                          * hardware accesses.
9767                          */
9768                         pmu->start_txn  = perf_pmu_start_txn;
9769                         pmu->commit_txn = perf_pmu_commit_txn;
9770                         pmu->cancel_txn = perf_pmu_cancel_txn;
9771                 } else {
9772                         pmu->start_txn  = perf_pmu_nop_txn;
9773                         pmu->commit_txn = perf_pmu_nop_int;
9774                         pmu->cancel_txn = perf_pmu_nop_void;
9775                 }
9776         }
9777
9778         if (!pmu->pmu_enable) {
9779                 pmu->pmu_enable  = perf_pmu_nop_void;
9780                 pmu->pmu_disable = perf_pmu_nop_void;
9781         }
9782
9783         if (!pmu->check_period)
9784                 pmu->check_period = perf_event_nop_int;
9785
9786         if (!pmu->event_idx)
9787                 pmu->event_idx = perf_event_idx_default;
9788
9789         list_add_rcu(&pmu->entry, &pmus);
9790         atomic_set(&pmu->exclusive_cnt, 0);
9791         ret = 0;
9792 unlock:
9793         mutex_unlock(&pmus_lock);
9794
9795         return ret;
9796
9797 free_dev:
9798         device_del(pmu->dev);
9799         put_device(pmu->dev);
9800
9801 free_idr:
9802         if (pmu->type >= PERF_TYPE_MAX)
9803                 idr_remove(&pmu_idr, pmu->type);
9804
9805 free_pdc:
9806         free_percpu(pmu->pmu_disable_count);
9807         goto unlock;
9808 }
9809 EXPORT_SYMBOL_GPL(perf_pmu_register);
9810
9811 void perf_pmu_unregister(struct pmu *pmu)
9812 {
9813         mutex_lock(&pmus_lock);
9814         list_del_rcu(&pmu->entry);
9815
9816         /*
9817          * We dereference the pmu list under both SRCU and regular RCU, so
9818          * synchronize against both of those.
9819          */
9820         synchronize_srcu(&pmus_srcu);
9821         synchronize_rcu();
9822
9823         free_percpu(pmu->pmu_disable_count);
9824         if (pmu->type >= PERF_TYPE_MAX)
9825                 idr_remove(&pmu_idr, pmu->type);
9826         if (pmu_bus_running) {
9827                 if (pmu->nr_addr_filters)
9828                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9829                 device_del(pmu->dev);
9830                 put_device(pmu->dev);
9831         }
9832         free_pmu_context(pmu);
9833         mutex_unlock(&pmus_lock);
9834 }
9835 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9836
9837 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9838 {
9839         struct perf_event_context *ctx = NULL;
9840         int ret;
9841
9842         if (!try_module_get(pmu->module))
9843                 return -ENODEV;
9844
9845         /*
9846          * A number of pmu->event_init() methods iterate the sibling_list to,
9847          * for example, validate if the group fits on the PMU. Therefore,
9848          * if this is a sibling event, acquire the ctx->mutex to protect
9849          * the sibling_list.
9850          */
9851         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9852                 /*
9853                  * This ctx->mutex can nest when we're called through
9854                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9855                  */
9856                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9857                                                  SINGLE_DEPTH_NESTING);
9858                 BUG_ON(!ctx);
9859         }
9860
9861         event->pmu = pmu;
9862         ret = pmu->event_init(event);
9863
9864         if (ctx)
9865                 perf_event_ctx_unlock(event->group_leader, ctx);
9866
9867         if (ret)
9868                 module_put(pmu->module);
9869
9870         return ret;
9871 }
9872
9873 static struct pmu *perf_init_event(struct perf_event *event)
9874 {
9875         struct pmu *pmu;
9876         int idx;
9877         int ret;
9878
9879         idx = srcu_read_lock(&pmus_srcu);
9880
9881         /* Try parent's PMU first: */
9882         if (event->parent && event->parent->pmu) {
9883                 pmu = event->parent->pmu;
9884                 ret = perf_try_init_event(pmu, event);
9885                 if (!ret)
9886                         goto unlock;
9887         }
9888
9889         rcu_read_lock();
9890         pmu = idr_find(&pmu_idr, event->attr.type);
9891         rcu_read_unlock();
9892         if (pmu) {
9893                 ret = perf_try_init_event(pmu, event);
9894                 if (ret)
9895                         pmu = ERR_PTR(ret);
9896                 goto unlock;
9897         }
9898
9899         list_for_each_entry_rcu(pmu, &pmus, entry) {
9900                 ret = perf_try_init_event(pmu, event);
9901                 if (!ret)
9902                         goto unlock;
9903
9904                 if (ret != -ENOENT) {
9905                         pmu = ERR_PTR(ret);
9906                         goto unlock;
9907                 }
9908         }
9909         pmu = ERR_PTR(-ENOENT);
9910 unlock:
9911         srcu_read_unlock(&pmus_srcu, idx);
9912
9913         return pmu;
9914 }
9915
9916 static void attach_sb_event(struct perf_event *event)
9917 {
9918         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9919
9920         raw_spin_lock(&pel->lock);
9921         list_add_rcu(&event->sb_list, &pel->list);
9922         raw_spin_unlock(&pel->lock);
9923 }
9924
9925 /*
9926  * We keep a list of all !task (and therefore per-cpu) events
9927  * that need to receive side-band records.
9928  *
9929  * This avoids having to scan all the various PMU per-cpu contexts
9930  * looking for them.
9931  */
9932 static void account_pmu_sb_event(struct perf_event *event)
9933 {
9934         if (is_sb_event(event))
9935                 attach_sb_event(event);
9936 }
9937
9938 static void account_event_cpu(struct perf_event *event, int cpu)
9939 {
9940         if (event->parent)
9941                 return;
9942
9943         if (is_cgroup_event(event))
9944                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9945 }
9946
9947 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9948 static void account_freq_event_nohz(void)
9949 {
9950 #ifdef CONFIG_NO_HZ_FULL
9951         /* Lock so we don't race with concurrent unaccount */
9952         spin_lock(&nr_freq_lock);
9953         if (atomic_inc_return(&nr_freq_events) == 1)
9954                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9955         spin_unlock(&nr_freq_lock);
9956 #endif
9957 }
9958
9959 static void account_freq_event(void)
9960 {
9961         if (tick_nohz_full_enabled())
9962                 account_freq_event_nohz();
9963         else
9964                 atomic_inc(&nr_freq_events);
9965 }
9966
9967
9968 static void account_event(struct perf_event *event)
9969 {
9970         bool inc = false;
9971
9972         if (event->parent)
9973                 return;
9974
9975         if (event->attach_state & PERF_ATTACH_TASK)
9976                 inc = true;
9977         if (event->attr.mmap || event->attr.mmap_data)
9978                 atomic_inc(&nr_mmap_events);
9979         if (event->attr.comm)
9980                 atomic_inc(&nr_comm_events);
9981         if (event->attr.namespaces)
9982                 atomic_inc(&nr_namespaces_events);
9983         if (event->attr.task)
9984                 atomic_inc(&nr_task_events);
9985         if (event->attr.freq)
9986                 account_freq_event();
9987         if (event->attr.context_switch) {
9988                 atomic_inc(&nr_switch_events);
9989                 inc = true;
9990         }
9991         if (has_branch_stack(event))
9992                 inc = true;
9993         if (is_cgroup_event(event))
9994                 inc = true;
9995
9996         if (inc) {
9997                 /*
9998                  * We need the mutex here because static_branch_enable()
9999                  * must complete *before* the perf_sched_count increment
10000                  * becomes visible.
10001                  */
10002                 if (atomic_inc_not_zero(&perf_sched_count))
10003                         goto enabled;
10004
10005                 mutex_lock(&perf_sched_mutex);
10006                 if (!atomic_read(&perf_sched_count)) {
10007                         static_branch_enable(&perf_sched_events);
10008                         /*
10009                          * Guarantee that all CPUs observe they key change and
10010                          * call the perf scheduling hooks before proceeding to
10011                          * install events that need them.
10012                          */
10013                         synchronize_sched();
10014                 }
10015                 /*
10016                  * Now that we have waited for the sync_sched(), allow further
10017                  * increments to by-pass the mutex.
10018                  */
10019                 atomic_inc(&perf_sched_count);
10020                 mutex_unlock(&perf_sched_mutex);
10021         }
10022 enabled:
10023
10024         account_event_cpu(event, event->cpu);
10025
10026         account_pmu_sb_event(event);
10027 }
10028
10029 /*
10030  * Allocate and initialize an event structure
10031  */
10032 static struct perf_event *
10033 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10034                  struct task_struct *task,
10035                  struct perf_event *group_leader,
10036                  struct perf_event *parent_event,
10037                  perf_overflow_handler_t overflow_handler,
10038                  void *context, int cgroup_fd)
10039 {
10040         struct pmu *pmu;
10041         struct perf_event *event;
10042         struct hw_perf_event *hwc;
10043         long err = -EINVAL;
10044
10045         if ((unsigned)cpu >= nr_cpu_ids) {
10046                 if (!task || cpu != -1)
10047                         return ERR_PTR(-EINVAL);
10048         }
10049
10050         event = kzalloc(sizeof(*event), GFP_KERNEL);
10051         if (!event)
10052                 return ERR_PTR(-ENOMEM);
10053
10054         /*
10055          * Single events are their own group leaders, with an
10056          * empty sibling list:
10057          */
10058         if (!group_leader)
10059                 group_leader = event;
10060
10061         mutex_init(&event->child_mutex);
10062         INIT_LIST_HEAD(&event->child_list);
10063
10064         INIT_LIST_HEAD(&event->event_entry);
10065         INIT_LIST_HEAD(&event->sibling_list);
10066         INIT_LIST_HEAD(&event->active_list);
10067         init_event_group(event);
10068         INIT_LIST_HEAD(&event->rb_entry);
10069         INIT_LIST_HEAD(&event->active_entry);
10070         INIT_LIST_HEAD(&event->addr_filters.list);
10071         INIT_HLIST_NODE(&event->hlist_entry);
10072
10073
10074         init_waitqueue_head(&event->waitq);
10075         event->pending_disable = -1;
10076         init_irq_work(&event->pending, perf_pending_event);
10077
10078         mutex_init(&event->mmap_mutex);
10079         raw_spin_lock_init(&event->addr_filters.lock);
10080
10081         atomic_long_set(&event->refcount, 1);
10082         event->cpu              = cpu;
10083         event->attr             = *attr;
10084         event->group_leader     = group_leader;
10085         event->pmu              = NULL;
10086         event->oncpu            = -1;
10087
10088         event->parent           = parent_event;
10089
10090         event->ns               = get_pid_ns(task_active_pid_ns(current));
10091         event->id               = atomic64_inc_return(&perf_event_id);
10092
10093         event->state            = PERF_EVENT_STATE_INACTIVE;
10094
10095         if (task) {
10096                 event->attach_state = PERF_ATTACH_TASK;
10097                 /*
10098                  * XXX pmu::event_init needs to know what task to account to
10099                  * and we cannot use the ctx information because we need the
10100                  * pmu before we get a ctx.
10101                  */
10102                 get_task_struct(task);
10103                 event->hw.target = task;
10104         }
10105
10106         event->clock = &local_clock;
10107         if (parent_event)
10108                 event->clock = parent_event->clock;
10109
10110         if (!overflow_handler && parent_event) {
10111                 overflow_handler = parent_event->overflow_handler;
10112                 context = parent_event->overflow_handler_context;
10113 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10114                 if (overflow_handler == bpf_overflow_handler) {
10115                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10116
10117                         if (IS_ERR(prog)) {
10118                                 err = PTR_ERR(prog);
10119                                 goto err_ns;
10120                         }
10121                         event->prog = prog;
10122                         event->orig_overflow_handler =
10123                                 parent_event->orig_overflow_handler;
10124                 }
10125 #endif
10126         }
10127
10128         if (overflow_handler) {
10129                 event->overflow_handler = overflow_handler;
10130                 event->overflow_handler_context = context;
10131         } else if (is_write_backward(event)){
10132                 event->overflow_handler = perf_event_output_backward;
10133                 event->overflow_handler_context = NULL;
10134         } else {
10135                 event->overflow_handler = perf_event_output_forward;
10136                 event->overflow_handler_context = NULL;
10137         }
10138
10139         perf_event__state_init(event);
10140
10141         pmu = NULL;
10142
10143         hwc = &event->hw;
10144         hwc->sample_period = attr->sample_period;
10145         if (attr->freq && attr->sample_freq)
10146                 hwc->sample_period = 1;
10147         hwc->last_period = hwc->sample_period;
10148
10149         local64_set(&hwc->period_left, hwc->sample_period);
10150
10151         /*
10152          * We currently do not support PERF_SAMPLE_READ on inherited events.
10153          * See perf_output_read().
10154          */
10155         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10156                 goto err_ns;
10157
10158         if (!has_branch_stack(event))
10159                 event->attr.branch_sample_type = 0;
10160
10161         if (cgroup_fd != -1) {
10162                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10163                 if (err)
10164                         goto err_ns;
10165         }
10166
10167         pmu = perf_init_event(event);
10168         if (IS_ERR(pmu)) {
10169                 err = PTR_ERR(pmu);
10170                 goto err_ns;
10171         }
10172
10173         err = exclusive_event_init(event);
10174         if (err)
10175                 goto err_pmu;
10176
10177         if (has_addr_filter(event)) {
10178                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10179                                                     sizeof(struct perf_addr_filter_range),
10180                                                     GFP_KERNEL);
10181                 if (!event->addr_filter_ranges) {
10182                         err = -ENOMEM;
10183                         goto err_per_task;
10184                 }
10185
10186                 /*
10187                  * Clone the parent's vma offsets: they are valid until exec()
10188                  * even if the mm is not shared with the parent.
10189                  */
10190                 if (event->parent) {
10191                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10192
10193                         raw_spin_lock_irq(&ifh->lock);
10194                         memcpy(event->addr_filter_ranges,
10195                                event->parent->addr_filter_ranges,
10196                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10197                         raw_spin_unlock_irq(&ifh->lock);
10198                 }
10199
10200                 /* force hw sync on the address filters */
10201                 event->addr_filters_gen = 1;
10202         }
10203
10204         if (!event->parent) {
10205                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10206                         err = get_callchain_buffers(attr->sample_max_stack);
10207                         if (err)
10208                                 goto err_addr_filters;
10209                 }
10210         }
10211
10212         /* symmetric to unaccount_event() in _free_event() */
10213         account_event(event);
10214
10215         return event;
10216
10217 err_addr_filters:
10218         kfree(event->addr_filter_ranges);
10219
10220 err_per_task:
10221         exclusive_event_destroy(event);
10222
10223 err_pmu:
10224         if (event->destroy)
10225                 event->destroy(event);
10226         module_put(pmu->module);
10227 err_ns:
10228         if (is_cgroup_event(event))
10229                 perf_detach_cgroup(event);
10230         if (event->ns)
10231                 put_pid_ns(event->ns);
10232         if (event->hw.target)
10233                 put_task_struct(event->hw.target);
10234         kfree(event);
10235
10236         return ERR_PTR(err);
10237 }
10238
10239 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10240                           struct perf_event_attr *attr)
10241 {
10242         u32 size;
10243         int ret;
10244
10245         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10246                 return -EFAULT;
10247
10248         /*
10249          * zero the full structure, so that a short copy will be nice.
10250          */
10251         memset(attr, 0, sizeof(*attr));
10252
10253         ret = get_user(size, &uattr->size);
10254         if (ret)
10255                 return ret;
10256
10257         if (size > PAGE_SIZE)   /* silly large */
10258                 goto err_size;
10259
10260         if (!size)              /* abi compat */
10261                 size = PERF_ATTR_SIZE_VER0;
10262
10263         if (size < PERF_ATTR_SIZE_VER0)
10264                 goto err_size;
10265
10266         /*
10267          * If we're handed a bigger struct than we know of,
10268          * ensure all the unknown bits are 0 - i.e. new
10269          * user-space does not rely on any kernel feature
10270          * extensions we dont know about yet.
10271          */
10272         if (size > sizeof(*attr)) {
10273                 unsigned char __user *addr;
10274                 unsigned char __user *end;
10275                 unsigned char val;
10276
10277                 addr = (void __user *)uattr + sizeof(*attr);
10278                 end  = (void __user *)uattr + size;
10279
10280                 for (; addr < end; addr++) {
10281                         ret = get_user(val, addr);
10282                         if (ret)
10283                                 return ret;
10284                         if (val)
10285                                 goto err_size;
10286                 }
10287                 size = sizeof(*attr);
10288         }
10289
10290         ret = copy_from_user(attr, uattr, size);
10291         if (ret)
10292                 return -EFAULT;
10293
10294         attr->size = size;
10295
10296         if (attr->__reserved_1)
10297                 return -EINVAL;
10298
10299         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10300                 return -EINVAL;
10301
10302         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10303                 return -EINVAL;
10304
10305         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10306                 u64 mask = attr->branch_sample_type;
10307
10308                 /* only using defined bits */
10309                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10310                         return -EINVAL;
10311
10312                 /* at least one branch bit must be set */
10313                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10314                         return -EINVAL;
10315
10316                 /* propagate priv level, when not set for branch */
10317                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10318
10319                         /* exclude_kernel checked on syscall entry */
10320                         if (!attr->exclude_kernel)
10321                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10322
10323                         if (!attr->exclude_user)
10324                                 mask |= PERF_SAMPLE_BRANCH_USER;
10325
10326                         if (!attr->exclude_hv)
10327                                 mask |= PERF_SAMPLE_BRANCH_HV;
10328                         /*
10329                          * adjust user setting (for HW filter setup)
10330                          */
10331                         attr->branch_sample_type = mask;
10332                 }
10333                 /* privileged levels capture (kernel, hv): check permissions */
10334                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10335                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10336                         return -EACCES;
10337         }
10338
10339         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10340                 ret = perf_reg_validate(attr->sample_regs_user);
10341                 if (ret)
10342                         return ret;
10343         }
10344
10345         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10346                 if (!arch_perf_have_user_stack_dump())
10347                         return -ENOSYS;
10348
10349                 /*
10350                  * We have __u32 type for the size, but so far
10351                  * we can only use __u16 as maximum due to the
10352                  * __u16 sample size limit.
10353                  */
10354                 if (attr->sample_stack_user >= USHRT_MAX)
10355                         return -EINVAL;
10356                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10357                         return -EINVAL;
10358         }
10359
10360         if (!attr->sample_max_stack)
10361                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10362
10363         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10364                 ret = perf_reg_validate(attr->sample_regs_intr);
10365 out:
10366         return ret;
10367
10368 err_size:
10369         put_user(sizeof(*attr), &uattr->size);
10370         ret = -E2BIG;
10371         goto out;
10372 }
10373
10374 static int
10375 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10376 {
10377         struct ring_buffer *rb = NULL;
10378         int ret = -EINVAL;
10379
10380         if (!output_event)
10381                 goto set;
10382
10383         /* don't allow circular references */
10384         if (event == output_event)
10385                 goto out;
10386
10387         /*
10388          * Don't allow cross-cpu buffers
10389          */
10390         if (output_event->cpu != event->cpu)
10391                 goto out;
10392
10393         /*
10394          * If its not a per-cpu rb, it must be the same task.
10395          */
10396         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10397                 goto out;
10398
10399         /*
10400          * Mixing clocks in the same buffer is trouble you don't need.
10401          */
10402         if (output_event->clock != event->clock)
10403                 goto out;
10404
10405         /*
10406          * Either writing ring buffer from beginning or from end.
10407          * Mixing is not allowed.
10408          */
10409         if (is_write_backward(output_event) != is_write_backward(event))
10410                 goto out;
10411
10412         /*
10413          * If both events generate aux data, they must be on the same PMU
10414          */
10415         if (has_aux(event) && has_aux(output_event) &&
10416             event->pmu != output_event->pmu)
10417                 goto out;
10418
10419 set:
10420         mutex_lock(&event->mmap_mutex);
10421         /* Can't redirect output if we've got an active mmap() */
10422         if (atomic_read(&event->mmap_count))
10423                 goto unlock;
10424
10425         if (output_event) {
10426                 /* get the rb we want to redirect to */
10427                 rb = ring_buffer_get(output_event);
10428                 if (!rb)
10429                         goto unlock;
10430         }
10431
10432         ring_buffer_attach(event, rb);
10433
10434         ret = 0;
10435 unlock:
10436         mutex_unlock(&event->mmap_mutex);
10437
10438 out:
10439         return ret;
10440 }
10441
10442 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10443 {
10444         if (b < a)
10445                 swap(a, b);
10446
10447         mutex_lock(a);
10448         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10449 }
10450
10451 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10452 {
10453         bool nmi_safe = false;
10454
10455         switch (clk_id) {
10456         case CLOCK_MONOTONIC:
10457                 event->clock = &ktime_get_mono_fast_ns;
10458                 nmi_safe = true;
10459                 break;
10460
10461         case CLOCK_MONOTONIC_RAW:
10462                 event->clock = &ktime_get_raw_fast_ns;
10463                 nmi_safe = true;
10464                 break;
10465
10466         case CLOCK_REALTIME:
10467                 event->clock = &ktime_get_real_ns;
10468                 break;
10469
10470         case CLOCK_BOOTTIME:
10471                 event->clock = &ktime_get_boot_ns;
10472                 break;
10473
10474         case CLOCK_TAI:
10475                 event->clock = &ktime_get_tai_ns;
10476                 break;
10477
10478         default:
10479                 return -EINVAL;
10480         }
10481
10482         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10483                 return -EINVAL;
10484
10485         return 0;
10486 }
10487
10488 /*
10489  * Variation on perf_event_ctx_lock_nested(), except we take two context
10490  * mutexes.
10491  */
10492 static struct perf_event_context *
10493 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10494                              struct perf_event_context *ctx)
10495 {
10496         struct perf_event_context *gctx;
10497
10498 again:
10499         rcu_read_lock();
10500         gctx = READ_ONCE(group_leader->ctx);
10501         if (!atomic_inc_not_zero(&gctx->refcount)) {
10502                 rcu_read_unlock();
10503                 goto again;
10504         }
10505         rcu_read_unlock();
10506
10507         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10508
10509         if (group_leader->ctx != gctx) {
10510                 mutex_unlock(&ctx->mutex);
10511                 mutex_unlock(&gctx->mutex);
10512                 put_ctx(gctx);
10513                 goto again;
10514         }
10515
10516         return gctx;
10517 }
10518
10519 /**
10520  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10521  *
10522  * @attr_uptr:  event_id type attributes for monitoring/sampling
10523  * @pid:                target pid
10524  * @cpu:                target cpu
10525  * @group_fd:           group leader event fd
10526  */
10527 SYSCALL_DEFINE5(perf_event_open,
10528                 struct perf_event_attr __user *, attr_uptr,
10529                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10530 {
10531         struct perf_event *group_leader = NULL, *output_event = NULL;
10532         struct perf_event *event, *sibling;
10533         struct perf_event_attr attr;
10534         struct perf_event_context *ctx, *uninitialized_var(gctx);
10535         struct file *event_file = NULL;
10536         struct fd group = {NULL, 0};
10537         struct task_struct *task = NULL;
10538         struct pmu *pmu;
10539         int event_fd;
10540         int move_group = 0;
10541         int err;
10542         int f_flags = O_RDWR;
10543         int cgroup_fd = -1;
10544
10545         /* for future expandability... */
10546         if (flags & ~PERF_FLAG_ALL)
10547                 return -EINVAL;
10548
10549         err = perf_copy_attr(attr_uptr, &attr);
10550         if (err)
10551                 return err;
10552
10553         if (!attr.exclude_kernel) {
10554                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10555                         return -EACCES;
10556         }
10557
10558         if (attr.namespaces) {
10559                 if (!capable(CAP_SYS_ADMIN))
10560                         return -EACCES;
10561         }
10562
10563         if (attr.freq) {
10564                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10565                         return -EINVAL;
10566         } else {
10567                 if (attr.sample_period & (1ULL << 63))
10568                         return -EINVAL;
10569         }
10570
10571         /* Only privileged users can get physical addresses */
10572         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10573             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10574                 return -EACCES;
10575
10576         /*
10577          * In cgroup mode, the pid argument is used to pass the fd
10578          * opened to the cgroup directory in cgroupfs. The cpu argument
10579          * designates the cpu on which to monitor threads from that
10580          * cgroup.
10581          */
10582         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10583                 return -EINVAL;
10584
10585         if (flags & PERF_FLAG_FD_CLOEXEC)
10586                 f_flags |= O_CLOEXEC;
10587
10588         event_fd = get_unused_fd_flags(f_flags);
10589         if (event_fd < 0)
10590                 return event_fd;
10591
10592         if (group_fd != -1) {
10593                 err = perf_fget_light(group_fd, &group);
10594                 if (err)
10595                         goto err_fd;
10596                 group_leader = group.file->private_data;
10597                 if (flags & PERF_FLAG_FD_OUTPUT)
10598                         output_event = group_leader;
10599                 if (flags & PERF_FLAG_FD_NO_GROUP)
10600                         group_leader = NULL;
10601         }
10602
10603         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10604                 task = find_lively_task_by_vpid(pid);
10605                 if (IS_ERR(task)) {
10606                         err = PTR_ERR(task);
10607                         goto err_group_fd;
10608                 }
10609         }
10610
10611         if (task && group_leader &&
10612             group_leader->attr.inherit != attr.inherit) {
10613                 err = -EINVAL;
10614                 goto err_task;
10615         }
10616
10617         if (task) {
10618                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10619                 if (err)
10620                         goto err_task;
10621
10622                 /*
10623                  * Reuse ptrace permission checks for now.
10624                  *
10625                  * We must hold cred_guard_mutex across this and any potential
10626                  * perf_install_in_context() call for this new event to
10627                  * serialize against exec() altering our credentials (and the
10628                  * perf_event_exit_task() that could imply).
10629                  */
10630                 err = -EACCES;
10631                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10632                         goto err_cred;
10633         }
10634
10635         if (flags & PERF_FLAG_PID_CGROUP)
10636                 cgroup_fd = pid;
10637
10638         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10639                                  NULL, NULL, cgroup_fd);
10640         if (IS_ERR(event)) {
10641                 err = PTR_ERR(event);
10642                 goto err_cred;
10643         }
10644
10645         if (is_sampling_event(event)) {
10646                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10647                         err = -EOPNOTSUPP;
10648                         goto err_alloc;
10649                 }
10650         }
10651
10652         /*
10653          * Special case software events and allow them to be part of
10654          * any hardware group.
10655          */
10656         pmu = event->pmu;
10657
10658         if (attr.use_clockid) {
10659                 err = perf_event_set_clock(event, attr.clockid);
10660                 if (err)
10661                         goto err_alloc;
10662         }
10663
10664         if (pmu->task_ctx_nr == perf_sw_context)
10665                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10666
10667         if (group_leader) {
10668                 if (is_software_event(event) &&
10669                     !in_software_context(group_leader)) {
10670                         /*
10671                          * If the event is a sw event, but the group_leader
10672                          * is on hw context.
10673                          *
10674                          * Allow the addition of software events to hw
10675                          * groups, this is safe because software events
10676                          * never fail to schedule.
10677                          */
10678                         pmu = group_leader->ctx->pmu;
10679                 } else if (!is_software_event(event) &&
10680                            is_software_event(group_leader) &&
10681                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10682                         /*
10683                          * In case the group is a pure software group, and we
10684                          * try to add a hardware event, move the whole group to
10685                          * the hardware context.
10686                          */
10687                         move_group = 1;
10688                 }
10689         }
10690
10691         /*
10692          * Get the target context (task or percpu):
10693          */
10694         ctx = find_get_context(pmu, task, event);
10695         if (IS_ERR(ctx)) {
10696                 err = PTR_ERR(ctx);
10697                 goto err_alloc;
10698         }
10699
10700         /*
10701          * Look up the group leader (we will attach this event to it):
10702          */
10703         if (group_leader) {
10704                 err = -EINVAL;
10705
10706                 /*
10707                  * Do not allow a recursive hierarchy (this new sibling
10708                  * becoming part of another group-sibling):
10709                  */
10710                 if (group_leader->group_leader != group_leader)
10711                         goto err_context;
10712
10713                 /* All events in a group should have the same clock */
10714                 if (group_leader->clock != event->clock)
10715                         goto err_context;
10716
10717                 /*
10718                  * Make sure we're both events for the same CPU;
10719                  * grouping events for different CPUs is broken; since
10720                  * you can never concurrently schedule them anyhow.
10721                  */
10722                 if (group_leader->cpu != event->cpu)
10723                         goto err_context;
10724
10725                 /*
10726                  * Make sure we're both on the same task, or both
10727                  * per-CPU events.
10728                  */
10729                 if (group_leader->ctx->task != ctx->task)
10730                         goto err_context;
10731
10732                 /*
10733                  * Do not allow to attach to a group in a different task
10734                  * or CPU context. If we're moving SW events, we'll fix
10735                  * this up later, so allow that.
10736                  */
10737                 if (!move_group && group_leader->ctx != ctx)
10738                         goto err_context;
10739
10740                 /*
10741                  * Only a group leader can be exclusive or pinned
10742                  */
10743                 if (attr.exclusive || attr.pinned)
10744                         goto err_context;
10745         }
10746
10747         if (output_event) {
10748                 err = perf_event_set_output(event, output_event);
10749                 if (err)
10750                         goto err_context;
10751         }
10752
10753         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10754                                         f_flags);
10755         if (IS_ERR(event_file)) {
10756                 err = PTR_ERR(event_file);
10757                 event_file = NULL;
10758                 goto err_context;
10759         }
10760
10761         if (move_group) {
10762                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10763
10764                 if (gctx->task == TASK_TOMBSTONE) {
10765                         err = -ESRCH;
10766                         goto err_locked;
10767                 }
10768
10769                 /*
10770                  * Check if we raced against another sys_perf_event_open() call
10771                  * moving the software group underneath us.
10772                  */
10773                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10774                         /*
10775                          * If someone moved the group out from under us, check
10776                          * if this new event wound up on the same ctx, if so
10777                          * its the regular !move_group case, otherwise fail.
10778                          */
10779                         if (gctx != ctx) {
10780                                 err = -EINVAL;
10781                                 goto err_locked;
10782                         } else {
10783                                 perf_event_ctx_unlock(group_leader, gctx);
10784                                 move_group = 0;
10785                         }
10786                 }
10787
10788                 /*
10789                  * Failure to create exclusive events returns -EBUSY.
10790                  */
10791                 err = -EBUSY;
10792                 if (!exclusive_event_installable(group_leader, ctx))
10793                         goto err_locked;
10794
10795                 for_each_sibling_event(sibling, group_leader) {
10796                         if (!exclusive_event_installable(sibling, ctx))
10797                                 goto err_locked;
10798                 }
10799         } else {
10800                 mutex_lock(&ctx->mutex);
10801         }
10802
10803         if (ctx->task == TASK_TOMBSTONE) {
10804                 err = -ESRCH;
10805                 goto err_locked;
10806         }
10807
10808         if (!perf_event_validate_size(event)) {
10809                 err = -E2BIG;
10810                 goto err_locked;
10811         }
10812
10813         if (!task) {
10814                 /*
10815                  * Check if the @cpu we're creating an event for is online.
10816                  *
10817                  * We use the perf_cpu_context::ctx::mutex to serialize against
10818                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10819                  */
10820                 struct perf_cpu_context *cpuctx =
10821                         container_of(ctx, struct perf_cpu_context, ctx);
10822
10823                 if (!cpuctx->online) {
10824                         err = -ENODEV;
10825                         goto err_locked;
10826                 }
10827         }
10828
10829
10830         /*
10831          * Must be under the same ctx::mutex as perf_install_in_context(),
10832          * because we need to serialize with concurrent event creation.
10833          */
10834         if (!exclusive_event_installable(event, ctx)) {
10835                 err = -EBUSY;
10836                 goto err_locked;
10837         }
10838
10839         WARN_ON_ONCE(ctx->parent_ctx);
10840
10841         /*
10842          * This is the point on no return; we cannot fail hereafter. This is
10843          * where we start modifying current state.
10844          */
10845
10846         if (move_group) {
10847                 /*
10848                  * See perf_event_ctx_lock() for comments on the details
10849                  * of swizzling perf_event::ctx.
10850                  */
10851                 perf_remove_from_context(group_leader, 0);
10852                 put_ctx(gctx);
10853
10854                 for_each_sibling_event(sibling, group_leader) {
10855                         perf_remove_from_context(sibling, 0);
10856                         put_ctx(gctx);
10857                 }
10858
10859                 /*
10860                  * Wait for everybody to stop referencing the events through
10861                  * the old lists, before installing it on new lists.
10862                  */
10863                 synchronize_rcu();
10864
10865                 /*
10866                  * Install the group siblings before the group leader.
10867                  *
10868                  * Because a group leader will try and install the entire group
10869                  * (through the sibling list, which is still in-tact), we can
10870                  * end up with siblings installed in the wrong context.
10871                  *
10872                  * By installing siblings first we NO-OP because they're not
10873                  * reachable through the group lists.
10874                  */
10875                 for_each_sibling_event(sibling, group_leader) {
10876                         perf_event__state_init(sibling);
10877                         perf_install_in_context(ctx, sibling, sibling->cpu);
10878                         get_ctx(ctx);
10879                 }
10880
10881                 /*
10882                  * Removing from the context ends up with disabled
10883                  * event. What we want here is event in the initial
10884                  * startup state, ready to be add into new context.
10885                  */
10886                 perf_event__state_init(group_leader);
10887                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10888                 get_ctx(ctx);
10889         }
10890
10891         /*
10892          * Precalculate sample_data sizes; do while holding ctx::mutex such
10893          * that we're serialized against further additions and before
10894          * perf_install_in_context() which is the point the event is active and
10895          * can use these values.
10896          */
10897         perf_event__header_size(event);
10898         perf_event__id_header_size(event);
10899
10900         event->owner = current;
10901
10902         perf_install_in_context(ctx, event, event->cpu);
10903         perf_unpin_context(ctx);
10904
10905         if (move_group)
10906                 perf_event_ctx_unlock(group_leader, gctx);
10907         mutex_unlock(&ctx->mutex);
10908
10909         if (task) {
10910                 mutex_unlock(&task->signal->cred_guard_mutex);
10911                 put_task_struct(task);
10912         }
10913
10914         mutex_lock(&current->perf_event_mutex);
10915         list_add_tail(&event->owner_entry, &current->perf_event_list);
10916         mutex_unlock(&current->perf_event_mutex);
10917
10918         /*
10919          * Drop the reference on the group_event after placing the
10920          * new event on the sibling_list. This ensures destruction
10921          * of the group leader will find the pointer to itself in
10922          * perf_group_detach().
10923          */
10924         fdput(group);
10925         fd_install(event_fd, event_file);
10926         return event_fd;
10927
10928 err_locked:
10929         if (move_group)
10930                 perf_event_ctx_unlock(group_leader, gctx);
10931         mutex_unlock(&ctx->mutex);
10932 /* err_file: */
10933         fput(event_file);
10934 err_context:
10935         perf_unpin_context(ctx);
10936         put_ctx(ctx);
10937 err_alloc:
10938         /*
10939          * If event_file is set, the fput() above will have called ->release()
10940          * and that will take care of freeing the event.
10941          */
10942         if (!event_file)
10943                 free_event(event);
10944 err_cred:
10945         if (task)
10946                 mutex_unlock(&task->signal->cred_guard_mutex);
10947 err_task:
10948         if (task)
10949                 put_task_struct(task);
10950 err_group_fd:
10951         fdput(group);
10952 err_fd:
10953         put_unused_fd(event_fd);
10954         return err;
10955 }
10956
10957 /**
10958  * perf_event_create_kernel_counter
10959  *
10960  * @attr: attributes of the counter to create
10961  * @cpu: cpu in which the counter is bound
10962  * @task: task to profile (NULL for percpu)
10963  */
10964 struct perf_event *
10965 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10966                                  struct task_struct *task,
10967                                  perf_overflow_handler_t overflow_handler,
10968                                  void *context)
10969 {
10970         struct perf_event_context *ctx;
10971         struct perf_event *event;
10972         int err;
10973
10974         /*
10975          * Get the target context (task or percpu):
10976          */
10977
10978         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10979                                  overflow_handler, context, -1);
10980         if (IS_ERR(event)) {
10981                 err = PTR_ERR(event);
10982                 goto err;
10983         }
10984
10985         /* Mark owner so we could distinguish it from user events. */
10986         event->owner = TASK_TOMBSTONE;
10987
10988         ctx = find_get_context(event->pmu, task, event);
10989         if (IS_ERR(ctx)) {
10990                 err = PTR_ERR(ctx);
10991                 goto err_free;
10992         }
10993
10994         WARN_ON_ONCE(ctx->parent_ctx);
10995         mutex_lock(&ctx->mutex);
10996         if (ctx->task == TASK_TOMBSTONE) {
10997                 err = -ESRCH;
10998                 goto err_unlock;
10999         }
11000
11001         if (!task) {
11002                 /*
11003                  * Check if the @cpu we're creating an event for is online.
11004                  *
11005                  * We use the perf_cpu_context::ctx::mutex to serialize against
11006                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11007                  */
11008                 struct perf_cpu_context *cpuctx =
11009                         container_of(ctx, struct perf_cpu_context, ctx);
11010                 if (!cpuctx->online) {
11011                         err = -ENODEV;
11012                         goto err_unlock;
11013                 }
11014         }
11015
11016         if (!exclusive_event_installable(event, ctx)) {
11017                 err = -EBUSY;
11018                 goto err_unlock;
11019         }
11020
11021         perf_install_in_context(ctx, event, event->cpu);
11022         perf_unpin_context(ctx);
11023         mutex_unlock(&ctx->mutex);
11024
11025         return event;
11026
11027 err_unlock:
11028         mutex_unlock(&ctx->mutex);
11029         perf_unpin_context(ctx);
11030         put_ctx(ctx);
11031 err_free:
11032         free_event(event);
11033 err:
11034         return ERR_PTR(err);
11035 }
11036 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11037
11038 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11039 {
11040         struct perf_event_context *src_ctx;
11041         struct perf_event_context *dst_ctx;
11042         struct perf_event *event, *tmp;
11043         LIST_HEAD(events);
11044
11045         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11046         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11047
11048         /*
11049          * See perf_event_ctx_lock() for comments on the details
11050          * of swizzling perf_event::ctx.
11051          */
11052         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11053         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11054                                  event_entry) {
11055                 perf_remove_from_context(event, 0);
11056                 unaccount_event_cpu(event, src_cpu);
11057                 put_ctx(src_ctx);
11058                 list_add(&event->migrate_entry, &events);
11059         }
11060
11061         /*
11062          * Wait for the events to quiesce before re-instating them.
11063          */
11064         synchronize_rcu();
11065
11066         /*
11067          * Re-instate events in 2 passes.
11068          *
11069          * Skip over group leaders and only install siblings on this first
11070          * pass, siblings will not get enabled without a leader, however a
11071          * leader will enable its siblings, even if those are still on the old
11072          * context.
11073          */
11074         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11075                 if (event->group_leader == event)
11076                         continue;
11077
11078                 list_del(&event->migrate_entry);
11079                 if (event->state >= PERF_EVENT_STATE_OFF)
11080                         event->state = PERF_EVENT_STATE_INACTIVE;
11081                 account_event_cpu(event, dst_cpu);
11082                 perf_install_in_context(dst_ctx, event, dst_cpu);
11083                 get_ctx(dst_ctx);
11084         }
11085
11086         /*
11087          * Once all the siblings are setup properly, install the group leaders
11088          * to make it go.
11089          */
11090         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11091                 list_del(&event->migrate_entry);
11092                 if (event->state >= PERF_EVENT_STATE_OFF)
11093                         event->state = PERF_EVENT_STATE_INACTIVE;
11094                 account_event_cpu(event, dst_cpu);
11095                 perf_install_in_context(dst_ctx, event, dst_cpu);
11096                 get_ctx(dst_ctx);
11097         }
11098         mutex_unlock(&dst_ctx->mutex);
11099         mutex_unlock(&src_ctx->mutex);
11100 }
11101 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11102
11103 static void sync_child_event(struct perf_event *child_event,
11104                                struct task_struct *child)
11105 {
11106         struct perf_event *parent_event = child_event->parent;
11107         u64 child_val;
11108
11109         if (child_event->attr.inherit_stat)
11110                 perf_event_read_event(child_event, child);
11111
11112         child_val = perf_event_count(child_event);
11113
11114         /*
11115          * Add back the child's count to the parent's count:
11116          */
11117         atomic64_add(child_val, &parent_event->child_count);
11118         atomic64_add(child_event->total_time_enabled,
11119                      &parent_event->child_total_time_enabled);
11120         atomic64_add(child_event->total_time_running,
11121                      &parent_event->child_total_time_running);
11122 }
11123
11124 static void
11125 perf_event_exit_event(struct perf_event *child_event,
11126                       struct perf_event_context *child_ctx,
11127                       struct task_struct *child)
11128 {
11129         struct perf_event *parent_event = child_event->parent;
11130
11131         /*
11132          * Do not destroy the 'original' grouping; because of the context
11133          * switch optimization the original events could've ended up in a
11134          * random child task.
11135          *
11136          * If we were to destroy the original group, all group related
11137          * operations would cease to function properly after this random
11138          * child dies.
11139          *
11140          * Do destroy all inherited groups, we don't care about those
11141          * and being thorough is better.
11142          */
11143         raw_spin_lock_irq(&child_ctx->lock);
11144         WARN_ON_ONCE(child_ctx->is_active);
11145
11146         if (parent_event)
11147                 perf_group_detach(child_event);
11148         list_del_event(child_event, child_ctx);
11149         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11150         raw_spin_unlock_irq(&child_ctx->lock);
11151
11152         /*
11153          * Parent events are governed by their filedesc, retain them.
11154          */
11155         if (!parent_event) {
11156                 perf_event_wakeup(child_event);
11157                 return;
11158         }
11159         /*
11160          * Child events can be cleaned up.
11161          */
11162
11163         sync_child_event(child_event, child);
11164
11165         /*
11166          * Remove this event from the parent's list
11167          */
11168         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11169         mutex_lock(&parent_event->child_mutex);
11170         list_del_init(&child_event->child_list);
11171         mutex_unlock(&parent_event->child_mutex);
11172
11173         /*
11174          * Kick perf_poll() for is_event_hup().
11175          */
11176         perf_event_wakeup(parent_event);
11177         free_event(child_event);
11178         put_event(parent_event);
11179 }
11180
11181 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11182 {
11183         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11184         struct perf_event *child_event, *next;
11185
11186         WARN_ON_ONCE(child != current);
11187
11188         child_ctx = perf_pin_task_context(child, ctxn);
11189         if (!child_ctx)
11190                 return;
11191
11192         /*
11193          * In order to reduce the amount of tricky in ctx tear-down, we hold
11194          * ctx::mutex over the entire thing. This serializes against almost
11195          * everything that wants to access the ctx.
11196          *
11197          * The exception is sys_perf_event_open() /
11198          * perf_event_create_kernel_count() which does find_get_context()
11199          * without ctx::mutex (it cannot because of the move_group double mutex
11200          * lock thing). See the comments in perf_install_in_context().
11201          */
11202         mutex_lock(&child_ctx->mutex);
11203
11204         /*
11205          * In a single ctx::lock section, de-schedule the events and detach the
11206          * context from the task such that we cannot ever get it scheduled back
11207          * in.
11208          */
11209         raw_spin_lock_irq(&child_ctx->lock);
11210         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11211
11212         /*
11213          * Now that the context is inactive, destroy the task <-> ctx relation
11214          * and mark the context dead.
11215          */
11216         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11217         put_ctx(child_ctx); /* cannot be last */
11218         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11219         put_task_struct(current); /* cannot be last */
11220
11221         clone_ctx = unclone_ctx(child_ctx);
11222         raw_spin_unlock_irq(&child_ctx->lock);
11223
11224         if (clone_ctx)
11225                 put_ctx(clone_ctx);
11226
11227         /*
11228          * Report the task dead after unscheduling the events so that we
11229          * won't get any samples after PERF_RECORD_EXIT. We can however still
11230          * get a few PERF_RECORD_READ events.
11231          */
11232         perf_event_task(child, child_ctx, 0);
11233
11234         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11235                 perf_event_exit_event(child_event, child_ctx, child);
11236
11237         mutex_unlock(&child_ctx->mutex);
11238
11239         put_ctx(child_ctx);
11240 }
11241
11242 /*
11243  * When a child task exits, feed back event values to parent events.
11244  *
11245  * Can be called with cred_guard_mutex held when called from
11246  * install_exec_creds().
11247  */
11248 void perf_event_exit_task(struct task_struct *child)
11249 {
11250         struct perf_event *event, *tmp;
11251         int ctxn;
11252
11253         mutex_lock(&child->perf_event_mutex);
11254         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11255                                  owner_entry) {
11256                 list_del_init(&event->owner_entry);
11257
11258                 /*
11259                  * Ensure the list deletion is visible before we clear
11260                  * the owner, closes a race against perf_release() where
11261                  * we need to serialize on the owner->perf_event_mutex.
11262                  */
11263                 smp_store_release(&event->owner, NULL);
11264         }
11265         mutex_unlock(&child->perf_event_mutex);
11266
11267         for_each_task_context_nr(ctxn)
11268                 perf_event_exit_task_context(child, ctxn);
11269
11270         /*
11271          * The perf_event_exit_task_context calls perf_event_task
11272          * with child's task_ctx, which generates EXIT events for
11273          * child contexts and sets child->perf_event_ctxp[] to NULL.
11274          * At this point we need to send EXIT events to cpu contexts.
11275          */
11276         perf_event_task(child, NULL, 0);
11277 }
11278
11279 static void perf_free_event(struct perf_event *event,
11280                             struct perf_event_context *ctx)
11281 {
11282         struct perf_event *parent = event->parent;
11283
11284         if (WARN_ON_ONCE(!parent))
11285                 return;
11286
11287         mutex_lock(&parent->child_mutex);
11288         list_del_init(&event->child_list);
11289         mutex_unlock(&parent->child_mutex);
11290
11291         put_event(parent);
11292
11293         raw_spin_lock_irq(&ctx->lock);
11294         perf_group_detach(event);
11295         list_del_event(event, ctx);
11296         raw_spin_unlock_irq(&ctx->lock);
11297         free_event(event);
11298 }
11299
11300 /*
11301  * Free a context as created by inheritance by perf_event_init_task() below,
11302  * used by fork() in case of fail.
11303  *
11304  * Even though the task has never lived, the context and events have been
11305  * exposed through the child_list, so we must take care tearing it all down.
11306  */
11307 void perf_event_free_task(struct task_struct *task)
11308 {
11309         struct perf_event_context *ctx;
11310         struct perf_event *event, *tmp;
11311         int ctxn;
11312
11313         for_each_task_context_nr(ctxn) {
11314                 ctx = task->perf_event_ctxp[ctxn];
11315                 if (!ctx)
11316                         continue;
11317
11318                 mutex_lock(&ctx->mutex);
11319                 raw_spin_lock_irq(&ctx->lock);
11320                 /*
11321                  * Destroy the task <-> ctx relation and mark the context dead.
11322                  *
11323                  * This is important because even though the task hasn't been
11324                  * exposed yet the context has been (through child_list).
11325                  */
11326                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11327                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11328                 put_task_struct(task); /* cannot be last */
11329                 raw_spin_unlock_irq(&ctx->lock);
11330
11331                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11332                         perf_free_event(event, ctx);
11333
11334                 mutex_unlock(&ctx->mutex);
11335
11336                 /*
11337                  * perf_event_release_kernel() could've stolen some of our
11338                  * child events and still have them on its free_list. In that
11339                  * case we must wait for these events to have been freed (in
11340                  * particular all their references to this task must've been
11341                  * dropped).
11342                  *
11343                  * Without this copy_process() will unconditionally free this
11344                  * task (irrespective of its reference count) and
11345                  * _free_event()'s put_task_struct(event->hw.target) will be a
11346                  * use-after-free.
11347                  *
11348                  * Wait for all events to drop their context reference.
11349                  */
11350                 wait_var_event(&ctx->refcount, atomic_read(&ctx->refcount) == 1);
11351                 put_ctx(ctx); /* must be last */
11352         }
11353 }
11354
11355 void perf_event_delayed_put(struct task_struct *task)
11356 {
11357         int ctxn;
11358
11359         for_each_task_context_nr(ctxn)
11360                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11361 }
11362
11363 struct file *perf_event_get(unsigned int fd)
11364 {
11365         struct file *file;
11366
11367         file = fget_raw(fd);
11368         if (!file)
11369                 return ERR_PTR(-EBADF);
11370
11371         if (file->f_op != &perf_fops) {
11372                 fput(file);
11373                 return ERR_PTR(-EBADF);
11374         }
11375
11376         return file;
11377 }
11378
11379 const struct perf_event *perf_get_event(struct file *file)
11380 {
11381         if (file->f_op != &perf_fops)
11382                 return ERR_PTR(-EINVAL);
11383
11384         return file->private_data;
11385 }
11386
11387 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11388 {
11389         if (!event)
11390                 return ERR_PTR(-EINVAL);
11391
11392         return &event->attr;
11393 }
11394
11395 /*
11396  * Inherit an event from parent task to child task.
11397  *
11398  * Returns:
11399  *  - valid pointer on success
11400  *  - NULL for orphaned events
11401  *  - IS_ERR() on error
11402  */
11403 static struct perf_event *
11404 inherit_event(struct perf_event *parent_event,
11405               struct task_struct *parent,
11406               struct perf_event_context *parent_ctx,
11407               struct task_struct *child,
11408               struct perf_event *group_leader,
11409               struct perf_event_context *child_ctx)
11410 {
11411         enum perf_event_state parent_state = parent_event->state;
11412         struct perf_event *child_event;
11413         unsigned long flags;
11414
11415         /*
11416          * Instead of creating recursive hierarchies of events,
11417          * we link inherited events back to the original parent,
11418          * which has a filp for sure, which we use as the reference
11419          * count:
11420          */
11421         if (parent_event->parent)
11422                 parent_event = parent_event->parent;
11423
11424         child_event = perf_event_alloc(&parent_event->attr,
11425                                            parent_event->cpu,
11426                                            child,
11427                                            group_leader, parent_event,
11428                                            NULL, NULL, -1);
11429         if (IS_ERR(child_event))
11430                 return child_event;
11431
11432
11433         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11434             !child_ctx->task_ctx_data) {
11435                 struct pmu *pmu = child_event->pmu;
11436
11437                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11438                                                    GFP_KERNEL);
11439                 if (!child_ctx->task_ctx_data) {
11440                         free_event(child_event);
11441                         return ERR_PTR(-ENOMEM);
11442                 }
11443         }
11444
11445         /*
11446          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11447          * must be under the same lock in order to serialize against
11448          * perf_event_release_kernel(), such that either we must observe
11449          * is_orphaned_event() or they will observe us on the child_list.
11450          */
11451         mutex_lock(&parent_event->child_mutex);
11452         if (is_orphaned_event(parent_event) ||
11453             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11454                 mutex_unlock(&parent_event->child_mutex);
11455                 /* task_ctx_data is freed with child_ctx */
11456                 free_event(child_event);
11457                 return NULL;
11458         }
11459
11460         get_ctx(child_ctx);
11461
11462         /*
11463          * Make the child state follow the state of the parent event,
11464          * not its attr.disabled bit.  We hold the parent's mutex,
11465          * so we won't race with perf_event_{en, dis}able_family.
11466          */
11467         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11468                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11469         else
11470                 child_event->state = PERF_EVENT_STATE_OFF;
11471
11472         if (parent_event->attr.freq) {
11473                 u64 sample_period = parent_event->hw.sample_period;
11474                 struct hw_perf_event *hwc = &child_event->hw;
11475
11476                 hwc->sample_period = sample_period;
11477                 hwc->last_period   = sample_period;
11478
11479                 local64_set(&hwc->period_left, sample_period);
11480         }
11481
11482         child_event->ctx = child_ctx;
11483         child_event->overflow_handler = parent_event->overflow_handler;
11484         child_event->overflow_handler_context
11485                 = parent_event->overflow_handler_context;
11486
11487         /*
11488          * Precalculate sample_data sizes
11489          */
11490         perf_event__header_size(child_event);
11491         perf_event__id_header_size(child_event);
11492
11493         /*
11494          * Link it up in the child's context:
11495          */
11496         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11497         add_event_to_ctx(child_event, child_ctx);
11498         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11499
11500         /*
11501          * Link this into the parent event's child list
11502          */
11503         list_add_tail(&child_event->child_list, &parent_event->child_list);
11504         mutex_unlock(&parent_event->child_mutex);
11505
11506         return child_event;
11507 }
11508
11509 /*
11510  * Inherits an event group.
11511  *
11512  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11513  * This matches with perf_event_release_kernel() removing all child events.
11514  *
11515  * Returns:
11516  *  - 0 on success
11517  *  - <0 on error
11518  */
11519 static int inherit_group(struct perf_event *parent_event,
11520               struct task_struct *parent,
11521               struct perf_event_context *parent_ctx,
11522               struct task_struct *child,
11523               struct perf_event_context *child_ctx)
11524 {
11525         struct perf_event *leader;
11526         struct perf_event *sub;
11527         struct perf_event *child_ctr;
11528
11529         leader = inherit_event(parent_event, parent, parent_ctx,
11530                                  child, NULL, child_ctx);
11531         if (IS_ERR(leader))
11532                 return PTR_ERR(leader);
11533         /*
11534          * @leader can be NULL here because of is_orphaned_event(). In this
11535          * case inherit_event() will create individual events, similar to what
11536          * perf_group_detach() would do anyway.
11537          */
11538         for_each_sibling_event(sub, parent_event) {
11539                 child_ctr = inherit_event(sub, parent, parent_ctx,
11540                                             child, leader, child_ctx);
11541                 if (IS_ERR(child_ctr))
11542                         return PTR_ERR(child_ctr);
11543         }
11544         return 0;
11545 }
11546
11547 /*
11548  * Creates the child task context and tries to inherit the event-group.
11549  *
11550  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11551  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11552  * consistent with perf_event_release_kernel() removing all child events.
11553  *
11554  * Returns:
11555  *  - 0 on success
11556  *  - <0 on error
11557  */
11558 static int
11559 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11560                    struct perf_event_context *parent_ctx,
11561                    struct task_struct *child, int ctxn,
11562                    int *inherited_all)
11563 {
11564         int ret;
11565         struct perf_event_context *child_ctx;
11566
11567         if (!event->attr.inherit) {
11568                 *inherited_all = 0;
11569                 return 0;
11570         }
11571
11572         child_ctx = child->perf_event_ctxp[ctxn];
11573         if (!child_ctx) {
11574                 /*
11575                  * This is executed from the parent task context, so
11576                  * inherit events that have been marked for cloning.
11577                  * First allocate and initialize a context for the
11578                  * child.
11579                  */
11580                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11581                 if (!child_ctx)
11582                         return -ENOMEM;
11583
11584                 child->perf_event_ctxp[ctxn] = child_ctx;
11585         }
11586
11587         ret = inherit_group(event, parent, parent_ctx,
11588                             child, child_ctx);
11589
11590         if (ret)
11591                 *inherited_all = 0;
11592
11593         return ret;
11594 }
11595
11596 /*
11597  * Initialize the perf_event context in task_struct
11598  */
11599 static int perf_event_init_context(struct task_struct *child, int ctxn)
11600 {
11601         struct perf_event_context *child_ctx, *parent_ctx;
11602         struct perf_event_context *cloned_ctx;
11603         struct perf_event *event;
11604         struct task_struct *parent = current;
11605         int inherited_all = 1;
11606         unsigned long flags;
11607         int ret = 0;
11608
11609         if (likely(!parent->perf_event_ctxp[ctxn]))
11610                 return 0;
11611
11612         /*
11613          * If the parent's context is a clone, pin it so it won't get
11614          * swapped under us.
11615          */
11616         parent_ctx = perf_pin_task_context(parent, ctxn);
11617         if (!parent_ctx)
11618                 return 0;
11619
11620         /*
11621          * No need to check if parent_ctx != NULL here; since we saw
11622          * it non-NULL earlier, the only reason for it to become NULL
11623          * is if we exit, and since we're currently in the middle of
11624          * a fork we can't be exiting at the same time.
11625          */
11626
11627         /*
11628          * Lock the parent list. No need to lock the child - not PID
11629          * hashed yet and not running, so nobody can access it.
11630          */
11631         mutex_lock(&parent_ctx->mutex);
11632
11633         /*
11634          * We dont have to disable NMIs - we are only looking at
11635          * the list, not manipulating it:
11636          */
11637         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11638                 ret = inherit_task_group(event, parent, parent_ctx,
11639                                          child, ctxn, &inherited_all);
11640                 if (ret)
11641                         goto out_unlock;
11642         }
11643
11644         /*
11645          * We can't hold ctx->lock when iterating the ->flexible_group list due
11646          * to allocations, but we need to prevent rotation because
11647          * rotate_ctx() will change the list from interrupt context.
11648          */
11649         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11650         parent_ctx->rotate_disable = 1;
11651         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11652
11653         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11654                 ret = inherit_task_group(event, parent, parent_ctx,
11655                                          child, ctxn, &inherited_all);
11656                 if (ret)
11657                         goto out_unlock;
11658         }
11659
11660         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11661         parent_ctx->rotate_disable = 0;
11662
11663         child_ctx = child->perf_event_ctxp[ctxn];
11664
11665         if (child_ctx && inherited_all) {
11666                 /*
11667                  * Mark the child context as a clone of the parent
11668                  * context, or of whatever the parent is a clone of.
11669                  *
11670                  * Note that if the parent is a clone, the holding of
11671                  * parent_ctx->lock avoids it from being uncloned.
11672                  */
11673                 cloned_ctx = parent_ctx->parent_ctx;
11674                 if (cloned_ctx) {
11675                         child_ctx->parent_ctx = cloned_ctx;
11676                         child_ctx->parent_gen = parent_ctx->parent_gen;
11677                 } else {
11678                         child_ctx->parent_ctx = parent_ctx;
11679                         child_ctx->parent_gen = parent_ctx->generation;
11680                 }
11681                 get_ctx(child_ctx->parent_ctx);
11682         }
11683
11684         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11685 out_unlock:
11686         mutex_unlock(&parent_ctx->mutex);
11687
11688         perf_unpin_context(parent_ctx);
11689         put_ctx(parent_ctx);
11690
11691         return ret;
11692 }
11693
11694 /*
11695  * Initialize the perf_event context in task_struct
11696  */
11697 int perf_event_init_task(struct task_struct *child)
11698 {
11699         int ctxn, ret;
11700
11701         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11702         mutex_init(&child->perf_event_mutex);
11703         INIT_LIST_HEAD(&child->perf_event_list);
11704
11705         for_each_task_context_nr(ctxn) {
11706                 ret = perf_event_init_context(child, ctxn);
11707                 if (ret) {
11708                         perf_event_free_task(child);
11709                         return ret;
11710                 }
11711         }
11712
11713         return 0;
11714 }
11715
11716 static void __init perf_event_init_all_cpus(void)
11717 {
11718         struct swevent_htable *swhash;
11719         int cpu;
11720
11721         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11722
11723         for_each_possible_cpu(cpu) {
11724                 swhash = &per_cpu(swevent_htable, cpu);
11725                 mutex_init(&swhash->hlist_mutex);
11726                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11727
11728                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11729                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11730
11731 #ifdef CONFIG_CGROUP_PERF
11732                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11733 #endif
11734                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11735         }
11736 }
11737
11738 void perf_swevent_init_cpu(unsigned int cpu)
11739 {
11740         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11741
11742         mutex_lock(&swhash->hlist_mutex);
11743         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11744                 struct swevent_hlist *hlist;
11745
11746                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11747                 WARN_ON(!hlist);
11748                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11749         }
11750         mutex_unlock(&swhash->hlist_mutex);
11751 }
11752
11753 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11754 static void __perf_event_exit_context(void *__info)
11755 {
11756         struct perf_event_context *ctx = __info;
11757         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11758         struct perf_event *event;
11759
11760         raw_spin_lock(&ctx->lock);
11761         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11762         list_for_each_entry(event, &ctx->event_list, event_entry)
11763                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11764         raw_spin_unlock(&ctx->lock);
11765 }
11766
11767 static void perf_event_exit_cpu_context(int cpu)
11768 {
11769         struct perf_cpu_context *cpuctx;
11770         struct perf_event_context *ctx;
11771         struct pmu *pmu;
11772
11773         mutex_lock(&pmus_lock);
11774         list_for_each_entry(pmu, &pmus, entry) {
11775                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11776                 ctx = &cpuctx->ctx;
11777
11778                 mutex_lock(&ctx->mutex);
11779                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11780                 cpuctx->online = 0;
11781                 mutex_unlock(&ctx->mutex);
11782         }
11783         cpumask_clear_cpu(cpu, perf_online_mask);
11784         mutex_unlock(&pmus_lock);
11785 }
11786 #else
11787
11788 static void perf_event_exit_cpu_context(int cpu) { }
11789
11790 #endif
11791
11792 int perf_event_init_cpu(unsigned int cpu)
11793 {
11794         struct perf_cpu_context *cpuctx;
11795         struct perf_event_context *ctx;
11796         struct pmu *pmu;
11797
11798         perf_swevent_init_cpu(cpu);
11799
11800         mutex_lock(&pmus_lock);
11801         cpumask_set_cpu(cpu, perf_online_mask);
11802         list_for_each_entry(pmu, &pmus, entry) {
11803                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11804                 ctx = &cpuctx->ctx;
11805
11806                 mutex_lock(&ctx->mutex);
11807                 cpuctx->online = 1;
11808                 mutex_unlock(&ctx->mutex);
11809         }
11810         mutex_unlock(&pmus_lock);
11811
11812         return 0;
11813 }
11814
11815 int perf_event_exit_cpu(unsigned int cpu)
11816 {
11817         perf_event_exit_cpu_context(cpu);
11818         return 0;
11819 }
11820
11821 static int
11822 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11823 {
11824         int cpu;
11825
11826         for_each_online_cpu(cpu)
11827                 perf_event_exit_cpu(cpu);
11828
11829         return NOTIFY_OK;
11830 }
11831
11832 /*
11833  * Run the perf reboot notifier at the very last possible moment so that
11834  * the generic watchdog code runs as long as possible.
11835  */
11836 static struct notifier_block perf_reboot_notifier = {
11837         .notifier_call = perf_reboot,
11838         .priority = INT_MIN,
11839 };
11840
11841 void __init perf_event_init(void)
11842 {
11843         int ret;
11844
11845         idr_init(&pmu_idr);
11846
11847         perf_event_init_all_cpus();
11848         init_srcu_struct(&pmus_srcu);
11849         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11850         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11851         perf_pmu_register(&perf_task_clock, NULL, -1);
11852         perf_tp_register();
11853         perf_event_init_cpu(smp_processor_id());
11854         register_reboot_notifier(&perf_reboot_notifier);
11855
11856         ret = init_hw_breakpoint();
11857         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11858
11859         /*
11860          * Build time assertion that we keep the data_head at the intended
11861          * location.  IOW, validation we got the __reserved[] size right.
11862          */
11863         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11864                      != 1024);
11865 }
11866
11867 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11868                               char *page)
11869 {
11870         struct perf_pmu_events_attr *pmu_attr =
11871                 container_of(attr, struct perf_pmu_events_attr, attr);
11872
11873         if (pmu_attr->event_str)
11874                 return sprintf(page, "%s\n", pmu_attr->event_str);
11875
11876         return 0;
11877 }
11878 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11879
11880 static int __init perf_event_sysfs_init(void)
11881 {
11882         struct pmu *pmu;
11883         int ret;
11884
11885         mutex_lock(&pmus_lock);
11886
11887         ret = bus_register(&pmu_bus);
11888         if (ret)
11889                 goto unlock;
11890
11891         list_for_each_entry(pmu, &pmus, entry) {
11892                 if (!pmu->name || pmu->type < 0)
11893                         continue;
11894
11895                 ret = pmu_dev_alloc(pmu);
11896                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11897         }
11898         pmu_bus_running = 1;
11899         ret = 0;
11900
11901 unlock:
11902         mutex_unlock(&pmus_lock);
11903
11904         return ret;
11905 }
11906 device_initcall(perf_event_sysfs_init);
11907
11908 #ifdef CONFIG_CGROUP_PERF
11909 static struct cgroup_subsys_state *
11910 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11911 {
11912         struct perf_cgroup *jc;
11913
11914         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11915         if (!jc)
11916                 return ERR_PTR(-ENOMEM);
11917
11918         jc->info = alloc_percpu(struct perf_cgroup_info);
11919         if (!jc->info) {
11920                 kfree(jc);
11921                 return ERR_PTR(-ENOMEM);
11922         }
11923
11924         return &jc->css;
11925 }
11926
11927 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11928 {
11929         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11930
11931         free_percpu(jc->info);
11932         kfree(jc);
11933 }
11934
11935 static int __perf_cgroup_move(void *info)
11936 {
11937         struct task_struct *task = info;
11938         rcu_read_lock();
11939         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11940         rcu_read_unlock();
11941         return 0;
11942 }
11943
11944 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11945 {
11946         struct task_struct *task;
11947         struct cgroup_subsys_state *css;
11948
11949         cgroup_taskset_for_each(task, css, tset)
11950                 task_function_call(task, __perf_cgroup_move, task);
11951 }
11952
11953 struct cgroup_subsys perf_event_cgrp_subsys = {
11954         .css_alloc      = perf_cgroup_css_alloc,
11955         .css_free       = perf_cgroup_css_free,
11956         .attach         = perf_cgroup_attach,
11957         /*
11958          * Implicitly enable on dfl hierarchy so that perf events can
11959          * always be filtered by cgroup2 path as long as perf_event
11960          * controller is not mounted on a legacy hierarchy.
11961          */
11962         .implicit_on_dfl = true,
11963         .threaded       = true,
11964 };
11965 #endif /* CONFIG_CGROUP_PERF */