OSDN Git Service

sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[uclinux-h8/linux.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/export.h>
32 #include <linux/rmap.h>         /* anon_vma_prepare */
33 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
34 #include <linux/swap.h>         /* try_to_free_swap */
35 #include <linux/ptrace.h>       /* user_enable_single_step */
36 #include <linux/kdebug.h>       /* notifier mechanism */
37 #include "../../mm/internal.h"  /* munlock_vma_page */
38 #include <linux/percpu-rwsem.h>
39 #include <linux/task_work.h>
40 #include <linux/shmem_fs.h>
41
42 #include <linux/uprobes.h>
43
44 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
45 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
46
47 static struct rb_root uprobes_tree = RB_ROOT;
48 /*
49  * allows us to skip the uprobe_mmap if there are no uprobe events active
50  * at this time.  Probably a fine grained per inode count is better?
51  */
52 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
53
54 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
55
56 #define UPROBES_HASH_SZ 13
57 /* serialize uprobe->pending_list */
58 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
59 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
60
61 static struct percpu_rw_semaphore dup_mmap_sem;
62
63 /* Have a copy of original instruction */
64 #define UPROBE_COPY_INSN        0
65
66 struct uprobe {
67         struct rb_node          rb_node;        /* node in the rb tree */
68         atomic_t                ref;
69         struct rw_semaphore     register_rwsem;
70         struct rw_semaphore     consumer_rwsem;
71         struct list_head        pending_list;
72         struct uprobe_consumer  *consumers;
73         struct inode            *inode;         /* Also hold a ref to inode */
74         loff_t                  offset;
75         unsigned long           flags;
76
77         /*
78          * The generic code assumes that it has two members of unknown type
79          * owned by the arch-specific code:
80          *
81          *      insn -  copy_insn() saves the original instruction here for
82          *              arch_uprobe_analyze_insn().
83          *
84          *      ixol -  potentially modified instruction to execute out of
85          *              line, copied to xol_area by xol_get_insn_slot().
86          */
87         struct arch_uprobe      arch;
88 };
89
90 /*
91  * Execute out of line area: anonymous executable mapping installed
92  * by the probed task to execute the copy of the original instruction
93  * mangled by set_swbp().
94  *
95  * On a breakpoint hit, thread contests for a slot.  It frees the
96  * slot after singlestep. Currently a fixed number of slots are
97  * allocated.
98  */
99 struct xol_area {
100         wait_queue_head_t               wq;             /* if all slots are busy */
101         atomic_t                        slot_count;     /* number of in-use slots */
102         unsigned long                   *bitmap;        /* 0 = free slot */
103
104         struct vm_special_mapping       xol_mapping;
105         struct page                     *pages[2];
106         /*
107          * We keep the vma's vm_start rather than a pointer to the vma
108          * itself.  The probed process or a naughty kernel module could make
109          * the vma go away, and we must handle that reasonably gracefully.
110          */
111         unsigned long                   vaddr;          /* Page(s) of instruction slots */
112 };
113
114 /*
115  * valid_vma: Verify if the specified vma is an executable vma
116  * Relax restrictions while unregistering: vm_flags might have
117  * changed after breakpoint was inserted.
118  *      - is_register: indicates if we are in register context.
119  *      - Return 1 if the specified virtual address is in an
120  *        executable vma.
121  */
122 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
123 {
124         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
125
126         if (is_register)
127                 flags |= VM_WRITE;
128
129         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
130 }
131
132 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
133 {
134         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 }
136
137 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
138 {
139         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
140 }
141
142 /**
143  * __replace_page - replace page in vma by new page.
144  * based on replace_page in mm/ksm.c
145  *
146  * @vma:      vma that holds the pte pointing to page
147  * @addr:     address the old @page is mapped at
148  * @page:     the cowed page we are replacing by kpage
149  * @kpage:    the modified page we replace page by
150  *
151  * Returns 0 on success, -EFAULT on failure.
152  */
153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154                                 struct page *old_page, struct page *new_page)
155 {
156         struct mm_struct *mm = vma->vm_mm;
157         struct page_vma_mapped_walk pvmw = {
158                 .page = old_page,
159                 .vma = vma,
160                 .address = addr,
161         };
162         int err;
163         /* For mmu_notifiers */
164         const unsigned long mmun_start = addr;
165         const unsigned long mmun_end   = addr + PAGE_SIZE;
166         struct mem_cgroup *memcg;
167
168         VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
169
170         err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
171                         false);
172         if (err)
173                 return err;
174
175         /* For try_to_free_swap() and munlock_vma_page() below */
176         lock_page(old_page);
177
178         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
179         err = -EAGAIN;
180         if (!page_vma_mapped_walk(&pvmw)) {
181                 mem_cgroup_cancel_charge(new_page, memcg, false);
182                 goto unlock;
183         }
184         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
185
186         get_page(new_page);
187         page_add_new_anon_rmap(new_page, vma, addr, false);
188         mem_cgroup_commit_charge(new_page, memcg, false, false);
189         lru_cache_add_active_or_unevictable(new_page, vma);
190
191         if (!PageAnon(old_page)) {
192                 dec_mm_counter(mm, mm_counter_file(old_page));
193                 inc_mm_counter(mm, MM_ANONPAGES);
194         }
195
196         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
197         ptep_clear_flush_notify(vma, addr, pvmw.pte);
198         set_pte_at_notify(mm, addr, pvmw.pte,
199                         mk_pte(new_page, vma->vm_page_prot));
200
201         page_remove_rmap(old_page, false);
202         if (!page_mapped(old_page))
203                 try_to_free_swap(old_page);
204         page_vma_mapped_walk_done(&pvmw);
205
206         if (vma->vm_flags & VM_LOCKED)
207                 munlock_vma_page(old_page);
208         put_page(old_page);
209
210         err = 0;
211  unlock:
212         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
213         unlock_page(old_page);
214         return err;
215 }
216
217 /**
218  * is_swbp_insn - check if instruction is breakpoint instruction.
219  * @insn: instruction to be checked.
220  * Default implementation of is_swbp_insn
221  * Returns true if @insn is a breakpoint instruction.
222  */
223 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
224 {
225         return *insn == UPROBE_SWBP_INSN;
226 }
227
228 /**
229  * is_trap_insn - check if instruction is breakpoint instruction.
230  * @insn: instruction to be checked.
231  * Default implementation of is_trap_insn
232  * Returns true if @insn is a breakpoint instruction.
233  *
234  * This function is needed for the case where an architecture has multiple
235  * trap instructions (like powerpc).
236  */
237 bool __weak is_trap_insn(uprobe_opcode_t *insn)
238 {
239         return is_swbp_insn(insn);
240 }
241
242 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
243 {
244         void *kaddr = kmap_atomic(page);
245         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
246         kunmap_atomic(kaddr);
247 }
248
249 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
250 {
251         void *kaddr = kmap_atomic(page);
252         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
253         kunmap_atomic(kaddr);
254 }
255
256 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
257 {
258         uprobe_opcode_t old_opcode;
259         bool is_swbp;
260
261         /*
262          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
263          * We do not check if it is any other 'trap variant' which could
264          * be conditional trap instruction such as the one powerpc supports.
265          *
266          * The logic is that we do not care if the underlying instruction
267          * is a trap variant; uprobes always wins over any other (gdb)
268          * breakpoint.
269          */
270         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
271         is_swbp = is_swbp_insn(&old_opcode);
272
273         if (is_swbp_insn(new_opcode)) {
274                 if (is_swbp)            /* register: already installed? */
275                         return 0;
276         } else {
277                 if (!is_swbp)           /* unregister: was it changed by us? */
278                         return 0;
279         }
280
281         return 1;
282 }
283
284 /*
285  * NOTE:
286  * Expect the breakpoint instruction to be the smallest size instruction for
287  * the architecture. If an arch has variable length instruction and the
288  * breakpoint instruction is not of the smallest length instruction
289  * supported by that architecture then we need to modify is_trap_at_addr and
290  * uprobe_write_opcode accordingly. This would never be a problem for archs
291  * that have fixed length instructions.
292  *
293  * uprobe_write_opcode - write the opcode at a given virtual address.
294  * @mm: the probed process address space.
295  * @vaddr: the virtual address to store the opcode.
296  * @opcode: opcode to be written at @vaddr.
297  *
298  * Called with mm->mmap_sem held for write.
299  * Return 0 (success) or a negative errno.
300  */
301 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
302                         uprobe_opcode_t opcode)
303 {
304         struct page *old_page, *new_page;
305         struct vm_area_struct *vma;
306         int ret;
307
308 retry:
309         /* Read the page with vaddr into memory */
310         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
311                         FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
312         if (ret <= 0)
313                 return ret;
314
315         ret = verify_opcode(old_page, vaddr, &opcode);
316         if (ret <= 0)
317                 goto put_old;
318
319         ret = anon_vma_prepare(vma);
320         if (ret)
321                 goto put_old;
322
323         ret = -ENOMEM;
324         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
325         if (!new_page)
326                 goto put_old;
327
328         __SetPageUptodate(new_page);
329         copy_highpage(new_page, old_page);
330         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
331
332         ret = __replace_page(vma, vaddr, old_page, new_page);
333         put_page(new_page);
334 put_old:
335         put_page(old_page);
336
337         if (unlikely(ret == -EAGAIN))
338                 goto retry;
339         return ret;
340 }
341
342 /**
343  * set_swbp - store breakpoint at a given address.
344  * @auprobe: arch specific probepoint information.
345  * @mm: the probed process address space.
346  * @vaddr: the virtual address to insert the opcode.
347  *
348  * For mm @mm, store the breakpoint instruction at @vaddr.
349  * Return 0 (success) or a negative errno.
350  */
351 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
352 {
353         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
354 }
355
356 /**
357  * set_orig_insn - Restore the original instruction.
358  * @mm: the probed process address space.
359  * @auprobe: arch specific probepoint information.
360  * @vaddr: the virtual address to insert the opcode.
361  *
362  * For mm @mm, restore the original opcode (opcode) at @vaddr.
363  * Return 0 (success) or a negative errno.
364  */
365 int __weak
366 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
367 {
368         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
369 }
370
371 static struct uprobe *get_uprobe(struct uprobe *uprobe)
372 {
373         atomic_inc(&uprobe->ref);
374         return uprobe;
375 }
376
377 static void put_uprobe(struct uprobe *uprobe)
378 {
379         if (atomic_dec_and_test(&uprobe->ref))
380                 kfree(uprobe);
381 }
382
383 static int match_uprobe(struct uprobe *l, struct uprobe *r)
384 {
385         if (l->inode < r->inode)
386                 return -1;
387
388         if (l->inode > r->inode)
389                 return 1;
390
391         if (l->offset < r->offset)
392                 return -1;
393
394         if (l->offset > r->offset)
395                 return 1;
396
397         return 0;
398 }
399
400 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
401 {
402         struct uprobe u = { .inode = inode, .offset = offset };
403         struct rb_node *n = uprobes_tree.rb_node;
404         struct uprobe *uprobe;
405         int match;
406
407         while (n) {
408                 uprobe = rb_entry(n, struct uprobe, rb_node);
409                 match = match_uprobe(&u, uprobe);
410                 if (!match)
411                         return get_uprobe(uprobe);
412
413                 if (match < 0)
414                         n = n->rb_left;
415                 else
416                         n = n->rb_right;
417         }
418         return NULL;
419 }
420
421 /*
422  * Find a uprobe corresponding to a given inode:offset
423  * Acquires uprobes_treelock
424  */
425 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
426 {
427         struct uprobe *uprobe;
428
429         spin_lock(&uprobes_treelock);
430         uprobe = __find_uprobe(inode, offset);
431         spin_unlock(&uprobes_treelock);
432
433         return uprobe;
434 }
435
436 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
437 {
438         struct rb_node **p = &uprobes_tree.rb_node;
439         struct rb_node *parent = NULL;
440         struct uprobe *u;
441         int match;
442
443         while (*p) {
444                 parent = *p;
445                 u = rb_entry(parent, struct uprobe, rb_node);
446                 match = match_uprobe(uprobe, u);
447                 if (!match)
448                         return get_uprobe(u);
449
450                 if (match < 0)
451                         p = &parent->rb_left;
452                 else
453                         p = &parent->rb_right;
454
455         }
456
457         u = NULL;
458         rb_link_node(&uprobe->rb_node, parent, p);
459         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
460         /* get access + creation ref */
461         atomic_set(&uprobe->ref, 2);
462
463         return u;
464 }
465
466 /*
467  * Acquire uprobes_treelock.
468  * Matching uprobe already exists in rbtree;
469  *      increment (access refcount) and return the matching uprobe.
470  *
471  * No matching uprobe; insert the uprobe in rb_tree;
472  *      get a double refcount (access + creation) and return NULL.
473  */
474 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
475 {
476         struct uprobe *u;
477
478         spin_lock(&uprobes_treelock);
479         u = __insert_uprobe(uprobe);
480         spin_unlock(&uprobes_treelock);
481
482         return u;
483 }
484
485 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
486 {
487         struct uprobe *uprobe, *cur_uprobe;
488
489         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
490         if (!uprobe)
491                 return NULL;
492
493         uprobe->inode = igrab(inode);
494         uprobe->offset = offset;
495         init_rwsem(&uprobe->register_rwsem);
496         init_rwsem(&uprobe->consumer_rwsem);
497
498         /* add to uprobes_tree, sorted on inode:offset */
499         cur_uprobe = insert_uprobe(uprobe);
500         /* a uprobe exists for this inode:offset combination */
501         if (cur_uprobe) {
502                 kfree(uprobe);
503                 uprobe = cur_uprobe;
504                 iput(inode);
505         }
506
507         return uprobe;
508 }
509
510 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
511 {
512         down_write(&uprobe->consumer_rwsem);
513         uc->next = uprobe->consumers;
514         uprobe->consumers = uc;
515         up_write(&uprobe->consumer_rwsem);
516 }
517
518 /*
519  * For uprobe @uprobe, delete the consumer @uc.
520  * Return true if the @uc is deleted successfully
521  * or return false.
522  */
523 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
524 {
525         struct uprobe_consumer **con;
526         bool ret = false;
527
528         down_write(&uprobe->consumer_rwsem);
529         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
530                 if (*con == uc) {
531                         *con = uc->next;
532                         ret = true;
533                         break;
534                 }
535         }
536         up_write(&uprobe->consumer_rwsem);
537
538         return ret;
539 }
540
541 static int __copy_insn(struct address_space *mapping, struct file *filp,
542                         void *insn, int nbytes, loff_t offset)
543 {
544         struct page *page;
545         /*
546          * Ensure that the page that has the original instruction is populated
547          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
548          * see uprobe_register().
549          */
550         if (mapping->a_ops->readpage)
551                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
552         else
553                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
554         if (IS_ERR(page))
555                 return PTR_ERR(page);
556
557         copy_from_page(page, offset, insn, nbytes);
558         put_page(page);
559
560         return 0;
561 }
562
563 static int copy_insn(struct uprobe *uprobe, struct file *filp)
564 {
565         struct address_space *mapping = uprobe->inode->i_mapping;
566         loff_t offs = uprobe->offset;
567         void *insn = &uprobe->arch.insn;
568         int size = sizeof(uprobe->arch.insn);
569         int len, err = -EIO;
570
571         /* Copy only available bytes, -EIO if nothing was read */
572         do {
573                 if (offs >= i_size_read(uprobe->inode))
574                         break;
575
576                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
577                 err = __copy_insn(mapping, filp, insn, len, offs);
578                 if (err)
579                         break;
580
581                 insn += len;
582                 offs += len;
583                 size -= len;
584         } while (size);
585
586         return err;
587 }
588
589 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
590                                 struct mm_struct *mm, unsigned long vaddr)
591 {
592         int ret = 0;
593
594         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
595                 return ret;
596
597         /* TODO: move this into _register, until then we abuse this sem. */
598         down_write(&uprobe->consumer_rwsem);
599         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
600                 goto out;
601
602         ret = copy_insn(uprobe, file);
603         if (ret)
604                 goto out;
605
606         ret = -ENOTSUPP;
607         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
608                 goto out;
609
610         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
611         if (ret)
612                 goto out;
613
614         /* uprobe_write_opcode() assumes we don't cross page boundary */
615         BUG_ON((uprobe->offset & ~PAGE_MASK) +
616                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
617
618         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
619         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
620
621  out:
622         up_write(&uprobe->consumer_rwsem);
623
624         return ret;
625 }
626
627 static inline bool consumer_filter(struct uprobe_consumer *uc,
628                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
629 {
630         return !uc->filter || uc->filter(uc, ctx, mm);
631 }
632
633 static bool filter_chain(struct uprobe *uprobe,
634                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
635 {
636         struct uprobe_consumer *uc;
637         bool ret = false;
638
639         down_read(&uprobe->consumer_rwsem);
640         for (uc = uprobe->consumers; uc; uc = uc->next) {
641                 ret = consumer_filter(uc, ctx, mm);
642                 if (ret)
643                         break;
644         }
645         up_read(&uprobe->consumer_rwsem);
646
647         return ret;
648 }
649
650 static int
651 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
652                         struct vm_area_struct *vma, unsigned long vaddr)
653 {
654         bool first_uprobe;
655         int ret;
656
657         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
658         if (ret)
659                 return ret;
660
661         /*
662          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
663          * the task can hit this breakpoint right after __replace_page().
664          */
665         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
666         if (first_uprobe)
667                 set_bit(MMF_HAS_UPROBES, &mm->flags);
668
669         ret = set_swbp(&uprobe->arch, mm, vaddr);
670         if (!ret)
671                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
672         else if (first_uprobe)
673                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
674
675         return ret;
676 }
677
678 static int
679 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
680 {
681         set_bit(MMF_RECALC_UPROBES, &mm->flags);
682         return set_orig_insn(&uprobe->arch, mm, vaddr);
683 }
684
685 static inline bool uprobe_is_active(struct uprobe *uprobe)
686 {
687         return !RB_EMPTY_NODE(&uprobe->rb_node);
688 }
689 /*
690  * There could be threads that have already hit the breakpoint. They
691  * will recheck the current insn and restart if find_uprobe() fails.
692  * See find_active_uprobe().
693  */
694 static void delete_uprobe(struct uprobe *uprobe)
695 {
696         if (WARN_ON(!uprobe_is_active(uprobe)))
697                 return;
698
699         spin_lock(&uprobes_treelock);
700         rb_erase(&uprobe->rb_node, &uprobes_tree);
701         spin_unlock(&uprobes_treelock);
702         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
703         iput(uprobe->inode);
704         put_uprobe(uprobe);
705 }
706
707 struct map_info {
708         struct map_info *next;
709         struct mm_struct *mm;
710         unsigned long vaddr;
711 };
712
713 static inline struct map_info *free_map_info(struct map_info *info)
714 {
715         struct map_info *next = info->next;
716         kfree(info);
717         return next;
718 }
719
720 static struct map_info *
721 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
722 {
723         unsigned long pgoff = offset >> PAGE_SHIFT;
724         struct vm_area_struct *vma;
725         struct map_info *curr = NULL;
726         struct map_info *prev = NULL;
727         struct map_info *info;
728         int more = 0;
729
730  again:
731         i_mmap_lock_read(mapping);
732         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
733                 if (!valid_vma(vma, is_register))
734                         continue;
735
736                 if (!prev && !more) {
737                         /*
738                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
739                          * reclaim. This is optimistic, no harm done if it fails.
740                          */
741                         prev = kmalloc(sizeof(struct map_info),
742                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
743                         if (prev)
744                                 prev->next = NULL;
745                 }
746                 if (!prev) {
747                         more++;
748                         continue;
749                 }
750
751                 if (!mmget_not_zero(vma->vm_mm))
752                         continue;
753
754                 info = prev;
755                 prev = prev->next;
756                 info->next = curr;
757                 curr = info;
758
759                 info->mm = vma->vm_mm;
760                 info->vaddr = offset_to_vaddr(vma, offset);
761         }
762         i_mmap_unlock_read(mapping);
763
764         if (!more)
765                 goto out;
766
767         prev = curr;
768         while (curr) {
769                 mmput(curr->mm);
770                 curr = curr->next;
771         }
772
773         do {
774                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
775                 if (!info) {
776                         curr = ERR_PTR(-ENOMEM);
777                         goto out;
778                 }
779                 info->next = prev;
780                 prev = info;
781         } while (--more);
782
783         goto again;
784  out:
785         while (prev)
786                 prev = free_map_info(prev);
787         return curr;
788 }
789
790 static int
791 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
792 {
793         bool is_register = !!new;
794         struct map_info *info;
795         int err = 0;
796
797         percpu_down_write(&dup_mmap_sem);
798         info = build_map_info(uprobe->inode->i_mapping,
799                                         uprobe->offset, is_register);
800         if (IS_ERR(info)) {
801                 err = PTR_ERR(info);
802                 goto out;
803         }
804
805         while (info) {
806                 struct mm_struct *mm = info->mm;
807                 struct vm_area_struct *vma;
808
809                 if (err && is_register)
810                         goto free;
811
812                 down_write(&mm->mmap_sem);
813                 vma = find_vma(mm, info->vaddr);
814                 if (!vma || !valid_vma(vma, is_register) ||
815                     file_inode(vma->vm_file) != uprobe->inode)
816                         goto unlock;
817
818                 if (vma->vm_start > info->vaddr ||
819                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
820                         goto unlock;
821
822                 if (is_register) {
823                         /* consult only the "caller", new consumer. */
824                         if (consumer_filter(new,
825                                         UPROBE_FILTER_REGISTER, mm))
826                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
827                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
828                         if (!filter_chain(uprobe,
829                                         UPROBE_FILTER_UNREGISTER, mm))
830                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
831                 }
832
833  unlock:
834                 up_write(&mm->mmap_sem);
835  free:
836                 mmput(mm);
837                 info = free_map_info(info);
838         }
839  out:
840         percpu_up_write(&dup_mmap_sem);
841         return err;
842 }
843
844 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
845 {
846         consumer_add(uprobe, uc);
847         return register_for_each_vma(uprobe, uc);
848 }
849
850 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
851 {
852         int err;
853
854         if (WARN_ON(!consumer_del(uprobe, uc)))
855                 return;
856
857         err = register_for_each_vma(uprobe, NULL);
858         /* TODO : cant unregister? schedule a worker thread */
859         if (!uprobe->consumers && !err)
860                 delete_uprobe(uprobe);
861 }
862
863 /*
864  * uprobe_register - register a probe
865  * @inode: the file in which the probe has to be placed.
866  * @offset: offset from the start of the file.
867  * @uc: information on howto handle the probe..
868  *
869  * Apart from the access refcount, uprobe_register() takes a creation
870  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
871  * inserted into the rbtree (i.e first consumer for a @inode:@offset
872  * tuple).  Creation refcount stops uprobe_unregister from freeing the
873  * @uprobe even before the register operation is complete. Creation
874  * refcount is released when the last @uc for the @uprobe
875  * unregisters.
876  *
877  * Return errno if it cannot successully install probes
878  * else return 0 (success)
879  */
880 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
881 {
882         struct uprobe *uprobe;
883         int ret;
884
885         /* Uprobe must have at least one set consumer */
886         if (!uc->handler && !uc->ret_handler)
887                 return -EINVAL;
888
889         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
890         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
891                 return -EIO;
892         /* Racy, just to catch the obvious mistakes */
893         if (offset > i_size_read(inode))
894                 return -EINVAL;
895
896  retry:
897         uprobe = alloc_uprobe(inode, offset);
898         if (!uprobe)
899                 return -ENOMEM;
900         /*
901          * We can race with uprobe_unregister()->delete_uprobe().
902          * Check uprobe_is_active() and retry if it is false.
903          */
904         down_write(&uprobe->register_rwsem);
905         ret = -EAGAIN;
906         if (likely(uprobe_is_active(uprobe))) {
907                 ret = __uprobe_register(uprobe, uc);
908                 if (ret)
909                         __uprobe_unregister(uprobe, uc);
910         }
911         up_write(&uprobe->register_rwsem);
912         put_uprobe(uprobe);
913
914         if (unlikely(ret == -EAGAIN))
915                 goto retry;
916         return ret;
917 }
918 EXPORT_SYMBOL_GPL(uprobe_register);
919
920 /*
921  * uprobe_apply - unregister a already registered probe.
922  * @inode: the file in which the probe has to be removed.
923  * @offset: offset from the start of the file.
924  * @uc: consumer which wants to add more or remove some breakpoints
925  * @add: add or remove the breakpoints
926  */
927 int uprobe_apply(struct inode *inode, loff_t offset,
928                         struct uprobe_consumer *uc, bool add)
929 {
930         struct uprobe *uprobe;
931         struct uprobe_consumer *con;
932         int ret = -ENOENT;
933
934         uprobe = find_uprobe(inode, offset);
935         if (WARN_ON(!uprobe))
936                 return ret;
937
938         down_write(&uprobe->register_rwsem);
939         for (con = uprobe->consumers; con && con != uc ; con = con->next)
940                 ;
941         if (con)
942                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
943         up_write(&uprobe->register_rwsem);
944         put_uprobe(uprobe);
945
946         return ret;
947 }
948
949 /*
950  * uprobe_unregister - unregister a already registered probe.
951  * @inode: the file in which the probe has to be removed.
952  * @offset: offset from the start of the file.
953  * @uc: identify which probe if multiple probes are colocated.
954  */
955 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
956 {
957         struct uprobe *uprobe;
958
959         uprobe = find_uprobe(inode, offset);
960         if (WARN_ON(!uprobe))
961                 return;
962
963         down_write(&uprobe->register_rwsem);
964         __uprobe_unregister(uprobe, uc);
965         up_write(&uprobe->register_rwsem);
966         put_uprobe(uprobe);
967 }
968 EXPORT_SYMBOL_GPL(uprobe_unregister);
969
970 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
971 {
972         struct vm_area_struct *vma;
973         int err = 0;
974
975         down_read(&mm->mmap_sem);
976         for (vma = mm->mmap; vma; vma = vma->vm_next) {
977                 unsigned long vaddr;
978                 loff_t offset;
979
980                 if (!valid_vma(vma, false) ||
981                     file_inode(vma->vm_file) != uprobe->inode)
982                         continue;
983
984                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
985                 if (uprobe->offset <  offset ||
986                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
987                         continue;
988
989                 vaddr = offset_to_vaddr(vma, uprobe->offset);
990                 err |= remove_breakpoint(uprobe, mm, vaddr);
991         }
992         up_read(&mm->mmap_sem);
993
994         return err;
995 }
996
997 static struct rb_node *
998 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
999 {
1000         struct rb_node *n = uprobes_tree.rb_node;
1001
1002         while (n) {
1003                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1004
1005                 if (inode < u->inode) {
1006                         n = n->rb_left;
1007                 } else if (inode > u->inode) {
1008                         n = n->rb_right;
1009                 } else {
1010                         if (max < u->offset)
1011                                 n = n->rb_left;
1012                         else if (min > u->offset)
1013                                 n = n->rb_right;
1014                         else
1015                                 break;
1016                 }
1017         }
1018
1019         return n;
1020 }
1021
1022 /*
1023  * For a given range in vma, build a list of probes that need to be inserted.
1024  */
1025 static void build_probe_list(struct inode *inode,
1026                                 struct vm_area_struct *vma,
1027                                 unsigned long start, unsigned long end,
1028                                 struct list_head *head)
1029 {
1030         loff_t min, max;
1031         struct rb_node *n, *t;
1032         struct uprobe *u;
1033
1034         INIT_LIST_HEAD(head);
1035         min = vaddr_to_offset(vma, start);
1036         max = min + (end - start) - 1;
1037
1038         spin_lock(&uprobes_treelock);
1039         n = find_node_in_range(inode, min, max);
1040         if (n) {
1041                 for (t = n; t; t = rb_prev(t)) {
1042                         u = rb_entry(t, struct uprobe, rb_node);
1043                         if (u->inode != inode || u->offset < min)
1044                                 break;
1045                         list_add(&u->pending_list, head);
1046                         get_uprobe(u);
1047                 }
1048                 for (t = n; (t = rb_next(t)); ) {
1049                         u = rb_entry(t, struct uprobe, rb_node);
1050                         if (u->inode != inode || u->offset > max)
1051                                 break;
1052                         list_add(&u->pending_list, head);
1053                         get_uprobe(u);
1054                 }
1055         }
1056         spin_unlock(&uprobes_treelock);
1057 }
1058
1059 /*
1060  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1061  *
1062  * Currently we ignore all errors and always return 0, the callers
1063  * can't handle the failure anyway.
1064  */
1065 int uprobe_mmap(struct vm_area_struct *vma)
1066 {
1067         struct list_head tmp_list;
1068         struct uprobe *uprobe, *u;
1069         struct inode *inode;
1070
1071         if (no_uprobe_events() || !valid_vma(vma, true))
1072                 return 0;
1073
1074         inode = file_inode(vma->vm_file);
1075         if (!inode)
1076                 return 0;
1077
1078         mutex_lock(uprobes_mmap_hash(inode));
1079         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1080         /*
1081          * We can race with uprobe_unregister(), this uprobe can be already
1082          * removed. But in this case filter_chain() must return false, all
1083          * consumers have gone away.
1084          */
1085         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1086                 if (!fatal_signal_pending(current) &&
1087                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1088                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1089                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1090                 }
1091                 put_uprobe(uprobe);
1092         }
1093         mutex_unlock(uprobes_mmap_hash(inode));
1094
1095         return 0;
1096 }
1097
1098 static bool
1099 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1100 {
1101         loff_t min, max;
1102         struct inode *inode;
1103         struct rb_node *n;
1104
1105         inode = file_inode(vma->vm_file);
1106
1107         min = vaddr_to_offset(vma, start);
1108         max = min + (end - start) - 1;
1109
1110         spin_lock(&uprobes_treelock);
1111         n = find_node_in_range(inode, min, max);
1112         spin_unlock(&uprobes_treelock);
1113
1114         return !!n;
1115 }
1116
1117 /*
1118  * Called in context of a munmap of a vma.
1119  */
1120 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1121 {
1122         if (no_uprobe_events() || !valid_vma(vma, false))
1123                 return;
1124
1125         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1126                 return;
1127
1128         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1129              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1130                 return;
1131
1132         if (vma_has_uprobes(vma, start, end))
1133                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1134 }
1135
1136 /* Slot allocation for XOL */
1137 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1138 {
1139         struct vm_area_struct *vma;
1140         int ret;
1141
1142         if (down_write_killable(&mm->mmap_sem))
1143                 return -EINTR;
1144
1145         if (mm->uprobes_state.xol_area) {
1146                 ret = -EALREADY;
1147                 goto fail;
1148         }
1149
1150         if (!area->vaddr) {
1151                 /* Try to map as high as possible, this is only a hint. */
1152                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1153                                                 PAGE_SIZE, 0, 0);
1154                 if (area->vaddr & ~PAGE_MASK) {
1155                         ret = area->vaddr;
1156                         goto fail;
1157                 }
1158         }
1159
1160         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1161                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1162                                 &area->xol_mapping);
1163         if (IS_ERR(vma)) {
1164                 ret = PTR_ERR(vma);
1165                 goto fail;
1166         }
1167
1168         ret = 0;
1169         smp_wmb();      /* pairs with get_xol_area() */
1170         mm->uprobes_state.xol_area = area;
1171  fail:
1172         up_write(&mm->mmap_sem);
1173
1174         return ret;
1175 }
1176
1177 static struct xol_area *__create_xol_area(unsigned long vaddr)
1178 {
1179         struct mm_struct *mm = current->mm;
1180         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1181         struct xol_area *area;
1182
1183         area = kmalloc(sizeof(*area), GFP_KERNEL);
1184         if (unlikely(!area))
1185                 goto out;
1186
1187         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1188         if (!area->bitmap)
1189                 goto free_area;
1190
1191         area->xol_mapping.name = "[uprobes]";
1192         area->xol_mapping.fault = NULL;
1193         area->xol_mapping.pages = area->pages;
1194         area->pages[0] = alloc_page(GFP_HIGHUSER);
1195         if (!area->pages[0])
1196                 goto free_bitmap;
1197         area->pages[1] = NULL;
1198
1199         area->vaddr = vaddr;
1200         init_waitqueue_head(&area->wq);
1201         /* Reserve the 1st slot for get_trampoline_vaddr() */
1202         set_bit(0, area->bitmap);
1203         atomic_set(&area->slot_count, 1);
1204         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1205
1206         if (!xol_add_vma(mm, area))
1207                 return area;
1208
1209         __free_page(area->pages[0]);
1210  free_bitmap:
1211         kfree(area->bitmap);
1212  free_area:
1213         kfree(area);
1214  out:
1215         return NULL;
1216 }
1217
1218 /*
1219  * get_xol_area - Allocate process's xol_area if necessary.
1220  * This area will be used for storing instructions for execution out of line.
1221  *
1222  * Returns the allocated area or NULL.
1223  */
1224 static struct xol_area *get_xol_area(void)
1225 {
1226         struct mm_struct *mm = current->mm;
1227         struct xol_area *area;
1228
1229         if (!mm->uprobes_state.xol_area)
1230                 __create_xol_area(0);
1231
1232         area = mm->uprobes_state.xol_area;
1233         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1234         return area;
1235 }
1236
1237 /*
1238  * uprobe_clear_state - Free the area allocated for slots.
1239  */
1240 void uprobe_clear_state(struct mm_struct *mm)
1241 {
1242         struct xol_area *area = mm->uprobes_state.xol_area;
1243
1244         if (!area)
1245                 return;
1246
1247         put_page(area->pages[0]);
1248         kfree(area->bitmap);
1249         kfree(area);
1250 }
1251
1252 void uprobe_start_dup_mmap(void)
1253 {
1254         percpu_down_read(&dup_mmap_sem);
1255 }
1256
1257 void uprobe_end_dup_mmap(void)
1258 {
1259         percpu_up_read(&dup_mmap_sem);
1260 }
1261
1262 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1263 {
1264         newmm->uprobes_state.xol_area = NULL;
1265
1266         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1267                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1268                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1269                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1270         }
1271 }
1272
1273 /*
1274  *  - search for a free slot.
1275  */
1276 static unsigned long xol_take_insn_slot(struct xol_area *area)
1277 {
1278         unsigned long slot_addr;
1279         int slot_nr;
1280
1281         do {
1282                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1283                 if (slot_nr < UINSNS_PER_PAGE) {
1284                         if (!test_and_set_bit(slot_nr, area->bitmap))
1285                                 break;
1286
1287                         slot_nr = UINSNS_PER_PAGE;
1288                         continue;
1289                 }
1290                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1291         } while (slot_nr >= UINSNS_PER_PAGE);
1292
1293         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1294         atomic_inc(&area->slot_count);
1295
1296         return slot_addr;
1297 }
1298
1299 /*
1300  * xol_get_insn_slot - allocate a slot for xol.
1301  * Returns the allocated slot address or 0.
1302  */
1303 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1304 {
1305         struct xol_area *area;
1306         unsigned long xol_vaddr;
1307
1308         area = get_xol_area();
1309         if (!area)
1310                 return 0;
1311
1312         xol_vaddr = xol_take_insn_slot(area);
1313         if (unlikely(!xol_vaddr))
1314                 return 0;
1315
1316         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1317                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1318
1319         return xol_vaddr;
1320 }
1321
1322 /*
1323  * xol_free_insn_slot - If slot was earlier allocated by
1324  * @xol_get_insn_slot(), make the slot available for
1325  * subsequent requests.
1326  */
1327 static void xol_free_insn_slot(struct task_struct *tsk)
1328 {
1329         struct xol_area *area;
1330         unsigned long vma_end;
1331         unsigned long slot_addr;
1332
1333         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1334                 return;
1335
1336         slot_addr = tsk->utask->xol_vaddr;
1337         if (unlikely(!slot_addr))
1338                 return;
1339
1340         area = tsk->mm->uprobes_state.xol_area;
1341         vma_end = area->vaddr + PAGE_SIZE;
1342         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1343                 unsigned long offset;
1344                 int slot_nr;
1345
1346                 offset = slot_addr - area->vaddr;
1347                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1348                 if (slot_nr >= UINSNS_PER_PAGE)
1349                         return;
1350
1351                 clear_bit(slot_nr, area->bitmap);
1352                 atomic_dec(&area->slot_count);
1353                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1354                 if (waitqueue_active(&area->wq))
1355                         wake_up(&area->wq);
1356
1357                 tsk->utask->xol_vaddr = 0;
1358         }
1359 }
1360
1361 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1362                                   void *src, unsigned long len)
1363 {
1364         /* Initialize the slot */
1365         copy_to_page(page, vaddr, src, len);
1366
1367         /*
1368          * We probably need flush_icache_user_range() but it needs vma.
1369          * This should work on most of architectures by default. If
1370          * architecture needs to do something different it can define
1371          * its own version of the function.
1372          */
1373         flush_dcache_page(page);
1374 }
1375
1376 /**
1377  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1378  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1379  * instruction.
1380  * Return the address of the breakpoint instruction.
1381  */
1382 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1383 {
1384         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1385 }
1386
1387 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1388 {
1389         struct uprobe_task *utask = current->utask;
1390
1391         if (unlikely(utask && utask->active_uprobe))
1392                 return utask->vaddr;
1393
1394         return instruction_pointer(regs);
1395 }
1396
1397 static struct return_instance *free_ret_instance(struct return_instance *ri)
1398 {
1399         struct return_instance *next = ri->next;
1400         put_uprobe(ri->uprobe);
1401         kfree(ri);
1402         return next;
1403 }
1404
1405 /*
1406  * Called with no locks held.
1407  * Called in context of a exiting or a exec-ing thread.
1408  */
1409 void uprobe_free_utask(struct task_struct *t)
1410 {
1411         struct uprobe_task *utask = t->utask;
1412         struct return_instance *ri;
1413
1414         if (!utask)
1415                 return;
1416
1417         if (utask->active_uprobe)
1418                 put_uprobe(utask->active_uprobe);
1419
1420         ri = utask->return_instances;
1421         while (ri)
1422                 ri = free_ret_instance(ri);
1423
1424         xol_free_insn_slot(t);
1425         kfree(utask);
1426         t->utask = NULL;
1427 }
1428
1429 /*
1430  * Allocate a uprobe_task object for the task if if necessary.
1431  * Called when the thread hits a breakpoint.
1432  *
1433  * Returns:
1434  * - pointer to new uprobe_task on success
1435  * - NULL otherwise
1436  */
1437 static struct uprobe_task *get_utask(void)
1438 {
1439         if (!current->utask)
1440                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1441         return current->utask;
1442 }
1443
1444 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1445 {
1446         struct uprobe_task *n_utask;
1447         struct return_instance **p, *o, *n;
1448
1449         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1450         if (!n_utask)
1451                 return -ENOMEM;
1452         t->utask = n_utask;
1453
1454         p = &n_utask->return_instances;
1455         for (o = o_utask->return_instances; o; o = o->next) {
1456                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1457                 if (!n)
1458                         return -ENOMEM;
1459
1460                 *n = *o;
1461                 get_uprobe(n->uprobe);
1462                 n->next = NULL;
1463
1464                 *p = n;
1465                 p = &n->next;
1466                 n_utask->depth++;
1467         }
1468
1469         return 0;
1470 }
1471
1472 static void uprobe_warn(struct task_struct *t, const char *msg)
1473 {
1474         pr_warn("uprobe: %s:%d failed to %s\n",
1475                         current->comm, current->pid, msg);
1476 }
1477
1478 static void dup_xol_work(struct callback_head *work)
1479 {
1480         if (current->flags & PF_EXITING)
1481                 return;
1482
1483         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1484                         !fatal_signal_pending(current))
1485                 uprobe_warn(current, "dup xol area");
1486 }
1487
1488 /*
1489  * Called in context of a new clone/fork from copy_process.
1490  */
1491 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1492 {
1493         struct uprobe_task *utask = current->utask;
1494         struct mm_struct *mm = current->mm;
1495         struct xol_area *area;
1496
1497         t->utask = NULL;
1498
1499         if (!utask || !utask->return_instances)
1500                 return;
1501
1502         if (mm == t->mm && !(flags & CLONE_VFORK))
1503                 return;
1504
1505         if (dup_utask(t, utask))
1506                 return uprobe_warn(t, "dup ret instances");
1507
1508         /* The task can fork() after dup_xol_work() fails */
1509         area = mm->uprobes_state.xol_area;
1510         if (!area)
1511                 return uprobe_warn(t, "dup xol area");
1512
1513         if (mm == t->mm)
1514                 return;
1515
1516         t->utask->dup_xol_addr = area->vaddr;
1517         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1518         task_work_add(t, &t->utask->dup_xol_work, true);
1519 }
1520
1521 /*
1522  * Current area->vaddr notion assume the trampoline address is always
1523  * equal area->vaddr.
1524  *
1525  * Returns -1 in case the xol_area is not allocated.
1526  */
1527 static unsigned long get_trampoline_vaddr(void)
1528 {
1529         struct xol_area *area;
1530         unsigned long trampoline_vaddr = -1;
1531
1532         area = current->mm->uprobes_state.xol_area;
1533         smp_read_barrier_depends();
1534         if (area)
1535                 trampoline_vaddr = area->vaddr;
1536
1537         return trampoline_vaddr;
1538 }
1539
1540 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1541                                         struct pt_regs *regs)
1542 {
1543         struct return_instance *ri = utask->return_instances;
1544         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1545
1546         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1547                 ri = free_ret_instance(ri);
1548                 utask->depth--;
1549         }
1550         utask->return_instances = ri;
1551 }
1552
1553 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1554 {
1555         struct return_instance *ri;
1556         struct uprobe_task *utask;
1557         unsigned long orig_ret_vaddr, trampoline_vaddr;
1558         bool chained;
1559
1560         if (!get_xol_area())
1561                 return;
1562
1563         utask = get_utask();
1564         if (!utask)
1565                 return;
1566
1567         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1568                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1569                                 " nestedness limit pid/tgid=%d/%d\n",
1570                                 current->pid, current->tgid);
1571                 return;
1572         }
1573
1574         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1575         if (!ri)
1576                 return;
1577
1578         trampoline_vaddr = get_trampoline_vaddr();
1579         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1580         if (orig_ret_vaddr == -1)
1581                 goto fail;
1582
1583         /* drop the entries invalidated by longjmp() */
1584         chained = (orig_ret_vaddr == trampoline_vaddr);
1585         cleanup_return_instances(utask, chained, regs);
1586
1587         /*
1588          * We don't want to keep trampoline address in stack, rather keep the
1589          * original return address of first caller thru all the consequent
1590          * instances. This also makes breakpoint unwrapping easier.
1591          */
1592         if (chained) {
1593                 if (!utask->return_instances) {
1594                         /*
1595                          * This situation is not possible. Likely we have an
1596                          * attack from user-space.
1597                          */
1598                         uprobe_warn(current, "handle tail call");
1599                         goto fail;
1600                 }
1601                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1602         }
1603
1604         ri->uprobe = get_uprobe(uprobe);
1605         ri->func = instruction_pointer(regs);
1606         ri->stack = user_stack_pointer(regs);
1607         ri->orig_ret_vaddr = orig_ret_vaddr;
1608         ri->chained = chained;
1609
1610         utask->depth++;
1611         ri->next = utask->return_instances;
1612         utask->return_instances = ri;
1613
1614         return;
1615  fail:
1616         kfree(ri);
1617 }
1618
1619 /* Prepare to single-step probed instruction out of line. */
1620 static int
1621 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1622 {
1623         struct uprobe_task *utask;
1624         unsigned long xol_vaddr;
1625         int err;
1626
1627         utask = get_utask();
1628         if (!utask)
1629                 return -ENOMEM;
1630
1631         xol_vaddr = xol_get_insn_slot(uprobe);
1632         if (!xol_vaddr)
1633                 return -ENOMEM;
1634
1635         utask->xol_vaddr = xol_vaddr;
1636         utask->vaddr = bp_vaddr;
1637
1638         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1639         if (unlikely(err)) {
1640                 xol_free_insn_slot(current);
1641                 return err;
1642         }
1643
1644         utask->active_uprobe = uprobe;
1645         utask->state = UTASK_SSTEP;
1646         return 0;
1647 }
1648
1649 /*
1650  * If we are singlestepping, then ensure this thread is not connected to
1651  * non-fatal signals until completion of singlestep.  When xol insn itself
1652  * triggers the signal,  restart the original insn even if the task is
1653  * already SIGKILL'ed (since coredump should report the correct ip).  This
1654  * is even more important if the task has a handler for SIGSEGV/etc, The
1655  * _same_ instruction should be repeated again after return from the signal
1656  * handler, and SSTEP can never finish in this case.
1657  */
1658 bool uprobe_deny_signal(void)
1659 {
1660         struct task_struct *t = current;
1661         struct uprobe_task *utask = t->utask;
1662
1663         if (likely(!utask || !utask->active_uprobe))
1664                 return false;
1665
1666         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1667
1668         if (signal_pending(t)) {
1669                 spin_lock_irq(&t->sighand->siglock);
1670                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1671                 spin_unlock_irq(&t->sighand->siglock);
1672
1673                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1674                         utask->state = UTASK_SSTEP_TRAPPED;
1675                         set_tsk_thread_flag(t, TIF_UPROBE);
1676                 }
1677         }
1678
1679         return true;
1680 }
1681
1682 static void mmf_recalc_uprobes(struct mm_struct *mm)
1683 {
1684         struct vm_area_struct *vma;
1685
1686         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1687                 if (!valid_vma(vma, false))
1688                         continue;
1689                 /*
1690                  * This is not strictly accurate, we can race with
1691                  * uprobe_unregister() and see the already removed
1692                  * uprobe if delete_uprobe() was not yet called.
1693                  * Or this uprobe can be filtered out.
1694                  */
1695                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1696                         return;
1697         }
1698
1699         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1700 }
1701
1702 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1703 {
1704         struct page *page;
1705         uprobe_opcode_t opcode;
1706         int result;
1707
1708         pagefault_disable();
1709         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1710         pagefault_enable();
1711
1712         if (likely(result == 0))
1713                 goto out;
1714
1715         /*
1716          * The NULL 'tsk' here ensures that any faults that occur here
1717          * will not be accounted to the task.  'mm' *is* current->mm,
1718          * but we treat this as a 'remote' access since it is
1719          * essentially a kernel access to the memory.
1720          */
1721         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1722                         NULL, NULL);
1723         if (result < 0)
1724                 return result;
1725
1726         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1727         put_page(page);
1728  out:
1729         /* This needs to return true for any variant of the trap insn */
1730         return is_trap_insn(&opcode);
1731 }
1732
1733 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1734 {
1735         struct mm_struct *mm = current->mm;
1736         struct uprobe *uprobe = NULL;
1737         struct vm_area_struct *vma;
1738
1739         down_read(&mm->mmap_sem);
1740         vma = find_vma(mm, bp_vaddr);
1741         if (vma && vma->vm_start <= bp_vaddr) {
1742                 if (valid_vma(vma, false)) {
1743                         struct inode *inode = file_inode(vma->vm_file);
1744                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1745
1746                         uprobe = find_uprobe(inode, offset);
1747                 }
1748
1749                 if (!uprobe)
1750                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1751         } else {
1752                 *is_swbp = -EFAULT;
1753         }
1754
1755         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1756                 mmf_recalc_uprobes(mm);
1757         up_read(&mm->mmap_sem);
1758
1759         return uprobe;
1760 }
1761
1762 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1763 {
1764         struct uprobe_consumer *uc;
1765         int remove = UPROBE_HANDLER_REMOVE;
1766         bool need_prep = false; /* prepare return uprobe, when needed */
1767
1768         down_read(&uprobe->register_rwsem);
1769         for (uc = uprobe->consumers; uc; uc = uc->next) {
1770                 int rc = 0;
1771
1772                 if (uc->handler) {
1773                         rc = uc->handler(uc, regs);
1774                         WARN(rc & ~UPROBE_HANDLER_MASK,
1775                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1776                 }
1777
1778                 if (uc->ret_handler)
1779                         need_prep = true;
1780
1781                 remove &= rc;
1782         }
1783
1784         if (need_prep && !remove)
1785                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1786
1787         if (remove && uprobe->consumers) {
1788                 WARN_ON(!uprobe_is_active(uprobe));
1789                 unapply_uprobe(uprobe, current->mm);
1790         }
1791         up_read(&uprobe->register_rwsem);
1792 }
1793
1794 static void
1795 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1796 {
1797         struct uprobe *uprobe = ri->uprobe;
1798         struct uprobe_consumer *uc;
1799
1800         down_read(&uprobe->register_rwsem);
1801         for (uc = uprobe->consumers; uc; uc = uc->next) {
1802                 if (uc->ret_handler)
1803                         uc->ret_handler(uc, ri->func, regs);
1804         }
1805         up_read(&uprobe->register_rwsem);
1806 }
1807
1808 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1809 {
1810         bool chained;
1811
1812         do {
1813                 chained = ri->chained;
1814                 ri = ri->next;  /* can't be NULL if chained */
1815         } while (chained);
1816
1817         return ri;
1818 }
1819
1820 static void handle_trampoline(struct pt_regs *regs)
1821 {
1822         struct uprobe_task *utask;
1823         struct return_instance *ri, *next;
1824         bool valid;
1825
1826         utask = current->utask;
1827         if (!utask)
1828                 goto sigill;
1829
1830         ri = utask->return_instances;
1831         if (!ri)
1832                 goto sigill;
1833
1834         do {
1835                 /*
1836                  * We should throw out the frames invalidated by longjmp().
1837                  * If this chain is valid, then the next one should be alive
1838                  * or NULL; the latter case means that nobody but ri->func
1839                  * could hit this trampoline on return. TODO: sigaltstack().
1840                  */
1841                 next = find_next_ret_chain(ri);
1842                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1843
1844                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1845                 do {
1846                         if (valid)
1847                                 handle_uretprobe_chain(ri, regs);
1848                         ri = free_ret_instance(ri);
1849                         utask->depth--;
1850                 } while (ri != next);
1851         } while (!valid);
1852
1853         utask->return_instances = ri;
1854         return;
1855
1856  sigill:
1857         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1858         force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1859
1860 }
1861
1862 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1863 {
1864         return false;
1865 }
1866
1867 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1868                                         struct pt_regs *regs)
1869 {
1870         return true;
1871 }
1872
1873 /*
1874  * Run handler and ask thread to singlestep.
1875  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1876  */
1877 static void handle_swbp(struct pt_regs *regs)
1878 {
1879         struct uprobe *uprobe;
1880         unsigned long bp_vaddr;
1881         int uninitialized_var(is_swbp);
1882
1883         bp_vaddr = uprobe_get_swbp_addr(regs);
1884         if (bp_vaddr == get_trampoline_vaddr())
1885                 return handle_trampoline(regs);
1886
1887         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1888         if (!uprobe) {
1889                 if (is_swbp > 0) {
1890                         /* No matching uprobe; signal SIGTRAP. */
1891                         send_sig(SIGTRAP, current, 0);
1892                 } else {
1893                         /*
1894                          * Either we raced with uprobe_unregister() or we can't
1895                          * access this memory. The latter is only possible if
1896                          * another thread plays with our ->mm. In both cases
1897                          * we can simply restart. If this vma was unmapped we
1898                          * can pretend this insn was not executed yet and get
1899                          * the (correct) SIGSEGV after restart.
1900                          */
1901                         instruction_pointer_set(regs, bp_vaddr);
1902                 }
1903                 return;
1904         }
1905
1906         /* change it in advance for ->handler() and restart */
1907         instruction_pointer_set(regs, bp_vaddr);
1908
1909         /*
1910          * TODO: move copy_insn/etc into _register and remove this hack.
1911          * After we hit the bp, _unregister + _register can install the
1912          * new and not-yet-analyzed uprobe at the same address, restart.
1913          */
1914         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1915         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1916                 goto out;
1917
1918         /* Tracing handlers use ->utask to communicate with fetch methods */
1919         if (!get_utask())
1920                 goto out;
1921
1922         if (arch_uprobe_ignore(&uprobe->arch, regs))
1923                 goto out;
1924
1925         handler_chain(uprobe, regs);
1926
1927         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1928                 goto out;
1929
1930         if (!pre_ssout(uprobe, regs, bp_vaddr))
1931                 return;
1932
1933         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1934 out:
1935         put_uprobe(uprobe);
1936 }
1937
1938 /*
1939  * Perform required fix-ups and disable singlestep.
1940  * Allow pending signals to take effect.
1941  */
1942 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1943 {
1944         struct uprobe *uprobe;
1945         int err = 0;
1946
1947         uprobe = utask->active_uprobe;
1948         if (utask->state == UTASK_SSTEP_ACK)
1949                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1950         else if (utask->state == UTASK_SSTEP_TRAPPED)
1951                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1952         else
1953                 WARN_ON_ONCE(1);
1954
1955         put_uprobe(uprobe);
1956         utask->active_uprobe = NULL;
1957         utask->state = UTASK_RUNNING;
1958         xol_free_insn_slot(current);
1959
1960         spin_lock_irq(&current->sighand->siglock);
1961         recalc_sigpending(); /* see uprobe_deny_signal() */
1962         spin_unlock_irq(&current->sighand->siglock);
1963
1964         if (unlikely(err)) {
1965                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1966                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1967         }
1968 }
1969
1970 /*
1971  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1972  * allows the thread to return from interrupt. After that handle_swbp()
1973  * sets utask->active_uprobe.
1974  *
1975  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1976  * and allows the thread to return from interrupt.
1977  *
1978  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1979  * uprobe_notify_resume().
1980  */
1981 void uprobe_notify_resume(struct pt_regs *regs)
1982 {
1983         struct uprobe_task *utask;
1984
1985         clear_thread_flag(TIF_UPROBE);
1986
1987         utask = current->utask;
1988         if (utask && utask->active_uprobe)
1989                 handle_singlestep(utask, regs);
1990         else
1991                 handle_swbp(regs);
1992 }
1993
1994 /*
1995  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1996  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1997  */
1998 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1999 {
2000         if (!current->mm)
2001                 return 0;
2002
2003         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2004             (!current->utask || !current->utask->return_instances))
2005                 return 0;
2006
2007         set_thread_flag(TIF_UPROBE);
2008         return 1;
2009 }
2010
2011 /*
2012  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2013  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2014  */
2015 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2016 {
2017         struct uprobe_task *utask = current->utask;
2018
2019         if (!current->mm || !utask || !utask->active_uprobe)
2020                 /* task is currently not uprobed */
2021                 return 0;
2022
2023         utask->state = UTASK_SSTEP_ACK;
2024         set_thread_flag(TIF_UPROBE);
2025         return 1;
2026 }
2027
2028 static struct notifier_block uprobe_exception_nb = {
2029         .notifier_call          = arch_uprobe_exception_notify,
2030         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2031 };
2032
2033 static int __init init_uprobes(void)
2034 {
2035         int i;
2036
2037         for (i = 0; i < UPROBES_HASH_SZ; i++)
2038                 mutex_init(&uprobes_mmap_mutex[i]);
2039
2040         if (percpu_init_rwsem(&dup_mmap_sem))
2041                 return -ENOMEM;
2042
2043         return register_die_notifier(&uprobe_exception_nb);
2044 }
2045 __initcall(init_uprobes);