OSDN Git Service

net/sched: act_ct: fix ref leak when switching zones
[uclinux-h8/linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/io_uring.h>
66 #include <linux/kprobes.h>
67 #include <linux/rethook.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72
73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75         nr_threads--;
76         detach_pid(p, PIDTYPE_PID);
77         if (group_dead) {
78                 detach_pid(p, PIDTYPE_TGID);
79                 detach_pid(p, PIDTYPE_PGID);
80                 detach_pid(p, PIDTYPE_SID);
81
82                 list_del_rcu(&p->tasks);
83                 list_del_init(&p->sibling);
84                 __this_cpu_dec(process_counts);
85         }
86         list_del_rcu(&p->thread_group);
87         list_del_rcu(&p->thread_node);
88 }
89
90 /*
91  * This function expects the tasklist_lock write-locked.
92  */
93 static void __exit_signal(struct task_struct *tsk)
94 {
95         struct signal_struct *sig = tsk->signal;
96         bool group_dead = thread_group_leader(tsk);
97         struct sighand_struct *sighand;
98         struct tty_struct *tty;
99         u64 utime, stime;
100
101         sighand = rcu_dereference_check(tsk->sighand,
102                                         lockdep_tasklist_lock_is_held());
103         spin_lock(&sighand->siglock);
104
105 #ifdef CONFIG_POSIX_TIMERS
106         posix_cpu_timers_exit(tsk);
107         if (group_dead)
108                 posix_cpu_timers_exit_group(tsk);
109 #endif
110
111         if (group_dead) {
112                 tty = sig->tty;
113                 sig->tty = NULL;
114         } else {
115                 /*
116                  * If there is any task waiting for the group exit
117                  * then notify it:
118                  */
119                 if (sig->notify_count > 0 && !--sig->notify_count)
120                         wake_up_process(sig->group_exec_task);
121
122                 if (tsk == sig->curr_target)
123                         sig->curr_target = next_thread(tsk);
124         }
125
126         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127                               sizeof(unsigned long long));
128
129         /*
130          * Accumulate here the counters for all threads as they die. We could
131          * skip the group leader because it is the last user of signal_struct,
132          * but we want to avoid the race with thread_group_cputime() which can
133          * see the empty ->thread_head list.
134          */
135         task_cputime(tsk, &utime, &stime);
136         write_seqlock(&sig->stats_lock);
137         sig->utime += utime;
138         sig->stime += stime;
139         sig->gtime += task_gtime(tsk);
140         sig->min_flt += tsk->min_flt;
141         sig->maj_flt += tsk->maj_flt;
142         sig->nvcsw += tsk->nvcsw;
143         sig->nivcsw += tsk->nivcsw;
144         sig->inblock += task_io_get_inblock(tsk);
145         sig->oublock += task_io_get_oublock(tsk);
146         task_io_accounting_add(&sig->ioac, &tsk->ioac);
147         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148         sig->nr_threads--;
149         __unhash_process(tsk, group_dead);
150         write_sequnlock(&sig->stats_lock);
151
152         /*
153          * Do this under ->siglock, we can race with another thread
154          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155          */
156         flush_sigqueue(&tsk->pending);
157         tsk->sighand = NULL;
158         spin_unlock(&sighand->siglock);
159
160         __cleanup_sighand(sighand);
161         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162         if (group_dead) {
163                 flush_sigqueue(&sig->shared_pending);
164                 tty_kref_put(tty);
165         }
166 }
167
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171
172         kprobe_flush_task(tsk);
173         rethook_flush_task(tsk);
174         perf_event_delayed_put(tsk);
175         trace_sched_process_free(tsk);
176         put_task_struct(tsk);
177 }
178
179 void put_task_struct_rcu_user(struct task_struct *task)
180 {
181         if (refcount_dec_and_test(&task->rcu_users))
182                 call_rcu(&task->rcu, delayed_put_task_struct);
183 }
184
185 void release_task(struct task_struct *p)
186 {
187         struct task_struct *leader;
188         struct pid *thread_pid;
189         int zap_leader;
190 repeat:
191         /* don't need to get the RCU readlock here - the process is dead and
192          * can't be modifying its own credentials. But shut RCU-lockdep up */
193         rcu_read_lock();
194         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
195         rcu_read_unlock();
196
197         cgroup_release(p);
198
199         write_lock_irq(&tasklist_lock);
200         ptrace_release_task(p);
201         thread_pid = get_pid(p->thread_pid);
202         __exit_signal(p);
203
204         /*
205          * If we are the last non-leader member of the thread
206          * group, and the leader is zombie, then notify the
207          * group leader's parent process. (if it wants notification.)
208          */
209         zap_leader = 0;
210         leader = p->group_leader;
211         if (leader != p && thread_group_empty(leader)
212                         && leader->exit_state == EXIT_ZOMBIE) {
213                 /*
214                  * If we were the last child thread and the leader has
215                  * exited already, and the leader's parent ignores SIGCHLD,
216                  * then we are the one who should release the leader.
217                  */
218                 zap_leader = do_notify_parent(leader, leader->exit_signal);
219                 if (zap_leader)
220                         leader->exit_state = EXIT_DEAD;
221         }
222
223         write_unlock_irq(&tasklist_lock);
224         seccomp_filter_release(p);
225         proc_flush_pid(thread_pid);
226         put_pid(thread_pid);
227         release_thread(p);
228         put_task_struct_rcu_user(p);
229
230         p = leader;
231         if (unlikely(zap_leader))
232                 goto repeat;
233 }
234
235 int rcuwait_wake_up(struct rcuwait *w)
236 {
237         int ret = 0;
238         struct task_struct *task;
239
240         rcu_read_lock();
241
242         /*
243          * Order condition vs @task, such that everything prior to the load
244          * of @task is visible. This is the condition as to why the user called
245          * rcuwait_wake() in the first place. Pairs with set_current_state()
246          * barrier (A) in rcuwait_wait_event().
247          *
248          *    WAIT                WAKE
249          *    [S] tsk = current   [S] cond = true
250          *        MB (A)              MB (B)
251          *    [L] cond            [L] tsk
252          */
253         smp_mb(); /* (B) */
254
255         task = rcu_dereference(w->task);
256         if (task)
257                 ret = wake_up_process(task);
258         rcu_read_unlock();
259
260         return ret;
261 }
262 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
263
264 /*
265  * Determine if a process group is "orphaned", according to the POSIX
266  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
267  * by terminal-generated stop signals.  Newly orphaned process groups are
268  * to receive a SIGHUP and a SIGCONT.
269  *
270  * "I ask you, have you ever known what it is to be an orphan?"
271  */
272 static int will_become_orphaned_pgrp(struct pid *pgrp,
273                                         struct task_struct *ignored_task)
274 {
275         struct task_struct *p;
276
277         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278                 if ((p == ignored_task) ||
279                     (p->exit_state && thread_group_empty(p)) ||
280                     is_global_init(p->real_parent))
281                         continue;
282
283                 if (task_pgrp(p->real_parent) != pgrp &&
284                     task_session(p->real_parent) == task_session(p))
285                         return 0;
286         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287
288         return 1;
289 }
290
291 int is_current_pgrp_orphaned(void)
292 {
293         int retval;
294
295         read_lock(&tasklist_lock);
296         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
297         read_unlock(&tasklist_lock);
298
299         return retval;
300 }
301
302 static bool has_stopped_jobs(struct pid *pgrp)
303 {
304         struct task_struct *p;
305
306         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
307                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
308                         return true;
309         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
310
311         return false;
312 }
313
314 /*
315  * Check to see if any process groups have become orphaned as
316  * a result of our exiting, and if they have any stopped jobs,
317  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
318  */
319 static void
320 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
321 {
322         struct pid *pgrp = task_pgrp(tsk);
323         struct task_struct *ignored_task = tsk;
324
325         if (!parent)
326                 /* exit: our father is in a different pgrp than
327                  * we are and we were the only connection outside.
328                  */
329                 parent = tsk->real_parent;
330         else
331                 /* reparent: our child is in a different pgrp than
332                  * we are, and it was the only connection outside.
333                  */
334                 ignored_task = NULL;
335
336         if (task_pgrp(parent) != pgrp &&
337             task_session(parent) == task_session(tsk) &&
338             will_become_orphaned_pgrp(pgrp, ignored_task) &&
339             has_stopped_jobs(pgrp)) {
340                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
341                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
342         }
343 }
344
345 static void coredump_task_exit(struct task_struct *tsk)
346 {
347         struct core_state *core_state;
348
349         /*
350          * Serialize with any possible pending coredump.
351          * We must hold siglock around checking core_state
352          * and setting PF_POSTCOREDUMP.  The core-inducing thread
353          * will increment ->nr_threads for each thread in the
354          * group without PF_POSTCOREDUMP set.
355          */
356         spin_lock_irq(&tsk->sighand->siglock);
357         tsk->flags |= PF_POSTCOREDUMP;
358         core_state = tsk->signal->core_state;
359         spin_unlock_irq(&tsk->sighand->siglock);
360         if (core_state) {
361                 struct core_thread self;
362
363                 self.task = current;
364                 if (self.task->flags & PF_SIGNALED)
365                         self.next = xchg(&core_state->dumper.next, &self);
366                 else
367                         self.task = NULL;
368                 /*
369                  * Implies mb(), the result of xchg() must be visible
370                  * to core_state->dumper.
371                  */
372                 if (atomic_dec_and_test(&core_state->nr_threads))
373                         complete(&core_state->startup);
374
375                 for (;;) {
376                         set_current_state(TASK_UNINTERRUPTIBLE);
377                         if (!self.task) /* see coredump_finish() */
378                                 break;
379                         freezable_schedule();
380                 }
381                 __set_current_state(TASK_RUNNING);
382         }
383 }
384
385 #ifdef CONFIG_MEMCG
386 /*
387  * A task is exiting.   If it owned this mm, find a new owner for the mm.
388  */
389 void mm_update_next_owner(struct mm_struct *mm)
390 {
391         struct task_struct *c, *g, *p = current;
392
393 retry:
394         /*
395          * If the exiting or execing task is not the owner, it's
396          * someone else's problem.
397          */
398         if (mm->owner != p)
399                 return;
400         /*
401          * The current owner is exiting/execing and there are no other
402          * candidates.  Do not leave the mm pointing to a possibly
403          * freed task structure.
404          */
405         if (atomic_read(&mm->mm_users) <= 1) {
406                 WRITE_ONCE(mm->owner, NULL);
407                 return;
408         }
409
410         read_lock(&tasklist_lock);
411         /*
412          * Search in the children
413          */
414         list_for_each_entry(c, &p->children, sibling) {
415                 if (c->mm == mm)
416                         goto assign_new_owner;
417         }
418
419         /*
420          * Search in the siblings
421          */
422         list_for_each_entry(c, &p->real_parent->children, sibling) {
423                 if (c->mm == mm)
424                         goto assign_new_owner;
425         }
426
427         /*
428          * Search through everything else, we should not get here often.
429          */
430         for_each_process(g) {
431                 if (g->flags & PF_KTHREAD)
432                         continue;
433                 for_each_thread(g, c) {
434                         if (c->mm == mm)
435                                 goto assign_new_owner;
436                         if (c->mm)
437                                 break;
438                 }
439         }
440         read_unlock(&tasklist_lock);
441         /*
442          * We found no owner yet mm_users > 1: this implies that we are
443          * most likely racing with swapoff (try_to_unuse()) or /proc or
444          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
445          */
446         WRITE_ONCE(mm->owner, NULL);
447         return;
448
449 assign_new_owner:
450         BUG_ON(c == p);
451         get_task_struct(c);
452         /*
453          * The task_lock protects c->mm from changing.
454          * We always want mm->owner->mm == mm
455          */
456         task_lock(c);
457         /*
458          * Delay read_unlock() till we have the task_lock()
459          * to ensure that c does not slip away underneath us
460          */
461         read_unlock(&tasklist_lock);
462         if (c->mm != mm) {
463                 task_unlock(c);
464                 put_task_struct(c);
465                 goto retry;
466         }
467         WRITE_ONCE(mm->owner, c);
468         task_unlock(c);
469         put_task_struct(c);
470 }
471 #endif /* CONFIG_MEMCG */
472
473 /*
474  * Turn us into a lazy TLB process if we
475  * aren't already..
476  */
477 static void exit_mm(void)
478 {
479         struct mm_struct *mm = current->mm;
480
481         exit_mm_release(current, mm);
482         if (!mm)
483                 return;
484         sync_mm_rss(mm);
485         mmap_read_lock(mm);
486         mmgrab(mm);
487         BUG_ON(mm != current->active_mm);
488         /* more a memory barrier than a real lock */
489         task_lock(current);
490         /*
491          * When a thread stops operating on an address space, the loop
492          * in membarrier_private_expedited() may not observe that
493          * tsk->mm, and the loop in membarrier_global_expedited() may
494          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
495          * rq->membarrier_state, so those would not issue an IPI.
496          * Membarrier requires a memory barrier after accessing
497          * user-space memory, before clearing tsk->mm or the
498          * rq->membarrier_state.
499          */
500         smp_mb__after_spinlock();
501         local_irq_disable();
502         current->mm = NULL;
503         membarrier_update_current_mm(NULL);
504         enter_lazy_tlb(mm, current);
505         local_irq_enable();
506         task_unlock(current);
507         mmap_read_unlock(mm);
508         mm_update_next_owner(mm);
509         mmput(mm);
510         if (test_thread_flag(TIF_MEMDIE))
511                 exit_oom_victim();
512 }
513
514 static struct task_struct *find_alive_thread(struct task_struct *p)
515 {
516         struct task_struct *t;
517
518         for_each_thread(p, t) {
519                 if (!(t->flags & PF_EXITING))
520                         return t;
521         }
522         return NULL;
523 }
524
525 static struct task_struct *find_child_reaper(struct task_struct *father,
526                                                 struct list_head *dead)
527         __releases(&tasklist_lock)
528         __acquires(&tasklist_lock)
529 {
530         struct pid_namespace *pid_ns = task_active_pid_ns(father);
531         struct task_struct *reaper = pid_ns->child_reaper;
532         struct task_struct *p, *n;
533
534         if (likely(reaper != father))
535                 return reaper;
536
537         reaper = find_alive_thread(father);
538         if (reaper) {
539                 pid_ns->child_reaper = reaper;
540                 return reaper;
541         }
542
543         write_unlock_irq(&tasklist_lock);
544
545         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
546                 list_del_init(&p->ptrace_entry);
547                 release_task(p);
548         }
549
550         zap_pid_ns_processes(pid_ns);
551         write_lock_irq(&tasklist_lock);
552
553         return father;
554 }
555
556 /*
557  * When we die, we re-parent all our children, and try to:
558  * 1. give them to another thread in our thread group, if such a member exists
559  * 2. give it to the first ancestor process which prctl'd itself as a
560  *    child_subreaper for its children (like a service manager)
561  * 3. give it to the init process (PID 1) in our pid namespace
562  */
563 static struct task_struct *find_new_reaper(struct task_struct *father,
564                                            struct task_struct *child_reaper)
565 {
566         struct task_struct *thread, *reaper;
567
568         thread = find_alive_thread(father);
569         if (thread)
570                 return thread;
571
572         if (father->signal->has_child_subreaper) {
573                 unsigned int ns_level = task_pid(father)->level;
574                 /*
575                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
576                  * We can't check reaper != child_reaper to ensure we do not
577                  * cross the namespaces, the exiting parent could be injected
578                  * by setns() + fork().
579                  * We check pid->level, this is slightly more efficient than
580                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
581                  */
582                 for (reaper = father->real_parent;
583                      task_pid(reaper)->level == ns_level;
584                      reaper = reaper->real_parent) {
585                         if (reaper == &init_task)
586                                 break;
587                         if (!reaper->signal->is_child_subreaper)
588                                 continue;
589                         thread = find_alive_thread(reaper);
590                         if (thread)
591                                 return thread;
592                 }
593         }
594
595         return child_reaper;
596 }
597
598 /*
599 * Any that need to be release_task'd are put on the @dead list.
600  */
601 static void reparent_leader(struct task_struct *father, struct task_struct *p,
602                                 struct list_head *dead)
603 {
604         if (unlikely(p->exit_state == EXIT_DEAD))
605                 return;
606
607         /* We don't want people slaying init. */
608         p->exit_signal = SIGCHLD;
609
610         /* If it has exited notify the new parent about this child's death. */
611         if (!p->ptrace &&
612             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
613                 if (do_notify_parent(p, p->exit_signal)) {
614                         p->exit_state = EXIT_DEAD;
615                         list_add(&p->ptrace_entry, dead);
616                 }
617         }
618
619         kill_orphaned_pgrp(p, father);
620 }
621
622 /*
623  * This does two things:
624  *
625  * A.  Make init inherit all the child processes
626  * B.  Check to see if any process groups have become orphaned
627  *      as a result of our exiting, and if they have any stopped
628  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
629  */
630 static void forget_original_parent(struct task_struct *father,
631                                         struct list_head *dead)
632 {
633         struct task_struct *p, *t, *reaper;
634
635         if (unlikely(!list_empty(&father->ptraced)))
636                 exit_ptrace(father, dead);
637
638         /* Can drop and reacquire tasklist_lock */
639         reaper = find_child_reaper(father, dead);
640         if (list_empty(&father->children))
641                 return;
642
643         reaper = find_new_reaper(father, reaper);
644         list_for_each_entry(p, &father->children, sibling) {
645                 for_each_thread(p, t) {
646                         RCU_INIT_POINTER(t->real_parent, reaper);
647                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
648                         if (likely(!t->ptrace))
649                                 t->parent = t->real_parent;
650                         if (t->pdeath_signal)
651                                 group_send_sig_info(t->pdeath_signal,
652                                                     SEND_SIG_NOINFO, t,
653                                                     PIDTYPE_TGID);
654                 }
655                 /*
656                  * If this is a threaded reparent there is no need to
657                  * notify anyone anything has happened.
658                  */
659                 if (!same_thread_group(reaper, father))
660                         reparent_leader(father, p, dead);
661         }
662         list_splice_tail_init(&father->children, &reaper->children);
663 }
664
665 /*
666  * Send signals to all our closest relatives so that they know
667  * to properly mourn us..
668  */
669 static void exit_notify(struct task_struct *tsk, int group_dead)
670 {
671         bool autoreap;
672         struct task_struct *p, *n;
673         LIST_HEAD(dead);
674
675         write_lock_irq(&tasklist_lock);
676         forget_original_parent(tsk, &dead);
677
678         if (group_dead)
679                 kill_orphaned_pgrp(tsk->group_leader, NULL);
680
681         tsk->exit_state = EXIT_ZOMBIE;
682         if (unlikely(tsk->ptrace)) {
683                 int sig = thread_group_leader(tsk) &&
684                                 thread_group_empty(tsk) &&
685                                 !ptrace_reparented(tsk) ?
686                         tsk->exit_signal : SIGCHLD;
687                 autoreap = do_notify_parent(tsk, sig);
688         } else if (thread_group_leader(tsk)) {
689                 autoreap = thread_group_empty(tsk) &&
690                         do_notify_parent(tsk, tsk->exit_signal);
691         } else {
692                 autoreap = true;
693         }
694
695         if (autoreap) {
696                 tsk->exit_state = EXIT_DEAD;
697                 list_add(&tsk->ptrace_entry, &dead);
698         }
699
700         /* mt-exec, de_thread() is waiting for group leader */
701         if (unlikely(tsk->signal->notify_count < 0))
702                 wake_up_process(tsk->signal->group_exec_task);
703         write_unlock_irq(&tasklist_lock);
704
705         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
706                 list_del_init(&p->ptrace_entry);
707                 release_task(p);
708         }
709 }
710
711 #ifdef CONFIG_DEBUG_STACK_USAGE
712 static void check_stack_usage(void)
713 {
714         static DEFINE_SPINLOCK(low_water_lock);
715         static int lowest_to_date = THREAD_SIZE;
716         unsigned long free;
717
718         free = stack_not_used(current);
719
720         if (free >= lowest_to_date)
721                 return;
722
723         spin_lock(&low_water_lock);
724         if (free < lowest_to_date) {
725                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
726                         current->comm, task_pid_nr(current), free);
727                 lowest_to_date = free;
728         }
729         spin_unlock(&low_water_lock);
730 }
731 #else
732 static inline void check_stack_usage(void) {}
733 #endif
734
735 void __noreturn do_exit(long code)
736 {
737         struct task_struct *tsk = current;
738         int group_dead;
739
740         WARN_ON(tsk->plug);
741
742         kcov_task_exit(tsk);
743
744         coredump_task_exit(tsk);
745         ptrace_event(PTRACE_EVENT_EXIT, code);
746
747         validate_creds_for_do_exit(tsk);
748
749         io_uring_files_cancel();
750         exit_signals(tsk);  /* sets PF_EXITING */
751
752         /* sync mm's RSS info before statistics gathering */
753         if (tsk->mm)
754                 sync_mm_rss(tsk->mm);
755         acct_update_integrals(tsk);
756         group_dead = atomic_dec_and_test(&tsk->signal->live);
757         if (group_dead) {
758                 /*
759                  * If the last thread of global init has exited, panic
760                  * immediately to get a useable coredump.
761                  */
762                 if (unlikely(is_global_init(tsk)))
763                         panic("Attempted to kill init! exitcode=0x%08x\n",
764                                 tsk->signal->group_exit_code ?: (int)code);
765
766 #ifdef CONFIG_POSIX_TIMERS
767                 hrtimer_cancel(&tsk->signal->real_timer);
768                 exit_itimers(tsk->signal);
769 #endif
770                 if (tsk->mm)
771                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
772         }
773         acct_collect(code, group_dead);
774         if (group_dead)
775                 tty_audit_exit();
776         audit_free(tsk);
777
778         tsk->exit_code = code;
779         taskstats_exit(tsk, group_dead);
780
781         exit_mm();
782
783         if (group_dead)
784                 acct_process();
785         trace_sched_process_exit(tsk);
786
787         exit_sem(tsk);
788         exit_shm(tsk);
789         exit_files(tsk);
790         exit_fs(tsk);
791         if (group_dead)
792                 disassociate_ctty(1);
793         exit_task_namespaces(tsk);
794         exit_task_work(tsk);
795         exit_thread(tsk);
796
797         /*
798          * Flush inherited counters to the parent - before the parent
799          * gets woken up by child-exit notifications.
800          *
801          * because of cgroup mode, must be called before cgroup_exit()
802          */
803         perf_event_exit_task(tsk);
804
805         sched_autogroup_exit_task(tsk);
806         cgroup_exit(tsk);
807
808         /*
809          * FIXME: do that only when needed, using sched_exit tracepoint
810          */
811         flush_ptrace_hw_breakpoint(tsk);
812
813         exit_tasks_rcu_start();
814         exit_notify(tsk, group_dead);
815         proc_exit_connector(tsk);
816         mpol_put_task_policy(tsk);
817 #ifdef CONFIG_FUTEX
818         if (unlikely(current->pi_state_cache))
819                 kfree(current->pi_state_cache);
820 #endif
821         /*
822          * Make sure we are holding no locks:
823          */
824         debug_check_no_locks_held();
825
826         if (tsk->io_context)
827                 exit_io_context(tsk);
828
829         if (tsk->splice_pipe)
830                 free_pipe_info(tsk->splice_pipe);
831
832         if (tsk->task_frag.page)
833                 put_page(tsk->task_frag.page);
834
835         validate_creds_for_do_exit(tsk);
836         exit_task_stack_account(tsk);
837
838         check_stack_usage();
839         preempt_disable();
840         if (tsk->nr_dirtied)
841                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
842         exit_rcu();
843         exit_tasks_rcu_finish();
844
845         lockdep_free_task(tsk);
846         do_task_dead();
847 }
848
849 void __noreturn make_task_dead(int signr)
850 {
851         /*
852          * Take the task off the cpu after something catastrophic has
853          * happened.
854          *
855          * We can get here from a kernel oops, sometimes with preemption off.
856          * Start by checking for critical errors.
857          * Then fix up important state like USER_DS and preemption.
858          * Then do everything else.
859          */
860         struct task_struct *tsk = current;
861
862         if (unlikely(in_interrupt()))
863                 panic("Aiee, killing interrupt handler!");
864         if (unlikely(!tsk->pid))
865                 panic("Attempted to kill the idle task!");
866
867         if (unlikely(in_atomic())) {
868                 pr_info("note: %s[%d] exited with preempt_count %d\n",
869                         current->comm, task_pid_nr(current),
870                         preempt_count());
871                 preempt_count_set(PREEMPT_ENABLED);
872         }
873
874         /*
875          * We're taking recursive faults here in make_task_dead. Safest is to just
876          * leave this task alone and wait for reboot.
877          */
878         if (unlikely(tsk->flags & PF_EXITING)) {
879                 pr_alert("Fixing recursive fault but reboot is needed!\n");
880                 futex_exit_recursive(tsk);
881                 tsk->exit_state = EXIT_DEAD;
882                 refcount_inc(&tsk->rcu_users);
883                 do_task_dead();
884         }
885
886         do_exit(signr);
887 }
888
889 SYSCALL_DEFINE1(exit, int, error_code)
890 {
891         do_exit((error_code&0xff)<<8);
892 }
893
894 /*
895  * Take down every thread in the group.  This is called by fatal signals
896  * as well as by sys_exit_group (below).
897  */
898 void
899 do_group_exit(int exit_code)
900 {
901         struct signal_struct *sig = current->signal;
902
903         if (sig->flags & SIGNAL_GROUP_EXIT)
904                 exit_code = sig->group_exit_code;
905         else if (sig->group_exec_task)
906                 exit_code = 0;
907         else if (!thread_group_empty(current)) {
908                 struct sighand_struct *const sighand = current->sighand;
909
910                 spin_lock_irq(&sighand->siglock);
911                 if (sig->flags & SIGNAL_GROUP_EXIT)
912                         /* Another thread got here before we took the lock.  */
913                         exit_code = sig->group_exit_code;
914                 else if (sig->group_exec_task)
915                         exit_code = 0;
916                 else {
917                         sig->group_exit_code = exit_code;
918                         sig->flags = SIGNAL_GROUP_EXIT;
919                         zap_other_threads(current);
920                 }
921                 spin_unlock_irq(&sighand->siglock);
922         }
923
924         do_exit(exit_code);
925         /* NOTREACHED */
926 }
927
928 /*
929  * this kills every thread in the thread group. Note that any externally
930  * wait4()-ing process will get the correct exit code - even if this
931  * thread is not the thread group leader.
932  */
933 SYSCALL_DEFINE1(exit_group, int, error_code)
934 {
935         do_group_exit((error_code & 0xff) << 8);
936         /* NOTREACHED */
937         return 0;
938 }
939
940 struct waitid_info {
941         pid_t pid;
942         uid_t uid;
943         int status;
944         int cause;
945 };
946
947 struct wait_opts {
948         enum pid_type           wo_type;
949         int                     wo_flags;
950         struct pid              *wo_pid;
951
952         struct waitid_info      *wo_info;
953         int                     wo_stat;
954         struct rusage           *wo_rusage;
955
956         wait_queue_entry_t              child_wait;
957         int                     notask_error;
958 };
959
960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
961 {
962         return  wo->wo_type == PIDTYPE_MAX ||
963                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
964 }
965
966 static int
967 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
968 {
969         if (!eligible_pid(wo, p))
970                 return 0;
971
972         /*
973          * Wait for all children (clone and not) if __WALL is set or
974          * if it is traced by us.
975          */
976         if (ptrace || (wo->wo_flags & __WALL))
977                 return 1;
978
979         /*
980          * Otherwise, wait for clone children *only* if __WCLONE is set;
981          * otherwise, wait for non-clone children *only*.
982          *
983          * Note: a "clone" child here is one that reports to its parent
984          * using a signal other than SIGCHLD, or a non-leader thread which
985          * we can only see if it is traced by us.
986          */
987         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
988                 return 0;
989
990         return 1;
991 }
992
993 /*
994  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
995  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
996  * the lock and this task is uninteresting.  If we return nonzero, we have
997  * released the lock and the system call should return.
998  */
999 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1000 {
1001         int state, status;
1002         pid_t pid = task_pid_vnr(p);
1003         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1004         struct waitid_info *infop;
1005
1006         if (!likely(wo->wo_flags & WEXITED))
1007                 return 0;
1008
1009         if (unlikely(wo->wo_flags & WNOWAIT)) {
1010                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1011                         ? p->signal->group_exit_code : p->exit_code;
1012                 get_task_struct(p);
1013                 read_unlock(&tasklist_lock);
1014                 sched_annotate_sleep();
1015                 if (wo->wo_rusage)
1016                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1017                 put_task_struct(p);
1018                 goto out_info;
1019         }
1020         /*
1021          * Move the task's state to DEAD/TRACE, only one thread can do this.
1022          */
1023         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1024                 EXIT_TRACE : EXIT_DEAD;
1025         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1026                 return 0;
1027         /*
1028          * We own this thread, nobody else can reap it.
1029          */
1030         read_unlock(&tasklist_lock);
1031         sched_annotate_sleep();
1032
1033         /*
1034          * Check thread_group_leader() to exclude the traced sub-threads.
1035          */
1036         if (state == EXIT_DEAD && thread_group_leader(p)) {
1037                 struct signal_struct *sig = p->signal;
1038                 struct signal_struct *psig = current->signal;
1039                 unsigned long maxrss;
1040                 u64 tgutime, tgstime;
1041
1042                 /*
1043                  * The resource counters for the group leader are in its
1044                  * own task_struct.  Those for dead threads in the group
1045                  * are in its signal_struct, as are those for the child
1046                  * processes it has previously reaped.  All these
1047                  * accumulate in the parent's signal_struct c* fields.
1048                  *
1049                  * We don't bother to take a lock here to protect these
1050                  * p->signal fields because the whole thread group is dead
1051                  * and nobody can change them.
1052                  *
1053                  * psig->stats_lock also protects us from our sub-theads
1054                  * which can reap other children at the same time. Until
1055                  * we change k_getrusage()-like users to rely on this lock
1056                  * we have to take ->siglock as well.
1057                  *
1058                  * We use thread_group_cputime_adjusted() to get times for
1059                  * the thread group, which consolidates times for all threads
1060                  * in the group including the group leader.
1061                  */
1062                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1063                 spin_lock_irq(&current->sighand->siglock);
1064                 write_seqlock(&psig->stats_lock);
1065                 psig->cutime += tgutime + sig->cutime;
1066                 psig->cstime += tgstime + sig->cstime;
1067                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1068                 psig->cmin_flt +=
1069                         p->min_flt + sig->min_flt + sig->cmin_flt;
1070                 psig->cmaj_flt +=
1071                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1072                 psig->cnvcsw +=
1073                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1074                 psig->cnivcsw +=
1075                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1076                 psig->cinblock +=
1077                         task_io_get_inblock(p) +
1078                         sig->inblock + sig->cinblock;
1079                 psig->coublock +=
1080                         task_io_get_oublock(p) +
1081                         sig->oublock + sig->coublock;
1082                 maxrss = max(sig->maxrss, sig->cmaxrss);
1083                 if (psig->cmaxrss < maxrss)
1084                         psig->cmaxrss = maxrss;
1085                 task_io_accounting_add(&psig->ioac, &p->ioac);
1086                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1087                 write_sequnlock(&psig->stats_lock);
1088                 spin_unlock_irq(&current->sighand->siglock);
1089         }
1090
1091         if (wo->wo_rusage)
1092                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1093         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1094                 ? p->signal->group_exit_code : p->exit_code;
1095         wo->wo_stat = status;
1096
1097         if (state == EXIT_TRACE) {
1098                 write_lock_irq(&tasklist_lock);
1099                 /* We dropped tasklist, ptracer could die and untrace */
1100                 ptrace_unlink(p);
1101
1102                 /* If parent wants a zombie, don't release it now */
1103                 state = EXIT_ZOMBIE;
1104                 if (do_notify_parent(p, p->exit_signal))
1105                         state = EXIT_DEAD;
1106                 p->exit_state = state;
1107                 write_unlock_irq(&tasklist_lock);
1108         }
1109         if (state == EXIT_DEAD)
1110                 release_task(p);
1111
1112 out_info:
1113         infop = wo->wo_info;
1114         if (infop) {
1115                 if ((status & 0x7f) == 0) {
1116                         infop->cause = CLD_EXITED;
1117                         infop->status = status >> 8;
1118                 } else {
1119                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1120                         infop->status = status & 0x7f;
1121                 }
1122                 infop->pid = pid;
1123                 infop->uid = uid;
1124         }
1125
1126         return pid;
1127 }
1128
1129 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1130 {
1131         if (ptrace) {
1132                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1133                         return &p->exit_code;
1134         } else {
1135                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1136                         return &p->signal->group_exit_code;
1137         }
1138         return NULL;
1139 }
1140
1141 /**
1142  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1143  * @wo: wait options
1144  * @ptrace: is the wait for ptrace
1145  * @p: task to wait for
1146  *
1147  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1148  *
1149  * CONTEXT:
1150  * read_lock(&tasklist_lock), which is released if return value is
1151  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1152  *
1153  * RETURNS:
1154  * 0 if wait condition didn't exist and search for other wait conditions
1155  * should continue.  Non-zero return, -errno on failure and @p's pid on
1156  * success, implies that tasklist_lock is released and wait condition
1157  * search should terminate.
1158  */
1159 static int wait_task_stopped(struct wait_opts *wo,
1160                                 int ptrace, struct task_struct *p)
1161 {
1162         struct waitid_info *infop;
1163         int exit_code, *p_code, why;
1164         uid_t uid = 0; /* unneeded, required by compiler */
1165         pid_t pid;
1166
1167         /*
1168          * Traditionally we see ptrace'd stopped tasks regardless of options.
1169          */
1170         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1171                 return 0;
1172
1173         if (!task_stopped_code(p, ptrace))
1174                 return 0;
1175
1176         exit_code = 0;
1177         spin_lock_irq(&p->sighand->siglock);
1178
1179         p_code = task_stopped_code(p, ptrace);
1180         if (unlikely(!p_code))
1181                 goto unlock_sig;
1182
1183         exit_code = *p_code;
1184         if (!exit_code)
1185                 goto unlock_sig;
1186
1187         if (!unlikely(wo->wo_flags & WNOWAIT))
1188                 *p_code = 0;
1189
1190         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1191 unlock_sig:
1192         spin_unlock_irq(&p->sighand->siglock);
1193         if (!exit_code)
1194                 return 0;
1195
1196         /*
1197          * Now we are pretty sure this task is interesting.
1198          * Make sure it doesn't get reaped out from under us while we
1199          * give up the lock and then examine it below.  We don't want to
1200          * keep holding onto the tasklist_lock while we call getrusage and
1201          * possibly take page faults for user memory.
1202          */
1203         get_task_struct(p);
1204         pid = task_pid_vnr(p);
1205         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1206         read_unlock(&tasklist_lock);
1207         sched_annotate_sleep();
1208         if (wo->wo_rusage)
1209                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1210         put_task_struct(p);
1211
1212         if (likely(!(wo->wo_flags & WNOWAIT)))
1213                 wo->wo_stat = (exit_code << 8) | 0x7f;
1214
1215         infop = wo->wo_info;
1216         if (infop) {
1217                 infop->cause = why;
1218                 infop->status = exit_code;
1219                 infop->pid = pid;
1220                 infop->uid = uid;
1221         }
1222         return pid;
1223 }
1224
1225 /*
1226  * Handle do_wait work for one task in a live, non-stopped state.
1227  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1228  * the lock and this task is uninteresting.  If we return nonzero, we have
1229  * released the lock and the system call should return.
1230  */
1231 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1232 {
1233         struct waitid_info *infop;
1234         pid_t pid;
1235         uid_t uid;
1236
1237         if (!unlikely(wo->wo_flags & WCONTINUED))
1238                 return 0;
1239
1240         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1241                 return 0;
1242
1243         spin_lock_irq(&p->sighand->siglock);
1244         /* Re-check with the lock held.  */
1245         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1246                 spin_unlock_irq(&p->sighand->siglock);
1247                 return 0;
1248         }
1249         if (!unlikely(wo->wo_flags & WNOWAIT))
1250                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1251         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1252         spin_unlock_irq(&p->sighand->siglock);
1253
1254         pid = task_pid_vnr(p);
1255         get_task_struct(p);
1256         read_unlock(&tasklist_lock);
1257         sched_annotate_sleep();
1258         if (wo->wo_rusage)
1259                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1260         put_task_struct(p);
1261
1262         infop = wo->wo_info;
1263         if (!infop) {
1264                 wo->wo_stat = 0xffff;
1265         } else {
1266                 infop->cause = CLD_CONTINUED;
1267                 infop->pid = pid;
1268                 infop->uid = uid;
1269                 infop->status = SIGCONT;
1270         }
1271         return pid;
1272 }
1273
1274 /*
1275  * Consider @p for a wait by @parent.
1276  *
1277  * -ECHILD should be in ->notask_error before the first call.
1278  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1279  * Returns zero if the search for a child should continue;
1280  * then ->notask_error is 0 if @p is an eligible child,
1281  * or still -ECHILD.
1282  */
1283 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1284                                 struct task_struct *p)
1285 {
1286         /*
1287          * We can race with wait_task_zombie() from another thread.
1288          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1289          * can't confuse the checks below.
1290          */
1291         int exit_state = READ_ONCE(p->exit_state);
1292         int ret;
1293
1294         if (unlikely(exit_state == EXIT_DEAD))
1295                 return 0;
1296
1297         ret = eligible_child(wo, ptrace, p);
1298         if (!ret)
1299                 return ret;
1300
1301         if (unlikely(exit_state == EXIT_TRACE)) {
1302                 /*
1303                  * ptrace == 0 means we are the natural parent. In this case
1304                  * we should clear notask_error, debugger will notify us.
1305                  */
1306                 if (likely(!ptrace))
1307                         wo->notask_error = 0;
1308                 return 0;
1309         }
1310
1311         if (likely(!ptrace) && unlikely(p->ptrace)) {
1312                 /*
1313                  * If it is traced by its real parent's group, just pretend
1314                  * the caller is ptrace_do_wait() and reap this child if it
1315                  * is zombie.
1316                  *
1317                  * This also hides group stop state from real parent; otherwise
1318                  * a single stop can be reported twice as group and ptrace stop.
1319                  * If a ptracer wants to distinguish these two events for its
1320                  * own children it should create a separate process which takes
1321                  * the role of real parent.
1322                  */
1323                 if (!ptrace_reparented(p))
1324                         ptrace = 1;
1325         }
1326
1327         /* slay zombie? */
1328         if (exit_state == EXIT_ZOMBIE) {
1329                 /* we don't reap group leaders with subthreads */
1330                 if (!delay_group_leader(p)) {
1331                         /*
1332                          * A zombie ptracee is only visible to its ptracer.
1333                          * Notification and reaping will be cascaded to the
1334                          * real parent when the ptracer detaches.
1335                          */
1336                         if (unlikely(ptrace) || likely(!p->ptrace))
1337                                 return wait_task_zombie(wo, p);
1338                 }
1339
1340                 /*
1341                  * Allow access to stopped/continued state via zombie by
1342                  * falling through.  Clearing of notask_error is complex.
1343                  *
1344                  * When !@ptrace:
1345                  *
1346                  * If WEXITED is set, notask_error should naturally be
1347                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1348                  * so, if there are live subthreads, there are events to
1349                  * wait for.  If all subthreads are dead, it's still safe
1350                  * to clear - this function will be called again in finite
1351                  * amount time once all the subthreads are released and
1352                  * will then return without clearing.
1353                  *
1354                  * When @ptrace:
1355                  *
1356                  * Stopped state is per-task and thus can't change once the
1357                  * target task dies.  Only continued and exited can happen.
1358                  * Clear notask_error if WCONTINUED | WEXITED.
1359                  */
1360                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1361                         wo->notask_error = 0;
1362         } else {
1363                 /*
1364                  * @p is alive and it's gonna stop, continue or exit, so
1365                  * there always is something to wait for.
1366                  */
1367                 wo->notask_error = 0;
1368         }
1369
1370         /*
1371          * Wait for stopped.  Depending on @ptrace, different stopped state
1372          * is used and the two don't interact with each other.
1373          */
1374         ret = wait_task_stopped(wo, ptrace, p);
1375         if (ret)
1376                 return ret;
1377
1378         /*
1379          * Wait for continued.  There's only one continued state and the
1380          * ptracer can consume it which can confuse the real parent.  Don't
1381          * use WCONTINUED from ptracer.  You don't need or want it.
1382          */
1383         return wait_task_continued(wo, p);
1384 }
1385
1386 /*
1387  * Do the work of do_wait() for one thread in the group, @tsk.
1388  *
1389  * -ECHILD should be in ->notask_error before the first call.
1390  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1391  * Returns zero if the search for a child should continue; then
1392  * ->notask_error is 0 if there were any eligible children,
1393  * or still -ECHILD.
1394  */
1395 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1396 {
1397         struct task_struct *p;
1398
1399         list_for_each_entry(p, &tsk->children, sibling) {
1400                 int ret = wait_consider_task(wo, 0, p);
1401
1402                 if (ret)
1403                         return ret;
1404         }
1405
1406         return 0;
1407 }
1408
1409 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1410 {
1411         struct task_struct *p;
1412
1413         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1414                 int ret = wait_consider_task(wo, 1, p);
1415
1416                 if (ret)
1417                         return ret;
1418         }
1419
1420         return 0;
1421 }
1422
1423 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1424                                 int sync, void *key)
1425 {
1426         struct wait_opts *wo = container_of(wait, struct wait_opts,
1427                                                 child_wait);
1428         struct task_struct *p = key;
1429
1430         if (!eligible_pid(wo, p))
1431                 return 0;
1432
1433         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1434                 return 0;
1435
1436         return default_wake_function(wait, mode, sync, key);
1437 }
1438
1439 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1440 {
1441         __wake_up_sync_key(&parent->signal->wait_chldexit,
1442                            TASK_INTERRUPTIBLE, p);
1443 }
1444
1445 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1446                                  struct task_struct *target)
1447 {
1448         struct task_struct *parent =
1449                 !ptrace ? target->real_parent : target->parent;
1450
1451         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1452                                      same_thread_group(current, parent));
1453 }
1454
1455 /*
1456  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1457  * and tracee lists to find the target task.
1458  */
1459 static int do_wait_pid(struct wait_opts *wo)
1460 {
1461         bool ptrace;
1462         struct task_struct *target;
1463         int retval;
1464
1465         ptrace = false;
1466         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1467         if (target && is_effectively_child(wo, ptrace, target)) {
1468                 retval = wait_consider_task(wo, ptrace, target);
1469                 if (retval)
1470                         return retval;
1471         }
1472
1473         ptrace = true;
1474         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1475         if (target && target->ptrace &&
1476             is_effectively_child(wo, ptrace, target)) {
1477                 retval = wait_consider_task(wo, ptrace, target);
1478                 if (retval)
1479                         return retval;
1480         }
1481
1482         return 0;
1483 }
1484
1485 static long do_wait(struct wait_opts *wo)
1486 {
1487         int retval;
1488
1489         trace_sched_process_wait(wo->wo_pid);
1490
1491         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1492         wo->child_wait.private = current;
1493         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1494 repeat:
1495         /*
1496          * If there is nothing that can match our criteria, just get out.
1497          * We will clear ->notask_error to zero if we see any child that
1498          * might later match our criteria, even if we are not able to reap
1499          * it yet.
1500          */
1501         wo->notask_error = -ECHILD;
1502         if ((wo->wo_type < PIDTYPE_MAX) &&
1503            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1504                 goto notask;
1505
1506         set_current_state(TASK_INTERRUPTIBLE);
1507         read_lock(&tasklist_lock);
1508
1509         if (wo->wo_type == PIDTYPE_PID) {
1510                 retval = do_wait_pid(wo);
1511                 if (retval)
1512                         goto end;
1513         } else {
1514                 struct task_struct *tsk = current;
1515
1516                 do {
1517                         retval = do_wait_thread(wo, tsk);
1518                         if (retval)
1519                                 goto end;
1520
1521                         retval = ptrace_do_wait(wo, tsk);
1522                         if (retval)
1523                                 goto end;
1524
1525                         if (wo->wo_flags & __WNOTHREAD)
1526                                 break;
1527                 } while_each_thread(current, tsk);
1528         }
1529         read_unlock(&tasklist_lock);
1530
1531 notask:
1532         retval = wo->notask_error;
1533         if (!retval && !(wo->wo_flags & WNOHANG)) {
1534                 retval = -ERESTARTSYS;
1535                 if (!signal_pending(current)) {
1536                         schedule();
1537                         goto repeat;
1538                 }
1539         }
1540 end:
1541         __set_current_state(TASK_RUNNING);
1542         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1543         return retval;
1544 }
1545
1546 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1547                           int options, struct rusage *ru)
1548 {
1549         struct wait_opts wo;
1550         struct pid *pid = NULL;
1551         enum pid_type type;
1552         long ret;
1553         unsigned int f_flags = 0;
1554
1555         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1556                         __WNOTHREAD|__WCLONE|__WALL))
1557                 return -EINVAL;
1558         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1559                 return -EINVAL;
1560
1561         switch (which) {
1562         case P_ALL:
1563                 type = PIDTYPE_MAX;
1564                 break;
1565         case P_PID:
1566                 type = PIDTYPE_PID;
1567                 if (upid <= 0)
1568                         return -EINVAL;
1569
1570                 pid = find_get_pid(upid);
1571                 break;
1572         case P_PGID:
1573                 type = PIDTYPE_PGID;
1574                 if (upid < 0)
1575                         return -EINVAL;
1576
1577                 if (upid)
1578                         pid = find_get_pid(upid);
1579                 else
1580                         pid = get_task_pid(current, PIDTYPE_PGID);
1581                 break;
1582         case P_PIDFD:
1583                 type = PIDTYPE_PID;
1584                 if (upid < 0)
1585                         return -EINVAL;
1586
1587                 pid = pidfd_get_pid(upid, &f_flags);
1588                 if (IS_ERR(pid))
1589                         return PTR_ERR(pid);
1590
1591                 break;
1592         default:
1593                 return -EINVAL;
1594         }
1595
1596         wo.wo_type      = type;
1597         wo.wo_pid       = pid;
1598         wo.wo_flags     = options;
1599         wo.wo_info      = infop;
1600         wo.wo_rusage    = ru;
1601         if (f_flags & O_NONBLOCK)
1602                 wo.wo_flags |= WNOHANG;
1603
1604         ret = do_wait(&wo);
1605         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1606                 ret = -EAGAIN;
1607
1608         put_pid(pid);
1609         return ret;
1610 }
1611
1612 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1613                 infop, int, options, struct rusage __user *, ru)
1614 {
1615         struct rusage r;
1616         struct waitid_info info = {.status = 0};
1617         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1618         int signo = 0;
1619
1620         if (err > 0) {
1621                 signo = SIGCHLD;
1622                 err = 0;
1623                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1624                         return -EFAULT;
1625         }
1626         if (!infop)
1627                 return err;
1628
1629         if (!user_write_access_begin(infop, sizeof(*infop)))
1630                 return -EFAULT;
1631
1632         unsafe_put_user(signo, &infop->si_signo, Efault);
1633         unsafe_put_user(0, &infop->si_errno, Efault);
1634         unsafe_put_user(info.cause, &infop->si_code, Efault);
1635         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1636         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1637         unsafe_put_user(info.status, &infop->si_status, Efault);
1638         user_write_access_end();
1639         return err;
1640 Efault:
1641         user_write_access_end();
1642         return -EFAULT;
1643 }
1644
1645 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1646                   struct rusage *ru)
1647 {
1648         struct wait_opts wo;
1649         struct pid *pid = NULL;
1650         enum pid_type type;
1651         long ret;
1652
1653         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1654                         __WNOTHREAD|__WCLONE|__WALL))
1655                 return -EINVAL;
1656
1657         /* -INT_MIN is not defined */
1658         if (upid == INT_MIN)
1659                 return -ESRCH;
1660
1661         if (upid == -1)
1662                 type = PIDTYPE_MAX;
1663         else if (upid < 0) {
1664                 type = PIDTYPE_PGID;
1665                 pid = find_get_pid(-upid);
1666         } else if (upid == 0) {
1667                 type = PIDTYPE_PGID;
1668                 pid = get_task_pid(current, PIDTYPE_PGID);
1669         } else /* upid > 0 */ {
1670                 type = PIDTYPE_PID;
1671                 pid = find_get_pid(upid);
1672         }
1673
1674         wo.wo_type      = type;
1675         wo.wo_pid       = pid;
1676         wo.wo_flags     = options | WEXITED;
1677         wo.wo_info      = NULL;
1678         wo.wo_stat      = 0;
1679         wo.wo_rusage    = ru;
1680         ret = do_wait(&wo);
1681         put_pid(pid);
1682         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1683                 ret = -EFAULT;
1684
1685         return ret;
1686 }
1687
1688 int kernel_wait(pid_t pid, int *stat)
1689 {
1690         struct wait_opts wo = {
1691                 .wo_type        = PIDTYPE_PID,
1692                 .wo_pid         = find_get_pid(pid),
1693                 .wo_flags       = WEXITED,
1694         };
1695         int ret;
1696
1697         ret = do_wait(&wo);
1698         if (ret > 0 && wo.wo_stat)
1699                 *stat = wo.wo_stat;
1700         put_pid(wo.wo_pid);
1701         return ret;
1702 }
1703
1704 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1705                 int, options, struct rusage __user *, ru)
1706 {
1707         struct rusage r;
1708         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1709
1710         if (err > 0) {
1711                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1712                         return -EFAULT;
1713         }
1714         return err;
1715 }
1716
1717 #ifdef __ARCH_WANT_SYS_WAITPID
1718
1719 /*
1720  * sys_waitpid() remains for compatibility. waitpid() should be
1721  * implemented by calling sys_wait4() from libc.a.
1722  */
1723 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1724 {
1725         return kernel_wait4(pid, stat_addr, options, NULL);
1726 }
1727
1728 #endif
1729
1730 #ifdef CONFIG_COMPAT
1731 COMPAT_SYSCALL_DEFINE4(wait4,
1732         compat_pid_t, pid,
1733         compat_uint_t __user *, stat_addr,
1734         int, options,
1735         struct compat_rusage __user *, ru)
1736 {
1737         struct rusage r;
1738         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1739         if (err > 0) {
1740                 if (ru && put_compat_rusage(&r, ru))
1741                         return -EFAULT;
1742         }
1743         return err;
1744 }
1745
1746 COMPAT_SYSCALL_DEFINE5(waitid,
1747                 int, which, compat_pid_t, pid,
1748                 struct compat_siginfo __user *, infop, int, options,
1749                 struct compat_rusage __user *, uru)
1750 {
1751         struct rusage ru;
1752         struct waitid_info info = {.status = 0};
1753         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1754         int signo = 0;
1755         if (err > 0) {
1756                 signo = SIGCHLD;
1757                 err = 0;
1758                 if (uru) {
1759                         /* kernel_waitid() overwrites everything in ru */
1760                         if (COMPAT_USE_64BIT_TIME)
1761                                 err = copy_to_user(uru, &ru, sizeof(ru));
1762                         else
1763                                 err = put_compat_rusage(&ru, uru);
1764                         if (err)
1765                                 return -EFAULT;
1766                 }
1767         }
1768
1769         if (!infop)
1770                 return err;
1771
1772         if (!user_write_access_begin(infop, sizeof(*infop)))
1773                 return -EFAULT;
1774
1775         unsafe_put_user(signo, &infop->si_signo, Efault);
1776         unsafe_put_user(0, &infop->si_errno, Efault);
1777         unsafe_put_user(info.cause, &infop->si_code, Efault);
1778         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1779         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1780         unsafe_put_user(info.status, &infop->si_status, Efault);
1781         user_write_access_end();
1782         return err;
1783 Efault:
1784         user_write_access_end();
1785         return -EFAULT;
1786 }
1787 #endif
1788
1789 /**
1790  * thread_group_exited - check that a thread group has exited
1791  * @pid: tgid of thread group to be checked.
1792  *
1793  * Test if the thread group represented by tgid has exited (all
1794  * threads are zombies, dead or completely gone).
1795  *
1796  * Return: true if the thread group has exited. false otherwise.
1797  */
1798 bool thread_group_exited(struct pid *pid)
1799 {
1800         struct task_struct *task;
1801         bool exited;
1802
1803         rcu_read_lock();
1804         task = pid_task(pid, PIDTYPE_PID);
1805         exited = !task ||
1806                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1807         rcu_read_unlock();
1808
1809         return exited;
1810 }
1811 EXPORT_SYMBOL(thread_group_exited);
1812
1813 __weak void abort(void)
1814 {
1815         BUG();
1816
1817         /* if that doesn't kill us, halt */
1818         panic("Oops failed to kill thread");
1819 }
1820 EXPORT_SYMBOL(abort);