4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
103 #include <trace/events/sched.h>
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
109 * Minimum number of threads to boot the kernel
111 #define MIN_THREADS 20
114 * Maximum number of threads
116 #define MAX_THREADS FUTEX_TID_MASK
119 * Protected counters by write_lock_irq(&tasklist_lock)
121 unsigned long total_forks; /* Handle normal Linux uptimes. */
122 int nr_threads; /* The idle threads do not count.. */
124 int max_threads; /* tunable limit on nr_threads */
126 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
128 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
133 return lockdep_is_held(&tasklist_lock);
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
138 int nr_processes(void)
143 for_each_possible_cpu(cpu)
144 total += per_cpu(process_counts, cpu);
149 void __weak arch_release_task_struct(struct task_struct *tsk)
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache *task_struct_cachep;
156 static inline struct task_struct *alloc_task_struct_node(int node)
158 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 static inline void free_task_struct(struct task_struct *tsk)
163 kmem_cache_free(task_struct_cachep, tsk);
167 void __weak arch_release_thread_stack(unsigned long *stack)
171 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
174 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
175 * kmemcache based allocator.
177 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
179 #ifdef CONFIG_VMAP_STACK
181 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
182 * flush. Try to minimize the number of calls by caching stacks.
184 #define NR_CACHED_STACKS 2
185 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
187 static int free_vm_stack_cache(unsigned int cpu)
189 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
192 for (i = 0; i < NR_CACHED_STACKS; i++) {
193 struct vm_struct *vm_stack = cached_vm_stacks[i];
198 vfree(vm_stack->addr);
199 cached_vm_stacks[i] = NULL;
206 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
208 #ifdef CONFIG_VMAP_STACK
212 for (i = 0; i < NR_CACHED_STACKS; i++) {
215 s = this_cpu_xchg(cached_stacks[i], NULL);
220 /* Clear stale pointers from reused stack. */
221 memset(s->addr, 0, THREAD_SIZE);
223 tsk->stack_vm_area = s;
228 * Allocated stacks are cached and later reused by new threads,
229 * so memcg accounting is performed manually on assigning/releasing
230 * stacks to tasks. Drop __GFP_ACCOUNT.
232 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
233 VMALLOC_START, VMALLOC_END,
234 THREADINFO_GFP & ~__GFP_ACCOUNT,
236 0, node, __builtin_return_address(0));
239 * We can't call find_vm_area() in interrupt context, and
240 * free_thread_stack() can be called in interrupt context,
241 * so cache the vm_struct.
244 tsk->stack_vm_area = find_vm_area(stack);
249 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
252 return page ? page_address(page) : NULL;
256 static inline void free_thread_stack(struct task_struct *tsk)
258 #ifdef CONFIG_VMAP_STACK
259 struct vm_struct *vm = task_stack_vm_area(tsk);
264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 mod_memcg_page_state(vm->pages[i],
266 MEMCG_KERNEL_STACK_KB,
267 -(int)(PAGE_SIZE / 1024));
269 memcg_kmem_uncharge(vm->pages[i], 0);
272 for (i = 0; i < NR_CACHED_STACKS; i++) {
273 if (this_cpu_cmpxchg(cached_stacks[i],
274 NULL, tsk->stack_vm_area) != NULL)
280 vfree_atomic(tsk->stack);
285 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
288 static struct kmem_cache *thread_stack_cache;
290 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
293 unsigned long *stack;
294 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
299 static void free_thread_stack(struct task_struct *tsk)
301 kmem_cache_free(thread_stack_cache, tsk->stack);
304 void thread_stack_cache_init(void)
306 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
307 THREAD_SIZE, THREAD_SIZE, 0, 0,
309 BUG_ON(thread_stack_cache == NULL);
314 /* SLAB cache for signal_struct structures (tsk->signal) */
315 static struct kmem_cache *signal_cachep;
317 /* SLAB cache for sighand_struct structures (tsk->sighand) */
318 struct kmem_cache *sighand_cachep;
320 /* SLAB cache for files_struct structures (tsk->files) */
321 struct kmem_cache *files_cachep;
323 /* SLAB cache for fs_struct structures (tsk->fs) */
324 struct kmem_cache *fs_cachep;
326 /* SLAB cache for vm_area_struct structures */
327 static struct kmem_cache *vm_area_cachep;
329 /* SLAB cache for mm_struct structures (tsk->mm) */
330 static struct kmem_cache *mm_cachep;
332 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
334 struct vm_area_struct *vma;
336 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
342 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
344 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 INIT_LIST_HEAD(&new->anon_vma_chain);
353 void vm_area_free(struct vm_area_struct *vma)
355 kmem_cache_free(vm_area_cachep, vma);
358 static void account_kernel_stack(struct task_struct *tsk, int account)
360 void *stack = task_stack_page(tsk);
361 struct vm_struct *vm = task_stack_vm_area(tsk);
363 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
368 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
370 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
371 mod_zone_page_state(page_zone(vm->pages[i]),
373 PAGE_SIZE / 1024 * account);
377 * All stack pages are in the same zone and belong to the
380 struct page *first_page = virt_to_page(stack);
382 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
383 THREAD_SIZE / 1024 * account);
385 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
390 static int memcg_charge_kernel_stack(struct task_struct *tsk)
392 #ifdef CONFIG_VMAP_STACK
393 struct vm_struct *vm = task_stack_vm_area(tsk);
399 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
401 * If memcg_kmem_charge() fails, page->mem_cgroup
402 * pointer is NULL, and both memcg_kmem_uncharge()
403 * and mod_memcg_page_state() in free_thread_stack()
404 * will ignore this page. So it's safe.
406 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 mod_memcg_page_state(vm->pages[i],
411 MEMCG_KERNEL_STACK_KB,
419 static void release_task_stack(struct task_struct *tsk)
421 if (WARN_ON(tsk->state != TASK_DEAD))
422 return; /* Better to leak the stack than to free prematurely */
424 account_kernel_stack(tsk, -1);
425 arch_release_thread_stack(tsk->stack);
426 free_thread_stack(tsk);
428 #ifdef CONFIG_VMAP_STACK
429 tsk->stack_vm_area = NULL;
433 #ifdef CONFIG_THREAD_INFO_IN_TASK
434 void put_task_stack(struct task_struct *tsk)
436 if (atomic_dec_and_test(&tsk->stack_refcount))
437 release_task_stack(tsk);
441 void free_task(struct task_struct *tsk)
443 #ifndef CONFIG_THREAD_INFO_IN_TASK
445 * The task is finally done with both the stack and thread_info,
448 release_task_stack(tsk);
451 * If the task had a separate stack allocation, it should be gone
454 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
456 rt_mutex_debug_task_free(tsk);
457 ftrace_graph_exit_task(tsk);
458 put_seccomp_filter(tsk);
459 arch_release_task_struct(tsk);
460 if (tsk->flags & PF_KTHREAD)
461 free_kthread_struct(tsk);
462 free_task_struct(tsk);
464 EXPORT_SYMBOL(free_task);
467 static __latent_entropy int dup_mmap(struct mm_struct *mm,
468 struct mm_struct *oldmm)
470 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
471 struct rb_node **rb_link, *rb_parent;
473 unsigned long charge;
476 uprobe_start_dup_mmap();
477 if (down_write_killable(&oldmm->mmap_sem)) {
479 goto fail_uprobe_end;
481 flush_cache_dup_mm(oldmm);
482 uprobe_dup_mmap(oldmm, mm);
484 * Not linked in yet - no deadlock potential:
486 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
488 /* No ordering required: file already has been exposed. */
489 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
491 mm->total_vm = oldmm->total_vm;
492 mm->data_vm = oldmm->data_vm;
493 mm->exec_vm = oldmm->exec_vm;
494 mm->stack_vm = oldmm->stack_vm;
496 rb_link = &mm->mm_rb.rb_node;
499 retval = ksm_fork(mm, oldmm);
502 retval = khugepaged_fork(mm, oldmm);
507 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 if (mpnt->vm_flags & VM_DONTCOPY) {
511 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
516 * Don't duplicate many vmas if we've been oom-killed (for
519 if (fatal_signal_pending(current)) {
523 if (mpnt->vm_flags & VM_ACCOUNT) {
524 unsigned long len = vma_pages(mpnt);
526 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
530 tmp = vm_area_dup(mpnt);
533 retval = vma_dup_policy(mpnt, tmp);
535 goto fail_nomem_policy;
537 retval = dup_userfaultfd(tmp, &uf);
539 goto fail_nomem_anon_vma_fork;
540 if (tmp->vm_flags & VM_WIPEONFORK) {
541 /* VM_WIPEONFORK gets a clean slate in the child. */
542 tmp->anon_vma = NULL;
543 if (anon_vma_prepare(tmp))
544 goto fail_nomem_anon_vma_fork;
545 } else if (anon_vma_fork(tmp, mpnt))
546 goto fail_nomem_anon_vma_fork;
547 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
548 tmp->vm_next = tmp->vm_prev = NULL;
551 struct inode *inode = file_inode(file);
552 struct address_space *mapping = file->f_mapping;
555 if (tmp->vm_flags & VM_DENYWRITE)
556 atomic_dec(&inode->i_writecount);
557 i_mmap_lock_write(mapping);
558 if (tmp->vm_flags & VM_SHARED)
559 atomic_inc(&mapping->i_mmap_writable);
560 flush_dcache_mmap_lock(mapping);
561 /* insert tmp into the share list, just after mpnt */
562 vma_interval_tree_insert_after(tmp, mpnt,
564 flush_dcache_mmap_unlock(mapping);
565 i_mmap_unlock_write(mapping);
569 * Clear hugetlb-related page reserves for children. This only
570 * affects MAP_PRIVATE mappings. Faults generated by the child
571 * are not guaranteed to succeed, even if read-only
573 if (is_vm_hugetlb_page(tmp))
574 reset_vma_resv_huge_pages(tmp);
577 * Link in the new vma and copy the page table entries.
580 pprev = &tmp->vm_next;
584 __vma_link_rb(mm, tmp, rb_link, rb_parent);
585 rb_link = &tmp->vm_rb.rb_right;
586 rb_parent = &tmp->vm_rb;
589 if (!(tmp->vm_flags & VM_WIPEONFORK))
590 retval = copy_page_range(mm, oldmm, mpnt);
592 if (tmp->vm_ops && tmp->vm_ops->open)
593 tmp->vm_ops->open(tmp);
598 /* a new mm has just been created */
599 retval = arch_dup_mmap(oldmm, mm);
601 up_write(&mm->mmap_sem);
603 up_write(&oldmm->mmap_sem);
604 dup_userfaultfd_complete(&uf);
606 uprobe_end_dup_mmap();
608 fail_nomem_anon_vma_fork:
609 mpol_put(vma_policy(tmp));
614 vm_unacct_memory(charge);
618 static inline int mm_alloc_pgd(struct mm_struct *mm)
620 mm->pgd = pgd_alloc(mm);
621 if (unlikely(!mm->pgd))
626 static inline void mm_free_pgd(struct mm_struct *mm)
628 pgd_free(mm, mm->pgd);
631 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
633 down_write(&oldmm->mmap_sem);
634 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
635 up_write(&oldmm->mmap_sem);
638 #define mm_alloc_pgd(mm) (0)
639 #define mm_free_pgd(mm)
640 #endif /* CONFIG_MMU */
642 static void check_mm(struct mm_struct *mm)
646 for (i = 0; i < NR_MM_COUNTERS; i++) {
647 long x = atomic_long_read(&mm->rss_stat.count[i]);
650 printk(KERN_ALERT "BUG: Bad rss-counter state "
651 "mm:%p idx:%d val:%ld\n", mm, i, x);
654 if (mm_pgtables_bytes(mm))
655 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
656 mm_pgtables_bytes(mm));
658 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
659 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
663 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
664 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
667 * Called when the last reference to the mm
668 * is dropped: either by a lazy thread or by
669 * mmput. Free the page directory and the mm.
671 void __mmdrop(struct mm_struct *mm)
673 BUG_ON(mm == &init_mm);
674 WARN_ON_ONCE(mm == current->mm);
675 WARN_ON_ONCE(mm == current->active_mm);
679 mmu_notifier_mm_destroy(mm);
681 put_user_ns(mm->user_ns);
684 EXPORT_SYMBOL_GPL(__mmdrop);
686 static void mmdrop_async_fn(struct work_struct *work)
688 struct mm_struct *mm;
690 mm = container_of(work, struct mm_struct, async_put_work);
694 static void mmdrop_async(struct mm_struct *mm)
696 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
697 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
698 schedule_work(&mm->async_put_work);
702 static inline void free_signal_struct(struct signal_struct *sig)
704 taskstats_tgid_free(sig);
705 sched_autogroup_exit(sig);
707 * __mmdrop is not safe to call from softirq context on x86 due to
708 * pgd_dtor so postpone it to the async context
711 mmdrop_async(sig->oom_mm);
712 kmem_cache_free(signal_cachep, sig);
715 static inline void put_signal_struct(struct signal_struct *sig)
717 if (atomic_dec_and_test(&sig->sigcnt))
718 free_signal_struct(sig);
721 void __put_task_struct(struct task_struct *tsk)
723 WARN_ON(!tsk->exit_state);
724 WARN_ON(atomic_read(&tsk->usage));
725 WARN_ON(tsk == current);
729 security_task_free(tsk);
731 delayacct_tsk_free(tsk);
732 put_signal_struct(tsk->signal);
734 if (!profile_handoff_task(tsk))
737 EXPORT_SYMBOL_GPL(__put_task_struct);
739 void __init __weak arch_task_cache_init(void) { }
744 static void set_max_threads(unsigned int max_threads_suggested)
747 unsigned long nr_pages = totalram_pages();
750 * The number of threads shall be limited such that the thread
751 * structures may only consume a small part of the available memory.
753 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
754 threads = MAX_THREADS;
756 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
757 (u64) THREAD_SIZE * 8UL);
759 if (threads > max_threads_suggested)
760 threads = max_threads_suggested;
762 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
765 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
766 /* Initialized by the architecture: */
767 int arch_task_struct_size __read_mostly;
770 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
772 /* Fetch thread_struct whitelist for the architecture. */
773 arch_thread_struct_whitelist(offset, size);
776 * Handle zero-sized whitelist or empty thread_struct, otherwise
777 * adjust offset to position of thread_struct in task_struct.
779 if (unlikely(*size == 0))
782 *offset += offsetof(struct task_struct, thread);
785 void __init fork_init(void)
788 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
789 #ifndef ARCH_MIN_TASKALIGN
790 #define ARCH_MIN_TASKALIGN 0
792 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
793 unsigned long useroffset, usersize;
795 /* create a slab on which task_structs can be allocated */
796 task_struct_whitelist(&useroffset, &usersize);
797 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
798 arch_task_struct_size, align,
799 SLAB_PANIC|SLAB_ACCOUNT,
800 useroffset, usersize, NULL);
803 /* do the arch specific task caches init */
804 arch_task_cache_init();
806 set_max_threads(MAX_THREADS);
808 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
809 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
810 init_task.signal->rlim[RLIMIT_SIGPENDING] =
811 init_task.signal->rlim[RLIMIT_NPROC];
813 for (i = 0; i < UCOUNT_COUNTS; i++) {
814 init_user_ns.ucount_max[i] = max_threads/2;
817 #ifdef CONFIG_VMAP_STACK
818 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
819 NULL, free_vm_stack_cache);
822 lockdep_init_task(&init_task);
825 int __weak arch_dup_task_struct(struct task_struct *dst,
826 struct task_struct *src)
832 void set_task_stack_end_magic(struct task_struct *tsk)
834 unsigned long *stackend;
836 stackend = end_of_stack(tsk);
837 *stackend = STACK_END_MAGIC; /* for overflow detection */
840 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
842 struct task_struct *tsk;
843 unsigned long *stack;
844 struct vm_struct *stack_vm_area __maybe_unused;
847 if (node == NUMA_NO_NODE)
848 node = tsk_fork_get_node(orig);
849 tsk = alloc_task_struct_node(node);
853 stack = alloc_thread_stack_node(tsk, node);
857 if (memcg_charge_kernel_stack(tsk))
860 stack_vm_area = task_stack_vm_area(tsk);
862 err = arch_dup_task_struct(tsk, orig);
865 * arch_dup_task_struct() clobbers the stack-related fields. Make
866 * sure they're properly initialized before using any stack-related
870 #ifdef CONFIG_VMAP_STACK
871 tsk->stack_vm_area = stack_vm_area;
873 #ifdef CONFIG_THREAD_INFO_IN_TASK
874 atomic_set(&tsk->stack_refcount, 1);
880 #ifdef CONFIG_SECCOMP
882 * We must handle setting up seccomp filters once we're under
883 * the sighand lock in case orig has changed between now and
884 * then. Until then, filter must be NULL to avoid messing up
885 * the usage counts on the error path calling free_task.
887 tsk->seccomp.filter = NULL;
890 setup_thread_stack(tsk, orig);
891 clear_user_return_notifier(tsk);
892 clear_tsk_need_resched(tsk);
893 set_task_stack_end_magic(tsk);
895 #ifdef CONFIG_STACKPROTECTOR
896 tsk->stack_canary = get_random_canary();
900 * One for us, one for whoever does the "release_task()" (usually
903 atomic_set(&tsk->usage, 2);
904 #ifdef CONFIG_BLK_DEV_IO_TRACE
907 tsk->splice_pipe = NULL;
908 tsk->task_frag.page = NULL;
909 tsk->wake_q.next = NULL;
911 account_kernel_stack(tsk, 1);
915 #ifdef CONFIG_FAULT_INJECTION
919 #ifdef CONFIG_BLK_CGROUP
920 tsk->throttle_queue = NULL;
921 tsk->use_memdelay = 0;
925 tsk->active_memcg = NULL;
930 free_thread_stack(tsk);
932 free_task_struct(tsk);
936 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
938 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
940 static int __init coredump_filter_setup(char *s)
942 default_dump_filter =
943 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
944 MMF_DUMP_FILTER_MASK;
948 __setup("coredump_filter=", coredump_filter_setup);
950 #include <linux/init_task.h>
952 static void mm_init_aio(struct mm_struct *mm)
955 spin_lock_init(&mm->ioctx_lock);
956 mm->ioctx_table = NULL;
960 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
967 static void mm_init_uprobes_state(struct mm_struct *mm)
969 #ifdef CONFIG_UPROBES
970 mm->uprobes_state.xol_area = NULL;
974 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
975 struct user_namespace *user_ns)
979 mm->vmacache_seqnum = 0;
980 atomic_set(&mm->mm_users, 1);
981 atomic_set(&mm->mm_count, 1);
982 init_rwsem(&mm->mmap_sem);
983 INIT_LIST_HEAD(&mm->mmlist);
984 mm->core_state = NULL;
985 mm_pgtables_bytes_init(mm);
989 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
990 spin_lock_init(&mm->page_table_lock);
991 spin_lock_init(&mm->arg_lock);
994 mm_init_owner(mm, p);
995 RCU_INIT_POINTER(mm->exe_file, NULL);
996 mmu_notifier_mm_init(mm);
998 init_tlb_flush_pending(mm);
999 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1000 mm->pmd_huge_pte = NULL;
1002 mm_init_uprobes_state(mm);
1005 mm->flags = current->mm->flags & MMF_INIT_MASK;
1006 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1008 mm->flags = default_dump_filter;
1012 if (mm_alloc_pgd(mm))
1015 if (init_new_context(p, mm))
1016 goto fail_nocontext;
1018 mm->user_ns = get_user_ns(user_ns);
1029 * Allocate and initialize an mm_struct.
1031 struct mm_struct *mm_alloc(void)
1033 struct mm_struct *mm;
1039 memset(mm, 0, sizeof(*mm));
1040 return mm_init(mm, current, current_user_ns());
1043 static inline void __mmput(struct mm_struct *mm)
1045 VM_BUG_ON(atomic_read(&mm->mm_users));
1047 uprobe_clear_state(mm);
1050 khugepaged_exit(mm); /* must run before exit_mmap */
1052 mm_put_huge_zero_page(mm);
1053 set_mm_exe_file(mm, NULL);
1054 if (!list_empty(&mm->mmlist)) {
1055 spin_lock(&mmlist_lock);
1056 list_del(&mm->mmlist);
1057 spin_unlock(&mmlist_lock);
1060 module_put(mm->binfmt->module);
1065 * Decrement the use count and release all resources for an mm.
1067 void mmput(struct mm_struct *mm)
1071 if (atomic_dec_and_test(&mm->mm_users))
1074 EXPORT_SYMBOL_GPL(mmput);
1077 static void mmput_async_fn(struct work_struct *work)
1079 struct mm_struct *mm = container_of(work, struct mm_struct,
1085 void mmput_async(struct mm_struct *mm)
1087 if (atomic_dec_and_test(&mm->mm_users)) {
1088 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1089 schedule_work(&mm->async_put_work);
1095 * set_mm_exe_file - change a reference to the mm's executable file
1097 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1099 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1100 * invocations: in mmput() nobody alive left, in execve task is single
1101 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1102 * mm->exe_file, but does so without using set_mm_exe_file() in order
1103 * to do avoid the need for any locks.
1105 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1107 struct file *old_exe_file;
1110 * It is safe to dereference the exe_file without RCU as
1111 * this function is only called if nobody else can access
1112 * this mm -- see comment above for justification.
1114 old_exe_file = rcu_dereference_raw(mm->exe_file);
1117 get_file(new_exe_file);
1118 rcu_assign_pointer(mm->exe_file, new_exe_file);
1124 * get_mm_exe_file - acquire a reference to the mm's executable file
1126 * Returns %NULL if mm has no associated executable file.
1127 * User must release file via fput().
1129 struct file *get_mm_exe_file(struct mm_struct *mm)
1131 struct file *exe_file;
1134 exe_file = rcu_dereference(mm->exe_file);
1135 if (exe_file && !get_file_rcu(exe_file))
1140 EXPORT_SYMBOL(get_mm_exe_file);
1143 * get_task_exe_file - acquire a reference to the task's executable file
1145 * Returns %NULL if task's mm (if any) has no associated executable file or
1146 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1147 * User must release file via fput().
1149 struct file *get_task_exe_file(struct task_struct *task)
1151 struct file *exe_file = NULL;
1152 struct mm_struct *mm;
1157 if (!(task->flags & PF_KTHREAD))
1158 exe_file = get_mm_exe_file(mm);
1163 EXPORT_SYMBOL(get_task_exe_file);
1166 * get_task_mm - acquire a reference to the task's mm
1168 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1169 * this kernel workthread has transiently adopted a user mm with use_mm,
1170 * to do its AIO) is not set and if so returns a reference to it, after
1171 * bumping up the use count. User must release the mm via mmput()
1172 * after use. Typically used by /proc and ptrace.
1174 struct mm_struct *get_task_mm(struct task_struct *task)
1176 struct mm_struct *mm;
1181 if (task->flags & PF_KTHREAD)
1189 EXPORT_SYMBOL_GPL(get_task_mm);
1191 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1193 struct mm_struct *mm;
1196 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1198 return ERR_PTR(err);
1200 mm = get_task_mm(task);
1201 if (mm && mm != current->mm &&
1202 !ptrace_may_access(task, mode)) {
1204 mm = ERR_PTR(-EACCES);
1206 mutex_unlock(&task->signal->cred_guard_mutex);
1211 static void complete_vfork_done(struct task_struct *tsk)
1213 struct completion *vfork;
1216 vfork = tsk->vfork_done;
1217 if (likely(vfork)) {
1218 tsk->vfork_done = NULL;
1224 static int wait_for_vfork_done(struct task_struct *child,
1225 struct completion *vfork)
1229 freezer_do_not_count();
1230 killed = wait_for_completion_killable(vfork);
1235 child->vfork_done = NULL;
1239 put_task_struct(child);
1243 /* Please note the differences between mmput and mm_release.
1244 * mmput is called whenever we stop holding onto a mm_struct,
1245 * error success whatever.
1247 * mm_release is called after a mm_struct has been removed
1248 * from the current process.
1250 * This difference is important for error handling, when we
1251 * only half set up a mm_struct for a new process and need to restore
1252 * the old one. Because we mmput the new mm_struct before
1253 * restoring the old one. . .
1254 * Eric Biederman 10 January 1998
1256 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1258 /* Get rid of any futexes when releasing the mm */
1260 if (unlikely(tsk->robust_list)) {
1261 exit_robust_list(tsk);
1262 tsk->robust_list = NULL;
1264 #ifdef CONFIG_COMPAT
1265 if (unlikely(tsk->compat_robust_list)) {
1266 compat_exit_robust_list(tsk);
1267 tsk->compat_robust_list = NULL;
1270 if (unlikely(!list_empty(&tsk->pi_state_list)))
1271 exit_pi_state_list(tsk);
1274 uprobe_free_utask(tsk);
1276 /* Get rid of any cached register state */
1277 deactivate_mm(tsk, mm);
1280 * Signal userspace if we're not exiting with a core dump
1281 * because we want to leave the value intact for debugging
1284 if (tsk->clear_child_tid) {
1285 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1286 atomic_read(&mm->mm_users) > 1) {
1288 * We don't check the error code - if userspace has
1289 * not set up a proper pointer then tough luck.
1291 put_user(0, tsk->clear_child_tid);
1292 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1293 1, NULL, NULL, 0, 0);
1295 tsk->clear_child_tid = NULL;
1299 * All done, finally we can wake up parent and return this mm to him.
1300 * Also kthread_stop() uses this completion for synchronization.
1302 if (tsk->vfork_done)
1303 complete_vfork_done(tsk);
1307 * Allocate a new mm structure and copy contents from the
1308 * mm structure of the passed in task structure.
1310 static struct mm_struct *dup_mm(struct task_struct *tsk)
1312 struct mm_struct *mm, *oldmm = current->mm;
1319 memcpy(mm, oldmm, sizeof(*mm));
1321 if (!mm_init(mm, tsk, mm->user_ns))
1324 err = dup_mmap(mm, oldmm);
1328 mm->hiwater_rss = get_mm_rss(mm);
1329 mm->hiwater_vm = mm->total_vm;
1331 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1337 /* don't put binfmt in mmput, we haven't got module yet */
1345 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1347 struct mm_struct *mm, *oldmm;
1350 tsk->min_flt = tsk->maj_flt = 0;
1351 tsk->nvcsw = tsk->nivcsw = 0;
1352 #ifdef CONFIG_DETECT_HUNG_TASK
1353 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1354 tsk->last_switch_time = 0;
1358 tsk->active_mm = NULL;
1361 * Are we cloning a kernel thread?
1363 * We need to steal a active VM for that..
1365 oldmm = current->mm;
1369 /* initialize the new vmacache entries */
1370 vmacache_flush(tsk);
1372 if (clone_flags & CLONE_VM) {
1385 tsk->active_mm = mm;
1392 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1394 struct fs_struct *fs = current->fs;
1395 if (clone_flags & CLONE_FS) {
1396 /* tsk->fs is already what we want */
1397 spin_lock(&fs->lock);
1399 spin_unlock(&fs->lock);
1403 spin_unlock(&fs->lock);
1406 tsk->fs = copy_fs_struct(fs);
1412 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1414 struct files_struct *oldf, *newf;
1418 * A background process may not have any files ...
1420 oldf = current->files;
1424 if (clone_flags & CLONE_FILES) {
1425 atomic_inc(&oldf->count);
1429 newf = dup_fd(oldf, &error);
1439 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1442 struct io_context *ioc = current->io_context;
1443 struct io_context *new_ioc;
1448 * Share io context with parent, if CLONE_IO is set
1450 if (clone_flags & CLONE_IO) {
1452 tsk->io_context = ioc;
1453 } else if (ioprio_valid(ioc->ioprio)) {
1454 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1455 if (unlikely(!new_ioc))
1458 new_ioc->ioprio = ioc->ioprio;
1459 put_io_context(new_ioc);
1465 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1467 struct sighand_struct *sig;
1469 if (clone_flags & CLONE_SIGHAND) {
1470 atomic_inc(¤t->sighand->count);
1473 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1474 rcu_assign_pointer(tsk->sighand, sig);
1478 atomic_set(&sig->count, 1);
1479 spin_lock_irq(¤t->sighand->siglock);
1480 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1481 spin_unlock_irq(¤t->sighand->siglock);
1485 void __cleanup_sighand(struct sighand_struct *sighand)
1487 if (atomic_dec_and_test(&sighand->count)) {
1488 signalfd_cleanup(sighand);
1490 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1491 * without an RCU grace period, see __lock_task_sighand().
1493 kmem_cache_free(sighand_cachep, sighand);
1497 #ifdef CONFIG_POSIX_TIMERS
1499 * Initialize POSIX timer handling for a thread group.
1501 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1503 unsigned long cpu_limit;
1505 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1506 if (cpu_limit != RLIM_INFINITY) {
1507 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1508 sig->cputimer.running = true;
1511 /* The timer lists. */
1512 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1513 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1514 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1517 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1520 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1522 struct signal_struct *sig;
1524 if (clone_flags & CLONE_THREAD)
1527 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1532 sig->nr_threads = 1;
1533 atomic_set(&sig->live, 1);
1534 atomic_set(&sig->sigcnt, 1);
1536 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1537 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1538 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1540 init_waitqueue_head(&sig->wait_chldexit);
1541 sig->curr_target = tsk;
1542 init_sigpending(&sig->shared_pending);
1543 INIT_HLIST_HEAD(&sig->multiprocess);
1544 seqlock_init(&sig->stats_lock);
1545 prev_cputime_init(&sig->prev_cputime);
1547 #ifdef CONFIG_POSIX_TIMERS
1548 INIT_LIST_HEAD(&sig->posix_timers);
1549 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1550 sig->real_timer.function = it_real_fn;
1553 task_lock(current->group_leader);
1554 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1555 task_unlock(current->group_leader);
1557 posix_cpu_timers_init_group(sig);
1559 tty_audit_fork(sig);
1560 sched_autogroup_fork(sig);
1562 sig->oom_score_adj = current->signal->oom_score_adj;
1563 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1565 mutex_init(&sig->cred_guard_mutex);
1570 static void copy_seccomp(struct task_struct *p)
1572 #ifdef CONFIG_SECCOMP
1574 * Must be called with sighand->lock held, which is common to
1575 * all threads in the group. Holding cred_guard_mutex is not
1576 * needed because this new task is not yet running and cannot
1579 assert_spin_locked(¤t->sighand->siglock);
1581 /* Ref-count the new filter user, and assign it. */
1582 get_seccomp_filter(current);
1583 p->seccomp = current->seccomp;
1586 * Explicitly enable no_new_privs here in case it got set
1587 * between the task_struct being duplicated and holding the
1588 * sighand lock. The seccomp state and nnp must be in sync.
1590 if (task_no_new_privs(current))
1591 task_set_no_new_privs(p);
1594 * If the parent gained a seccomp mode after copying thread
1595 * flags and between before we held the sighand lock, we have
1596 * to manually enable the seccomp thread flag here.
1598 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1599 set_tsk_thread_flag(p, TIF_SECCOMP);
1603 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1605 current->clear_child_tid = tidptr;
1607 return task_pid_vnr(current);
1610 static void rt_mutex_init_task(struct task_struct *p)
1612 raw_spin_lock_init(&p->pi_lock);
1613 #ifdef CONFIG_RT_MUTEXES
1614 p->pi_waiters = RB_ROOT_CACHED;
1615 p->pi_top_task = NULL;
1616 p->pi_blocked_on = NULL;
1620 #ifdef CONFIG_POSIX_TIMERS
1622 * Initialize POSIX timer handling for a single task.
1624 static void posix_cpu_timers_init(struct task_struct *tsk)
1626 tsk->cputime_expires.prof_exp = 0;
1627 tsk->cputime_expires.virt_exp = 0;
1628 tsk->cputime_expires.sched_exp = 0;
1629 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1630 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1631 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1634 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1637 static inline void init_task_pid_links(struct task_struct *task)
1641 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1642 INIT_HLIST_NODE(&task->pid_links[type]);
1647 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1649 if (type == PIDTYPE_PID)
1650 task->thread_pid = pid;
1652 task->signal->pids[type] = pid;
1655 static inline void rcu_copy_process(struct task_struct *p)
1657 #ifdef CONFIG_PREEMPT_RCU
1658 p->rcu_read_lock_nesting = 0;
1659 p->rcu_read_unlock_special.s = 0;
1660 p->rcu_blocked_node = NULL;
1661 INIT_LIST_HEAD(&p->rcu_node_entry);
1662 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1663 #ifdef CONFIG_TASKS_RCU
1664 p->rcu_tasks_holdout = false;
1665 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1666 p->rcu_tasks_idle_cpu = -1;
1667 #endif /* #ifdef CONFIG_TASKS_RCU */
1671 * This creates a new process as a copy of the old one,
1672 * but does not actually start it yet.
1674 * It copies the registers, and all the appropriate
1675 * parts of the process environment (as per the clone
1676 * flags). The actual kick-off is left to the caller.
1678 static __latent_entropy struct task_struct *copy_process(
1679 unsigned long clone_flags,
1680 unsigned long stack_start,
1681 unsigned long stack_size,
1682 int __user *child_tidptr,
1689 struct task_struct *p;
1690 struct multiprocess_signals delayed;
1693 * Don't allow sharing the root directory with processes in a different
1696 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1697 return ERR_PTR(-EINVAL);
1699 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1700 return ERR_PTR(-EINVAL);
1703 * Thread groups must share signals as well, and detached threads
1704 * can only be started up within the thread group.
1706 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1707 return ERR_PTR(-EINVAL);
1710 * Shared signal handlers imply shared VM. By way of the above,
1711 * thread groups also imply shared VM. Blocking this case allows
1712 * for various simplifications in other code.
1714 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1715 return ERR_PTR(-EINVAL);
1718 * Siblings of global init remain as zombies on exit since they are
1719 * not reaped by their parent (swapper). To solve this and to avoid
1720 * multi-rooted process trees, prevent global and container-inits
1721 * from creating siblings.
1723 if ((clone_flags & CLONE_PARENT) &&
1724 current->signal->flags & SIGNAL_UNKILLABLE)
1725 return ERR_PTR(-EINVAL);
1728 * If the new process will be in a different pid or user namespace
1729 * do not allow it to share a thread group with the forking task.
1731 if (clone_flags & CLONE_THREAD) {
1732 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1733 (task_active_pid_ns(current) !=
1734 current->nsproxy->pid_ns_for_children))
1735 return ERR_PTR(-EINVAL);
1739 * Force any signals received before this point to be delivered
1740 * before the fork happens. Collect up signals sent to multiple
1741 * processes that happen during the fork and delay them so that
1742 * they appear to happen after the fork.
1744 sigemptyset(&delayed.signal);
1745 INIT_HLIST_NODE(&delayed.node);
1747 spin_lock_irq(¤t->sighand->siglock);
1748 if (!(clone_flags & CLONE_THREAD))
1749 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1750 recalc_sigpending();
1751 spin_unlock_irq(¤t->sighand->siglock);
1752 retval = -ERESTARTNOINTR;
1753 if (signal_pending(current))
1757 p = dup_task_struct(current, node);
1762 * This _must_ happen before we call free_task(), i.e. before we jump
1763 * to any of the bad_fork_* labels. This is to avoid freeing
1764 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1765 * kernel threads (PF_KTHREAD).
1767 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1769 * Clear TID on mm_release()?
1771 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1773 ftrace_graph_init_task(p);
1775 rt_mutex_init_task(p);
1777 #ifdef CONFIG_PROVE_LOCKING
1778 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1779 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1782 if (atomic_read(&p->real_cred->user->processes) >=
1783 task_rlimit(p, RLIMIT_NPROC)) {
1784 if (p->real_cred->user != INIT_USER &&
1785 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1788 current->flags &= ~PF_NPROC_EXCEEDED;
1790 retval = copy_creds(p, clone_flags);
1795 * If multiple threads are within copy_process(), then this check
1796 * triggers too late. This doesn't hurt, the check is only there
1797 * to stop root fork bombs.
1800 if (nr_threads >= max_threads)
1801 goto bad_fork_cleanup_count;
1803 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1804 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1805 p->flags |= PF_FORKNOEXEC;
1806 INIT_LIST_HEAD(&p->children);
1807 INIT_LIST_HEAD(&p->sibling);
1808 rcu_copy_process(p);
1809 p->vfork_done = NULL;
1810 spin_lock_init(&p->alloc_lock);
1812 init_sigpending(&p->pending);
1814 p->utime = p->stime = p->gtime = 0;
1815 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1816 p->utimescaled = p->stimescaled = 0;
1818 prev_cputime_init(&p->prev_cputime);
1820 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1821 seqcount_init(&p->vtime.seqcount);
1822 p->vtime.starttime = 0;
1823 p->vtime.state = VTIME_INACTIVE;
1826 #if defined(SPLIT_RSS_COUNTING)
1827 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1830 p->default_timer_slack_ns = current->timer_slack_ns;
1836 task_io_accounting_init(&p->ioac);
1837 acct_clear_integrals(p);
1839 posix_cpu_timers_init(p);
1841 p->start_time = ktime_get_ns();
1842 p->real_start_time = ktime_get_boot_ns();
1843 p->io_context = NULL;
1844 audit_set_context(p, NULL);
1847 p->mempolicy = mpol_dup(p->mempolicy);
1848 if (IS_ERR(p->mempolicy)) {
1849 retval = PTR_ERR(p->mempolicy);
1850 p->mempolicy = NULL;
1851 goto bad_fork_cleanup_threadgroup_lock;
1854 #ifdef CONFIG_CPUSETS
1855 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1856 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1857 seqcount_init(&p->mems_allowed_seq);
1859 #ifdef CONFIG_TRACE_IRQFLAGS
1861 p->hardirqs_enabled = 0;
1862 p->hardirq_enable_ip = 0;
1863 p->hardirq_enable_event = 0;
1864 p->hardirq_disable_ip = _THIS_IP_;
1865 p->hardirq_disable_event = 0;
1866 p->softirqs_enabled = 1;
1867 p->softirq_enable_ip = _THIS_IP_;
1868 p->softirq_enable_event = 0;
1869 p->softirq_disable_ip = 0;
1870 p->softirq_disable_event = 0;
1871 p->hardirq_context = 0;
1872 p->softirq_context = 0;
1875 p->pagefault_disabled = 0;
1877 #ifdef CONFIG_LOCKDEP
1878 p->lockdep_depth = 0; /* no locks held yet */
1879 p->curr_chain_key = 0;
1880 p->lockdep_recursion = 0;
1881 lockdep_init_task(p);
1884 #ifdef CONFIG_DEBUG_MUTEXES
1885 p->blocked_on = NULL; /* not blocked yet */
1887 #ifdef CONFIG_BCACHE
1888 p->sequential_io = 0;
1889 p->sequential_io_avg = 0;
1892 /* Perform scheduler related setup. Assign this task to a CPU. */
1893 retval = sched_fork(clone_flags, p);
1895 goto bad_fork_cleanup_policy;
1897 retval = perf_event_init_task(p);
1899 goto bad_fork_cleanup_policy;
1900 retval = audit_alloc(p);
1902 goto bad_fork_cleanup_perf;
1903 /* copy all the process information */
1905 retval = security_task_alloc(p, clone_flags);
1907 goto bad_fork_cleanup_audit;
1908 retval = copy_semundo(clone_flags, p);
1910 goto bad_fork_cleanup_security;
1911 retval = copy_files(clone_flags, p);
1913 goto bad_fork_cleanup_semundo;
1914 retval = copy_fs(clone_flags, p);
1916 goto bad_fork_cleanup_files;
1917 retval = copy_sighand(clone_flags, p);
1919 goto bad_fork_cleanup_fs;
1920 retval = copy_signal(clone_flags, p);
1922 goto bad_fork_cleanup_sighand;
1923 retval = copy_mm(clone_flags, p);
1925 goto bad_fork_cleanup_signal;
1926 retval = copy_namespaces(clone_flags, p);
1928 goto bad_fork_cleanup_mm;
1929 retval = copy_io(clone_flags, p);
1931 goto bad_fork_cleanup_namespaces;
1932 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1934 goto bad_fork_cleanup_io;
1936 stackleak_task_init(p);
1938 if (pid != &init_struct_pid) {
1939 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1941 retval = PTR_ERR(pid);
1942 goto bad_fork_cleanup_thread;
1950 p->robust_list = NULL;
1951 #ifdef CONFIG_COMPAT
1952 p->compat_robust_list = NULL;
1954 INIT_LIST_HEAD(&p->pi_state_list);
1955 p->pi_state_cache = NULL;
1958 * sigaltstack should be cleared when sharing the same VM
1960 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1964 * Syscall tracing and stepping should be turned off in the
1965 * child regardless of CLONE_PTRACE.
1967 user_disable_single_step(p);
1968 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1969 #ifdef TIF_SYSCALL_EMU
1970 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1972 clear_all_latency_tracing(p);
1974 /* ok, now we should be set up.. */
1975 p->pid = pid_nr(pid);
1976 if (clone_flags & CLONE_THREAD) {
1977 p->exit_signal = -1;
1978 p->group_leader = current->group_leader;
1979 p->tgid = current->tgid;
1981 if (clone_flags & CLONE_PARENT)
1982 p->exit_signal = current->group_leader->exit_signal;
1984 p->exit_signal = (clone_flags & CSIGNAL);
1985 p->group_leader = p;
1990 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1991 p->dirty_paused_when = 0;
1993 p->pdeath_signal = 0;
1994 INIT_LIST_HEAD(&p->thread_group);
1995 p->task_works = NULL;
1997 cgroup_threadgroup_change_begin(current);
1999 * Ensure that the cgroup subsystem policies allow the new process to be
2000 * forked. It should be noted the the new process's css_set can be changed
2001 * between here and cgroup_post_fork() if an organisation operation is in
2004 retval = cgroup_can_fork(p);
2006 goto bad_fork_free_pid;
2009 * Make it visible to the rest of the system, but dont wake it up yet.
2010 * Need tasklist lock for parent etc handling!
2012 write_lock_irq(&tasklist_lock);
2014 /* CLONE_PARENT re-uses the old parent */
2015 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2016 p->real_parent = current->real_parent;
2017 p->parent_exec_id = current->parent_exec_id;
2019 p->real_parent = current;
2020 p->parent_exec_id = current->self_exec_id;
2023 klp_copy_process(p);
2025 spin_lock(¤t->sighand->siglock);
2028 * Copy seccomp details explicitly here, in case they were changed
2029 * before holding sighand lock.
2033 rseq_fork(p, clone_flags);
2035 /* Don't start children in a dying pid namespace */
2036 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2038 goto bad_fork_cancel_cgroup;
2041 /* Let kill terminate clone/fork in the middle */
2042 if (fatal_signal_pending(current)) {
2044 goto bad_fork_cancel_cgroup;
2048 init_task_pid_links(p);
2049 if (likely(p->pid)) {
2050 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2052 init_task_pid(p, PIDTYPE_PID, pid);
2053 if (thread_group_leader(p)) {
2054 init_task_pid(p, PIDTYPE_TGID, pid);
2055 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2056 init_task_pid(p, PIDTYPE_SID, task_session(current));
2058 if (is_child_reaper(pid)) {
2059 ns_of_pid(pid)->child_reaper = p;
2060 p->signal->flags |= SIGNAL_UNKILLABLE;
2062 p->signal->shared_pending.signal = delayed.signal;
2063 p->signal->tty = tty_kref_get(current->signal->tty);
2065 * Inherit has_child_subreaper flag under the same
2066 * tasklist_lock with adding child to the process tree
2067 * for propagate_has_child_subreaper optimization.
2069 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2070 p->real_parent->signal->is_child_subreaper;
2071 list_add_tail(&p->sibling, &p->real_parent->children);
2072 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2073 attach_pid(p, PIDTYPE_TGID);
2074 attach_pid(p, PIDTYPE_PGID);
2075 attach_pid(p, PIDTYPE_SID);
2076 __this_cpu_inc(process_counts);
2078 current->signal->nr_threads++;
2079 atomic_inc(¤t->signal->live);
2080 atomic_inc(¤t->signal->sigcnt);
2081 task_join_group_stop(p);
2082 list_add_tail_rcu(&p->thread_group,
2083 &p->group_leader->thread_group);
2084 list_add_tail_rcu(&p->thread_node,
2085 &p->signal->thread_head);
2087 attach_pid(p, PIDTYPE_PID);
2091 hlist_del_init(&delayed.node);
2092 spin_unlock(¤t->sighand->siglock);
2093 syscall_tracepoint_update(p);
2094 write_unlock_irq(&tasklist_lock);
2096 proc_fork_connector(p);
2097 cgroup_post_fork(p);
2098 cgroup_threadgroup_change_end(current);
2101 trace_task_newtask(p, clone_flags);
2102 uprobe_copy_process(p, clone_flags);
2106 bad_fork_cancel_cgroup:
2107 spin_unlock(¤t->sighand->siglock);
2108 write_unlock_irq(&tasklist_lock);
2109 cgroup_cancel_fork(p);
2111 cgroup_threadgroup_change_end(current);
2112 if (pid != &init_struct_pid)
2114 bad_fork_cleanup_thread:
2116 bad_fork_cleanup_io:
2119 bad_fork_cleanup_namespaces:
2120 exit_task_namespaces(p);
2121 bad_fork_cleanup_mm:
2124 bad_fork_cleanup_signal:
2125 if (!(clone_flags & CLONE_THREAD))
2126 free_signal_struct(p->signal);
2127 bad_fork_cleanup_sighand:
2128 __cleanup_sighand(p->sighand);
2129 bad_fork_cleanup_fs:
2130 exit_fs(p); /* blocking */
2131 bad_fork_cleanup_files:
2132 exit_files(p); /* blocking */
2133 bad_fork_cleanup_semundo:
2135 bad_fork_cleanup_security:
2136 security_task_free(p);
2137 bad_fork_cleanup_audit:
2139 bad_fork_cleanup_perf:
2140 perf_event_free_task(p);
2141 bad_fork_cleanup_policy:
2142 lockdep_free_task(p);
2144 mpol_put(p->mempolicy);
2145 bad_fork_cleanup_threadgroup_lock:
2147 delayacct_tsk_free(p);
2148 bad_fork_cleanup_count:
2149 atomic_dec(&p->cred->user->processes);
2152 p->state = TASK_DEAD;
2156 spin_lock_irq(¤t->sighand->siglock);
2157 hlist_del_init(&delayed.node);
2158 spin_unlock_irq(¤t->sighand->siglock);
2159 return ERR_PTR(retval);
2162 static inline void init_idle_pids(struct task_struct *idle)
2166 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2167 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2168 init_task_pid(idle, type, &init_struct_pid);
2172 struct task_struct *fork_idle(int cpu)
2174 struct task_struct *task;
2175 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2177 if (!IS_ERR(task)) {
2178 init_idle_pids(task);
2179 init_idle(task, cpu);
2186 * Ok, this is the main fork-routine.
2188 * It copies the process, and if successful kick-starts
2189 * it and waits for it to finish using the VM if required.
2191 long _do_fork(unsigned long clone_flags,
2192 unsigned long stack_start,
2193 unsigned long stack_size,
2194 int __user *parent_tidptr,
2195 int __user *child_tidptr,
2198 struct completion vfork;
2200 struct task_struct *p;
2205 * Determine whether and which event to report to ptracer. When
2206 * called from kernel_thread or CLONE_UNTRACED is explicitly
2207 * requested, no event is reported; otherwise, report if the event
2208 * for the type of forking is enabled.
2210 if (!(clone_flags & CLONE_UNTRACED)) {
2211 if (clone_flags & CLONE_VFORK)
2212 trace = PTRACE_EVENT_VFORK;
2213 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2214 trace = PTRACE_EVENT_CLONE;
2216 trace = PTRACE_EVENT_FORK;
2218 if (likely(!ptrace_event_enabled(current, trace)))
2222 p = copy_process(clone_flags, stack_start, stack_size,
2223 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2224 add_latent_entropy();
2230 * Do this prior waking up the new thread - the thread pointer
2231 * might get invalid after that point, if the thread exits quickly.
2233 trace_sched_process_fork(current, p);
2235 pid = get_task_pid(p, PIDTYPE_PID);
2238 if (clone_flags & CLONE_PARENT_SETTID)
2239 put_user(nr, parent_tidptr);
2241 if (clone_flags & CLONE_VFORK) {
2242 p->vfork_done = &vfork;
2243 init_completion(&vfork);
2247 wake_up_new_task(p);
2249 /* forking complete and child started to run, tell ptracer */
2250 if (unlikely(trace))
2251 ptrace_event_pid(trace, pid);
2253 if (clone_flags & CLONE_VFORK) {
2254 if (!wait_for_vfork_done(p, &vfork))
2255 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2262 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2263 /* For compatibility with architectures that call do_fork directly rather than
2264 * using the syscall entry points below. */
2265 long do_fork(unsigned long clone_flags,
2266 unsigned long stack_start,
2267 unsigned long stack_size,
2268 int __user *parent_tidptr,
2269 int __user *child_tidptr)
2271 return _do_fork(clone_flags, stack_start, stack_size,
2272 parent_tidptr, child_tidptr, 0);
2277 * Create a kernel thread.
2279 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2281 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2282 (unsigned long)arg, NULL, NULL, 0);
2285 #ifdef __ARCH_WANT_SYS_FORK
2286 SYSCALL_DEFINE0(fork)
2289 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2291 /* can not support in nommu mode */
2297 #ifdef __ARCH_WANT_SYS_VFORK
2298 SYSCALL_DEFINE0(vfork)
2300 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2305 #ifdef __ARCH_WANT_SYS_CLONE
2306 #ifdef CONFIG_CLONE_BACKWARDS
2307 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2308 int __user *, parent_tidptr,
2310 int __user *, child_tidptr)
2311 #elif defined(CONFIG_CLONE_BACKWARDS2)
2312 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2313 int __user *, parent_tidptr,
2314 int __user *, child_tidptr,
2316 #elif defined(CONFIG_CLONE_BACKWARDS3)
2317 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2319 int __user *, parent_tidptr,
2320 int __user *, child_tidptr,
2323 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2324 int __user *, parent_tidptr,
2325 int __user *, child_tidptr,
2329 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2333 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2335 struct task_struct *leader, *parent, *child;
2338 read_lock(&tasklist_lock);
2339 leader = top = top->group_leader;
2341 for_each_thread(leader, parent) {
2342 list_for_each_entry(child, &parent->children, sibling) {
2343 res = visitor(child, data);
2355 if (leader != top) {
2357 parent = child->real_parent;
2358 leader = parent->group_leader;
2362 read_unlock(&tasklist_lock);
2365 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2366 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2369 static void sighand_ctor(void *data)
2371 struct sighand_struct *sighand = data;
2373 spin_lock_init(&sighand->siglock);
2374 init_waitqueue_head(&sighand->signalfd_wqh);
2377 void __init proc_caches_init(void)
2379 unsigned int mm_size;
2381 sighand_cachep = kmem_cache_create("sighand_cache",
2382 sizeof(struct sighand_struct), 0,
2383 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2384 SLAB_ACCOUNT, sighand_ctor);
2385 signal_cachep = kmem_cache_create("signal_cache",
2386 sizeof(struct signal_struct), 0,
2387 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2389 files_cachep = kmem_cache_create("files_cache",
2390 sizeof(struct files_struct), 0,
2391 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2393 fs_cachep = kmem_cache_create("fs_cache",
2394 sizeof(struct fs_struct), 0,
2395 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2399 * The mm_cpumask is located at the end of mm_struct, and is
2400 * dynamically sized based on the maximum CPU number this system
2401 * can have, taking hotplug into account (nr_cpu_ids).
2403 mm_size = sizeof(struct mm_struct) + cpumask_size();
2405 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2406 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2407 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2408 offsetof(struct mm_struct, saved_auxv),
2409 sizeof_field(struct mm_struct, saved_auxv),
2411 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2413 nsproxy_cache_init();
2417 * Check constraints on flags passed to the unshare system call.
2419 static int check_unshare_flags(unsigned long unshare_flags)
2421 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2422 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2423 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2424 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2427 * Not implemented, but pretend it works if there is nothing
2428 * to unshare. Note that unsharing the address space or the
2429 * signal handlers also need to unshare the signal queues (aka
2432 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2433 if (!thread_group_empty(current))
2436 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2437 if (atomic_read(¤t->sighand->count) > 1)
2440 if (unshare_flags & CLONE_VM) {
2441 if (!current_is_single_threaded())
2449 * Unshare the filesystem structure if it is being shared
2451 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2453 struct fs_struct *fs = current->fs;
2455 if (!(unshare_flags & CLONE_FS) || !fs)
2458 /* don't need lock here; in the worst case we'll do useless copy */
2462 *new_fsp = copy_fs_struct(fs);
2470 * Unshare file descriptor table if it is being shared
2472 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2474 struct files_struct *fd = current->files;
2477 if ((unshare_flags & CLONE_FILES) &&
2478 (fd && atomic_read(&fd->count) > 1)) {
2479 *new_fdp = dup_fd(fd, &error);
2488 * unshare allows a process to 'unshare' part of the process
2489 * context which was originally shared using clone. copy_*
2490 * functions used by do_fork() cannot be used here directly
2491 * because they modify an inactive task_struct that is being
2492 * constructed. Here we are modifying the current, active,
2495 int ksys_unshare(unsigned long unshare_flags)
2497 struct fs_struct *fs, *new_fs = NULL;
2498 struct files_struct *fd, *new_fd = NULL;
2499 struct cred *new_cred = NULL;
2500 struct nsproxy *new_nsproxy = NULL;
2505 * If unsharing a user namespace must also unshare the thread group
2506 * and unshare the filesystem root and working directories.
2508 if (unshare_flags & CLONE_NEWUSER)
2509 unshare_flags |= CLONE_THREAD | CLONE_FS;
2511 * If unsharing vm, must also unshare signal handlers.
2513 if (unshare_flags & CLONE_VM)
2514 unshare_flags |= CLONE_SIGHAND;
2516 * If unsharing a signal handlers, must also unshare the signal queues.
2518 if (unshare_flags & CLONE_SIGHAND)
2519 unshare_flags |= CLONE_THREAD;
2521 * If unsharing namespace, must also unshare filesystem information.
2523 if (unshare_flags & CLONE_NEWNS)
2524 unshare_flags |= CLONE_FS;
2526 err = check_unshare_flags(unshare_flags);
2528 goto bad_unshare_out;
2530 * CLONE_NEWIPC must also detach from the undolist: after switching
2531 * to a new ipc namespace, the semaphore arrays from the old
2532 * namespace are unreachable.
2534 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2536 err = unshare_fs(unshare_flags, &new_fs);
2538 goto bad_unshare_out;
2539 err = unshare_fd(unshare_flags, &new_fd);
2541 goto bad_unshare_cleanup_fs;
2542 err = unshare_userns(unshare_flags, &new_cred);
2544 goto bad_unshare_cleanup_fd;
2545 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2548 goto bad_unshare_cleanup_cred;
2550 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2553 * CLONE_SYSVSEM is equivalent to sys_exit().
2557 if (unshare_flags & CLONE_NEWIPC) {
2558 /* Orphan segments in old ns (see sem above). */
2560 shm_init_task(current);
2564 switch_task_namespaces(current, new_nsproxy);
2570 spin_lock(&fs->lock);
2571 current->fs = new_fs;
2576 spin_unlock(&fs->lock);
2580 fd = current->files;
2581 current->files = new_fd;
2585 task_unlock(current);
2588 /* Install the new user namespace */
2589 commit_creds(new_cred);
2594 perf_event_namespaces(current);
2596 bad_unshare_cleanup_cred:
2599 bad_unshare_cleanup_fd:
2601 put_files_struct(new_fd);
2603 bad_unshare_cleanup_fs:
2605 free_fs_struct(new_fs);
2611 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2613 return ksys_unshare(unshare_flags);
2617 * Helper to unshare the files of the current task.
2618 * We don't want to expose copy_files internals to
2619 * the exec layer of the kernel.
2622 int unshare_files(struct files_struct **displaced)
2624 struct task_struct *task = current;
2625 struct files_struct *copy = NULL;
2628 error = unshare_fd(CLONE_FILES, ©);
2629 if (error || !copy) {
2633 *displaced = task->files;
2640 int sysctl_max_threads(struct ctl_table *table, int write,
2641 void __user *buffer, size_t *lenp, loff_t *ppos)
2645 int threads = max_threads;
2646 int min = MIN_THREADS;
2647 int max = MAX_THREADS;
2654 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2658 set_max_threads(threads);