OSDN Git Service

Merge tag 'amd-drm-fixes-5.7-2020-04-08' of git://people.freedesktop.org/~agd5f/linux...
[tomoyo/tomoyo-test1.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333
334 static inline void futex_get_mm(union futex_key *key)
335 {
336         mmgrab(key->private.mm);
337         /*
338          * Ensure futex_get_mm() implies a full barrier such that
339          * get_futex_key() implies a full barrier. This is relied upon
340          * as smp_mb(); (B), see the ordering comment above.
341          */
342         smp_mb__after_atomic();
343 }
344
345 /*
346  * Reflects a new waiter being added to the waitqueue.
347  */
348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351         atomic_inc(&hb->waiters);
352         /*
353          * Full barrier (A), see the ordering comment above.
354          */
355         smp_mb__after_atomic();
356 #endif
357 }
358
359 /*
360  * Reflects a waiter being removed from the waitqueue by wakeup
361  * paths.
362  */
363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366         atomic_dec(&hb->waiters);
367 #endif
368 }
369
370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         return atomic_read(&hb->waiters);
374 #else
375         return 1;
376 #endif
377 }
378
379 /**
380  * hash_futex - Return the hash bucket in the global hash
381  * @key:        Pointer to the futex key for which the hash is calculated
382  *
383  * We hash on the keys returned from get_futex_key (see below) and return the
384  * corresponding hash bucket in the global hash.
385  */
386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
389                           key->both.offset);
390
391         return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393
394
395 /**
396  * match_futex - Check whether two futex keys are equal
397  * @key1:       Pointer to key1
398  * @key2:       Pointer to key2
399  *
400  * Return 1 if two futex_keys are equal, 0 otherwise.
401  */
402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404         return (key1 && key2
405                 && key1->both.word == key2->both.word
406                 && key1->both.ptr == key2->both.ptr
407                 && key1->both.offset == key2->both.offset);
408 }
409
410 /*
411  * Take a reference to the resource addressed by a key.
412  * Can be called while holding spinlocks.
413  *
414  */
415 static void get_futex_key_refs(union futex_key *key)
416 {
417         if (!key->both.ptr)
418                 return;
419
420         /*
421          * On MMU less systems futexes are always "private" as there is no per
422          * process address space. We need the smp wmb nevertheless - yes,
423          * arch/blackfin has MMU less SMP ...
424          */
425         if (!IS_ENABLED(CONFIG_MMU)) {
426                 smp_mb(); /* explicit smp_mb(); (B) */
427                 return;
428         }
429
430         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431         case FUT_OFF_INODE:
432                 smp_mb();               /* explicit smp_mb(); (B) */
433                 break;
434         case FUT_OFF_MMSHARED:
435                 futex_get_mm(key); /* implies smp_mb(); (B) */
436                 break;
437         default:
438                 /*
439                  * Private futexes do not hold reference on an inode or
440                  * mm, therefore the only purpose of calling get_futex_key_refs
441                  * is because we need the barrier for the lockless waiter check.
442                  */
443                 smp_mb(); /* explicit smp_mb(); (B) */
444         }
445 }
446
447 /*
448  * Drop a reference to the resource addressed by a key.
449  * The hash bucket spinlock must not be held. This is
450  * a no-op for private futexes, see comment in the get
451  * counterpart.
452  */
453 static void drop_futex_key_refs(union futex_key *key)
454 {
455         if (!key->both.ptr) {
456                 /* If we're here then we tried to put a key we failed to get */
457                 WARN_ON_ONCE(1);
458                 return;
459         }
460
461         if (!IS_ENABLED(CONFIG_MMU))
462                 return;
463
464         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465         case FUT_OFF_INODE:
466                 break;
467         case FUT_OFF_MMSHARED:
468                 mmdrop(key->private.mm);
469                 break;
470         }
471 }
472
473 enum futex_access {
474         FUTEX_READ,
475         FUTEX_WRITE
476 };
477
478 /**
479  * futex_setup_timer - set up the sleeping hrtimer.
480  * @time:       ptr to the given timeout value
481  * @timeout:    the hrtimer_sleeper structure to be set up
482  * @flags:      futex flags
483  * @range_ns:   optional range in ns
484  *
485  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
486  *         value given
487  */
488 static inline struct hrtimer_sleeper *
489 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
490                   int flags, u64 range_ns)
491 {
492         if (!time)
493                 return NULL;
494
495         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
496                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
497                                       HRTIMER_MODE_ABS);
498         /*
499          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
500          * effectively the same as calling hrtimer_set_expires().
501          */
502         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
503
504         return timeout;
505 }
506
507 /*
508  * Generate a machine wide unique identifier for this inode.
509  *
510  * This relies on u64 not wrapping in the life-time of the machine; which with
511  * 1ns resolution means almost 585 years.
512  *
513  * This further relies on the fact that a well formed program will not unmap
514  * the file while it has a (shared) futex waiting on it. This mapping will have
515  * a file reference which pins the mount and inode.
516  *
517  * If for some reason an inode gets evicted and read back in again, it will get
518  * a new sequence number and will _NOT_ match, even though it is the exact same
519  * file.
520  *
521  * It is important that match_futex() will never have a false-positive, esp.
522  * for PI futexes that can mess up the state. The above argues that false-negatives
523  * are only possible for malformed programs.
524  */
525 static u64 get_inode_sequence_number(struct inode *inode)
526 {
527         static atomic64_t i_seq;
528         u64 old;
529
530         /* Does the inode already have a sequence number? */
531         old = atomic64_read(&inode->i_sequence);
532         if (likely(old))
533                 return old;
534
535         for (;;) {
536                 u64 new = atomic64_add_return(1, &i_seq);
537                 if (WARN_ON_ONCE(!new))
538                         continue;
539
540                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
541                 if (old)
542                         return old;
543                 return new;
544         }
545 }
546
547 /**
548  * get_futex_key() - Get parameters which are the keys for a futex
549  * @uaddr:      virtual address of the futex
550  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
551  * @key:        address where result is stored.
552  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
553  *              FUTEX_WRITE)
554  *
555  * Return: a negative error code or 0
556  *
557  * The key words are stored in @key on success.
558  *
559  * For shared mappings (when @fshared), the key is:
560  *   ( inode->i_sequence, page->index, offset_within_page )
561  * [ also see get_inode_sequence_number() ]
562  *
563  * For private mappings (or when !@fshared), the key is:
564  *   ( current->mm, address, 0 )
565  *
566  * This allows (cross process, where applicable) identification of the futex
567  * without keeping the page pinned for the duration of the FUTEX_WAIT.
568  *
569  * lock_page() might sleep, the caller should not hold a spinlock.
570  */
571 static int
572 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
573 {
574         unsigned long address = (unsigned long)uaddr;
575         struct mm_struct *mm = current->mm;
576         struct page *page, *tail;
577         struct address_space *mapping;
578         int err, ro = 0;
579
580         /*
581          * The futex address must be "naturally" aligned.
582          */
583         key->both.offset = address % PAGE_SIZE;
584         if (unlikely((address % sizeof(u32)) != 0))
585                 return -EINVAL;
586         address -= key->both.offset;
587
588         if (unlikely(!access_ok(uaddr, sizeof(u32))))
589                 return -EFAULT;
590
591         if (unlikely(should_fail_futex(fshared)))
592                 return -EFAULT;
593
594         /*
595          * PROCESS_PRIVATE futexes are fast.
596          * As the mm cannot disappear under us and the 'key' only needs
597          * virtual address, we dont even have to find the underlying vma.
598          * Note : We do have to check 'uaddr' is a valid user address,
599          *        but access_ok() should be faster than find_vma()
600          */
601         if (!fshared) {
602                 key->private.mm = mm;
603                 key->private.address = address;
604                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
605                 return 0;
606         }
607
608 again:
609         /* Ignore any VERIFY_READ mapping (futex common case) */
610         if (unlikely(should_fail_futex(fshared)))
611                 return -EFAULT;
612
613         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
614         /*
615          * If write access is not required (eg. FUTEX_WAIT), try
616          * and get read-only access.
617          */
618         if (err == -EFAULT && rw == FUTEX_READ) {
619                 err = get_user_pages_fast(address, 1, 0, &page);
620                 ro = 1;
621         }
622         if (err < 0)
623                 return err;
624         else
625                 err = 0;
626
627         /*
628          * The treatment of mapping from this point on is critical. The page
629          * lock protects many things but in this context the page lock
630          * stabilizes mapping, prevents inode freeing in the shared
631          * file-backed region case and guards against movement to swap cache.
632          *
633          * Strictly speaking the page lock is not needed in all cases being
634          * considered here and page lock forces unnecessarily serialization
635          * From this point on, mapping will be re-verified if necessary and
636          * page lock will be acquired only if it is unavoidable
637          *
638          * Mapping checks require the head page for any compound page so the
639          * head page and mapping is looked up now. For anonymous pages, it
640          * does not matter if the page splits in the future as the key is
641          * based on the address. For filesystem-backed pages, the tail is
642          * required as the index of the page determines the key. For
643          * base pages, there is no tail page and tail == page.
644          */
645         tail = page;
646         page = compound_head(page);
647         mapping = READ_ONCE(page->mapping);
648
649         /*
650          * If page->mapping is NULL, then it cannot be a PageAnon
651          * page; but it might be the ZERO_PAGE or in the gate area or
652          * in a special mapping (all cases which we are happy to fail);
653          * or it may have been a good file page when get_user_pages_fast
654          * found it, but truncated or holepunched or subjected to
655          * invalidate_complete_page2 before we got the page lock (also
656          * cases which we are happy to fail).  And we hold a reference,
657          * so refcount care in invalidate_complete_page's remove_mapping
658          * prevents drop_caches from setting mapping to NULL beneath us.
659          *
660          * The case we do have to guard against is when memory pressure made
661          * shmem_writepage move it from filecache to swapcache beneath us:
662          * an unlikely race, but we do need to retry for page->mapping.
663          */
664         if (unlikely(!mapping)) {
665                 int shmem_swizzled;
666
667                 /*
668                  * Page lock is required to identify which special case above
669                  * applies. If this is really a shmem page then the page lock
670                  * will prevent unexpected transitions.
671                  */
672                 lock_page(page);
673                 shmem_swizzled = PageSwapCache(page) || page->mapping;
674                 unlock_page(page);
675                 put_page(page);
676
677                 if (shmem_swizzled)
678                         goto again;
679
680                 return -EFAULT;
681         }
682
683         /*
684          * Private mappings are handled in a simple way.
685          *
686          * If the futex key is stored on an anonymous page, then the associated
687          * object is the mm which is implicitly pinned by the calling process.
688          *
689          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
690          * it's a read-only handle, it's expected that futexes attach to
691          * the object not the particular process.
692          */
693         if (PageAnon(page)) {
694                 /*
695                  * A RO anonymous page will never change and thus doesn't make
696                  * sense for futex operations.
697                  */
698                 if (unlikely(should_fail_futex(fshared)) || ro) {
699                         err = -EFAULT;
700                         goto out;
701                 }
702
703                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
704                 key->private.mm = mm;
705                 key->private.address = address;
706
707         } else {
708                 struct inode *inode;
709
710                 /*
711                  * The associated futex object in this case is the inode and
712                  * the page->mapping must be traversed. Ordinarily this should
713                  * be stabilised under page lock but it's not strictly
714                  * necessary in this case as we just want to pin the inode, not
715                  * update the radix tree or anything like that.
716                  *
717                  * The RCU read lock is taken as the inode is finally freed
718                  * under RCU. If the mapping still matches expectations then the
719                  * mapping->host can be safely accessed as being a valid inode.
720                  */
721                 rcu_read_lock();
722
723                 if (READ_ONCE(page->mapping) != mapping) {
724                         rcu_read_unlock();
725                         put_page(page);
726
727                         goto again;
728                 }
729
730                 inode = READ_ONCE(mapping->host);
731                 if (!inode) {
732                         rcu_read_unlock();
733                         put_page(page);
734
735                         goto again;
736                 }
737
738                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
739                 key->shared.i_seq = get_inode_sequence_number(inode);
740                 key->shared.pgoff = basepage_index(tail);
741                 rcu_read_unlock();
742         }
743
744         get_futex_key_refs(key); /* implies smp_mb(); (B) */
745
746 out:
747         put_page(page);
748         return err;
749 }
750
751 static inline void put_futex_key(union futex_key *key)
752 {
753         drop_futex_key_refs(key);
754 }
755
756 /**
757  * fault_in_user_writeable() - Fault in user address and verify RW access
758  * @uaddr:      pointer to faulting user space address
759  *
760  * Slow path to fixup the fault we just took in the atomic write
761  * access to @uaddr.
762  *
763  * We have no generic implementation of a non-destructive write to the
764  * user address. We know that we faulted in the atomic pagefault
765  * disabled section so we can as well avoid the #PF overhead by
766  * calling get_user_pages() right away.
767  */
768 static int fault_in_user_writeable(u32 __user *uaddr)
769 {
770         struct mm_struct *mm = current->mm;
771         int ret;
772
773         down_read(&mm->mmap_sem);
774         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
775                                FAULT_FLAG_WRITE, NULL);
776         up_read(&mm->mmap_sem);
777
778         return ret < 0 ? ret : 0;
779 }
780
781 /**
782  * futex_top_waiter() - Return the highest priority waiter on a futex
783  * @hb:         the hash bucket the futex_q's reside in
784  * @key:        the futex key (to distinguish it from other futex futex_q's)
785  *
786  * Must be called with the hb lock held.
787  */
788 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
789                                         union futex_key *key)
790 {
791         struct futex_q *this;
792
793         plist_for_each_entry(this, &hb->chain, list) {
794                 if (match_futex(&this->key, key))
795                         return this;
796         }
797         return NULL;
798 }
799
800 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
801                                       u32 uval, u32 newval)
802 {
803         int ret;
804
805         pagefault_disable();
806         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
807         pagefault_enable();
808
809         return ret;
810 }
811
812 static int get_futex_value_locked(u32 *dest, u32 __user *from)
813 {
814         int ret;
815
816         pagefault_disable();
817         ret = __get_user(*dest, from);
818         pagefault_enable();
819
820         return ret ? -EFAULT : 0;
821 }
822
823
824 /*
825  * PI code:
826  */
827 static int refill_pi_state_cache(void)
828 {
829         struct futex_pi_state *pi_state;
830
831         if (likely(current->pi_state_cache))
832                 return 0;
833
834         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
835
836         if (!pi_state)
837                 return -ENOMEM;
838
839         INIT_LIST_HEAD(&pi_state->list);
840         /* pi_mutex gets initialized later */
841         pi_state->owner = NULL;
842         refcount_set(&pi_state->refcount, 1);
843         pi_state->key = FUTEX_KEY_INIT;
844
845         current->pi_state_cache = pi_state;
846
847         return 0;
848 }
849
850 static struct futex_pi_state *alloc_pi_state(void)
851 {
852         struct futex_pi_state *pi_state = current->pi_state_cache;
853
854         WARN_ON(!pi_state);
855         current->pi_state_cache = NULL;
856
857         return pi_state;
858 }
859
860 static void get_pi_state(struct futex_pi_state *pi_state)
861 {
862         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
863 }
864
865 /*
866  * Drops a reference to the pi_state object and frees or caches it
867  * when the last reference is gone.
868  */
869 static void put_pi_state(struct futex_pi_state *pi_state)
870 {
871         if (!pi_state)
872                 return;
873
874         if (!refcount_dec_and_test(&pi_state->refcount))
875                 return;
876
877         /*
878          * If pi_state->owner is NULL, the owner is most probably dying
879          * and has cleaned up the pi_state already
880          */
881         if (pi_state->owner) {
882                 struct task_struct *owner;
883
884                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
885                 owner = pi_state->owner;
886                 if (owner) {
887                         raw_spin_lock(&owner->pi_lock);
888                         list_del_init(&pi_state->list);
889                         raw_spin_unlock(&owner->pi_lock);
890                 }
891                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
892                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
893         }
894
895         if (current->pi_state_cache) {
896                 kfree(pi_state);
897         } else {
898                 /*
899                  * pi_state->list is already empty.
900                  * clear pi_state->owner.
901                  * refcount is at 0 - put it back to 1.
902                  */
903                 pi_state->owner = NULL;
904                 refcount_set(&pi_state->refcount, 1);
905                 current->pi_state_cache = pi_state;
906         }
907 }
908
909 #ifdef CONFIG_FUTEX_PI
910
911 /*
912  * This task is holding PI mutexes at exit time => bad.
913  * Kernel cleans up PI-state, but userspace is likely hosed.
914  * (Robust-futex cleanup is separate and might save the day for userspace.)
915  */
916 static void exit_pi_state_list(struct task_struct *curr)
917 {
918         struct list_head *next, *head = &curr->pi_state_list;
919         struct futex_pi_state *pi_state;
920         struct futex_hash_bucket *hb;
921         union futex_key key = FUTEX_KEY_INIT;
922
923         if (!futex_cmpxchg_enabled)
924                 return;
925         /*
926          * We are a ZOMBIE and nobody can enqueue itself on
927          * pi_state_list anymore, but we have to be careful
928          * versus waiters unqueueing themselves:
929          */
930         raw_spin_lock_irq(&curr->pi_lock);
931         while (!list_empty(head)) {
932                 next = head->next;
933                 pi_state = list_entry(next, struct futex_pi_state, list);
934                 key = pi_state->key;
935                 hb = hash_futex(&key);
936
937                 /*
938                  * We can race against put_pi_state() removing itself from the
939                  * list (a waiter going away). put_pi_state() will first
940                  * decrement the reference count and then modify the list, so
941                  * its possible to see the list entry but fail this reference
942                  * acquire.
943                  *
944                  * In that case; drop the locks to let put_pi_state() make
945                  * progress and retry the loop.
946                  */
947                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
948                         raw_spin_unlock_irq(&curr->pi_lock);
949                         cpu_relax();
950                         raw_spin_lock_irq(&curr->pi_lock);
951                         continue;
952                 }
953                 raw_spin_unlock_irq(&curr->pi_lock);
954
955                 spin_lock(&hb->lock);
956                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
957                 raw_spin_lock(&curr->pi_lock);
958                 /*
959                  * We dropped the pi-lock, so re-check whether this
960                  * task still owns the PI-state:
961                  */
962                 if (head->next != next) {
963                         /* retain curr->pi_lock for the loop invariant */
964                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
965                         spin_unlock(&hb->lock);
966                         put_pi_state(pi_state);
967                         continue;
968                 }
969
970                 WARN_ON(pi_state->owner != curr);
971                 WARN_ON(list_empty(&pi_state->list));
972                 list_del_init(&pi_state->list);
973                 pi_state->owner = NULL;
974
975                 raw_spin_unlock(&curr->pi_lock);
976                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
977                 spin_unlock(&hb->lock);
978
979                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
980                 put_pi_state(pi_state);
981
982                 raw_spin_lock_irq(&curr->pi_lock);
983         }
984         raw_spin_unlock_irq(&curr->pi_lock);
985 }
986 #else
987 static inline void exit_pi_state_list(struct task_struct *curr) { }
988 #endif
989
990 /*
991  * We need to check the following states:
992  *
993  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
994  *
995  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
996  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
997  *
998  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
999  *
1000  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
1001  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
1002  *
1003  * [6]  Found  | Found    | task      | 0         | 1      | Valid
1004  *
1005  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
1006  *
1007  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
1008  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
1009  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
1010  *
1011  * [1]  Indicates that the kernel can acquire the futex atomically. We
1012  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1013  *
1014  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
1015  *      thread is found then it indicates that the owner TID has died.
1016  *
1017  * [3]  Invalid. The waiter is queued on a non PI futex
1018  *
1019  * [4]  Valid state after exit_robust_list(), which sets the user space
1020  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1021  *
1022  * [5]  The user space value got manipulated between exit_robust_list()
1023  *      and exit_pi_state_list()
1024  *
1025  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1026  *      the pi_state but cannot access the user space value.
1027  *
1028  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1029  *
1030  * [8]  Owner and user space value match
1031  *
1032  * [9]  There is no transient state which sets the user space TID to 0
1033  *      except exit_robust_list(), but this is indicated by the
1034  *      FUTEX_OWNER_DIED bit. See [4]
1035  *
1036  * [10] There is no transient state which leaves owner and user space
1037  *      TID out of sync.
1038  *
1039  *
1040  * Serialization and lifetime rules:
1041  *
1042  * hb->lock:
1043  *
1044  *      hb -> futex_q, relation
1045  *      futex_q -> pi_state, relation
1046  *
1047  *      (cannot be raw because hb can contain arbitrary amount
1048  *       of futex_q's)
1049  *
1050  * pi_mutex->wait_lock:
1051  *
1052  *      {uval, pi_state}
1053  *
1054  *      (and pi_mutex 'obviously')
1055  *
1056  * p->pi_lock:
1057  *
1058  *      p->pi_state_list -> pi_state->list, relation
1059  *
1060  * pi_state->refcount:
1061  *
1062  *      pi_state lifetime
1063  *
1064  *
1065  * Lock order:
1066  *
1067  *   hb->lock
1068  *     pi_mutex->wait_lock
1069  *       p->pi_lock
1070  *
1071  */
1072
1073 /*
1074  * Validate that the existing waiter has a pi_state and sanity check
1075  * the pi_state against the user space value. If correct, attach to
1076  * it.
1077  */
1078 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1079                               struct futex_pi_state *pi_state,
1080                               struct futex_pi_state **ps)
1081 {
1082         pid_t pid = uval & FUTEX_TID_MASK;
1083         u32 uval2;
1084         int ret;
1085
1086         /*
1087          * Userspace might have messed up non-PI and PI futexes [3]
1088          */
1089         if (unlikely(!pi_state))
1090                 return -EINVAL;
1091
1092         /*
1093          * We get here with hb->lock held, and having found a
1094          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1095          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1096          * which in turn means that futex_lock_pi() still has a reference on
1097          * our pi_state.
1098          *
1099          * The waiter holding a reference on @pi_state also protects against
1100          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1101          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1102          * free pi_state before we can take a reference ourselves.
1103          */
1104         WARN_ON(!refcount_read(&pi_state->refcount));
1105
1106         /*
1107          * Now that we have a pi_state, we can acquire wait_lock
1108          * and do the state validation.
1109          */
1110         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1111
1112         /*
1113          * Since {uval, pi_state} is serialized by wait_lock, and our current
1114          * uval was read without holding it, it can have changed. Verify it
1115          * still is what we expect it to be, otherwise retry the entire
1116          * operation.
1117          */
1118         if (get_futex_value_locked(&uval2, uaddr))
1119                 goto out_efault;
1120
1121         if (uval != uval2)
1122                 goto out_eagain;
1123
1124         /*
1125          * Handle the owner died case:
1126          */
1127         if (uval & FUTEX_OWNER_DIED) {
1128                 /*
1129                  * exit_pi_state_list sets owner to NULL and wakes the
1130                  * topmost waiter. The task which acquires the
1131                  * pi_state->rt_mutex will fixup owner.
1132                  */
1133                 if (!pi_state->owner) {
1134                         /*
1135                          * No pi state owner, but the user space TID
1136                          * is not 0. Inconsistent state. [5]
1137                          */
1138                         if (pid)
1139                                 goto out_einval;
1140                         /*
1141                          * Take a ref on the state and return success. [4]
1142                          */
1143                         goto out_attach;
1144                 }
1145
1146                 /*
1147                  * If TID is 0, then either the dying owner has not
1148                  * yet executed exit_pi_state_list() or some waiter
1149                  * acquired the rtmutex in the pi state, but did not
1150                  * yet fixup the TID in user space.
1151                  *
1152                  * Take a ref on the state and return success. [6]
1153                  */
1154                 if (!pid)
1155                         goto out_attach;
1156         } else {
1157                 /*
1158                  * If the owner died bit is not set, then the pi_state
1159                  * must have an owner. [7]
1160                  */
1161                 if (!pi_state->owner)
1162                         goto out_einval;
1163         }
1164
1165         /*
1166          * Bail out if user space manipulated the futex value. If pi
1167          * state exists then the owner TID must be the same as the
1168          * user space TID. [9/10]
1169          */
1170         if (pid != task_pid_vnr(pi_state->owner))
1171                 goto out_einval;
1172
1173 out_attach:
1174         get_pi_state(pi_state);
1175         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176         *ps = pi_state;
1177         return 0;
1178
1179 out_einval:
1180         ret = -EINVAL;
1181         goto out_error;
1182
1183 out_eagain:
1184         ret = -EAGAIN;
1185         goto out_error;
1186
1187 out_efault:
1188         ret = -EFAULT;
1189         goto out_error;
1190
1191 out_error:
1192         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1193         return ret;
1194 }
1195
1196 /**
1197  * wait_for_owner_exiting - Block until the owner has exited
1198  * @ret: owner's current futex lock status
1199  * @exiting:    Pointer to the exiting task
1200  *
1201  * Caller must hold a refcount on @exiting.
1202  */
1203 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1204 {
1205         if (ret != -EBUSY) {
1206                 WARN_ON_ONCE(exiting);
1207                 return;
1208         }
1209
1210         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1211                 return;
1212
1213         mutex_lock(&exiting->futex_exit_mutex);
1214         /*
1215          * No point in doing state checking here. If the waiter got here
1216          * while the task was in exec()->exec_futex_release() then it can
1217          * have any FUTEX_STATE_* value when the waiter has acquired the
1218          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1219          * already. Highly unlikely and not a problem. Just one more round
1220          * through the futex maze.
1221          */
1222         mutex_unlock(&exiting->futex_exit_mutex);
1223
1224         put_task_struct(exiting);
1225 }
1226
1227 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1228                             struct task_struct *tsk)
1229 {
1230         u32 uval2;
1231
1232         /*
1233          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1234          * caller that the alleged owner is busy.
1235          */
1236         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1237                 return -EBUSY;
1238
1239         /*
1240          * Reread the user space value to handle the following situation:
1241          *
1242          * CPU0                         CPU1
1243          *
1244          * sys_exit()                   sys_futex()
1245          *  do_exit()                    futex_lock_pi()
1246          *                                futex_lock_pi_atomic()
1247          *   exit_signals(tsk)              No waiters:
1248          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1249          *  mm_release(tsk)                 Set waiter bit
1250          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1251          *      Set owner died              attach_to_pi_owner() {
1252          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1253          *   }                               if (!tsk->flags & PF_EXITING) {
1254          *  ...                                attach();
1255          *  tsk->futex_state =               } else {
1256          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1257          *                                        FUTEX_STATE_DEAD)
1258          *                                       return -EAGAIN;
1259          *                                     return -ESRCH; <--- FAIL
1260          *                                   }
1261          *
1262          * Returning ESRCH unconditionally is wrong here because the
1263          * user space value has been changed by the exiting task.
1264          *
1265          * The same logic applies to the case where the exiting task is
1266          * already gone.
1267          */
1268         if (get_futex_value_locked(&uval2, uaddr))
1269                 return -EFAULT;
1270
1271         /* If the user space value has changed, try again. */
1272         if (uval2 != uval)
1273                 return -EAGAIN;
1274
1275         /*
1276          * The exiting task did not have a robust list, the robust list was
1277          * corrupted or the user space value in *uaddr is simply bogus.
1278          * Give up and tell user space.
1279          */
1280         return -ESRCH;
1281 }
1282
1283 /*
1284  * Lookup the task for the TID provided from user space and attach to
1285  * it after doing proper sanity checks.
1286  */
1287 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1288                               struct futex_pi_state **ps,
1289                               struct task_struct **exiting)
1290 {
1291         pid_t pid = uval & FUTEX_TID_MASK;
1292         struct futex_pi_state *pi_state;
1293         struct task_struct *p;
1294
1295         /*
1296          * We are the first waiter - try to look up the real owner and attach
1297          * the new pi_state to it, but bail out when TID = 0 [1]
1298          *
1299          * The !pid check is paranoid. None of the call sites should end up
1300          * with pid == 0, but better safe than sorry. Let the caller retry
1301          */
1302         if (!pid)
1303                 return -EAGAIN;
1304         p = find_get_task_by_vpid(pid);
1305         if (!p)
1306                 return handle_exit_race(uaddr, uval, NULL);
1307
1308         if (unlikely(p->flags & PF_KTHREAD)) {
1309                 put_task_struct(p);
1310                 return -EPERM;
1311         }
1312
1313         /*
1314          * We need to look at the task state to figure out, whether the
1315          * task is exiting. To protect against the change of the task state
1316          * in futex_exit_release(), we do this protected by p->pi_lock:
1317          */
1318         raw_spin_lock_irq(&p->pi_lock);
1319         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1320                 /*
1321                  * The task is on the way out. When the futex state is
1322                  * FUTEX_STATE_DEAD, we know that the task has finished
1323                  * the cleanup:
1324                  */
1325                 int ret = handle_exit_race(uaddr, uval, p);
1326
1327                 raw_spin_unlock_irq(&p->pi_lock);
1328                 /*
1329                  * If the owner task is between FUTEX_STATE_EXITING and
1330                  * FUTEX_STATE_DEAD then store the task pointer and keep
1331                  * the reference on the task struct. The calling code will
1332                  * drop all locks, wait for the task to reach
1333                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1334                  * required to prevent a live lock when the current task
1335                  * preempted the exiting task between the two states.
1336                  */
1337                 if (ret == -EBUSY)
1338                         *exiting = p;
1339                 else
1340                         put_task_struct(p);
1341                 return ret;
1342         }
1343
1344         /*
1345          * No existing pi state. First waiter. [2]
1346          *
1347          * This creates pi_state, we have hb->lock held, this means nothing can
1348          * observe this state, wait_lock is irrelevant.
1349          */
1350         pi_state = alloc_pi_state();
1351
1352         /*
1353          * Initialize the pi_mutex in locked state and make @p
1354          * the owner of it:
1355          */
1356         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1357
1358         /* Store the key for possible exit cleanups: */
1359         pi_state->key = *key;
1360
1361         WARN_ON(!list_empty(&pi_state->list));
1362         list_add(&pi_state->list, &p->pi_state_list);
1363         /*
1364          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1365          * because there is no concurrency as the object is not published yet.
1366          */
1367         pi_state->owner = p;
1368         raw_spin_unlock_irq(&p->pi_lock);
1369
1370         put_task_struct(p);
1371
1372         *ps = pi_state;
1373
1374         return 0;
1375 }
1376
1377 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1378                            struct futex_hash_bucket *hb,
1379                            union futex_key *key, struct futex_pi_state **ps,
1380                            struct task_struct **exiting)
1381 {
1382         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1383
1384         /*
1385          * If there is a waiter on that futex, validate it and
1386          * attach to the pi_state when the validation succeeds.
1387          */
1388         if (top_waiter)
1389                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1390
1391         /*
1392          * We are the first waiter - try to look up the owner based on
1393          * @uval and attach to it.
1394          */
1395         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1396 }
1397
1398 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1399 {
1400         int err;
1401         u32 uninitialized_var(curval);
1402
1403         if (unlikely(should_fail_futex(true)))
1404                 return -EFAULT;
1405
1406         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1407         if (unlikely(err))
1408                 return err;
1409
1410         /* If user space value changed, let the caller retry */
1411         return curval != uval ? -EAGAIN : 0;
1412 }
1413
1414 /**
1415  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1416  * @uaddr:              the pi futex user address
1417  * @hb:                 the pi futex hash bucket
1418  * @key:                the futex key associated with uaddr and hb
1419  * @ps:                 the pi_state pointer where we store the result of the
1420  *                      lookup
1421  * @task:               the task to perform the atomic lock work for.  This will
1422  *                      be "current" except in the case of requeue pi.
1423  * @exiting:            Pointer to store the task pointer of the owner task
1424  *                      which is in the middle of exiting
1425  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1426  *
1427  * Return:
1428  *  -  0 - ready to wait;
1429  *  -  1 - acquired the lock;
1430  *  - <0 - error
1431  *
1432  * The hb->lock and futex_key refs shall be held by the caller.
1433  *
1434  * @exiting is only set when the return value is -EBUSY. If so, this holds
1435  * a refcount on the exiting task on return and the caller needs to drop it
1436  * after waiting for the exit to complete.
1437  */
1438 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1439                                 union futex_key *key,
1440                                 struct futex_pi_state **ps,
1441                                 struct task_struct *task,
1442                                 struct task_struct **exiting,
1443                                 int set_waiters)
1444 {
1445         u32 uval, newval, vpid = task_pid_vnr(task);
1446         struct futex_q *top_waiter;
1447         int ret;
1448
1449         /*
1450          * Read the user space value first so we can validate a few
1451          * things before proceeding further.
1452          */
1453         if (get_futex_value_locked(&uval, uaddr))
1454                 return -EFAULT;
1455
1456         if (unlikely(should_fail_futex(true)))
1457                 return -EFAULT;
1458
1459         /*
1460          * Detect deadlocks.
1461          */
1462         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1463                 return -EDEADLK;
1464
1465         if ((unlikely(should_fail_futex(true))))
1466                 return -EDEADLK;
1467
1468         /*
1469          * Lookup existing state first. If it exists, try to attach to
1470          * its pi_state.
1471          */
1472         top_waiter = futex_top_waiter(hb, key);
1473         if (top_waiter)
1474                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1475
1476         /*
1477          * No waiter and user TID is 0. We are here because the
1478          * waiters or the owner died bit is set or called from
1479          * requeue_cmp_pi or for whatever reason something took the
1480          * syscall.
1481          */
1482         if (!(uval & FUTEX_TID_MASK)) {
1483                 /*
1484                  * We take over the futex. No other waiters and the user space
1485                  * TID is 0. We preserve the owner died bit.
1486                  */
1487                 newval = uval & FUTEX_OWNER_DIED;
1488                 newval |= vpid;
1489
1490                 /* The futex requeue_pi code can enforce the waiters bit */
1491                 if (set_waiters)
1492                         newval |= FUTEX_WAITERS;
1493
1494                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1495                 /* If the take over worked, return 1 */
1496                 return ret < 0 ? ret : 1;
1497         }
1498
1499         /*
1500          * First waiter. Set the waiters bit before attaching ourself to
1501          * the owner. If owner tries to unlock, it will be forced into
1502          * the kernel and blocked on hb->lock.
1503          */
1504         newval = uval | FUTEX_WAITERS;
1505         ret = lock_pi_update_atomic(uaddr, uval, newval);
1506         if (ret)
1507                 return ret;
1508         /*
1509          * If the update of the user space value succeeded, we try to
1510          * attach to the owner. If that fails, no harm done, we only
1511          * set the FUTEX_WAITERS bit in the user space variable.
1512          */
1513         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1514 }
1515
1516 /**
1517  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1518  * @q:  The futex_q to unqueue
1519  *
1520  * The q->lock_ptr must not be NULL and must be held by the caller.
1521  */
1522 static void __unqueue_futex(struct futex_q *q)
1523 {
1524         struct futex_hash_bucket *hb;
1525
1526         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1527                 return;
1528         lockdep_assert_held(q->lock_ptr);
1529
1530         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1531         plist_del(&q->list, &hb->chain);
1532         hb_waiters_dec(hb);
1533 }
1534
1535 /*
1536  * The hash bucket lock must be held when this is called.
1537  * Afterwards, the futex_q must not be accessed. Callers
1538  * must ensure to later call wake_up_q() for the actual
1539  * wakeups to occur.
1540  */
1541 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1542 {
1543         struct task_struct *p = q->task;
1544
1545         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1546                 return;
1547
1548         get_task_struct(p);
1549         __unqueue_futex(q);
1550         /*
1551          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1552          * is written, without taking any locks. This is possible in the event
1553          * of a spurious wakeup, for example. A memory barrier is required here
1554          * to prevent the following store to lock_ptr from getting ahead of the
1555          * plist_del in __unqueue_futex().
1556          */
1557         smp_store_release(&q->lock_ptr, NULL);
1558
1559         /*
1560          * Queue the task for later wakeup for after we've released
1561          * the hb->lock.
1562          */
1563         wake_q_add_safe(wake_q, p);
1564 }
1565
1566 /*
1567  * Caller must hold a reference on @pi_state.
1568  */
1569 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1570 {
1571         u32 uninitialized_var(curval), newval;
1572         struct task_struct *new_owner;
1573         bool postunlock = false;
1574         DEFINE_WAKE_Q(wake_q);
1575         int ret = 0;
1576
1577         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1578         if (WARN_ON_ONCE(!new_owner)) {
1579                 /*
1580                  * As per the comment in futex_unlock_pi() this should not happen.
1581                  *
1582                  * When this happens, give up our locks and try again, giving
1583                  * the futex_lock_pi() instance time to complete, either by
1584                  * waiting on the rtmutex or removing itself from the futex
1585                  * queue.
1586                  */
1587                 ret = -EAGAIN;
1588                 goto out_unlock;
1589         }
1590
1591         /*
1592          * We pass it to the next owner. The WAITERS bit is always kept
1593          * enabled while there is PI state around. We cleanup the owner
1594          * died bit, because we are the owner.
1595          */
1596         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1597
1598         if (unlikely(should_fail_futex(true)))
1599                 ret = -EFAULT;
1600
1601         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1602         if (!ret && (curval != uval)) {
1603                 /*
1604                  * If a unconditional UNLOCK_PI operation (user space did not
1605                  * try the TID->0 transition) raced with a waiter setting the
1606                  * FUTEX_WAITERS flag between get_user() and locking the hash
1607                  * bucket lock, retry the operation.
1608                  */
1609                 if ((FUTEX_TID_MASK & curval) == uval)
1610                         ret = -EAGAIN;
1611                 else
1612                         ret = -EINVAL;
1613         }
1614
1615         if (ret)
1616                 goto out_unlock;
1617
1618         /*
1619          * This is a point of no return; once we modify the uval there is no
1620          * going back and subsequent operations must not fail.
1621          */
1622
1623         raw_spin_lock(&pi_state->owner->pi_lock);
1624         WARN_ON(list_empty(&pi_state->list));
1625         list_del_init(&pi_state->list);
1626         raw_spin_unlock(&pi_state->owner->pi_lock);
1627
1628         raw_spin_lock(&new_owner->pi_lock);
1629         WARN_ON(!list_empty(&pi_state->list));
1630         list_add(&pi_state->list, &new_owner->pi_state_list);
1631         pi_state->owner = new_owner;
1632         raw_spin_unlock(&new_owner->pi_lock);
1633
1634         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1635
1636 out_unlock:
1637         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1638
1639         if (postunlock)
1640                 rt_mutex_postunlock(&wake_q);
1641
1642         return ret;
1643 }
1644
1645 /*
1646  * Express the locking dependencies for lockdep:
1647  */
1648 static inline void
1649 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1650 {
1651         if (hb1 <= hb2) {
1652                 spin_lock(&hb1->lock);
1653                 if (hb1 < hb2)
1654                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1655         } else { /* hb1 > hb2 */
1656                 spin_lock(&hb2->lock);
1657                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1658         }
1659 }
1660
1661 static inline void
1662 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1663 {
1664         spin_unlock(&hb1->lock);
1665         if (hb1 != hb2)
1666                 spin_unlock(&hb2->lock);
1667 }
1668
1669 /*
1670  * Wake up waiters matching bitset queued on this futex (uaddr).
1671  */
1672 static int
1673 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1674 {
1675         struct futex_hash_bucket *hb;
1676         struct futex_q *this, *next;
1677         union futex_key key = FUTEX_KEY_INIT;
1678         int ret;
1679         DEFINE_WAKE_Q(wake_q);
1680
1681         if (!bitset)
1682                 return -EINVAL;
1683
1684         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1685         if (unlikely(ret != 0))
1686                 goto out;
1687
1688         hb = hash_futex(&key);
1689
1690         /* Make sure we really have tasks to wakeup */
1691         if (!hb_waiters_pending(hb))
1692                 goto out_put_key;
1693
1694         spin_lock(&hb->lock);
1695
1696         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1697                 if (match_futex (&this->key, &key)) {
1698                         if (this->pi_state || this->rt_waiter) {
1699                                 ret = -EINVAL;
1700                                 break;
1701                         }
1702
1703                         /* Check if one of the bits is set in both bitsets */
1704                         if (!(this->bitset & bitset))
1705                                 continue;
1706
1707                         mark_wake_futex(&wake_q, this);
1708                         if (++ret >= nr_wake)
1709                                 break;
1710                 }
1711         }
1712
1713         spin_unlock(&hb->lock);
1714         wake_up_q(&wake_q);
1715 out_put_key:
1716         put_futex_key(&key);
1717 out:
1718         return ret;
1719 }
1720
1721 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1722 {
1723         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1724         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1725         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1726         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1727         int oldval, ret;
1728
1729         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1730                 if (oparg < 0 || oparg > 31) {
1731                         char comm[sizeof(current->comm)];
1732                         /*
1733                          * kill this print and return -EINVAL when userspace
1734                          * is sane again
1735                          */
1736                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1737                                         get_task_comm(comm, current), oparg);
1738                         oparg &= 31;
1739                 }
1740                 oparg = 1 << oparg;
1741         }
1742
1743         if (!access_ok(uaddr, sizeof(u32)))
1744                 return -EFAULT;
1745
1746         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1747         if (ret)
1748                 return ret;
1749
1750         switch (cmp) {
1751         case FUTEX_OP_CMP_EQ:
1752                 return oldval == cmparg;
1753         case FUTEX_OP_CMP_NE:
1754                 return oldval != cmparg;
1755         case FUTEX_OP_CMP_LT:
1756                 return oldval < cmparg;
1757         case FUTEX_OP_CMP_GE:
1758                 return oldval >= cmparg;
1759         case FUTEX_OP_CMP_LE:
1760                 return oldval <= cmparg;
1761         case FUTEX_OP_CMP_GT:
1762                 return oldval > cmparg;
1763         default:
1764                 return -ENOSYS;
1765         }
1766 }
1767
1768 /*
1769  * Wake up all waiters hashed on the physical page that is mapped
1770  * to this virtual address:
1771  */
1772 static int
1773 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1774               int nr_wake, int nr_wake2, int op)
1775 {
1776         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1777         struct futex_hash_bucket *hb1, *hb2;
1778         struct futex_q *this, *next;
1779         int ret, op_ret;
1780         DEFINE_WAKE_Q(wake_q);
1781
1782 retry:
1783         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1784         if (unlikely(ret != 0))
1785                 goto out;
1786         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1787         if (unlikely(ret != 0))
1788                 goto out_put_key1;
1789
1790         hb1 = hash_futex(&key1);
1791         hb2 = hash_futex(&key2);
1792
1793 retry_private:
1794         double_lock_hb(hb1, hb2);
1795         op_ret = futex_atomic_op_inuser(op, uaddr2);
1796         if (unlikely(op_ret < 0)) {
1797                 double_unlock_hb(hb1, hb2);
1798
1799                 if (!IS_ENABLED(CONFIG_MMU) ||
1800                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1801                         /*
1802                          * we don't get EFAULT from MMU faults if we don't have
1803                          * an MMU, but we might get them from range checking
1804                          */
1805                         ret = op_ret;
1806                         goto out_put_keys;
1807                 }
1808
1809                 if (op_ret == -EFAULT) {
1810                         ret = fault_in_user_writeable(uaddr2);
1811                         if (ret)
1812                                 goto out_put_keys;
1813                 }
1814
1815                 if (!(flags & FLAGS_SHARED)) {
1816                         cond_resched();
1817                         goto retry_private;
1818                 }
1819
1820                 put_futex_key(&key2);
1821                 put_futex_key(&key1);
1822                 cond_resched();
1823                 goto retry;
1824         }
1825
1826         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1827                 if (match_futex (&this->key, &key1)) {
1828                         if (this->pi_state || this->rt_waiter) {
1829                                 ret = -EINVAL;
1830                                 goto out_unlock;
1831                         }
1832                         mark_wake_futex(&wake_q, this);
1833                         if (++ret >= nr_wake)
1834                                 break;
1835                 }
1836         }
1837
1838         if (op_ret > 0) {
1839                 op_ret = 0;
1840                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1841                         if (match_futex (&this->key, &key2)) {
1842                                 if (this->pi_state || this->rt_waiter) {
1843                                         ret = -EINVAL;
1844                                         goto out_unlock;
1845                                 }
1846                                 mark_wake_futex(&wake_q, this);
1847                                 if (++op_ret >= nr_wake2)
1848                                         break;
1849                         }
1850                 }
1851                 ret += op_ret;
1852         }
1853
1854 out_unlock:
1855         double_unlock_hb(hb1, hb2);
1856         wake_up_q(&wake_q);
1857 out_put_keys:
1858         put_futex_key(&key2);
1859 out_put_key1:
1860         put_futex_key(&key1);
1861 out:
1862         return ret;
1863 }
1864
1865 /**
1866  * requeue_futex() - Requeue a futex_q from one hb to another
1867  * @q:          the futex_q to requeue
1868  * @hb1:        the source hash_bucket
1869  * @hb2:        the target hash_bucket
1870  * @key2:       the new key for the requeued futex_q
1871  */
1872 static inline
1873 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1874                    struct futex_hash_bucket *hb2, union futex_key *key2)
1875 {
1876
1877         /*
1878          * If key1 and key2 hash to the same bucket, no need to
1879          * requeue.
1880          */
1881         if (likely(&hb1->chain != &hb2->chain)) {
1882                 plist_del(&q->list, &hb1->chain);
1883                 hb_waiters_dec(hb1);
1884                 hb_waiters_inc(hb2);
1885                 plist_add(&q->list, &hb2->chain);
1886                 q->lock_ptr = &hb2->lock;
1887         }
1888         get_futex_key_refs(key2);
1889         q->key = *key2;
1890 }
1891
1892 /**
1893  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1894  * @q:          the futex_q
1895  * @key:        the key of the requeue target futex
1896  * @hb:         the hash_bucket of the requeue target futex
1897  *
1898  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1899  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1900  * to the requeue target futex so the waiter can detect the wakeup on the right
1901  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1902  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1903  * to protect access to the pi_state to fixup the owner later.  Must be called
1904  * with both q->lock_ptr and hb->lock held.
1905  */
1906 static inline
1907 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1908                            struct futex_hash_bucket *hb)
1909 {
1910         get_futex_key_refs(key);
1911         q->key = *key;
1912
1913         __unqueue_futex(q);
1914
1915         WARN_ON(!q->rt_waiter);
1916         q->rt_waiter = NULL;
1917
1918         q->lock_ptr = &hb->lock;
1919
1920         wake_up_state(q->task, TASK_NORMAL);
1921 }
1922
1923 /**
1924  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1925  * @pifutex:            the user address of the to futex
1926  * @hb1:                the from futex hash bucket, must be locked by the caller
1927  * @hb2:                the to futex hash bucket, must be locked by the caller
1928  * @key1:               the from futex key
1929  * @key2:               the to futex key
1930  * @ps:                 address to store the pi_state pointer
1931  * @exiting:            Pointer to store the task pointer of the owner task
1932  *                      which is in the middle of exiting
1933  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1934  *
1935  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1936  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1937  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1938  * hb1 and hb2 must be held by the caller.
1939  *
1940  * @exiting is only set when the return value is -EBUSY. If so, this holds
1941  * a refcount on the exiting task on return and the caller needs to drop it
1942  * after waiting for the exit to complete.
1943  *
1944  * Return:
1945  *  -  0 - failed to acquire the lock atomically;
1946  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1947  *  - <0 - error
1948  */
1949 static int
1950 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1951                            struct futex_hash_bucket *hb2, union futex_key *key1,
1952                            union futex_key *key2, struct futex_pi_state **ps,
1953                            struct task_struct **exiting, int set_waiters)
1954 {
1955         struct futex_q *top_waiter = NULL;
1956         u32 curval;
1957         int ret, vpid;
1958
1959         if (get_futex_value_locked(&curval, pifutex))
1960                 return -EFAULT;
1961
1962         if (unlikely(should_fail_futex(true)))
1963                 return -EFAULT;
1964
1965         /*
1966          * Find the top_waiter and determine if there are additional waiters.
1967          * If the caller intends to requeue more than 1 waiter to pifutex,
1968          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1969          * as we have means to handle the possible fault.  If not, don't set
1970          * the bit unecessarily as it will force the subsequent unlock to enter
1971          * the kernel.
1972          */
1973         top_waiter = futex_top_waiter(hb1, key1);
1974
1975         /* There are no waiters, nothing for us to do. */
1976         if (!top_waiter)
1977                 return 0;
1978
1979         /* Ensure we requeue to the expected futex. */
1980         if (!match_futex(top_waiter->requeue_pi_key, key2))
1981                 return -EINVAL;
1982
1983         /*
1984          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1985          * the contended case or if set_waiters is 1.  The pi_state is returned
1986          * in ps in contended cases.
1987          */
1988         vpid = task_pid_vnr(top_waiter->task);
1989         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1990                                    exiting, set_waiters);
1991         if (ret == 1) {
1992                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1993                 return vpid;
1994         }
1995         return ret;
1996 }
1997
1998 /**
1999  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2000  * @uaddr1:     source futex user address
2001  * @flags:      futex flags (FLAGS_SHARED, etc.)
2002  * @uaddr2:     target futex user address
2003  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
2004  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2005  * @cmpval:     @uaddr1 expected value (or %NULL)
2006  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2007  *              pi futex (pi to pi requeue is not supported)
2008  *
2009  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2010  * uaddr2 atomically on behalf of the top waiter.
2011  *
2012  * Return:
2013  *  - >=0 - on success, the number of tasks requeued or woken;
2014  *  -  <0 - on error
2015  */
2016 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2017                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
2018                          u32 *cmpval, int requeue_pi)
2019 {
2020         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2021         int drop_count = 0, task_count = 0, ret;
2022         struct futex_pi_state *pi_state = NULL;
2023         struct futex_hash_bucket *hb1, *hb2;
2024         struct futex_q *this, *next;
2025         DEFINE_WAKE_Q(wake_q);
2026
2027         if (nr_wake < 0 || nr_requeue < 0)
2028                 return -EINVAL;
2029
2030         /*
2031          * When PI not supported: return -ENOSYS if requeue_pi is true,
2032          * consequently the compiler knows requeue_pi is always false past
2033          * this point which will optimize away all the conditional code
2034          * further down.
2035          */
2036         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2037                 return -ENOSYS;
2038
2039         if (requeue_pi) {
2040                 /*
2041                  * Requeue PI only works on two distinct uaddrs. This
2042                  * check is only valid for private futexes. See below.
2043                  */
2044                 if (uaddr1 == uaddr2)
2045                         return -EINVAL;
2046
2047                 /*
2048                  * requeue_pi requires a pi_state, try to allocate it now
2049                  * without any locks in case it fails.
2050                  */
2051                 if (refill_pi_state_cache())
2052                         return -ENOMEM;
2053                 /*
2054                  * requeue_pi must wake as many tasks as it can, up to nr_wake
2055                  * + nr_requeue, since it acquires the rt_mutex prior to
2056                  * returning to userspace, so as to not leave the rt_mutex with
2057                  * waiters and no owner.  However, second and third wake-ups
2058                  * cannot be predicted as they involve race conditions with the
2059                  * first wake and a fault while looking up the pi_state.  Both
2060                  * pthread_cond_signal() and pthread_cond_broadcast() should
2061                  * use nr_wake=1.
2062                  */
2063                 if (nr_wake != 1)
2064                         return -EINVAL;
2065         }
2066
2067 retry:
2068         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2069         if (unlikely(ret != 0))
2070                 goto out;
2071         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2072                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2073         if (unlikely(ret != 0))
2074                 goto out_put_key1;
2075
2076         /*
2077          * The check above which compares uaddrs is not sufficient for
2078          * shared futexes. We need to compare the keys:
2079          */
2080         if (requeue_pi && match_futex(&key1, &key2)) {
2081                 ret = -EINVAL;
2082                 goto out_put_keys;
2083         }
2084
2085         hb1 = hash_futex(&key1);
2086         hb2 = hash_futex(&key2);
2087
2088 retry_private:
2089         hb_waiters_inc(hb2);
2090         double_lock_hb(hb1, hb2);
2091
2092         if (likely(cmpval != NULL)) {
2093                 u32 curval;
2094
2095                 ret = get_futex_value_locked(&curval, uaddr1);
2096
2097                 if (unlikely(ret)) {
2098                         double_unlock_hb(hb1, hb2);
2099                         hb_waiters_dec(hb2);
2100
2101                         ret = get_user(curval, uaddr1);
2102                         if (ret)
2103                                 goto out_put_keys;
2104
2105                         if (!(flags & FLAGS_SHARED))
2106                                 goto retry_private;
2107
2108                         put_futex_key(&key2);
2109                         put_futex_key(&key1);
2110                         goto retry;
2111                 }
2112                 if (curval != *cmpval) {
2113                         ret = -EAGAIN;
2114                         goto out_unlock;
2115                 }
2116         }
2117
2118         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2119                 struct task_struct *exiting = NULL;
2120
2121                 /*
2122                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2123                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2124                  * bit.  We force this here where we are able to easily handle
2125                  * faults rather in the requeue loop below.
2126                  */
2127                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2128                                                  &key2, &pi_state,
2129                                                  &exiting, nr_requeue);
2130
2131                 /*
2132                  * At this point the top_waiter has either taken uaddr2 or is
2133                  * waiting on it.  If the former, then the pi_state will not
2134                  * exist yet, look it up one more time to ensure we have a
2135                  * reference to it. If the lock was taken, ret contains the
2136                  * vpid of the top waiter task.
2137                  * If the lock was not taken, we have pi_state and an initial
2138                  * refcount on it. In case of an error we have nothing.
2139                  */
2140                 if (ret > 0) {
2141                         WARN_ON(pi_state);
2142                         drop_count++;
2143                         task_count++;
2144                         /*
2145                          * If we acquired the lock, then the user space value
2146                          * of uaddr2 should be vpid. It cannot be changed by
2147                          * the top waiter as it is blocked on hb2 lock if it
2148                          * tries to do so. If something fiddled with it behind
2149                          * our back the pi state lookup might unearth it. So
2150                          * we rather use the known value than rereading and
2151                          * handing potential crap to lookup_pi_state.
2152                          *
2153                          * If that call succeeds then we have pi_state and an
2154                          * initial refcount on it.
2155                          */
2156                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2157                                               &pi_state, &exiting);
2158                 }
2159
2160                 switch (ret) {
2161                 case 0:
2162                         /* We hold a reference on the pi state. */
2163                         break;
2164
2165                         /* If the above failed, then pi_state is NULL */
2166                 case -EFAULT:
2167                         double_unlock_hb(hb1, hb2);
2168                         hb_waiters_dec(hb2);
2169                         put_futex_key(&key2);
2170                         put_futex_key(&key1);
2171                         ret = fault_in_user_writeable(uaddr2);
2172                         if (!ret)
2173                                 goto retry;
2174                         goto out;
2175                 case -EBUSY:
2176                 case -EAGAIN:
2177                         /*
2178                          * Two reasons for this:
2179                          * - EBUSY: Owner is exiting and we just wait for the
2180                          *   exit to complete.
2181                          * - EAGAIN: The user space value changed.
2182                          */
2183                         double_unlock_hb(hb1, hb2);
2184                         hb_waiters_dec(hb2);
2185                         put_futex_key(&key2);
2186                         put_futex_key(&key1);
2187                         /*
2188                          * Handle the case where the owner is in the middle of
2189                          * exiting. Wait for the exit to complete otherwise
2190                          * this task might loop forever, aka. live lock.
2191                          */
2192                         wait_for_owner_exiting(ret, exiting);
2193                         cond_resched();
2194                         goto retry;
2195                 default:
2196                         goto out_unlock;
2197                 }
2198         }
2199
2200         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2201                 if (task_count - nr_wake >= nr_requeue)
2202                         break;
2203
2204                 if (!match_futex(&this->key, &key1))
2205                         continue;
2206
2207                 /*
2208                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2209                  * be paired with each other and no other futex ops.
2210                  *
2211                  * We should never be requeueing a futex_q with a pi_state,
2212                  * which is awaiting a futex_unlock_pi().
2213                  */
2214                 if ((requeue_pi && !this->rt_waiter) ||
2215                     (!requeue_pi && this->rt_waiter) ||
2216                     this->pi_state) {
2217                         ret = -EINVAL;
2218                         break;
2219                 }
2220
2221                 /*
2222                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2223                  * lock, we already woke the top_waiter.  If not, it will be
2224                  * woken by futex_unlock_pi().
2225                  */
2226                 if (++task_count <= nr_wake && !requeue_pi) {
2227                         mark_wake_futex(&wake_q, this);
2228                         continue;
2229                 }
2230
2231                 /* Ensure we requeue to the expected futex for requeue_pi. */
2232                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2233                         ret = -EINVAL;
2234                         break;
2235                 }
2236
2237                 /*
2238                  * Requeue nr_requeue waiters and possibly one more in the case
2239                  * of requeue_pi if we couldn't acquire the lock atomically.
2240                  */
2241                 if (requeue_pi) {
2242                         /*
2243                          * Prepare the waiter to take the rt_mutex. Take a
2244                          * refcount on the pi_state and store the pointer in
2245                          * the futex_q object of the waiter.
2246                          */
2247                         get_pi_state(pi_state);
2248                         this->pi_state = pi_state;
2249                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2250                                                         this->rt_waiter,
2251                                                         this->task);
2252                         if (ret == 1) {
2253                                 /*
2254                                  * We got the lock. We do neither drop the
2255                                  * refcount on pi_state nor clear
2256                                  * this->pi_state because the waiter needs the
2257                                  * pi_state for cleaning up the user space
2258                                  * value. It will drop the refcount after
2259                                  * doing so.
2260                                  */
2261                                 requeue_pi_wake_futex(this, &key2, hb2);
2262                                 drop_count++;
2263                                 continue;
2264                         } else if (ret) {
2265                                 /*
2266                                  * rt_mutex_start_proxy_lock() detected a
2267                                  * potential deadlock when we tried to queue
2268                                  * that waiter. Drop the pi_state reference
2269                                  * which we took above and remove the pointer
2270                                  * to the state from the waiters futex_q
2271                                  * object.
2272                                  */
2273                                 this->pi_state = NULL;
2274                                 put_pi_state(pi_state);
2275                                 /*
2276                                  * We stop queueing more waiters and let user
2277                                  * space deal with the mess.
2278                                  */
2279                                 break;
2280                         }
2281                 }
2282                 requeue_futex(this, hb1, hb2, &key2);
2283                 drop_count++;
2284         }
2285
2286         /*
2287          * We took an extra initial reference to the pi_state either
2288          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2289          * need to drop it here again.
2290          */
2291         put_pi_state(pi_state);
2292
2293 out_unlock:
2294         double_unlock_hb(hb1, hb2);
2295         wake_up_q(&wake_q);
2296         hb_waiters_dec(hb2);
2297
2298         /*
2299          * drop_futex_key_refs() must be called outside the spinlocks. During
2300          * the requeue we moved futex_q's from the hash bucket at key1 to the
2301          * one at key2 and updated their key pointer.  We no longer need to
2302          * hold the references to key1.
2303          */
2304         while (--drop_count >= 0)
2305                 drop_futex_key_refs(&key1);
2306
2307 out_put_keys:
2308         put_futex_key(&key2);
2309 out_put_key1:
2310         put_futex_key(&key1);
2311 out:
2312         return ret ? ret : task_count;
2313 }
2314
2315 /* The key must be already stored in q->key. */
2316 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2317         __acquires(&hb->lock)
2318 {
2319         struct futex_hash_bucket *hb;
2320
2321         hb = hash_futex(&q->key);
2322
2323         /*
2324          * Increment the counter before taking the lock so that
2325          * a potential waker won't miss a to-be-slept task that is
2326          * waiting for the spinlock. This is safe as all queue_lock()
2327          * users end up calling queue_me(). Similarly, for housekeeping,
2328          * decrement the counter at queue_unlock() when some error has
2329          * occurred and we don't end up adding the task to the list.
2330          */
2331         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2332
2333         q->lock_ptr = &hb->lock;
2334
2335         spin_lock(&hb->lock);
2336         return hb;
2337 }
2338
2339 static inline void
2340 queue_unlock(struct futex_hash_bucket *hb)
2341         __releases(&hb->lock)
2342 {
2343         spin_unlock(&hb->lock);
2344         hb_waiters_dec(hb);
2345 }
2346
2347 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2348 {
2349         int prio;
2350
2351         /*
2352          * The priority used to register this element is
2353          * - either the real thread-priority for the real-time threads
2354          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2355          * - or MAX_RT_PRIO for non-RT threads.
2356          * Thus, all RT-threads are woken first in priority order, and
2357          * the others are woken last, in FIFO order.
2358          */
2359         prio = min(current->normal_prio, MAX_RT_PRIO);
2360
2361         plist_node_init(&q->list, prio);
2362         plist_add(&q->list, &hb->chain);
2363         q->task = current;
2364 }
2365
2366 /**
2367  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2368  * @q:  The futex_q to enqueue
2369  * @hb: The destination hash bucket
2370  *
2371  * The hb->lock must be held by the caller, and is released here. A call to
2372  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2373  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2374  * or nothing if the unqueue is done as part of the wake process and the unqueue
2375  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2376  * an example).
2377  */
2378 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2379         __releases(&hb->lock)
2380 {
2381         __queue_me(q, hb);
2382         spin_unlock(&hb->lock);
2383 }
2384
2385 /**
2386  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2387  * @q:  The futex_q to unqueue
2388  *
2389  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2390  * be paired with exactly one earlier call to queue_me().
2391  *
2392  * Return:
2393  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2394  *  - 0 - if the futex_q was already removed by the waking thread
2395  */
2396 static int unqueue_me(struct futex_q *q)
2397 {
2398         spinlock_t *lock_ptr;
2399         int ret = 0;
2400
2401         /* In the common case we don't take the spinlock, which is nice. */
2402 retry:
2403         /*
2404          * q->lock_ptr can change between this read and the following spin_lock.
2405          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2406          * optimizing lock_ptr out of the logic below.
2407          */
2408         lock_ptr = READ_ONCE(q->lock_ptr);
2409         if (lock_ptr != NULL) {
2410                 spin_lock(lock_ptr);
2411                 /*
2412                  * q->lock_ptr can change between reading it and
2413                  * spin_lock(), causing us to take the wrong lock.  This
2414                  * corrects the race condition.
2415                  *
2416                  * Reasoning goes like this: if we have the wrong lock,
2417                  * q->lock_ptr must have changed (maybe several times)
2418                  * between reading it and the spin_lock().  It can
2419                  * change again after the spin_lock() but only if it was
2420                  * already changed before the spin_lock().  It cannot,
2421                  * however, change back to the original value.  Therefore
2422                  * we can detect whether we acquired the correct lock.
2423                  */
2424                 if (unlikely(lock_ptr != q->lock_ptr)) {
2425                         spin_unlock(lock_ptr);
2426                         goto retry;
2427                 }
2428                 __unqueue_futex(q);
2429
2430                 BUG_ON(q->pi_state);
2431
2432                 spin_unlock(lock_ptr);
2433                 ret = 1;
2434         }
2435
2436         drop_futex_key_refs(&q->key);
2437         return ret;
2438 }
2439
2440 /*
2441  * PI futexes can not be requeued and must remove themself from the
2442  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2443  * and dropped here.
2444  */
2445 static void unqueue_me_pi(struct futex_q *q)
2446         __releases(q->lock_ptr)
2447 {
2448         __unqueue_futex(q);
2449
2450         BUG_ON(!q->pi_state);
2451         put_pi_state(q->pi_state);
2452         q->pi_state = NULL;
2453
2454         spin_unlock(q->lock_ptr);
2455 }
2456
2457 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2458                                 struct task_struct *argowner)
2459 {
2460         struct futex_pi_state *pi_state = q->pi_state;
2461         u32 uval, uninitialized_var(curval), newval;
2462         struct task_struct *oldowner, *newowner;
2463         u32 newtid;
2464         int ret, err = 0;
2465
2466         lockdep_assert_held(q->lock_ptr);
2467
2468         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2469
2470         oldowner = pi_state->owner;
2471
2472         /*
2473          * We are here because either:
2474          *
2475          *  - we stole the lock and pi_state->owner needs updating to reflect
2476          *    that (@argowner == current),
2477          *
2478          * or:
2479          *
2480          *  - someone stole our lock and we need to fix things to point to the
2481          *    new owner (@argowner == NULL).
2482          *
2483          * Either way, we have to replace the TID in the user space variable.
2484          * This must be atomic as we have to preserve the owner died bit here.
2485          *
2486          * Note: We write the user space value _before_ changing the pi_state
2487          * because we can fault here. Imagine swapped out pages or a fork
2488          * that marked all the anonymous memory readonly for cow.
2489          *
2490          * Modifying pi_state _before_ the user space value would leave the
2491          * pi_state in an inconsistent state when we fault here, because we
2492          * need to drop the locks to handle the fault. This might be observed
2493          * in the PID check in lookup_pi_state.
2494          */
2495 retry:
2496         if (!argowner) {
2497                 if (oldowner != current) {
2498                         /*
2499                          * We raced against a concurrent self; things are
2500                          * already fixed up. Nothing to do.
2501                          */
2502                         ret = 0;
2503                         goto out_unlock;
2504                 }
2505
2506                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2507                         /* We got the lock after all, nothing to fix. */
2508                         ret = 0;
2509                         goto out_unlock;
2510                 }
2511
2512                 /*
2513                  * Since we just failed the trylock; there must be an owner.
2514                  */
2515                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2516                 BUG_ON(!newowner);
2517         } else {
2518                 WARN_ON_ONCE(argowner != current);
2519                 if (oldowner == current) {
2520                         /*
2521                          * We raced against a concurrent self; things are
2522                          * already fixed up. Nothing to do.
2523                          */
2524                         ret = 0;
2525                         goto out_unlock;
2526                 }
2527                 newowner = argowner;
2528         }
2529
2530         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2531         /* Owner died? */
2532         if (!pi_state->owner)
2533                 newtid |= FUTEX_OWNER_DIED;
2534
2535         err = get_futex_value_locked(&uval, uaddr);
2536         if (err)
2537                 goto handle_err;
2538
2539         for (;;) {
2540                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2541
2542                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2543                 if (err)
2544                         goto handle_err;
2545
2546                 if (curval == uval)
2547                         break;
2548                 uval = curval;
2549         }
2550
2551         /*
2552          * We fixed up user space. Now we need to fix the pi_state
2553          * itself.
2554          */
2555         if (pi_state->owner != NULL) {
2556                 raw_spin_lock(&pi_state->owner->pi_lock);
2557                 WARN_ON(list_empty(&pi_state->list));
2558                 list_del_init(&pi_state->list);
2559                 raw_spin_unlock(&pi_state->owner->pi_lock);
2560         }
2561
2562         pi_state->owner = newowner;
2563
2564         raw_spin_lock(&newowner->pi_lock);
2565         WARN_ON(!list_empty(&pi_state->list));
2566         list_add(&pi_state->list, &newowner->pi_state_list);
2567         raw_spin_unlock(&newowner->pi_lock);
2568         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2569
2570         return 0;
2571
2572         /*
2573          * In order to reschedule or handle a page fault, we need to drop the
2574          * locks here. In the case of a fault, this gives the other task
2575          * (either the highest priority waiter itself or the task which stole
2576          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2577          * are back from handling the fault we need to check the pi_state after
2578          * reacquiring the locks and before trying to do another fixup. When
2579          * the fixup has been done already we simply return.
2580          *
2581          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2582          * drop hb->lock since the caller owns the hb -> futex_q relation.
2583          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2584          */
2585 handle_err:
2586         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2587         spin_unlock(q->lock_ptr);
2588
2589         switch (err) {
2590         case -EFAULT:
2591                 ret = fault_in_user_writeable(uaddr);
2592                 break;
2593
2594         case -EAGAIN:
2595                 cond_resched();
2596                 ret = 0;
2597                 break;
2598
2599         default:
2600                 WARN_ON_ONCE(1);
2601                 ret = err;
2602                 break;
2603         }
2604
2605         spin_lock(q->lock_ptr);
2606         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2607
2608         /*
2609          * Check if someone else fixed it for us:
2610          */
2611         if (pi_state->owner != oldowner) {
2612                 ret = 0;
2613                 goto out_unlock;
2614         }
2615
2616         if (ret)
2617                 goto out_unlock;
2618
2619         goto retry;
2620
2621 out_unlock:
2622         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2623         return ret;
2624 }
2625
2626 static long futex_wait_restart(struct restart_block *restart);
2627
2628 /**
2629  * fixup_owner() - Post lock pi_state and corner case management
2630  * @uaddr:      user address of the futex
2631  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2632  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2633  *
2634  * After attempting to lock an rt_mutex, this function is called to cleanup
2635  * the pi_state owner as well as handle race conditions that may allow us to
2636  * acquire the lock. Must be called with the hb lock held.
2637  *
2638  * Return:
2639  *  -  1 - success, lock taken;
2640  *  -  0 - success, lock not taken;
2641  *  - <0 - on error (-EFAULT)
2642  */
2643 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2644 {
2645         int ret = 0;
2646
2647         if (locked) {
2648                 /*
2649                  * Got the lock. We might not be the anticipated owner if we
2650                  * did a lock-steal - fix up the PI-state in that case:
2651                  *
2652                  * Speculative pi_state->owner read (we don't hold wait_lock);
2653                  * since we own the lock pi_state->owner == current is the
2654                  * stable state, anything else needs more attention.
2655                  */
2656                 if (q->pi_state->owner != current)
2657                         ret = fixup_pi_state_owner(uaddr, q, current);
2658                 goto out;
2659         }
2660
2661         /*
2662          * If we didn't get the lock; check if anybody stole it from us. In
2663          * that case, we need to fix up the uval to point to them instead of
2664          * us, otherwise bad things happen. [10]
2665          *
2666          * Another speculative read; pi_state->owner == current is unstable
2667          * but needs our attention.
2668          */
2669         if (q->pi_state->owner == current) {
2670                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2671                 goto out;
2672         }
2673
2674         /*
2675          * Paranoia check. If we did not take the lock, then we should not be
2676          * the owner of the rt_mutex.
2677          */
2678         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2679                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2680                                 "pi-state %p\n", ret,
2681                                 q->pi_state->pi_mutex.owner,
2682                                 q->pi_state->owner);
2683         }
2684
2685 out:
2686         return ret ? ret : locked;
2687 }
2688
2689 /**
2690  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2691  * @hb:         the futex hash bucket, must be locked by the caller
2692  * @q:          the futex_q to queue up on
2693  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2694  */
2695 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2696                                 struct hrtimer_sleeper *timeout)
2697 {
2698         /*
2699          * The task state is guaranteed to be set before another task can
2700          * wake it. set_current_state() is implemented using smp_store_mb() and
2701          * queue_me() calls spin_unlock() upon completion, both serializing
2702          * access to the hash list and forcing another memory barrier.
2703          */
2704         set_current_state(TASK_INTERRUPTIBLE);
2705         queue_me(q, hb);
2706
2707         /* Arm the timer */
2708         if (timeout)
2709                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2710
2711         /*
2712          * If we have been removed from the hash list, then another task
2713          * has tried to wake us, and we can skip the call to schedule().
2714          */
2715         if (likely(!plist_node_empty(&q->list))) {
2716                 /*
2717                  * If the timer has already expired, current will already be
2718                  * flagged for rescheduling. Only call schedule if there
2719                  * is no timeout, or if it has yet to expire.
2720                  */
2721                 if (!timeout || timeout->task)
2722                         freezable_schedule();
2723         }
2724         __set_current_state(TASK_RUNNING);
2725 }
2726
2727 /**
2728  * futex_wait_setup() - Prepare to wait on a futex
2729  * @uaddr:      the futex userspace address
2730  * @val:        the expected value
2731  * @flags:      futex flags (FLAGS_SHARED, etc.)
2732  * @q:          the associated futex_q
2733  * @hb:         storage for hash_bucket pointer to be returned to caller
2734  *
2735  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2736  * compare it with the expected value.  Handle atomic faults internally.
2737  * Return with the hb lock held and a q.key reference on success, and unlocked
2738  * with no q.key reference on failure.
2739  *
2740  * Return:
2741  *  -  0 - uaddr contains val and hb has been locked;
2742  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2743  */
2744 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2745                            struct futex_q *q, struct futex_hash_bucket **hb)
2746 {
2747         u32 uval;
2748         int ret;
2749
2750         /*
2751          * Access the page AFTER the hash-bucket is locked.
2752          * Order is important:
2753          *
2754          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2755          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2756          *
2757          * The basic logical guarantee of a futex is that it blocks ONLY
2758          * if cond(var) is known to be true at the time of blocking, for
2759          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2760          * would open a race condition where we could block indefinitely with
2761          * cond(var) false, which would violate the guarantee.
2762          *
2763          * On the other hand, we insert q and release the hash-bucket only
2764          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2765          * absorb a wakeup if *uaddr does not match the desired values
2766          * while the syscall executes.
2767          */
2768 retry:
2769         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2770         if (unlikely(ret != 0))
2771                 return ret;
2772
2773 retry_private:
2774         *hb = queue_lock(q);
2775
2776         ret = get_futex_value_locked(&uval, uaddr);
2777
2778         if (ret) {
2779                 queue_unlock(*hb);
2780
2781                 ret = get_user(uval, uaddr);
2782                 if (ret)
2783                         goto out;
2784
2785                 if (!(flags & FLAGS_SHARED))
2786                         goto retry_private;
2787
2788                 put_futex_key(&q->key);
2789                 goto retry;
2790         }
2791
2792         if (uval != val) {
2793                 queue_unlock(*hb);
2794                 ret = -EWOULDBLOCK;
2795         }
2796
2797 out:
2798         if (ret)
2799                 put_futex_key(&q->key);
2800         return ret;
2801 }
2802
2803 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2804                       ktime_t *abs_time, u32 bitset)
2805 {
2806         struct hrtimer_sleeper timeout, *to;
2807         struct restart_block *restart;
2808         struct futex_hash_bucket *hb;
2809         struct futex_q q = futex_q_init;
2810         int ret;
2811
2812         if (!bitset)
2813                 return -EINVAL;
2814         q.bitset = bitset;
2815
2816         to = futex_setup_timer(abs_time, &timeout, flags,
2817                                current->timer_slack_ns);
2818 retry:
2819         /*
2820          * Prepare to wait on uaddr. On success, holds hb lock and increments
2821          * q.key refs.
2822          */
2823         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2824         if (ret)
2825                 goto out;
2826
2827         /* queue_me and wait for wakeup, timeout, or a signal. */
2828         futex_wait_queue_me(hb, &q, to);
2829
2830         /* If we were woken (and unqueued), we succeeded, whatever. */
2831         ret = 0;
2832         /* unqueue_me() drops q.key ref */
2833         if (!unqueue_me(&q))
2834                 goto out;
2835         ret = -ETIMEDOUT;
2836         if (to && !to->task)
2837                 goto out;
2838
2839         /*
2840          * We expect signal_pending(current), but we might be the
2841          * victim of a spurious wakeup as well.
2842          */
2843         if (!signal_pending(current))
2844                 goto retry;
2845
2846         ret = -ERESTARTSYS;
2847         if (!abs_time)
2848                 goto out;
2849
2850         restart = &current->restart_block;
2851         restart->fn = futex_wait_restart;
2852         restart->futex.uaddr = uaddr;
2853         restart->futex.val = val;
2854         restart->futex.time = *abs_time;
2855         restart->futex.bitset = bitset;
2856         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2857
2858         ret = -ERESTART_RESTARTBLOCK;
2859
2860 out:
2861         if (to) {
2862                 hrtimer_cancel(&to->timer);
2863                 destroy_hrtimer_on_stack(&to->timer);
2864         }
2865         return ret;
2866 }
2867
2868
2869 static long futex_wait_restart(struct restart_block *restart)
2870 {
2871         u32 __user *uaddr = restart->futex.uaddr;
2872         ktime_t t, *tp = NULL;
2873
2874         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2875                 t = restart->futex.time;
2876                 tp = &t;
2877         }
2878         restart->fn = do_no_restart_syscall;
2879
2880         return (long)futex_wait(uaddr, restart->futex.flags,
2881                                 restart->futex.val, tp, restart->futex.bitset);
2882 }
2883
2884
2885 /*
2886  * Userspace tried a 0 -> TID atomic transition of the futex value
2887  * and failed. The kernel side here does the whole locking operation:
2888  * if there are waiters then it will block as a consequence of relying
2889  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2890  * a 0 value of the futex too.).
2891  *
2892  * Also serves as futex trylock_pi()'ing, and due semantics.
2893  */
2894 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2895                          ktime_t *time, int trylock)
2896 {
2897         struct hrtimer_sleeper timeout, *to;
2898         struct futex_pi_state *pi_state = NULL;
2899         struct task_struct *exiting = NULL;
2900         struct rt_mutex_waiter rt_waiter;
2901         struct futex_hash_bucket *hb;
2902         struct futex_q q = futex_q_init;
2903         int res, ret;
2904
2905         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2906                 return -ENOSYS;
2907
2908         if (refill_pi_state_cache())
2909                 return -ENOMEM;
2910
2911         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2912
2913 retry:
2914         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2915         if (unlikely(ret != 0))
2916                 goto out;
2917
2918 retry_private:
2919         hb = queue_lock(&q);
2920
2921         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2922                                    &exiting, 0);
2923         if (unlikely(ret)) {
2924                 /*
2925                  * Atomic work succeeded and we got the lock,
2926                  * or failed. Either way, we do _not_ block.
2927                  */
2928                 switch (ret) {
2929                 case 1:
2930                         /* We got the lock. */
2931                         ret = 0;
2932                         goto out_unlock_put_key;
2933                 case -EFAULT:
2934                         goto uaddr_faulted;
2935                 case -EBUSY:
2936                 case -EAGAIN:
2937                         /*
2938                          * Two reasons for this:
2939                          * - EBUSY: Task is exiting and we just wait for the
2940                          *   exit to complete.
2941                          * - EAGAIN: The user space value changed.
2942                          */
2943                         queue_unlock(hb);
2944                         put_futex_key(&q.key);
2945                         /*
2946                          * Handle the case where the owner is in the middle of
2947                          * exiting. Wait for the exit to complete otherwise
2948                          * this task might loop forever, aka. live lock.
2949                          */
2950                         wait_for_owner_exiting(ret, exiting);
2951                         cond_resched();
2952                         goto retry;
2953                 default:
2954                         goto out_unlock_put_key;
2955                 }
2956         }
2957
2958         WARN_ON(!q.pi_state);
2959
2960         /*
2961          * Only actually queue now that the atomic ops are done:
2962          */
2963         __queue_me(&q, hb);
2964
2965         if (trylock) {
2966                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2967                 /* Fixup the trylock return value: */
2968                 ret = ret ? 0 : -EWOULDBLOCK;
2969                 goto no_block;
2970         }
2971
2972         rt_mutex_init_waiter(&rt_waiter);
2973
2974         /*
2975          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2976          * hold it while doing rt_mutex_start_proxy(), because then it will
2977          * include hb->lock in the blocking chain, even through we'll not in
2978          * fact hold it while blocking. This will lead it to report -EDEADLK
2979          * and BUG when futex_unlock_pi() interleaves with this.
2980          *
2981          * Therefore acquire wait_lock while holding hb->lock, but drop the
2982          * latter before calling __rt_mutex_start_proxy_lock(). This
2983          * interleaves with futex_unlock_pi() -- which does a similar lock
2984          * handoff -- such that the latter can observe the futex_q::pi_state
2985          * before __rt_mutex_start_proxy_lock() is done.
2986          */
2987         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2988         spin_unlock(q.lock_ptr);
2989         /*
2990          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2991          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2992          * it sees the futex_q::pi_state.
2993          */
2994         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2995         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2996
2997         if (ret) {
2998                 if (ret == 1)
2999                         ret = 0;
3000                 goto cleanup;
3001         }
3002
3003         if (unlikely(to))
3004                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
3005
3006         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3007
3008 cleanup:
3009         spin_lock(q.lock_ptr);
3010         /*
3011          * If we failed to acquire the lock (deadlock/signal/timeout), we must
3012          * first acquire the hb->lock before removing the lock from the
3013          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3014          * lists consistent.
3015          *
3016          * In particular; it is important that futex_unlock_pi() can not
3017          * observe this inconsistency.
3018          */
3019         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3020                 ret = 0;
3021
3022 no_block:
3023         /*
3024          * Fixup the pi_state owner and possibly acquire the lock if we
3025          * haven't already.
3026          */
3027         res = fixup_owner(uaddr, &q, !ret);
3028         /*
3029          * If fixup_owner() returned an error, proprogate that.  If it acquired
3030          * the lock, clear our -ETIMEDOUT or -EINTR.
3031          */
3032         if (res)
3033                 ret = (res < 0) ? res : 0;
3034
3035         /*
3036          * If fixup_owner() faulted and was unable to handle the fault, unlock
3037          * it and return the fault to userspace.
3038          */
3039         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3040                 pi_state = q.pi_state;
3041                 get_pi_state(pi_state);
3042         }
3043
3044         /* Unqueue and drop the lock */
3045         unqueue_me_pi(&q);
3046
3047         if (pi_state) {
3048                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3049                 put_pi_state(pi_state);
3050         }
3051
3052         goto out_put_key;
3053
3054 out_unlock_put_key:
3055         queue_unlock(hb);
3056
3057 out_put_key:
3058         put_futex_key(&q.key);
3059 out:
3060         if (to) {
3061                 hrtimer_cancel(&to->timer);
3062                 destroy_hrtimer_on_stack(&to->timer);
3063         }
3064         return ret != -EINTR ? ret : -ERESTARTNOINTR;
3065
3066 uaddr_faulted:
3067         queue_unlock(hb);
3068
3069         ret = fault_in_user_writeable(uaddr);
3070         if (ret)
3071                 goto out_put_key;
3072
3073         if (!(flags & FLAGS_SHARED))
3074                 goto retry_private;
3075
3076         put_futex_key(&q.key);
3077         goto retry;
3078 }
3079
3080 /*
3081  * Userspace attempted a TID -> 0 atomic transition, and failed.
3082  * This is the in-kernel slowpath: we look up the PI state (if any),
3083  * and do the rt-mutex unlock.
3084  */
3085 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3086 {
3087         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3088         union futex_key key = FUTEX_KEY_INIT;
3089         struct futex_hash_bucket *hb;
3090         struct futex_q *top_waiter;
3091         int ret;
3092
3093         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3094                 return -ENOSYS;
3095
3096 retry:
3097         if (get_user(uval, uaddr))
3098                 return -EFAULT;
3099         /*
3100          * We release only a lock we actually own:
3101          */
3102         if ((uval & FUTEX_TID_MASK) != vpid)
3103                 return -EPERM;
3104
3105         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3106         if (ret)
3107                 return ret;
3108
3109         hb = hash_futex(&key);
3110         spin_lock(&hb->lock);
3111
3112         /*
3113          * Check waiters first. We do not trust user space values at
3114          * all and we at least want to know if user space fiddled
3115          * with the futex value instead of blindly unlocking.
3116          */
3117         top_waiter = futex_top_waiter(hb, &key);
3118         if (top_waiter) {
3119                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3120
3121                 ret = -EINVAL;
3122                 if (!pi_state)
3123                         goto out_unlock;
3124
3125                 /*
3126                  * If current does not own the pi_state then the futex is
3127                  * inconsistent and user space fiddled with the futex value.
3128                  */
3129                 if (pi_state->owner != current)
3130                         goto out_unlock;
3131
3132                 get_pi_state(pi_state);
3133                 /*
3134                  * By taking wait_lock while still holding hb->lock, we ensure
3135                  * there is no point where we hold neither; and therefore
3136                  * wake_futex_pi() must observe a state consistent with what we
3137                  * observed.
3138                  *
3139                  * In particular; this forces __rt_mutex_start_proxy() to
3140                  * complete such that we're guaranteed to observe the
3141                  * rt_waiter. Also see the WARN in wake_futex_pi().
3142                  */
3143                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3144                 spin_unlock(&hb->lock);
3145
3146                 /* drops pi_state->pi_mutex.wait_lock */
3147                 ret = wake_futex_pi(uaddr, uval, pi_state);
3148
3149                 put_pi_state(pi_state);
3150
3151                 /*
3152                  * Success, we're done! No tricky corner cases.
3153                  */
3154                 if (!ret)
3155                         goto out_putkey;
3156                 /*
3157                  * The atomic access to the futex value generated a
3158                  * pagefault, so retry the user-access and the wakeup:
3159                  */
3160                 if (ret == -EFAULT)
3161                         goto pi_faulted;
3162                 /*
3163                  * A unconditional UNLOCK_PI op raced against a waiter
3164                  * setting the FUTEX_WAITERS bit. Try again.
3165                  */
3166                 if (ret == -EAGAIN)
3167                         goto pi_retry;
3168                 /*
3169                  * wake_futex_pi has detected invalid state. Tell user
3170                  * space.
3171                  */
3172                 goto out_putkey;
3173         }
3174
3175         /*
3176          * We have no kernel internal state, i.e. no waiters in the
3177          * kernel. Waiters which are about to queue themselves are stuck
3178          * on hb->lock. So we can safely ignore them. We do neither
3179          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3180          * owner.
3181          */
3182         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3183                 spin_unlock(&hb->lock);
3184                 switch (ret) {
3185                 case -EFAULT:
3186                         goto pi_faulted;
3187
3188                 case -EAGAIN:
3189                         goto pi_retry;
3190
3191                 default:
3192                         WARN_ON_ONCE(1);
3193                         goto out_putkey;
3194                 }
3195         }
3196
3197         /*
3198          * If uval has changed, let user space handle it.
3199          */
3200         ret = (curval == uval) ? 0 : -EAGAIN;
3201
3202 out_unlock:
3203         spin_unlock(&hb->lock);
3204 out_putkey:
3205         put_futex_key(&key);
3206         return ret;
3207
3208 pi_retry:
3209         put_futex_key(&key);
3210         cond_resched();
3211         goto retry;
3212
3213 pi_faulted:
3214         put_futex_key(&key);
3215
3216         ret = fault_in_user_writeable(uaddr);
3217         if (!ret)
3218                 goto retry;
3219
3220         return ret;
3221 }
3222
3223 /**
3224  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3225  * @hb:         the hash_bucket futex_q was original enqueued on
3226  * @q:          the futex_q woken while waiting to be requeued
3227  * @key2:       the futex_key of the requeue target futex
3228  * @timeout:    the timeout associated with the wait (NULL if none)
3229  *
3230  * Detect if the task was woken on the initial futex as opposed to the requeue
3231  * target futex.  If so, determine if it was a timeout or a signal that caused
3232  * the wakeup and return the appropriate error code to the caller.  Must be
3233  * called with the hb lock held.
3234  *
3235  * Return:
3236  *  -  0 = no early wakeup detected;
3237  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3238  */
3239 static inline
3240 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3241                                    struct futex_q *q, union futex_key *key2,
3242                                    struct hrtimer_sleeper *timeout)
3243 {
3244         int ret = 0;
3245
3246         /*
3247          * With the hb lock held, we avoid races while we process the wakeup.
3248          * We only need to hold hb (and not hb2) to ensure atomicity as the
3249          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3250          * It can't be requeued from uaddr2 to something else since we don't
3251          * support a PI aware source futex for requeue.
3252          */
3253         if (!match_futex(&q->key, key2)) {
3254                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3255                 /*
3256                  * We were woken prior to requeue by a timeout or a signal.
3257                  * Unqueue the futex_q and determine which it was.
3258                  */
3259                 plist_del(&q->list, &hb->chain);
3260                 hb_waiters_dec(hb);
3261
3262                 /* Handle spurious wakeups gracefully */
3263                 ret = -EWOULDBLOCK;
3264                 if (timeout && !timeout->task)
3265                         ret = -ETIMEDOUT;
3266                 else if (signal_pending(current))
3267                         ret = -ERESTARTNOINTR;
3268         }
3269         return ret;
3270 }
3271
3272 /**
3273  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3274  * @uaddr:      the futex we initially wait on (non-pi)
3275  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3276  *              the same type, no requeueing from private to shared, etc.
3277  * @val:        the expected value of uaddr
3278  * @abs_time:   absolute timeout
3279  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3280  * @uaddr2:     the pi futex we will take prior to returning to user-space
3281  *
3282  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3283  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3284  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3285  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3286  * without one, the pi logic would not know which task to boost/deboost, if
3287  * there was a need to.
3288  *
3289  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3290  * via the following--
3291  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3292  * 2) wakeup on uaddr2 after a requeue
3293  * 3) signal
3294  * 4) timeout
3295  *
3296  * If 3, cleanup and return -ERESTARTNOINTR.
3297  *
3298  * If 2, we may then block on trying to take the rt_mutex and return via:
3299  * 5) successful lock
3300  * 6) signal
3301  * 7) timeout
3302  * 8) other lock acquisition failure
3303  *
3304  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3305  *
3306  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3307  *
3308  * Return:
3309  *  -  0 - On success;
3310  *  - <0 - On error
3311  */
3312 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3313                                  u32 val, ktime_t *abs_time, u32 bitset,
3314                                  u32 __user *uaddr2)
3315 {
3316         struct hrtimer_sleeper timeout, *to;
3317         struct futex_pi_state *pi_state = NULL;
3318         struct rt_mutex_waiter rt_waiter;
3319         struct futex_hash_bucket *hb;
3320         union futex_key key2 = FUTEX_KEY_INIT;
3321         struct futex_q q = futex_q_init;
3322         int res, ret;
3323
3324         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3325                 return -ENOSYS;
3326
3327         if (uaddr == uaddr2)
3328                 return -EINVAL;
3329
3330         if (!bitset)
3331                 return -EINVAL;
3332
3333         to = futex_setup_timer(abs_time, &timeout, flags,
3334                                current->timer_slack_ns);
3335
3336         /*
3337          * The waiter is allocated on our stack, manipulated by the requeue
3338          * code while we sleep on uaddr.
3339          */
3340         rt_mutex_init_waiter(&rt_waiter);
3341
3342         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3343         if (unlikely(ret != 0))
3344                 goto out;
3345
3346         q.bitset = bitset;
3347         q.rt_waiter = &rt_waiter;
3348         q.requeue_pi_key = &key2;
3349
3350         /*
3351          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3352          * count.
3353          */
3354         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3355         if (ret)
3356                 goto out_key2;
3357
3358         /*
3359          * The check above which compares uaddrs is not sufficient for
3360          * shared futexes. We need to compare the keys:
3361          */
3362         if (match_futex(&q.key, &key2)) {
3363                 queue_unlock(hb);
3364                 ret = -EINVAL;
3365                 goto out_put_keys;
3366         }
3367
3368         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3369         futex_wait_queue_me(hb, &q, to);
3370
3371         spin_lock(&hb->lock);
3372         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3373         spin_unlock(&hb->lock);
3374         if (ret)
3375                 goto out_put_keys;
3376
3377         /*
3378          * In order for us to be here, we know our q.key == key2, and since
3379          * we took the hb->lock above, we also know that futex_requeue() has
3380          * completed and we no longer have to concern ourselves with a wakeup
3381          * race with the atomic proxy lock acquisition by the requeue code. The
3382          * futex_requeue dropped our key1 reference and incremented our key2
3383          * reference count.
3384          */
3385
3386         /* Check if the requeue code acquired the second futex for us. */
3387         if (!q.rt_waiter) {
3388                 /*
3389                  * Got the lock. We might not be the anticipated owner if we
3390                  * did a lock-steal - fix up the PI-state in that case.
3391                  */
3392                 if (q.pi_state && (q.pi_state->owner != current)) {
3393                         spin_lock(q.lock_ptr);
3394                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3395                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3396                                 pi_state = q.pi_state;
3397                                 get_pi_state(pi_state);
3398                         }
3399                         /*
3400                          * Drop the reference to the pi state which
3401                          * the requeue_pi() code acquired for us.
3402                          */
3403                         put_pi_state(q.pi_state);
3404                         spin_unlock(q.lock_ptr);
3405                 }
3406         } else {
3407                 struct rt_mutex *pi_mutex;
3408
3409                 /*
3410                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3411                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3412                  * the pi_state.
3413                  */
3414                 WARN_ON(!q.pi_state);
3415                 pi_mutex = &q.pi_state->pi_mutex;
3416                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3417
3418                 spin_lock(q.lock_ptr);
3419                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3420                         ret = 0;
3421
3422                 debug_rt_mutex_free_waiter(&rt_waiter);
3423                 /*
3424                  * Fixup the pi_state owner and possibly acquire the lock if we
3425                  * haven't already.
3426                  */
3427                 res = fixup_owner(uaddr2, &q, !ret);
3428                 /*
3429                  * If fixup_owner() returned an error, proprogate that.  If it
3430                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3431                  */
3432                 if (res)
3433                         ret = (res < 0) ? res : 0;
3434
3435                 /*
3436                  * If fixup_pi_state_owner() faulted and was unable to handle
3437                  * the fault, unlock the rt_mutex and return the fault to
3438                  * userspace.
3439                  */
3440                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3441                         pi_state = q.pi_state;
3442                         get_pi_state(pi_state);
3443                 }
3444
3445                 /* Unqueue and drop the lock. */
3446                 unqueue_me_pi(&q);
3447         }
3448
3449         if (pi_state) {
3450                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3451                 put_pi_state(pi_state);
3452         }
3453
3454         if (ret == -EINTR) {
3455                 /*
3456                  * We've already been requeued, but cannot restart by calling
3457                  * futex_lock_pi() directly. We could restart this syscall, but
3458                  * it would detect that the user space "val" changed and return
3459                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3460                  * -EWOULDBLOCK directly.
3461                  */
3462                 ret = -EWOULDBLOCK;
3463         }
3464
3465 out_put_keys:
3466         put_futex_key(&q.key);
3467 out_key2:
3468         put_futex_key(&key2);
3469
3470 out:
3471         if (to) {
3472                 hrtimer_cancel(&to->timer);
3473                 destroy_hrtimer_on_stack(&to->timer);
3474         }
3475         return ret;
3476 }
3477
3478 /*
3479  * Support for robust futexes: the kernel cleans up held futexes at
3480  * thread exit time.
3481  *
3482  * Implementation: user-space maintains a per-thread list of locks it
3483  * is holding. Upon do_exit(), the kernel carefully walks this list,
3484  * and marks all locks that are owned by this thread with the
3485  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3486  * always manipulated with the lock held, so the list is private and
3487  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3488  * field, to allow the kernel to clean up if the thread dies after
3489  * acquiring the lock, but just before it could have added itself to
3490  * the list. There can only be one such pending lock.
3491  */
3492
3493 /**
3494  * sys_set_robust_list() - Set the robust-futex list head of a task
3495  * @head:       pointer to the list-head
3496  * @len:        length of the list-head, as userspace expects
3497  */
3498 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3499                 size_t, len)
3500 {
3501         if (!futex_cmpxchg_enabled)
3502                 return -ENOSYS;
3503         /*
3504          * The kernel knows only one size for now:
3505          */
3506         if (unlikely(len != sizeof(*head)))
3507                 return -EINVAL;
3508
3509         current->robust_list = head;
3510
3511         return 0;
3512 }
3513
3514 /**
3515  * sys_get_robust_list() - Get the robust-futex list head of a task
3516  * @pid:        pid of the process [zero for current task]
3517  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3518  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3519  */
3520 SYSCALL_DEFINE3(get_robust_list, int, pid,
3521                 struct robust_list_head __user * __user *, head_ptr,
3522                 size_t __user *, len_ptr)
3523 {
3524         struct robust_list_head __user *head;
3525         unsigned long ret;
3526         struct task_struct *p;
3527
3528         if (!futex_cmpxchg_enabled)
3529                 return -ENOSYS;
3530
3531         rcu_read_lock();
3532
3533         ret = -ESRCH;
3534         if (!pid)
3535                 p = current;
3536         else {
3537                 p = find_task_by_vpid(pid);
3538                 if (!p)
3539                         goto err_unlock;
3540         }
3541
3542         ret = -EPERM;
3543         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3544                 goto err_unlock;
3545
3546         head = p->robust_list;
3547         rcu_read_unlock();
3548
3549         if (put_user(sizeof(*head), len_ptr))
3550                 return -EFAULT;
3551         return put_user(head, head_ptr);
3552
3553 err_unlock:
3554         rcu_read_unlock();
3555
3556         return ret;
3557 }
3558
3559 /* Constants for the pending_op argument of handle_futex_death */
3560 #define HANDLE_DEATH_PENDING    true
3561 #define HANDLE_DEATH_LIST       false
3562
3563 /*
3564  * Process a futex-list entry, check whether it's owned by the
3565  * dying task, and do notification if so:
3566  */
3567 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3568                               bool pi, bool pending_op)
3569 {
3570         u32 uval, uninitialized_var(nval), mval;
3571         int err;
3572
3573         /* Futex address must be 32bit aligned */
3574         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3575                 return -1;
3576
3577 retry:
3578         if (get_user(uval, uaddr))
3579                 return -1;
3580
3581         /*
3582          * Special case for regular (non PI) futexes. The unlock path in
3583          * user space has two race scenarios:
3584          *
3585          * 1. The unlock path releases the user space futex value and
3586          *    before it can execute the futex() syscall to wake up
3587          *    waiters it is killed.
3588          *
3589          * 2. A woken up waiter is killed before it can acquire the
3590          *    futex in user space.
3591          *
3592          * In both cases the TID validation below prevents a wakeup of
3593          * potential waiters which can cause these waiters to block
3594          * forever.
3595          *
3596          * In both cases the following conditions are met:
3597          *
3598          *      1) task->robust_list->list_op_pending != NULL
3599          *         @pending_op == true
3600          *      2) User space futex value == 0
3601          *      3) Regular futex: @pi == false
3602          *
3603          * If these conditions are met, it is safe to attempt waking up a
3604          * potential waiter without touching the user space futex value and
3605          * trying to set the OWNER_DIED bit. The user space futex value is
3606          * uncontended and the rest of the user space mutex state is
3607          * consistent, so a woken waiter will just take over the
3608          * uncontended futex. Setting the OWNER_DIED bit would create
3609          * inconsistent state and malfunction of the user space owner died
3610          * handling.
3611          */
3612         if (pending_op && !pi && !uval) {
3613                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3614                 return 0;
3615         }
3616
3617         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3618                 return 0;
3619
3620         /*
3621          * Ok, this dying thread is truly holding a futex
3622          * of interest. Set the OWNER_DIED bit atomically
3623          * via cmpxchg, and if the value had FUTEX_WAITERS
3624          * set, wake up a waiter (if any). (We have to do a
3625          * futex_wake() even if OWNER_DIED is already set -
3626          * to handle the rare but possible case of recursive
3627          * thread-death.) The rest of the cleanup is done in
3628          * userspace.
3629          */
3630         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3631
3632         /*
3633          * We are not holding a lock here, but we want to have
3634          * the pagefault_disable/enable() protection because
3635          * we want to handle the fault gracefully. If the
3636          * access fails we try to fault in the futex with R/W
3637          * verification via get_user_pages. get_user() above
3638          * does not guarantee R/W access. If that fails we
3639          * give up and leave the futex locked.
3640          */
3641         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3642                 switch (err) {
3643                 case -EFAULT:
3644                         if (fault_in_user_writeable(uaddr))
3645                                 return -1;
3646                         goto retry;
3647
3648                 case -EAGAIN:
3649                         cond_resched();
3650                         goto retry;
3651
3652                 default:
3653                         WARN_ON_ONCE(1);
3654                         return err;
3655                 }
3656         }
3657
3658         if (nval != uval)
3659                 goto retry;
3660
3661         /*
3662          * Wake robust non-PI futexes here. The wakeup of
3663          * PI futexes happens in exit_pi_state():
3664          */
3665         if (!pi && (uval & FUTEX_WAITERS))
3666                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3667
3668         return 0;
3669 }
3670
3671 /*
3672  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3673  */
3674 static inline int fetch_robust_entry(struct robust_list __user **entry,
3675                                      struct robust_list __user * __user *head,
3676                                      unsigned int *pi)
3677 {
3678         unsigned long uentry;
3679
3680         if (get_user(uentry, (unsigned long __user *)head))
3681                 return -EFAULT;
3682
3683         *entry = (void __user *)(uentry & ~1UL);
3684         *pi = uentry & 1;
3685
3686         return 0;
3687 }
3688
3689 /*
3690  * Walk curr->robust_list (very carefully, it's a userspace list!)
3691  * and mark any locks found there dead, and notify any waiters.
3692  *
3693  * We silently return on any sign of list-walking problem.
3694  */
3695 static void exit_robust_list(struct task_struct *curr)
3696 {
3697         struct robust_list_head __user *head = curr->robust_list;
3698         struct robust_list __user *entry, *next_entry, *pending;
3699         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3700         unsigned int uninitialized_var(next_pi);
3701         unsigned long futex_offset;
3702         int rc;
3703
3704         if (!futex_cmpxchg_enabled)
3705                 return;
3706
3707         /*
3708          * Fetch the list head (which was registered earlier, via
3709          * sys_set_robust_list()):
3710          */
3711         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3712                 return;
3713         /*
3714          * Fetch the relative futex offset:
3715          */
3716         if (get_user(futex_offset, &head->futex_offset))
3717                 return;
3718         /*
3719          * Fetch any possibly pending lock-add first, and handle it
3720          * if it exists:
3721          */
3722         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3723                 return;
3724
3725         next_entry = NULL;      /* avoid warning with gcc */
3726         while (entry != &head->list) {
3727                 /*
3728                  * Fetch the next entry in the list before calling
3729                  * handle_futex_death:
3730                  */
3731                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3732                 /*
3733                  * A pending lock might already be on the list, so
3734                  * don't process it twice:
3735                  */
3736                 if (entry != pending) {
3737                         if (handle_futex_death((void __user *)entry + futex_offset,
3738                                                 curr, pi, HANDLE_DEATH_LIST))
3739                                 return;
3740                 }
3741                 if (rc)
3742                         return;
3743                 entry = next_entry;
3744                 pi = next_pi;
3745                 /*
3746                  * Avoid excessively long or circular lists:
3747                  */
3748                 if (!--limit)
3749                         break;
3750
3751                 cond_resched();
3752         }
3753
3754         if (pending) {
3755                 handle_futex_death((void __user *)pending + futex_offset,
3756                                    curr, pip, HANDLE_DEATH_PENDING);
3757         }
3758 }
3759
3760 static void futex_cleanup(struct task_struct *tsk)
3761 {
3762         if (unlikely(tsk->robust_list)) {
3763                 exit_robust_list(tsk);
3764                 tsk->robust_list = NULL;
3765         }
3766
3767 #ifdef CONFIG_COMPAT
3768         if (unlikely(tsk->compat_robust_list)) {
3769                 compat_exit_robust_list(tsk);
3770                 tsk->compat_robust_list = NULL;
3771         }
3772 #endif
3773
3774         if (unlikely(!list_empty(&tsk->pi_state_list)))
3775                 exit_pi_state_list(tsk);
3776 }
3777
3778 /**
3779  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3780  * @tsk:        task to set the state on
3781  *
3782  * Set the futex exit state of the task lockless. The futex waiter code
3783  * observes that state when a task is exiting and loops until the task has
3784  * actually finished the futex cleanup. The worst case for this is that the
3785  * waiter runs through the wait loop until the state becomes visible.
3786  *
3787  * This is called from the recursive fault handling path in do_exit().
3788  *
3789  * This is best effort. Either the futex exit code has run already or
3790  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3791  * take it over. If not, the problem is pushed back to user space. If the
3792  * futex exit code did not run yet, then an already queued waiter might
3793  * block forever, but there is nothing which can be done about that.
3794  */
3795 void futex_exit_recursive(struct task_struct *tsk)
3796 {
3797         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3798         if (tsk->futex_state == FUTEX_STATE_EXITING)
3799                 mutex_unlock(&tsk->futex_exit_mutex);
3800         tsk->futex_state = FUTEX_STATE_DEAD;
3801 }
3802
3803 static void futex_cleanup_begin(struct task_struct *tsk)
3804 {
3805         /*
3806          * Prevent various race issues against a concurrent incoming waiter
3807          * including live locks by forcing the waiter to block on
3808          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3809          * attach_to_pi_owner().
3810          */
3811         mutex_lock(&tsk->futex_exit_mutex);
3812
3813         /*
3814          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3815          *
3816          * This ensures that all subsequent checks of tsk->futex_state in
3817          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3818          * tsk->pi_lock held.
3819          *
3820          * It guarantees also that a pi_state which was queued right before
3821          * the state change under tsk->pi_lock by a concurrent waiter must
3822          * be observed in exit_pi_state_list().
3823          */
3824         raw_spin_lock_irq(&tsk->pi_lock);
3825         tsk->futex_state = FUTEX_STATE_EXITING;
3826         raw_spin_unlock_irq(&tsk->pi_lock);
3827 }
3828
3829 static void futex_cleanup_end(struct task_struct *tsk, int state)
3830 {
3831         /*
3832          * Lockless store. The only side effect is that an observer might
3833          * take another loop until it becomes visible.
3834          */
3835         tsk->futex_state = state;
3836         /*
3837          * Drop the exit protection. This unblocks waiters which observed
3838          * FUTEX_STATE_EXITING to reevaluate the state.
3839          */
3840         mutex_unlock(&tsk->futex_exit_mutex);
3841 }
3842
3843 void futex_exec_release(struct task_struct *tsk)
3844 {
3845         /*
3846          * The state handling is done for consistency, but in the case of
3847          * exec() there is no way to prevent futher damage as the PID stays
3848          * the same. But for the unlikely and arguably buggy case that a
3849          * futex is held on exec(), this provides at least as much state
3850          * consistency protection which is possible.
3851          */
3852         futex_cleanup_begin(tsk);
3853         futex_cleanup(tsk);
3854         /*
3855          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3856          * exec a new binary.
3857          */
3858         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3859 }
3860
3861 void futex_exit_release(struct task_struct *tsk)
3862 {
3863         futex_cleanup_begin(tsk);
3864         futex_cleanup(tsk);
3865         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3866 }
3867
3868 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3869                 u32 __user *uaddr2, u32 val2, u32 val3)
3870 {
3871         int cmd = op & FUTEX_CMD_MASK;
3872         unsigned int flags = 0;
3873
3874         if (!(op & FUTEX_PRIVATE_FLAG))
3875                 flags |= FLAGS_SHARED;
3876
3877         if (op & FUTEX_CLOCK_REALTIME) {
3878                 flags |= FLAGS_CLOCKRT;
3879                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3880                     cmd != FUTEX_WAIT_REQUEUE_PI)
3881                         return -ENOSYS;
3882         }
3883
3884         switch (cmd) {
3885         case FUTEX_LOCK_PI:
3886         case FUTEX_UNLOCK_PI:
3887         case FUTEX_TRYLOCK_PI:
3888         case FUTEX_WAIT_REQUEUE_PI:
3889         case FUTEX_CMP_REQUEUE_PI:
3890                 if (!futex_cmpxchg_enabled)
3891                         return -ENOSYS;
3892         }
3893
3894         switch (cmd) {
3895         case FUTEX_WAIT:
3896                 val3 = FUTEX_BITSET_MATCH_ANY;
3897                 /* fall through */
3898         case FUTEX_WAIT_BITSET:
3899                 return futex_wait(uaddr, flags, val, timeout, val3);
3900         case FUTEX_WAKE:
3901                 val3 = FUTEX_BITSET_MATCH_ANY;
3902                 /* fall through */
3903         case FUTEX_WAKE_BITSET:
3904                 return futex_wake(uaddr, flags, val, val3);
3905         case FUTEX_REQUEUE:
3906                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3907         case FUTEX_CMP_REQUEUE:
3908                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3909         case FUTEX_WAKE_OP:
3910                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3911         case FUTEX_LOCK_PI:
3912                 return futex_lock_pi(uaddr, flags, timeout, 0);
3913         case FUTEX_UNLOCK_PI:
3914                 return futex_unlock_pi(uaddr, flags);
3915         case FUTEX_TRYLOCK_PI:
3916                 return futex_lock_pi(uaddr, flags, NULL, 1);
3917         case FUTEX_WAIT_REQUEUE_PI:
3918                 val3 = FUTEX_BITSET_MATCH_ANY;
3919                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3920                                              uaddr2);
3921         case FUTEX_CMP_REQUEUE_PI:
3922                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3923         }
3924         return -ENOSYS;
3925 }
3926
3927
3928 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3929                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3930                 u32, val3)
3931 {
3932         struct timespec64 ts;
3933         ktime_t t, *tp = NULL;
3934         u32 val2 = 0;
3935         int cmd = op & FUTEX_CMD_MASK;
3936
3937         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3938                       cmd == FUTEX_WAIT_BITSET ||
3939                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3940                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3941                         return -EFAULT;
3942                 if (get_timespec64(&ts, utime))
3943                         return -EFAULT;
3944                 if (!timespec64_valid(&ts))
3945                         return -EINVAL;
3946
3947                 t = timespec64_to_ktime(ts);
3948                 if (cmd == FUTEX_WAIT)
3949                         t = ktime_add_safe(ktime_get(), t);
3950                 tp = &t;
3951         }
3952         /*
3953          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3954          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3955          */
3956         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3957             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3958                 val2 = (u32) (unsigned long) utime;
3959
3960         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3961 }
3962
3963 #ifdef CONFIG_COMPAT
3964 /*
3965  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3966  */
3967 static inline int
3968 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3969                    compat_uptr_t __user *head, unsigned int *pi)
3970 {
3971         if (get_user(*uentry, head))
3972                 return -EFAULT;
3973
3974         *entry = compat_ptr((*uentry) & ~1);
3975         *pi = (unsigned int)(*uentry) & 1;
3976
3977         return 0;
3978 }
3979
3980 static void __user *futex_uaddr(struct robust_list __user *entry,
3981                                 compat_long_t futex_offset)
3982 {
3983         compat_uptr_t base = ptr_to_compat(entry);
3984         void __user *uaddr = compat_ptr(base + futex_offset);
3985
3986         return uaddr;
3987 }
3988
3989 /*
3990  * Walk curr->robust_list (very carefully, it's a userspace list!)
3991  * and mark any locks found there dead, and notify any waiters.
3992  *
3993  * We silently return on any sign of list-walking problem.
3994  */
3995 static void compat_exit_robust_list(struct task_struct *curr)
3996 {
3997         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3998         struct robust_list __user *entry, *next_entry, *pending;
3999         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4000         unsigned int uninitialized_var(next_pi);
4001         compat_uptr_t uentry, next_uentry, upending;
4002         compat_long_t futex_offset;
4003         int rc;
4004
4005         if (!futex_cmpxchg_enabled)
4006                 return;
4007
4008         /*
4009          * Fetch the list head (which was registered earlier, via
4010          * sys_set_robust_list()):
4011          */
4012         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4013                 return;
4014         /*
4015          * Fetch the relative futex offset:
4016          */
4017         if (get_user(futex_offset, &head->futex_offset))
4018                 return;
4019         /*
4020          * Fetch any possibly pending lock-add first, and handle it
4021          * if it exists:
4022          */
4023         if (compat_fetch_robust_entry(&upending, &pending,
4024                                &head->list_op_pending, &pip))
4025                 return;
4026
4027         next_entry = NULL;      /* avoid warning with gcc */
4028         while (entry != (struct robust_list __user *) &head->list) {
4029                 /*
4030                  * Fetch the next entry in the list before calling
4031                  * handle_futex_death:
4032                  */
4033                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4034                         (compat_uptr_t __user *)&entry->next, &next_pi);
4035                 /*
4036                  * A pending lock might already be on the list, so
4037                  * dont process it twice:
4038                  */
4039                 if (entry != pending) {
4040                         void __user *uaddr = futex_uaddr(entry, futex_offset);
4041
4042                         if (handle_futex_death(uaddr, curr, pi,
4043                                                HANDLE_DEATH_LIST))
4044                                 return;
4045                 }
4046                 if (rc)
4047                         return;
4048                 uentry = next_uentry;
4049                 entry = next_entry;
4050                 pi = next_pi;
4051                 /*
4052                  * Avoid excessively long or circular lists:
4053                  */
4054                 if (!--limit)
4055                         break;
4056
4057                 cond_resched();
4058         }
4059         if (pending) {
4060                 void __user *uaddr = futex_uaddr(pending, futex_offset);
4061
4062                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4063         }
4064 }
4065
4066 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4067                 struct compat_robust_list_head __user *, head,
4068                 compat_size_t, len)
4069 {
4070         if (!futex_cmpxchg_enabled)
4071                 return -ENOSYS;
4072
4073         if (unlikely(len != sizeof(*head)))
4074                 return -EINVAL;
4075
4076         current->compat_robust_list = head;
4077
4078         return 0;
4079 }
4080
4081 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4082                         compat_uptr_t __user *, head_ptr,
4083                         compat_size_t __user *, len_ptr)
4084 {
4085         struct compat_robust_list_head __user *head;
4086         unsigned long ret;
4087         struct task_struct *p;
4088
4089         if (!futex_cmpxchg_enabled)
4090                 return -ENOSYS;
4091
4092         rcu_read_lock();
4093
4094         ret = -ESRCH;
4095         if (!pid)
4096                 p = current;
4097         else {
4098                 p = find_task_by_vpid(pid);
4099                 if (!p)
4100                         goto err_unlock;
4101         }
4102
4103         ret = -EPERM;
4104         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4105                 goto err_unlock;
4106
4107         head = p->compat_robust_list;
4108         rcu_read_unlock();
4109
4110         if (put_user(sizeof(*head), len_ptr))
4111                 return -EFAULT;
4112         return put_user(ptr_to_compat(head), head_ptr);
4113
4114 err_unlock:
4115         rcu_read_unlock();
4116
4117         return ret;
4118 }
4119 #endif /* CONFIG_COMPAT */
4120
4121 #ifdef CONFIG_COMPAT_32BIT_TIME
4122 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4123                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4124                 u32, val3)
4125 {
4126         struct timespec64 ts;
4127         ktime_t t, *tp = NULL;
4128         int val2 = 0;
4129         int cmd = op & FUTEX_CMD_MASK;
4130
4131         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4132                       cmd == FUTEX_WAIT_BITSET ||
4133                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4134                 if (get_old_timespec32(&ts, utime))
4135                         return -EFAULT;
4136                 if (!timespec64_valid(&ts))
4137                         return -EINVAL;
4138
4139                 t = timespec64_to_ktime(ts);
4140                 if (cmd == FUTEX_WAIT)
4141                         t = ktime_add_safe(ktime_get(), t);
4142                 tp = &t;
4143         }
4144         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4145             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4146                 val2 = (int) (unsigned long) utime;
4147
4148         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4149 }
4150 #endif /* CONFIG_COMPAT_32BIT_TIME */
4151
4152 static void __init futex_detect_cmpxchg(void)
4153 {
4154 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4155         u32 curval;
4156
4157         /*
4158          * This will fail and we want it. Some arch implementations do
4159          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4160          * functionality. We want to know that before we call in any
4161          * of the complex code paths. Also we want to prevent
4162          * registration of robust lists in that case. NULL is
4163          * guaranteed to fault and we get -EFAULT on functional
4164          * implementation, the non-functional ones will return
4165          * -ENOSYS.
4166          */
4167         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4168                 futex_cmpxchg_enabled = 1;
4169 #endif
4170 }
4171
4172 static int __init futex_init(void)
4173 {
4174         unsigned int futex_shift;
4175         unsigned long i;
4176
4177 #if CONFIG_BASE_SMALL
4178         futex_hashsize = 16;
4179 #else
4180         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4181 #endif
4182
4183         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4184                                                futex_hashsize, 0,
4185                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4186                                                &futex_shift, NULL,
4187                                                futex_hashsize, futex_hashsize);
4188         futex_hashsize = 1UL << futex_shift;
4189
4190         futex_detect_cmpxchg();
4191
4192         for (i = 0; i < futex_hashsize; i++) {
4193                 atomic_set(&futex_queues[i].waiters, 0);
4194                 plist_head_init(&futex_queues[i].chain);
4195                 spin_lock_init(&futex_queues[i].lock);
4196         }
4197
4198         return 0;
4199 }
4200 core_initcall(futex_init);