OSDN Git Service

futex,rt_mutex: Restructure rt_mutex_finish_proxy_lock()
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   mb(); (A) <-- paired with -.
128  *                              |
129  *   lock(hash_bucket(futex));  |
130  *                              |
131  *   uval = *futex;             |
132  *                              |        *futex = newval;
133  *                              |        sys_futex(WAKE, futex);
134  *                              |          futex_wake(futex);
135  *                              |
136  *                              `------->  mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         if (!debugfs_create_bool("ignore-private", mode, dir,
312                                  &fail_futex.ignore_private)) {
313                 debugfs_remove_recursive(dir);
314                 return -ENOMEM;
315         }
316
317         return 0;
318 }
319
320 late_initcall(fail_futex_debugfs);
321
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324 #else
325 static inline bool should_fail_futex(bool fshared)
326 {
327         return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330
331 static inline void futex_get_mm(union futex_key *key)
332 {
333         atomic_inc(&key->private.mm->mm_count);
334         /*
335          * Ensure futex_get_mm() implies a full barrier such that
336          * get_futex_key() implies a full barrier. This is relied upon
337          * as full barrier (B), see the ordering comment above.
338          */
339         smp_mb__after_atomic();
340 }
341
342 /*
343  * Reflects a new waiter being added to the waitqueue.
344  */
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348         atomic_inc(&hb->waiters);
349         /*
350          * Full barrier (A), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 #endif
354 }
355
356 /*
357  * Reflects a waiter being removed from the waitqueue by wakeup
358  * paths.
359  */
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363         atomic_dec(&hb->waiters);
364 #endif
365 }
366
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370         return atomic_read(&hb->waiters);
371 #else
372         return 1;
373 #endif
374 }
375
376 /*
377  * We hash on the keys returned from get_futex_key (see below).
378  */
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381         u32 hash = jhash2((u32*)&key->both.word,
382                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383                           key->both.offset);
384         return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386
387 /*
388  * Return 1 if two futex_keys are equal, 0 otherwise.
389  */
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392         return (key1 && key2
393                 && key1->both.word == key2->both.word
394                 && key1->both.ptr == key2->both.ptr
395                 && key1->both.offset == key2->both.offset);
396 }
397
398 /*
399  * Take a reference to the resource addressed by a key.
400  * Can be called while holding spinlocks.
401  *
402  */
403 static void get_futex_key_refs(union futex_key *key)
404 {
405         if (!key->both.ptr)
406                 return;
407
408         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409         case FUT_OFF_INODE:
410                 ihold(key->shared.inode); /* implies MB (B) */
411                 break;
412         case FUT_OFF_MMSHARED:
413                 futex_get_mm(key); /* implies MB (B) */
414                 break;
415         default:
416                 /*
417                  * Private futexes do not hold reference on an inode or
418                  * mm, therefore the only purpose of calling get_futex_key_refs
419                  * is because we need the barrier for the lockless waiter check.
420                  */
421                 smp_mb(); /* explicit MB (B) */
422         }
423 }
424
425 /*
426  * Drop a reference to the resource addressed by a key.
427  * The hash bucket spinlock must not be held. This is
428  * a no-op for private futexes, see comment in the get
429  * counterpart.
430  */
431 static void drop_futex_key_refs(union futex_key *key)
432 {
433         if (!key->both.ptr) {
434                 /* If we're here then we tried to put a key we failed to get */
435                 WARN_ON_ONCE(1);
436                 return;
437         }
438
439         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440         case FUT_OFF_INODE:
441                 iput(key->shared.inode);
442                 break;
443         case FUT_OFF_MMSHARED:
444                 mmdrop(key->private.mm);
445                 break;
446         }
447 }
448
449 /**
450  * get_futex_key() - Get parameters which are the keys for a futex
451  * @uaddr:      virtual address of the futex
452  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453  * @key:        address where result is stored.
454  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
455  *              VERIFY_WRITE)
456  *
457  * Return: a negative error code or 0
458  *
459  * The key words are stored in *key on success.
460  *
461  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
463  * We can usually work out the index without swapping in the page.
464  *
465  * lock_page() might sleep, the caller should not hold a spinlock.
466  */
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470         unsigned long address = (unsigned long)uaddr;
471         struct mm_struct *mm = current->mm;
472         struct page *page, *page_head;
473         struct address_space *mapping;
474         int err, ro = 0;
475
476         /*
477          * The futex address must be "naturally" aligned.
478          */
479         key->both.offset = address % PAGE_SIZE;
480         if (unlikely((address % sizeof(u32)) != 0))
481                 return -EINVAL;
482         address -= key->both.offset;
483
484         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
485                 return -EFAULT;
486
487         if (unlikely(should_fail_futex(fshared)))
488                 return -EFAULT;
489
490         /*
491          * PROCESS_PRIVATE futexes are fast.
492          * As the mm cannot disappear under us and the 'key' only needs
493          * virtual address, we dont even have to find the underlying vma.
494          * Note : We do have to check 'uaddr' is a valid user address,
495          *        but access_ok() should be faster than find_vma()
496          */
497         if (!fshared) {
498                 key->private.mm = mm;
499                 key->private.address = address;
500                 get_futex_key_refs(key);  /* implies MB (B) */
501                 return 0;
502         }
503
504 again:
505         /* Ignore any VERIFY_READ mapping (futex common case) */
506         if (unlikely(should_fail_futex(fshared)))
507                 return -EFAULT;
508
509         err = get_user_pages_fast(address, 1, 1, &page);
510         /*
511          * If write access is not required (eg. FUTEX_WAIT), try
512          * and get read-only access.
513          */
514         if (err == -EFAULT && rw == VERIFY_READ) {
515                 err = get_user_pages_fast(address, 1, 0, &page);
516                 ro = 1;
517         }
518         if (err < 0)
519                 return err;
520         else
521                 err = 0;
522
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524         page_head = page;
525         if (unlikely(PageTail(page))) {
526                 put_page(page);
527                 /* serialize against __split_huge_page_splitting() */
528                 local_irq_disable();
529                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
530                         page_head = compound_head(page);
531                         /*
532                          * page_head is valid pointer but we must pin
533                          * it before taking the PG_lock and/or
534                          * PG_compound_lock. The moment we re-enable
535                          * irqs __split_huge_page_splitting() can
536                          * return and the head page can be freed from
537                          * under us. We can't take the PG_lock and/or
538                          * PG_compound_lock on a page that could be
539                          * freed from under us.
540                          */
541                         if (page != page_head) {
542                                 get_page(page_head);
543                                 put_page(page);
544                         }
545                         local_irq_enable();
546                 } else {
547                         local_irq_enable();
548                         goto again;
549                 }
550         }
551 #else
552         page_head = compound_head(page);
553         if (page != page_head) {
554                 get_page(page_head);
555                 put_page(page);
556         }
557 #endif
558
559         /*
560          * The treatment of mapping from this point on is critical. The page
561          * lock protects many things but in this context the page lock
562          * stabilizes mapping, prevents inode freeing in the shared
563          * file-backed region case and guards against movement to swap cache.
564          *
565          * Strictly speaking the page lock is not needed in all cases being
566          * considered here and page lock forces unnecessarily serialization
567          * From this point on, mapping will be re-verified if necessary and
568          * page lock will be acquired only if it is unavoidable
569          */
570
571         mapping = READ_ONCE(page_head->mapping);
572
573         /*
574          * If page_head->mapping is NULL, then it cannot be a PageAnon
575          * page; but it might be the ZERO_PAGE or in the gate area or
576          * in a special mapping (all cases which we are happy to fail);
577          * or it may have been a good file page when get_user_pages_fast
578          * found it, but truncated or holepunched or subjected to
579          * invalidate_complete_page2 before we got the page lock (also
580          * cases which we are happy to fail).  And we hold a reference,
581          * so refcount care in invalidate_complete_page's remove_mapping
582          * prevents drop_caches from setting mapping to NULL beneath us.
583          *
584          * The case we do have to guard against is when memory pressure made
585          * shmem_writepage move it from filecache to swapcache beneath us:
586          * an unlikely race, but we do need to retry for page_head->mapping.
587          */
588         if (unlikely(!mapping)) {
589                 int shmem_swizzled;
590
591                 /*
592                  * Page lock is required to identify which special case above
593                  * applies. If this is really a shmem page then the page lock
594                  * will prevent unexpected transitions.
595                  */
596                 lock_page(page);
597                 shmem_swizzled = PageSwapCache(page) || page->mapping;
598                 unlock_page(page_head);
599                 put_page(page_head);
600
601                 if (shmem_swizzled)
602                         goto again;
603
604                 return -EFAULT;
605         }
606
607         /*
608          * Private mappings are handled in a simple way.
609          *
610          * If the futex key is stored on an anonymous page, then the associated
611          * object is the mm which is implicitly pinned by the calling process.
612          *
613          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
614          * it's a read-only handle, it's expected that futexes attach to
615          * the object not the particular process.
616          */
617         if (PageAnon(page_head)) {
618                 /*
619                  * A RO anonymous page will never change and thus doesn't make
620                  * sense for futex operations.
621                  */
622                 if (unlikely(should_fail_futex(fshared)) || ro) {
623                         err = -EFAULT;
624                         goto out;
625                 }
626
627                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
628                 key->private.mm = mm;
629                 key->private.address = address;
630
631                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
632
633         } else {
634                 struct inode *inode;
635
636                 /*
637                  * The associated futex object in this case is the inode and
638                  * the page->mapping must be traversed. Ordinarily this should
639                  * be stabilised under page lock but it's not strictly
640                  * necessary in this case as we just want to pin the inode, not
641                  * update the radix tree or anything like that.
642                  *
643                  * The RCU read lock is taken as the inode is finally freed
644                  * under RCU. If the mapping still matches expectations then the
645                  * mapping->host can be safely accessed as being a valid inode.
646                  */
647                 rcu_read_lock();
648
649                 if (READ_ONCE(page_head->mapping) != mapping) {
650                         rcu_read_unlock();
651                         put_page(page_head);
652
653                         goto again;
654                 }
655
656                 inode = READ_ONCE(mapping->host);
657                 if (!inode) {
658                         rcu_read_unlock();
659                         put_page(page_head);
660
661                         goto again;
662                 }
663
664                 /*
665                  * Take a reference unless it is about to be freed. Previously
666                  * this reference was taken by ihold under the page lock
667                  * pinning the inode in place so i_lock was unnecessary. The
668                  * only way for this check to fail is if the inode was
669                  * truncated in parallel which is almost certainly an
670                  * application bug. In such a case, just retry.
671                  *
672                  * We are not calling into get_futex_key_refs() in file-backed
673                  * cases, therefore a successful atomic_inc return below will
674                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
675                  */
676                 if (!atomic_inc_not_zero(&inode->i_count)) {
677                         rcu_read_unlock();
678                         put_page(page_head);
679
680                         goto again;
681                 }
682
683                 /* Should be impossible but lets be paranoid for now */
684                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
685                         err = -EFAULT;
686                         rcu_read_unlock();
687                         iput(inode);
688
689                         goto out;
690                 }
691
692                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
693                 key->shared.inode = inode;
694                 key->shared.pgoff = basepage_index(page);
695                 rcu_read_unlock();
696         }
697
698 out:
699         put_page(page_head);
700         return err;
701 }
702
703 static inline void put_futex_key(union futex_key *key)
704 {
705         drop_futex_key_refs(key);
706 }
707
708 /**
709  * fault_in_user_writeable() - Fault in user address and verify RW access
710  * @uaddr:      pointer to faulting user space address
711  *
712  * Slow path to fixup the fault we just took in the atomic write
713  * access to @uaddr.
714  *
715  * We have no generic implementation of a non-destructive write to the
716  * user address. We know that we faulted in the atomic pagefault
717  * disabled section so we can as well avoid the #PF overhead by
718  * calling get_user_pages() right away.
719  */
720 static int fault_in_user_writeable(u32 __user *uaddr)
721 {
722         struct mm_struct *mm = current->mm;
723         int ret;
724
725         down_read(&mm->mmap_sem);
726         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
727                                FAULT_FLAG_WRITE);
728         up_read(&mm->mmap_sem);
729
730         return ret < 0 ? ret : 0;
731 }
732
733 /**
734  * futex_top_waiter() - Return the highest priority waiter on a futex
735  * @hb:         the hash bucket the futex_q's reside in
736  * @key:        the futex key (to distinguish it from other futex futex_q's)
737  *
738  * Must be called with the hb lock held.
739  */
740 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
741                                         union futex_key *key)
742 {
743         struct futex_q *this;
744
745         plist_for_each_entry(this, &hb->chain, list) {
746                 if (match_futex(&this->key, key))
747                         return this;
748         }
749         return NULL;
750 }
751
752 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
753                                       u32 uval, u32 newval)
754 {
755         int ret;
756
757         pagefault_disable();
758         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
759         pagefault_enable();
760
761         return ret;
762 }
763
764 static int get_futex_value_locked(u32 *dest, u32 __user *from)
765 {
766         int ret;
767
768         pagefault_disable();
769         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
770         pagefault_enable();
771
772         return ret ? -EFAULT : 0;
773 }
774
775
776 /*
777  * PI code:
778  */
779 static int refill_pi_state_cache(void)
780 {
781         struct futex_pi_state *pi_state;
782
783         if (likely(current->pi_state_cache))
784                 return 0;
785
786         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
787
788         if (!pi_state)
789                 return -ENOMEM;
790
791         INIT_LIST_HEAD(&pi_state->list);
792         /* pi_mutex gets initialized later */
793         pi_state->owner = NULL;
794         atomic_set(&pi_state->refcount, 1);
795         pi_state->key = FUTEX_KEY_INIT;
796
797         current->pi_state_cache = pi_state;
798
799         return 0;
800 }
801
802 static struct futex_pi_state * alloc_pi_state(void)
803 {
804         struct futex_pi_state *pi_state = current->pi_state_cache;
805
806         WARN_ON(!pi_state);
807         current->pi_state_cache = NULL;
808
809         return pi_state;
810 }
811
812 /*
813  * Must be called with the hb lock held.
814  */
815 static void free_pi_state(struct futex_pi_state *pi_state)
816 {
817         if (!pi_state)
818                 return;
819
820         if (!atomic_dec_and_test(&pi_state->refcount))
821                 return;
822
823         /*
824          * If pi_state->owner is NULL, the owner is most probably dying
825          * and has cleaned up the pi_state already
826          */
827         if (pi_state->owner) {
828                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
829                 list_del_init(&pi_state->list);
830                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
831
832                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
833         }
834
835         if (current->pi_state_cache)
836                 kfree(pi_state);
837         else {
838                 /*
839                  * pi_state->list is already empty.
840                  * clear pi_state->owner.
841                  * refcount is at 0 - put it back to 1.
842                  */
843                 pi_state->owner = NULL;
844                 atomic_set(&pi_state->refcount, 1);
845                 current->pi_state_cache = pi_state;
846         }
847 }
848
849 /*
850  * Look up the task based on what TID userspace gave us.
851  * We dont trust it.
852  */
853 static struct task_struct * futex_find_get_task(pid_t pid)
854 {
855         struct task_struct *p;
856
857         rcu_read_lock();
858         p = find_task_by_vpid(pid);
859         if (p)
860                 get_task_struct(p);
861
862         rcu_read_unlock();
863
864         return p;
865 }
866
867 /*
868  * This task is holding PI mutexes at exit time => bad.
869  * Kernel cleans up PI-state, but userspace is likely hosed.
870  * (Robust-futex cleanup is separate and might save the day for userspace.)
871  */
872 void exit_pi_state_list(struct task_struct *curr)
873 {
874         struct list_head *next, *head = &curr->pi_state_list;
875         struct futex_pi_state *pi_state;
876         struct futex_hash_bucket *hb;
877         union futex_key key = FUTEX_KEY_INIT;
878
879         if (!futex_cmpxchg_enabled)
880                 return;
881         /*
882          * We are a ZOMBIE and nobody can enqueue itself on
883          * pi_state_list anymore, but we have to be careful
884          * versus waiters unqueueing themselves:
885          */
886         raw_spin_lock_irq(&curr->pi_lock);
887         while (!list_empty(head)) {
888
889                 next = head->next;
890                 pi_state = list_entry(next, struct futex_pi_state, list);
891                 key = pi_state->key;
892                 hb = hash_futex(&key);
893                 raw_spin_unlock_irq(&curr->pi_lock);
894
895                 spin_lock(&hb->lock);
896
897                 raw_spin_lock_irq(&curr->pi_lock);
898                 /*
899                  * We dropped the pi-lock, so re-check whether this
900                  * task still owns the PI-state:
901                  */
902                 if (head->next != next) {
903                         spin_unlock(&hb->lock);
904                         continue;
905                 }
906
907                 WARN_ON(pi_state->owner != curr);
908                 WARN_ON(list_empty(&pi_state->list));
909                 list_del_init(&pi_state->list);
910                 pi_state->owner = NULL;
911                 raw_spin_unlock_irq(&curr->pi_lock);
912
913                 rt_mutex_unlock(&pi_state->pi_mutex);
914
915                 spin_unlock(&hb->lock);
916
917                 raw_spin_lock_irq(&curr->pi_lock);
918         }
919         raw_spin_unlock_irq(&curr->pi_lock);
920 }
921
922 /*
923  * We need to check the following states:
924  *
925  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
926  *
927  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
928  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
929  *
930  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
931  *
932  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
933  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
934  *
935  * [6]  Found  | Found    | task      | 0         | 1      | Valid
936  *
937  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
938  *
939  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
940  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
941  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
942  *
943  * [1]  Indicates that the kernel can acquire the futex atomically. We
944  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
945  *
946  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
947  *      thread is found then it indicates that the owner TID has died.
948  *
949  * [3]  Invalid. The waiter is queued on a non PI futex
950  *
951  * [4]  Valid state after exit_robust_list(), which sets the user space
952  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
953  *
954  * [5]  The user space value got manipulated between exit_robust_list()
955  *      and exit_pi_state_list()
956  *
957  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
958  *      the pi_state but cannot access the user space value.
959  *
960  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
961  *
962  * [8]  Owner and user space value match
963  *
964  * [9]  There is no transient state which sets the user space TID to 0
965  *      except exit_robust_list(), but this is indicated by the
966  *      FUTEX_OWNER_DIED bit. See [4]
967  *
968  * [10] There is no transient state which leaves owner and user space
969  *      TID out of sync.
970  */
971
972 /*
973  * Validate that the existing waiter has a pi_state and sanity check
974  * the pi_state against the user space value. If correct, attach to
975  * it.
976  */
977 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
978                               struct futex_pi_state **ps)
979 {
980         pid_t pid = uval & FUTEX_TID_MASK;
981
982         /*
983          * Userspace might have messed up non-PI and PI futexes [3]
984          */
985         if (unlikely(!pi_state))
986                 return -EINVAL;
987
988         WARN_ON(!atomic_read(&pi_state->refcount));
989
990         /*
991          * Handle the owner died case:
992          */
993         if (uval & FUTEX_OWNER_DIED) {
994                 /*
995                  * exit_pi_state_list sets owner to NULL and wakes the
996                  * topmost waiter. The task which acquires the
997                  * pi_state->rt_mutex will fixup owner.
998                  */
999                 if (!pi_state->owner) {
1000                         /*
1001                          * No pi state owner, but the user space TID
1002                          * is not 0. Inconsistent state. [5]
1003                          */
1004                         if (pid)
1005                                 return -EINVAL;
1006                         /*
1007                          * Take a ref on the state and return success. [4]
1008                          */
1009                         goto out_state;
1010                 }
1011
1012                 /*
1013                  * If TID is 0, then either the dying owner has not
1014                  * yet executed exit_pi_state_list() or some waiter
1015                  * acquired the rtmutex in the pi state, but did not
1016                  * yet fixup the TID in user space.
1017                  *
1018                  * Take a ref on the state and return success. [6]
1019                  */
1020                 if (!pid)
1021                         goto out_state;
1022         } else {
1023                 /*
1024                  * If the owner died bit is not set, then the pi_state
1025                  * must have an owner. [7]
1026                  */
1027                 if (!pi_state->owner)
1028                         return -EINVAL;
1029         }
1030
1031         /*
1032          * Bail out if user space manipulated the futex value. If pi
1033          * state exists then the owner TID must be the same as the
1034          * user space TID. [9/10]
1035          */
1036         if (pid != task_pid_vnr(pi_state->owner))
1037                 return -EINVAL;
1038 out_state:
1039         atomic_inc(&pi_state->refcount);
1040         *ps = pi_state;
1041         return 0;
1042 }
1043
1044 /*
1045  * Lookup the task for the TID provided from user space and attach to
1046  * it after doing proper sanity checks.
1047  */
1048 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1049                               struct futex_pi_state **ps)
1050 {
1051         pid_t pid = uval & FUTEX_TID_MASK;
1052         struct futex_pi_state *pi_state;
1053         struct task_struct *p;
1054
1055         /*
1056          * We are the first waiter - try to look up the real owner and attach
1057          * the new pi_state to it, but bail out when TID = 0 [1]
1058          */
1059         if (!pid)
1060                 return -ESRCH;
1061         p = futex_find_get_task(pid);
1062         if (!p)
1063                 return -ESRCH;
1064
1065         if (unlikely(p->flags & PF_KTHREAD)) {
1066                 put_task_struct(p);
1067                 return -EPERM;
1068         }
1069
1070         /*
1071          * We need to look at the task state flags to figure out,
1072          * whether the task is exiting. To protect against the do_exit
1073          * change of the task flags, we do this protected by
1074          * p->pi_lock:
1075          */
1076         raw_spin_lock_irq(&p->pi_lock);
1077         if (unlikely(p->flags & PF_EXITING)) {
1078                 /*
1079                  * The task is on the way out. When PF_EXITPIDONE is
1080                  * set, we know that the task has finished the
1081                  * cleanup:
1082                  */
1083                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1084
1085                 raw_spin_unlock_irq(&p->pi_lock);
1086                 put_task_struct(p);
1087                 return ret;
1088         }
1089
1090         /*
1091          * No existing pi state. First waiter. [2]
1092          */
1093         pi_state = alloc_pi_state();
1094
1095         /*
1096          * Initialize the pi_mutex in locked state and make @p
1097          * the owner of it:
1098          */
1099         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1100
1101         /* Store the key for possible exit cleanups: */
1102         pi_state->key = *key;
1103
1104         WARN_ON(!list_empty(&pi_state->list));
1105         list_add(&pi_state->list, &p->pi_state_list);
1106         pi_state->owner = p;
1107         raw_spin_unlock_irq(&p->pi_lock);
1108
1109         put_task_struct(p);
1110
1111         *ps = pi_state;
1112
1113         return 0;
1114 }
1115
1116 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1117                            union futex_key *key, struct futex_pi_state **ps)
1118 {
1119         struct futex_q *match = futex_top_waiter(hb, key);
1120
1121         /*
1122          * If there is a waiter on that futex, validate it and
1123          * attach to the pi_state when the validation succeeds.
1124          */
1125         if (match)
1126                 return attach_to_pi_state(uval, match->pi_state, ps);
1127
1128         /*
1129          * We are the first waiter - try to look up the owner based on
1130          * @uval and attach to it.
1131          */
1132         return attach_to_pi_owner(uval, key, ps);
1133 }
1134
1135 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1136 {
1137         u32 uninitialized_var(curval);
1138
1139         if (unlikely(should_fail_futex(true)))
1140                 return -EFAULT;
1141
1142         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1143                 return -EFAULT;
1144
1145         /*If user space value changed, let the caller retry */
1146         return curval != uval ? -EAGAIN : 0;
1147 }
1148
1149 /**
1150  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1151  * @uaddr:              the pi futex user address
1152  * @hb:                 the pi futex hash bucket
1153  * @key:                the futex key associated with uaddr and hb
1154  * @ps:                 the pi_state pointer where we store the result of the
1155  *                      lookup
1156  * @task:               the task to perform the atomic lock work for.  This will
1157  *                      be "current" except in the case of requeue pi.
1158  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1159  *
1160  * Return:
1161  *  0 - ready to wait;
1162  *  1 - acquired the lock;
1163  * <0 - error
1164  *
1165  * The hb->lock and futex_key refs shall be held by the caller.
1166  */
1167 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1168                                 union futex_key *key,
1169                                 struct futex_pi_state **ps,
1170                                 struct task_struct *task, int set_waiters)
1171 {
1172         u32 uval, newval, vpid = task_pid_vnr(task);
1173         struct futex_q *match;
1174         int ret;
1175
1176         /*
1177          * Read the user space value first so we can validate a few
1178          * things before proceeding further.
1179          */
1180         if (get_futex_value_locked(&uval, uaddr))
1181                 return -EFAULT;
1182
1183         if (unlikely(should_fail_futex(true)))
1184                 return -EFAULT;
1185
1186         /*
1187          * Detect deadlocks.
1188          */
1189         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1190                 return -EDEADLK;
1191
1192         if ((unlikely(should_fail_futex(true))))
1193                 return -EDEADLK;
1194
1195         /*
1196          * Lookup existing state first. If it exists, try to attach to
1197          * its pi_state.
1198          */
1199         match = futex_top_waiter(hb, key);
1200         if (match)
1201                 return attach_to_pi_state(uval, match->pi_state, ps);
1202
1203         /*
1204          * No waiter and user TID is 0. We are here because the
1205          * waiters or the owner died bit is set or called from
1206          * requeue_cmp_pi or for whatever reason something took the
1207          * syscall.
1208          */
1209         if (!(uval & FUTEX_TID_MASK)) {
1210                 /*
1211                  * We take over the futex. No other waiters and the user space
1212                  * TID is 0. We preserve the owner died bit.
1213                  */
1214                 newval = uval & FUTEX_OWNER_DIED;
1215                 newval |= vpid;
1216
1217                 /* The futex requeue_pi code can enforce the waiters bit */
1218                 if (set_waiters)
1219                         newval |= FUTEX_WAITERS;
1220
1221                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1222                 /* If the take over worked, return 1 */
1223                 return ret < 0 ? ret : 1;
1224         }
1225
1226         /*
1227          * First waiter. Set the waiters bit before attaching ourself to
1228          * the owner. If owner tries to unlock, it will be forced into
1229          * the kernel and blocked on hb->lock.
1230          */
1231         newval = uval | FUTEX_WAITERS;
1232         ret = lock_pi_update_atomic(uaddr, uval, newval);
1233         if (ret)
1234                 return ret;
1235         /*
1236          * If the update of the user space value succeeded, we try to
1237          * attach to the owner. If that fails, no harm done, we only
1238          * set the FUTEX_WAITERS bit in the user space variable.
1239          */
1240         return attach_to_pi_owner(uval, key, ps);
1241 }
1242
1243 /**
1244  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1245  * @q:  The futex_q to unqueue
1246  *
1247  * The q->lock_ptr must not be NULL and must be held by the caller.
1248  */
1249 static void __unqueue_futex(struct futex_q *q)
1250 {
1251         struct futex_hash_bucket *hb;
1252
1253         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1254             || WARN_ON(plist_node_empty(&q->list)))
1255                 return;
1256
1257         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1258         plist_del(&q->list, &hb->chain);
1259         hb_waiters_dec(hb);
1260 }
1261
1262 /*
1263  * The hash bucket lock must be held when this is called.
1264  * Afterwards, the futex_q must not be accessed. Callers
1265  * must ensure to later call wake_up_q() for the actual
1266  * wakeups to occur.
1267  */
1268 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1269 {
1270         struct task_struct *p = q->task;
1271
1272         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1273                 return;
1274
1275         /*
1276          * Queue the task for later wakeup for after we've released
1277          * the hb->lock. wake_q_add() grabs reference to p.
1278          */
1279         wake_q_add(wake_q, p);
1280         __unqueue_futex(q);
1281         /*
1282          * The waiting task can free the futex_q as soon as
1283          * q->lock_ptr = NULL is written, without taking any locks. A
1284          * memory barrier is required here to prevent the following
1285          * store to lock_ptr from getting ahead of the plist_del.
1286          */
1287         smp_wmb();
1288         q->lock_ptr = NULL;
1289 }
1290
1291 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1292                          struct futex_hash_bucket *hb)
1293 {
1294         struct task_struct *new_owner;
1295         struct futex_pi_state *pi_state = this->pi_state;
1296         u32 uninitialized_var(curval), newval;
1297         WAKE_Q(wake_q);
1298         bool deboost;
1299         int ret = 0;
1300
1301         if (!pi_state)
1302                 return -EINVAL;
1303
1304         /*
1305          * If current does not own the pi_state then the futex is
1306          * inconsistent and user space fiddled with the futex value.
1307          */
1308         if (pi_state->owner != current)
1309                 return -EINVAL;
1310
1311         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1312         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1313
1314         /*
1315          * It is possible that the next waiter (the one that brought
1316          * this owner to the kernel) timed out and is no longer
1317          * waiting on the lock.
1318          */
1319         if (!new_owner)
1320                 new_owner = this->task;
1321
1322         /*
1323          * We pass it to the next owner. The WAITERS bit is always
1324          * kept enabled while there is PI state around. We cleanup the
1325          * owner died bit, because we are the owner.
1326          */
1327         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1328
1329         if (unlikely(should_fail_futex(true)))
1330                 ret = -EFAULT;
1331
1332         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1333                 ret = -EFAULT;
1334         } else if (curval != uval) {
1335                 /*
1336                  * If a unconditional UNLOCK_PI operation (user space did not
1337                  * try the TID->0 transition) raced with a waiter setting the
1338                  * FUTEX_WAITERS flag between get_user() and locking the hash
1339                  * bucket lock, retry the operation.
1340                  */
1341                 if ((FUTEX_TID_MASK & curval) == uval)
1342                         ret = -EAGAIN;
1343                 else
1344                         ret = -EINVAL;
1345         }
1346         if (ret) {
1347                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1348                 return ret;
1349         }
1350
1351         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1352         WARN_ON(list_empty(&pi_state->list));
1353         list_del_init(&pi_state->list);
1354         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1355
1356         raw_spin_lock_irq(&new_owner->pi_lock);
1357         WARN_ON(!list_empty(&pi_state->list));
1358         list_add(&pi_state->list, &new_owner->pi_state_list);
1359         pi_state->owner = new_owner;
1360         raw_spin_unlock_irq(&new_owner->pi_lock);
1361
1362         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1363
1364         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1365
1366         /*
1367          * First unlock HB so the waiter does not spin on it once he got woken
1368          * up. Second wake up the waiter before the priority is adjusted. If we
1369          * deboost first (and lose our higher priority), then the task might get
1370          * scheduled away before the wake up can take place.
1371          */
1372         spin_unlock(&hb->lock);
1373         wake_up_q(&wake_q);
1374         if (deboost)
1375                 rt_mutex_adjust_prio(current);
1376
1377         return 0;
1378 }
1379
1380 /*
1381  * Express the locking dependencies for lockdep:
1382  */
1383 static inline void
1384 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1385 {
1386         if (hb1 <= hb2) {
1387                 spin_lock(&hb1->lock);
1388                 if (hb1 < hb2)
1389                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1390         } else { /* hb1 > hb2 */
1391                 spin_lock(&hb2->lock);
1392                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1393         }
1394 }
1395
1396 static inline void
1397 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1398 {
1399         spin_unlock(&hb1->lock);
1400         if (hb1 != hb2)
1401                 spin_unlock(&hb2->lock);
1402 }
1403
1404 /*
1405  * Wake up waiters matching bitset queued on this futex (uaddr).
1406  */
1407 static int
1408 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1409 {
1410         struct futex_hash_bucket *hb;
1411         struct futex_q *this, *next;
1412         union futex_key key = FUTEX_KEY_INIT;
1413         int ret;
1414         WAKE_Q(wake_q);
1415
1416         if (!bitset)
1417                 return -EINVAL;
1418
1419         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1420         if (unlikely(ret != 0))
1421                 goto out;
1422
1423         hb = hash_futex(&key);
1424
1425         /* Make sure we really have tasks to wakeup */
1426         if (!hb_waiters_pending(hb))
1427                 goto out_put_key;
1428
1429         spin_lock(&hb->lock);
1430
1431         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1432                 if (match_futex (&this->key, &key)) {
1433                         if (this->pi_state || this->rt_waiter) {
1434                                 ret = -EINVAL;
1435                                 break;
1436                         }
1437
1438                         /* Check if one of the bits is set in both bitsets */
1439                         if (!(this->bitset & bitset))
1440                                 continue;
1441
1442                         mark_wake_futex(&wake_q, this);
1443                         if (++ret >= nr_wake)
1444                                 break;
1445                 }
1446         }
1447
1448         spin_unlock(&hb->lock);
1449         wake_up_q(&wake_q);
1450 out_put_key:
1451         put_futex_key(&key);
1452 out:
1453         return ret;
1454 }
1455
1456 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1457 {
1458         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1459         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1460         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1461         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1462         int oldval, ret;
1463
1464         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1465                 if (oparg < 0 || oparg > 31)
1466                         return -EINVAL;
1467                 oparg = 1 << oparg;
1468         }
1469
1470         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1471                 return -EFAULT;
1472
1473         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1474         if (ret)
1475                 return ret;
1476
1477         switch (cmp) {
1478         case FUTEX_OP_CMP_EQ:
1479                 return oldval == cmparg;
1480         case FUTEX_OP_CMP_NE:
1481                 return oldval != cmparg;
1482         case FUTEX_OP_CMP_LT:
1483                 return oldval < cmparg;
1484         case FUTEX_OP_CMP_GE:
1485                 return oldval >= cmparg;
1486         case FUTEX_OP_CMP_LE:
1487                 return oldval <= cmparg;
1488         case FUTEX_OP_CMP_GT:
1489                 return oldval > cmparg;
1490         default:
1491                 return -ENOSYS;
1492         }
1493 }
1494
1495 /*
1496  * Wake up all waiters hashed on the physical page that is mapped
1497  * to this virtual address:
1498  */
1499 static int
1500 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1501               int nr_wake, int nr_wake2, int op)
1502 {
1503         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1504         struct futex_hash_bucket *hb1, *hb2;
1505         struct futex_q *this, *next;
1506         int ret, op_ret;
1507         WAKE_Q(wake_q);
1508
1509 retry:
1510         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1511         if (unlikely(ret != 0))
1512                 goto out;
1513         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1514         if (unlikely(ret != 0))
1515                 goto out_put_key1;
1516
1517         hb1 = hash_futex(&key1);
1518         hb2 = hash_futex(&key2);
1519
1520 retry_private:
1521         double_lock_hb(hb1, hb2);
1522         op_ret = futex_atomic_op_inuser(op, uaddr2);
1523         if (unlikely(op_ret < 0)) {
1524
1525                 double_unlock_hb(hb1, hb2);
1526
1527 #ifndef CONFIG_MMU
1528                 /*
1529                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1530                  * but we might get them from range checking
1531                  */
1532                 ret = op_ret;
1533                 goto out_put_keys;
1534 #endif
1535
1536                 if (unlikely(op_ret != -EFAULT)) {
1537                         ret = op_ret;
1538                         goto out_put_keys;
1539                 }
1540
1541                 ret = fault_in_user_writeable(uaddr2);
1542                 if (ret)
1543                         goto out_put_keys;
1544
1545                 if (!(flags & FLAGS_SHARED))
1546                         goto retry_private;
1547
1548                 put_futex_key(&key2);
1549                 put_futex_key(&key1);
1550                 goto retry;
1551         }
1552
1553         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1554                 if (match_futex (&this->key, &key1)) {
1555                         if (this->pi_state || this->rt_waiter) {
1556                                 ret = -EINVAL;
1557                                 goto out_unlock;
1558                         }
1559                         mark_wake_futex(&wake_q, this);
1560                         if (++ret >= nr_wake)
1561                                 break;
1562                 }
1563         }
1564
1565         if (op_ret > 0) {
1566                 op_ret = 0;
1567                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1568                         if (match_futex (&this->key, &key2)) {
1569                                 if (this->pi_state || this->rt_waiter) {
1570                                         ret = -EINVAL;
1571                                         goto out_unlock;
1572                                 }
1573                                 mark_wake_futex(&wake_q, this);
1574                                 if (++op_ret >= nr_wake2)
1575                                         break;
1576                         }
1577                 }
1578                 ret += op_ret;
1579         }
1580
1581 out_unlock:
1582         double_unlock_hb(hb1, hb2);
1583         wake_up_q(&wake_q);
1584 out_put_keys:
1585         put_futex_key(&key2);
1586 out_put_key1:
1587         put_futex_key(&key1);
1588 out:
1589         return ret;
1590 }
1591
1592 /**
1593  * requeue_futex() - Requeue a futex_q from one hb to another
1594  * @q:          the futex_q to requeue
1595  * @hb1:        the source hash_bucket
1596  * @hb2:        the target hash_bucket
1597  * @key2:       the new key for the requeued futex_q
1598  */
1599 static inline
1600 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1601                    struct futex_hash_bucket *hb2, union futex_key *key2)
1602 {
1603
1604         /*
1605          * If key1 and key2 hash to the same bucket, no need to
1606          * requeue.
1607          */
1608         if (likely(&hb1->chain != &hb2->chain)) {
1609                 plist_del(&q->list, &hb1->chain);
1610                 hb_waiters_dec(hb1);
1611                 hb_waiters_inc(hb2);
1612                 plist_add(&q->list, &hb2->chain);
1613                 q->lock_ptr = &hb2->lock;
1614         }
1615         get_futex_key_refs(key2);
1616         q->key = *key2;
1617 }
1618
1619 /**
1620  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1621  * @q:          the futex_q
1622  * @key:        the key of the requeue target futex
1623  * @hb:         the hash_bucket of the requeue target futex
1624  *
1625  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1626  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1627  * to the requeue target futex so the waiter can detect the wakeup on the right
1628  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1629  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1630  * to protect access to the pi_state to fixup the owner later.  Must be called
1631  * with both q->lock_ptr and hb->lock held.
1632  */
1633 static inline
1634 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1635                            struct futex_hash_bucket *hb)
1636 {
1637         get_futex_key_refs(key);
1638         q->key = *key;
1639
1640         __unqueue_futex(q);
1641
1642         WARN_ON(!q->rt_waiter);
1643         q->rt_waiter = NULL;
1644
1645         q->lock_ptr = &hb->lock;
1646
1647         wake_up_state(q->task, TASK_NORMAL);
1648 }
1649
1650 /**
1651  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1652  * @pifutex:            the user address of the to futex
1653  * @hb1:                the from futex hash bucket, must be locked by the caller
1654  * @hb2:                the to futex hash bucket, must be locked by the caller
1655  * @key1:               the from futex key
1656  * @key2:               the to futex key
1657  * @ps:                 address to store the pi_state pointer
1658  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1659  *
1660  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1661  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1662  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1663  * hb1 and hb2 must be held by the caller.
1664  *
1665  * Return:
1666  *  0 - failed to acquire the lock atomically;
1667  * >0 - acquired the lock, return value is vpid of the top_waiter
1668  * <0 - error
1669  */
1670 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1671                                  struct futex_hash_bucket *hb1,
1672                                  struct futex_hash_bucket *hb2,
1673                                  union futex_key *key1, union futex_key *key2,
1674                                  struct futex_pi_state **ps, int set_waiters)
1675 {
1676         struct futex_q *top_waiter = NULL;
1677         u32 curval;
1678         int ret, vpid;
1679
1680         if (get_futex_value_locked(&curval, pifutex))
1681                 return -EFAULT;
1682
1683         if (unlikely(should_fail_futex(true)))
1684                 return -EFAULT;
1685
1686         /*
1687          * Find the top_waiter and determine if there are additional waiters.
1688          * If the caller intends to requeue more than 1 waiter to pifutex,
1689          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1690          * as we have means to handle the possible fault.  If not, don't set
1691          * the bit unecessarily as it will force the subsequent unlock to enter
1692          * the kernel.
1693          */
1694         top_waiter = futex_top_waiter(hb1, key1);
1695
1696         /* There are no waiters, nothing for us to do. */
1697         if (!top_waiter)
1698                 return 0;
1699
1700         /* Ensure we requeue to the expected futex. */
1701         if (!match_futex(top_waiter->requeue_pi_key, key2))
1702                 return -EINVAL;
1703
1704         /*
1705          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1706          * the contended case or if set_waiters is 1.  The pi_state is returned
1707          * in ps in contended cases.
1708          */
1709         vpid = task_pid_vnr(top_waiter->task);
1710         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1711                                    set_waiters);
1712         if (ret == 1) {
1713                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1714                 return vpid;
1715         }
1716         return ret;
1717 }
1718
1719 /**
1720  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1721  * @uaddr1:     source futex user address
1722  * @flags:      futex flags (FLAGS_SHARED, etc.)
1723  * @uaddr2:     target futex user address
1724  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1725  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1726  * @cmpval:     @uaddr1 expected value (or %NULL)
1727  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1728  *              pi futex (pi to pi requeue is not supported)
1729  *
1730  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1731  * uaddr2 atomically on behalf of the top waiter.
1732  *
1733  * Return:
1734  * >=0 - on success, the number of tasks requeued or woken;
1735  *  <0 - on error
1736  */
1737 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1738                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1739                          u32 *cmpval, int requeue_pi)
1740 {
1741         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1742         int drop_count = 0, task_count = 0, ret;
1743         struct futex_pi_state *pi_state = NULL;
1744         struct futex_hash_bucket *hb1, *hb2;
1745         struct futex_q *this, *next;
1746         WAKE_Q(wake_q);
1747
1748         if (nr_wake < 0 || nr_requeue < 0)
1749                 return -EINVAL;
1750
1751         if (requeue_pi) {
1752                 /*
1753                  * Requeue PI only works on two distinct uaddrs. This
1754                  * check is only valid for private futexes. See below.
1755                  */
1756                 if (uaddr1 == uaddr2)
1757                         return -EINVAL;
1758
1759                 /*
1760                  * requeue_pi requires a pi_state, try to allocate it now
1761                  * without any locks in case it fails.
1762                  */
1763                 if (refill_pi_state_cache())
1764                         return -ENOMEM;
1765                 /*
1766                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1767                  * + nr_requeue, since it acquires the rt_mutex prior to
1768                  * returning to userspace, so as to not leave the rt_mutex with
1769                  * waiters and no owner.  However, second and third wake-ups
1770                  * cannot be predicted as they involve race conditions with the
1771                  * first wake and a fault while looking up the pi_state.  Both
1772                  * pthread_cond_signal() and pthread_cond_broadcast() should
1773                  * use nr_wake=1.
1774                  */
1775                 if (nr_wake != 1)
1776                         return -EINVAL;
1777         }
1778
1779 retry:
1780         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1781         if (unlikely(ret != 0))
1782                 goto out;
1783         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1784                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1785         if (unlikely(ret != 0))
1786                 goto out_put_key1;
1787
1788         /*
1789          * The check above which compares uaddrs is not sufficient for
1790          * shared futexes. We need to compare the keys:
1791          */
1792         if (requeue_pi && match_futex(&key1, &key2)) {
1793                 ret = -EINVAL;
1794                 goto out_put_keys;
1795         }
1796
1797         hb1 = hash_futex(&key1);
1798         hb2 = hash_futex(&key2);
1799
1800 retry_private:
1801         hb_waiters_inc(hb2);
1802         double_lock_hb(hb1, hb2);
1803
1804         if (likely(cmpval != NULL)) {
1805                 u32 curval;
1806
1807                 ret = get_futex_value_locked(&curval, uaddr1);
1808
1809                 if (unlikely(ret)) {
1810                         double_unlock_hb(hb1, hb2);
1811                         hb_waiters_dec(hb2);
1812
1813                         ret = get_user(curval, uaddr1);
1814                         if (ret)
1815                                 goto out_put_keys;
1816
1817                         if (!(flags & FLAGS_SHARED))
1818                                 goto retry_private;
1819
1820                         put_futex_key(&key2);
1821                         put_futex_key(&key1);
1822                         goto retry;
1823                 }
1824                 if (curval != *cmpval) {
1825                         ret = -EAGAIN;
1826                         goto out_unlock;
1827                 }
1828         }
1829
1830         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1831                 /*
1832                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1833                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1834                  * bit.  We force this here where we are able to easily handle
1835                  * faults rather in the requeue loop below.
1836                  */
1837                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1838                                                  &key2, &pi_state, nr_requeue);
1839
1840                 /*
1841                  * At this point the top_waiter has either taken uaddr2 or is
1842                  * waiting on it.  If the former, then the pi_state will not
1843                  * exist yet, look it up one more time to ensure we have a
1844                  * reference to it. If the lock was taken, ret contains the
1845                  * vpid of the top waiter task.
1846                  */
1847                 if (ret > 0) {
1848                         WARN_ON(pi_state);
1849                         drop_count++;
1850                         task_count++;
1851                         /*
1852                          * If we acquired the lock, then the user
1853                          * space value of uaddr2 should be vpid. It
1854                          * cannot be changed by the top waiter as it
1855                          * is blocked on hb2 lock if it tries to do
1856                          * so. If something fiddled with it behind our
1857                          * back the pi state lookup might unearth
1858                          * it. So we rather use the known value than
1859                          * rereading and handing potential crap to
1860                          * lookup_pi_state.
1861                          */
1862                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1863                 }
1864
1865                 switch (ret) {
1866                 case 0:
1867                         break;
1868                 case -EFAULT:
1869                         free_pi_state(pi_state);
1870                         pi_state = NULL;
1871                         double_unlock_hb(hb1, hb2);
1872                         hb_waiters_dec(hb2);
1873                         put_futex_key(&key2);
1874                         put_futex_key(&key1);
1875                         ret = fault_in_user_writeable(uaddr2);
1876                         if (!ret)
1877                                 goto retry;
1878                         goto out;
1879                 case -EAGAIN:
1880                         /*
1881                          * Two reasons for this:
1882                          * - Owner is exiting and we just wait for the
1883                          *   exit to complete.
1884                          * - The user space value changed.
1885                          */
1886                         free_pi_state(pi_state);
1887                         pi_state = NULL;
1888                         double_unlock_hb(hb1, hb2);
1889                         hb_waiters_dec(hb2);
1890                         put_futex_key(&key2);
1891                         put_futex_key(&key1);
1892                         cond_resched();
1893                         goto retry;
1894                 default:
1895                         goto out_unlock;
1896                 }
1897         }
1898
1899         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1900                 if (task_count - nr_wake >= nr_requeue)
1901                         break;
1902
1903                 if (!match_futex(&this->key, &key1))
1904                         continue;
1905
1906                 /*
1907                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1908                  * be paired with each other and no other futex ops.
1909                  *
1910                  * We should never be requeueing a futex_q with a pi_state,
1911                  * which is awaiting a futex_unlock_pi().
1912                  */
1913                 if ((requeue_pi && !this->rt_waiter) ||
1914                     (!requeue_pi && this->rt_waiter) ||
1915                     this->pi_state) {
1916                         ret = -EINVAL;
1917                         break;
1918                 }
1919
1920                 /*
1921                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1922                  * lock, we already woke the top_waiter.  If not, it will be
1923                  * woken by futex_unlock_pi().
1924                  */
1925                 if (++task_count <= nr_wake && !requeue_pi) {
1926                         mark_wake_futex(&wake_q, this);
1927                         continue;
1928                 }
1929
1930                 /* Ensure we requeue to the expected futex for requeue_pi. */
1931                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1932                         ret = -EINVAL;
1933                         break;
1934                 }
1935
1936                 /*
1937                  * Requeue nr_requeue waiters and possibly one more in the case
1938                  * of requeue_pi if we couldn't acquire the lock atomically.
1939                  */
1940                 if (requeue_pi) {
1941                         /* Prepare the waiter to take the rt_mutex. */
1942                         atomic_inc(&pi_state->refcount);
1943                         this->pi_state = pi_state;
1944                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1945                                                         this->rt_waiter,
1946                                                         this->task);
1947                         if (ret == 1) {
1948                                 /* We got the lock. */
1949                                 requeue_pi_wake_futex(this, &key2, hb2);
1950                                 drop_count++;
1951                                 continue;
1952                         } else if (ret) {
1953                                 /* -EDEADLK */
1954                                 this->pi_state = NULL;
1955                                 free_pi_state(pi_state);
1956                                 goto out_unlock;
1957                         }
1958                 }
1959                 requeue_futex(this, hb1, hb2, &key2);
1960                 drop_count++;
1961         }
1962
1963 out_unlock:
1964         free_pi_state(pi_state);
1965         double_unlock_hb(hb1, hb2);
1966         wake_up_q(&wake_q);
1967         hb_waiters_dec(hb2);
1968
1969         /*
1970          * drop_futex_key_refs() must be called outside the spinlocks. During
1971          * the requeue we moved futex_q's from the hash bucket at key1 to the
1972          * one at key2 and updated their key pointer.  We no longer need to
1973          * hold the references to key1.
1974          */
1975         while (--drop_count >= 0)
1976                 drop_futex_key_refs(&key1);
1977
1978 out_put_keys:
1979         put_futex_key(&key2);
1980 out_put_key1:
1981         put_futex_key(&key1);
1982 out:
1983         return ret ? ret : task_count;
1984 }
1985
1986 /* The key must be already stored in q->key. */
1987 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1988         __acquires(&hb->lock)
1989 {
1990         struct futex_hash_bucket *hb;
1991
1992         hb = hash_futex(&q->key);
1993
1994         /*
1995          * Increment the counter before taking the lock so that
1996          * a potential waker won't miss a to-be-slept task that is
1997          * waiting for the spinlock. This is safe as all queue_lock()
1998          * users end up calling queue_me(). Similarly, for housekeeping,
1999          * decrement the counter at queue_unlock() when some error has
2000          * occurred and we don't end up adding the task to the list.
2001          */
2002         hb_waiters_inc(hb);
2003
2004         q->lock_ptr = &hb->lock;
2005
2006         spin_lock(&hb->lock); /* implies MB (A) */
2007         return hb;
2008 }
2009
2010 static inline void
2011 queue_unlock(struct futex_hash_bucket *hb)
2012         __releases(&hb->lock)
2013 {
2014         spin_unlock(&hb->lock);
2015         hb_waiters_dec(hb);
2016 }
2017
2018 /**
2019  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2020  * @q:  The futex_q to enqueue
2021  * @hb: The destination hash bucket
2022  *
2023  * The hb->lock must be held by the caller, and is released here. A call to
2024  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2025  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2026  * or nothing if the unqueue is done as part of the wake process and the unqueue
2027  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2028  * an example).
2029  */
2030 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2031         __releases(&hb->lock)
2032 {
2033         int prio;
2034
2035         /*
2036          * The priority used to register this element is
2037          * - either the real thread-priority for the real-time threads
2038          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2039          * - or MAX_RT_PRIO for non-RT threads.
2040          * Thus, all RT-threads are woken first in priority order, and
2041          * the others are woken last, in FIFO order.
2042          */
2043         prio = min(current->normal_prio, MAX_RT_PRIO);
2044
2045         plist_node_init(&q->list, prio);
2046         plist_add(&q->list, &hb->chain);
2047         q->task = current;
2048         spin_unlock(&hb->lock);
2049 }
2050
2051 /**
2052  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2053  * @q:  The futex_q to unqueue
2054  *
2055  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2056  * be paired with exactly one earlier call to queue_me().
2057  *
2058  * Return:
2059  *   1 - if the futex_q was still queued (and we removed unqueued it);
2060  *   0 - if the futex_q was already removed by the waking thread
2061  */
2062 static int unqueue_me(struct futex_q *q)
2063 {
2064         spinlock_t *lock_ptr;
2065         int ret = 0;
2066
2067         /* In the common case we don't take the spinlock, which is nice. */
2068 retry:
2069         /*
2070          * q->lock_ptr can change between this read and the following spin_lock.
2071          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2072          * optimizing lock_ptr out of the logic below.
2073          */
2074         lock_ptr = READ_ONCE(q->lock_ptr);
2075         if (lock_ptr != NULL) {
2076                 spin_lock(lock_ptr);
2077                 /*
2078                  * q->lock_ptr can change between reading it and
2079                  * spin_lock(), causing us to take the wrong lock.  This
2080                  * corrects the race condition.
2081                  *
2082                  * Reasoning goes like this: if we have the wrong lock,
2083                  * q->lock_ptr must have changed (maybe several times)
2084                  * between reading it and the spin_lock().  It can
2085                  * change again after the spin_lock() but only if it was
2086                  * already changed before the spin_lock().  It cannot,
2087                  * however, change back to the original value.  Therefore
2088                  * we can detect whether we acquired the correct lock.
2089                  */
2090                 if (unlikely(lock_ptr != q->lock_ptr)) {
2091                         spin_unlock(lock_ptr);
2092                         goto retry;
2093                 }
2094                 __unqueue_futex(q);
2095
2096                 BUG_ON(q->pi_state);
2097
2098                 spin_unlock(lock_ptr);
2099                 ret = 1;
2100         }
2101
2102         drop_futex_key_refs(&q->key);
2103         return ret;
2104 }
2105
2106 /*
2107  * PI futexes can not be requeued and must remove themself from the
2108  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2109  * and dropped here.
2110  */
2111 static void unqueue_me_pi(struct futex_q *q)
2112         __releases(q->lock_ptr)
2113 {
2114         __unqueue_futex(q);
2115
2116         BUG_ON(!q->pi_state);
2117         free_pi_state(q->pi_state);
2118         q->pi_state = NULL;
2119
2120         spin_unlock(q->lock_ptr);
2121 }
2122
2123 /*
2124  * Fixup the pi_state owner with the new owner.
2125  *
2126  * Must be called with hash bucket lock held and mm->sem held for non
2127  * private futexes.
2128  */
2129 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2130                                 struct task_struct *newowner)
2131 {
2132         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2133         struct futex_pi_state *pi_state = q->pi_state;
2134         struct task_struct *oldowner = pi_state->owner;
2135         u32 uval, uninitialized_var(curval), newval;
2136         int ret;
2137
2138         /* Owner died? */
2139         if (!pi_state->owner)
2140                 newtid |= FUTEX_OWNER_DIED;
2141
2142         /*
2143          * We are here either because we stole the rtmutex from the
2144          * previous highest priority waiter or we are the highest priority
2145          * waiter but failed to get the rtmutex the first time.
2146          * We have to replace the newowner TID in the user space variable.
2147          * This must be atomic as we have to preserve the owner died bit here.
2148          *
2149          * Note: We write the user space value _before_ changing the pi_state
2150          * because we can fault here. Imagine swapped out pages or a fork
2151          * that marked all the anonymous memory readonly for cow.
2152          *
2153          * Modifying pi_state _before_ the user space value would
2154          * leave the pi_state in an inconsistent state when we fault
2155          * here, because we need to drop the hash bucket lock to
2156          * handle the fault. This might be observed in the PID check
2157          * in lookup_pi_state.
2158          */
2159 retry:
2160         if (get_futex_value_locked(&uval, uaddr))
2161                 goto handle_fault;
2162
2163         while (1) {
2164                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2165
2166                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2167                         goto handle_fault;
2168                 if (curval == uval)
2169                         break;
2170                 uval = curval;
2171         }
2172
2173         /*
2174          * We fixed up user space. Now we need to fix the pi_state
2175          * itself.
2176          */
2177         if (pi_state->owner != NULL) {
2178                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2179                 WARN_ON(list_empty(&pi_state->list));
2180                 list_del_init(&pi_state->list);
2181                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2182         }
2183
2184         pi_state->owner = newowner;
2185
2186         raw_spin_lock_irq(&newowner->pi_lock);
2187         WARN_ON(!list_empty(&pi_state->list));
2188         list_add(&pi_state->list, &newowner->pi_state_list);
2189         raw_spin_unlock_irq(&newowner->pi_lock);
2190         return 0;
2191
2192         /*
2193          * To handle the page fault we need to drop the hash bucket
2194          * lock here. That gives the other task (either the highest priority
2195          * waiter itself or the task which stole the rtmutex) the
2196          * chance to try the fixup of the pi_state. So once we are
2197          * back from handling the fault we need to check the pi_state
2198          * after reacquiring the hash bucket lock and before trying to
2199          * do another fixup. When the fixup has been done already we
2200          * simply return.
2201          */
2202 handle_fault:
2203         spin_unlock(q->lock_ptr);
2204
2205         ret = fault_in_user_writeable(uaddr);
2206
2207         spin_lock(q->lock_ptr);
2208
2209         /*
2210          * Check if someone else fixed it for us:
2211          */
2212         if (pi_state->owner != oldowner)
2213                 return 0;
2214
2215         if (ret)
2216                 return ret;
2217
2218         goto retry;
2219 }
2220
2221 static long futex_wait_restart(struct restart_block *restart);
2222
2223 /**
2224  * fixup_owner() - Post lock pi_state and corner case management
2225  * @uaddr:      user address of the futex
2226  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2227  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2228  *
2229  * After attempting to lock an rt_mutex, this function is called to cleanup
2230  * the pi_state owner as well as handle race conditions that may allow us to
2231  * acquire the lock. Must be called with the hb lock held.
2232  *
2233  * Return:
2234  *  1 - success, lock taken;
2235  *  0 - success, lock not taken;
2236  * <0 - on error (-EFAULT)
2237  */
2238 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2239 {
2240         struct task_struct *owner;
2241         int ret = 0;
2242
2243         if (locked) {
2244                 /*
2245                  * Got the lock. We might not be the anticipated owner if we
2246                  * did a lock-steal - fix up the PI-state in that case:
2247                  */
2248                 if (q->pi_state->owner != current)
2249                         ret = fixup_pi_state_owner(uaddr, q, current);
2250                 goto out;
2251         }
2252
2253         /*
2254          * Catch the rare case, where the lock was released when we were on the
2255          * way back before we locked the hash bucket.
2256          */
2257         if (q->pi_state->owner == current) {
2258                 /*
2259                  * Try to get the rt_mutex now. This might fail as some other
2260                  * task acquired the rt_mutex after we removed ourself from the
2261                  * rt_mutex waiters list.
2262                  */
2263                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2264                         locked = 1;
2265                         goto out;
2266                 }
2267
2268                 /*
2269                  * pi_state is incorrect, some other task did a lock steal and
2270                  * we returned due to timeout or signal without taking the
2271                  * rt_mutex. Too late.
2272                  */
2273                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2274                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2275                 if (!owner)
2276                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2277                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2278                 ret = fixup_pi_state_owner(uaddr, q, owner);
2279                 goto out;
2280         }
2281
2282         /*
2283          * Paranoia check. If we did not take the lock, then we should not be
2284          * the owner of the rt_mutex.
2285          */
2286         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2287                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2288                                 "pi-state %p\n", ret,
2289                                 q->pi_state->pi_mutex.owner,
2290                                 q->pi_state->owner);
2291
2292 out:
2293         return ret ? ret : locked;
2294 }
2295
2296 /**
2297  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2298  * @hb:         the futex hash bucket, must be locked by the caller
2299  * @q:          the futex_q to queue up on
2300  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2301  */
2302 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2303                                 struct hrtimer_sleeper *timeout)
2304 {
2305         /*
2306          * The task state is guaranteed to be set before another task can
2307          * wake it. set_current_state() is implemented using smp_store_mb() and
2308          * queue_me() calls spin_unlock() upon completion, both serializing
2309          * access to the hash list and forcing another memory barrier.
2310          */
2311         set_current_state(TASK_INTERRUPTIBLE);
2312         queue_me(q, hb);
2313
2314         /* Arm the timer */
2315         if (timeout)
2316                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2317
2318         /*
2319          * If we have been removed from the hash list, then another task
2320          * has tried to wake us, and we can skip the call to schedule().
2321          */
2322         if (likely(!plist_node_empty(&q->list))) {
2323                 /*
2324                  * If the timer has already expired, current will already be
2325                  * flagged for rescheduling. Only call schedule if there
2326                  * is no timeout, or if it has yet to expire.
2327                  */
2328                 if (!timeout || timeout->task)
2329                         freezable_schedule();
2330         }
2331         __set_current_state(TASK_RUNNING);
2332 }
2333
2334 /**
2335  * futex_wait_setup() - Prepare to wait on a futex
2336  * @uaddr:      the futex userspace address
2337  * @val:        the expected value
2338  * @flags:      futex flags (FLAGS_SHARED, etc.)
2339  * @q:          the associated futex_q
2340  * @hb:         storage for hash_bucket pointer to be returned to caller
2341  *
2342  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2343  * compare it with the expected value.  Handle atomic faults internally.
2344  * Return with the hb lock held and a q.key reference on success, and unlocked
2345  * with no q.key reference on failure.
2346  *
2347  * Return:
2348  *  0 - uaddr contains val and hb has been locked;
2349  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2350  */
2351 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2352                            struct futex_q *q, struct futex_hash_bucket **hb)
2353 {
2354         u32 uval;
2355         int ret;
2356
2357         /*
2358          * Access the page AFTER the hash-bucket is locked.
2359          * Order is important:
2360          *
2361          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2362          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2363          *
2364          * The basic logical guarantee of a futex is that it blocks ONLY
2365          * if cond(var) is known to be true at the time of blocking, for
2366          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2367          * would open a race condition where we could block indefinitely with
2368          * cond(var) false, which would violate the guarantee.
2369          *
2370          * On the other hand, we insert q and release the hash-bucket only
2371          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2372          * absorb a wakeup if *uaddr does not match the desired values
2373          * while the syscall executes.
2374          */
2375 retry:
2376         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2377         if (unlikely(ret != 0))
2378                 return ret;
2379
2380 retry_private:
2381         *hb = queue_lock(q);
2382
2383         ret = get_futex_value_locked(&uval, uaddr);
2384
2385         if (ret) {
2386                 queue_unlock(*hb);
2387
2388                 ret = get_user(uval, uaddr);
2389                 if (ret)
2390                         goto out;
2391
2392                 if (!(flags & FLAGS_SHARED))
2393                         goto retry_private;
2394
2395                 put_futex_key(&q->key);
2396                 goto retry;
2397         }
2398
2399         if (uval != val) {
2400                 queue_unlock(*hb);
2401                 ret = -EWOULDBLOCK;
2402         }
2403
2404 out:
2405         if (ret)
2406                 put_futex_key(&q->key);
2407         return ret;
2408 }
2409
2410 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2411                       ktime_t *abs_time, u32 bitset)
2412 {
2413         struct hrtimer_sleeper timeout, *to = NULL;
2414         struct restart_block *restart;
2415         struct futex_hash_bucket *hb;
2416         struct futex_q q = futex_q_init;
2417         int ret;
2418
2419         if (!bitset)
2420                 return -EINVAL;
2421         q.bitset = bitset;
2422
2423         if (abs_time) {
2424                 to = &timeout;
2425
2426                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2427                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2428                                       HRTIMER_MODE_ABS);
2429                 hrtimer_init_sleeper(to, current);
2430                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2431                                              current->timer_slack_ns);
2432         }
2433
2434 retry:
2435         /*
2436          * Prepare to wait on uaddr. On success, holds hb lock and increments
2437          * q.key refs.
2438          */
2439         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2440         if (ret)
2441                 goto out;
2442
2443         /* queue_me and wait for wakeup, timeout, or a signal. */
2444         futex_wait_queue_me(hb, &q, to);
2445
2446         /* If we were woken (and unqueued), we succeeded, whatever. */
2447         ret = 0;
2448         /* unqueue_me() drops q.key ref */
2449         if (!unqueue_me(&q))
2450                 goto out;
2451         ret = -ETIMEDOUT;
2452         if (to && !to->task)
2453                 goto out;
2454
2455         /*
2456          * We expect signal_pending(current), but we might be the
2457          * victim of a spurious wakeup as well.
2458          */
2459         if (!signal_pending(current))
2460                 goto retry;
2461
2462         ret = -ERESTARTSYS;
2463         if (!abs_time)
2464                 goto out;
2465
2466         restart = &current->restart_block;
2467         restart->fn = futex_wait_restart;
2468         restart->futex.uaddr = uaddr;
2469         restart->futex.val = val;
2470         restart->futex.time = abs_time->tv64;
2471         restart->futex.bitset = bitset;
2472         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2473
2474         ret = -ERESTART_RESTARTBLOCK;
2475
2476 out:
2477         if (to) {
2478                 hrtimer_cancel(&to->timer);
2479                 destroy_hrtimer_on_stack(&to->timer);
2480         }
2481         return ret;
2482 }
2483
2484
2485 static long futex_wait_restart(struct restart_block *restart)
2486 {
2487         u32 __user *uaddr = restart->futex.uaddr;
2488         ktime_t t, *tp = NULL;
2489
2490         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2491                 t.tv64 = restart->futex.time;
2492                 tp = &t;
2493         }
2494         restart->fn = do_no_restart_syscall;
2495
2496         return (long)futex_wait(uaddr, restart->futex.flags,
2497                                 restart->futex.val, tp, restart->futex.bitset);
2498 }
2499
2500
2501 /*
2502  * Userspace tried a 0 -> TID atomic transition of the futex value
2503  * and failed. The kernel side here does the whole locking operation:
2504  * if there are waiters then it will block as a consequence of relying
2505  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2506  * a 0 value of the futex too.).
2507  *
2508  * Also serves as futex trylock_pi()'ing, and due semantics.
2509  */
2510 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2511                          ktime_t *time, int trylock)
2512 {
2513         struct hrtimer_sleeper timeout, *to = NULL;
2514         struct futex_hash_bucket *hb;
2515         struct futex_q q = futex_q_init;
2516         int res, ret;
2517
2518         if (refill_pi_state_cache())
2519                 return -ENOMEM;
2520
2521         if (time) {
2522                 to = &timeout;
2523                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2524                                       HRTIMER_MODE_ABS);
2525                 hrtimer_init_sleeper(to, current);
2526                 hrtimer_set_expires(&to->timer, *time);
2527         }
2528
2529 retry:
2530         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2531         if (unlikely(ret != 0))
2532                 goto out;
2533
2534 retry_private:
2535         hb = queue_lock(&q);
2536
2537         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2538         if (unlikely(ret)) {
2539                 /*
2540                  * Atomic work succeeded and we got the lock,
2541                  * or failed. Either way, we do _not_ block.
2542                  */
2543                 switch (ret) {
2544                 case 1:
2545                         /* We got the lock. */
2546                         ret = 0;
2547                         goto out_unlock_put_key;
2548                 case -EFAULT:
2549                         goto uaddr_faulted;
2550                 case -EAGAIN:
2551                         /*
2552                          * Two reasons for this:
2553                          * - Task is exiting and we just wait for the
2554                          *   exit to complete.
2555                          * - The user space value changed.
2556                          */
2557                         queue_unlock(hb);
2558                         put_futex_key(&q.key);
2559                         cond_resched();
2560                         goto retry;
2561                 default:
2562                         goto out_unlock_put_key;
2563                 }
2564         }
2565
2566         /*
2567          * Only actually queue now that the atomic ops are done:
2568          */
2569         queue_me(&q, hb);
2570
2571         WARN_ON(!q.pi_state);
2572         /*
2573          * Block on the PI mutex:
2574          */
2575         if (!trylock) {
2576                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2577         } else {
2578                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2579                 /* Fixup the trylock return value: */
2580                 ret = ret ? 0 : -EWOULDBLOCK;
2581         }
2582
2583         spin_lock(q.lock_ptr);
2584         /*
2585          * Fixup the pi_state owner and possibly acquire the lock if we
2586          * haven't already.
2587          */
2588         res = fixup_owner(uaddr, &q, !ret);
2589         /*
2590          * If fixup_owner() returned an error, proprogate that.  If it acquired
2591          * the lock, clear our -ETIMEDOUT or -EINTR.
2592          */
2593         if (res)
2594                 ret = (res < 0) ? res : 0;
2595
2596         /*
2597          * If fixup_owner() faulted and was unable to handle the fault, unlock
2598          * it and return the fault to userspace.
2599          */
2600         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2601                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2602
2603         /* Unqueue and drop the lock */
2604         unqueue_me_pi(&q);
2605
2606         goto out_put_key;
2607
2608 out_unlock_put_key:
2609         queue_unlock(hb);
2610
2611 out_put_key:
2612         put_futex_key(&q.key);
2613 out:
2614         if (to)
2615                 destroy_hrtimer_on_stack(&to->timer);
2616         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2617
2618 uaddr_faulted:
2619         queue_unlock(hb);
2620
2621         ret = fault_in_user_writeable(uaddr);
2622         if (ret)
2623                 goto out_put_key;
2624
2625         if (!(flags & FLAGS_SHARED))
2626                 goto retry_private;
2627
2628         put_futex_key(&q.key);
2629         goto retry;
2630 }
2631
2632 /*
2633  * Userspace attempted a TID -> 0 atomic transition, and failed.
2634  * This is the in-kernel slowpath: we look up the PI state (if any),
2635  * and do the rt-mutex unlock.
2636  */
2637 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2638 {
2639         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2640         union futex_key key = FUTEX_KEY_INIT;
2641         struct futex_hash_bucket *hb;
2642         struct futex_q *match;
2643         int ret;
2644
2645 retry:
2646         if (get_user(uval, uaddr))
2647                 return -EFAULT;
2648         /*
2649          * We release only a lock we actually own:
2650          */
2651         if ((uval & FUTEX_TID_MASK) != vpid)
2652                 return -EPERM;
2653
2654         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2655         if (ret)
2656                 return ret;
2657
2658         hb = hash_futex(&key);
2659         spin_lock(&hb->lock);
2660
2661         /*
2662          * Check waiters first. We do not trust user space values at
2663          * all and we at least want to know if user space fiddled
2664          * with the futex value instead of blindly unlocking.
2665          */
2666         match = futex_top_waiter(hb, &key);
2667         if (match) {
2668                 ret = wake_futex_pi(uaddr, uval, match, hb);
2669                 /*
2670                  * In case of success wake_futex_pi dropped the hash
2671                  * bucket lock.
2672                  */
2673                 if (!ret)
2674                         goto out_putkey;
2675                 /*
2676                  * The atomic access to the futex value generated a
2677                  * pagefault, so retry the user-access and the wakeup:
2678                  */
2679                 if (ret == -EFAULT)
2680                         goto pi_faulted;
2681                 /*
2682                  * A unconditional UNLOCK_PI op raced against a waiter
2683                  * setting the FUTEX_WAITERS bit. Try again.
2684                  */
2685                 if (ret == -EAGAIN) {
2686                         spin_unlock(&hb->lock);
2687                         put_futex_key(&key);
2688                         goto retry;
2689                 }
2690                 /*
2691                  * wake_futex_pi has detected invalid state. Tell user
2692                  * space.
2693                  */
2694                 goto out_unlock;
2695         }
2696
2697         /*
2698          * We have no kernel internal state, i.e. no waiters in the
2699          * kernel. Waiters which are about to queue themselves are stuck
2700          * on hb->lock. So we can safely ignore them. We do neither
2701          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2702          * owner.
2703          */
2704         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2705                 goto pi_faulted;
2706
2707         /*
2708          * If uval has changed, let user space handle it.
2709          */
2710         ret = (curval == uval) ? 0 : -EAGAIN;
2711
2712 out_unlock:
2713         spin_unlock(&hb->lock);
2714 out_putkey:
2715         put_futex_key(&key);
2716         return ret;
2717
2718 pi_faulted:
2719         spin_unlock(&hb->lock);
2720         put_futex_key(&key);
2721
2722         ret = fault_in_user_writeable(uaddr);
2723         if (!ret)
2724                 goto retry;
2725
2726         return ret;
2727 }
2728
2729 /**
2730  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2731  * @hb:         the hash_bucket futex_q was original enqueued on
2732  * @q:          the futex_q woken while waiting to be requeued
2733  * @key2:       the futex_key of the requeue target futex
2734  * @timeout:    the timeout associated with the wait (NULL if none)
2735  *
2736  * Detect if the task was woken on the initial futex as opposed to the requeue
2737  * target futex.  If so, determine if it was a timeout or a signal that caused
2738  * the wakeup and return the appropriate error code to the caller.  Must be
2739  * called with the hb lock held.
2740  *
2741  * Return:
2742  *  0 = no early wakeup detected;
2743  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2744  */
2745 static inline
2746 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2747                                    struct futex_q *q, union futex_key *key2,
2748                                    struct hrtimer_sleeper *timeout)
2749 {
2750         int ret = 0;
2751
2752         /*
2753          * With the hb lock held, we avoid races while we process the wakeup.
2754          * We only need to hold hb (and not hb2) to ensure atomicity as the
2755          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2756          * It can't be requeued from uaddr2 to something else since we don't
2757          * support a PI aware source futex for requeue.
2758          */
2759         if (!match_futex(&q->key, key2)) {
2760                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2761                 /*
2762                  * We were woken prior to requeue by a timeout or a signal.
2763                  * Unqueue the futex_q and determine which it was.
2764                  */
2765                 plist_del(&q->list, &hb->chain);
2766                 hb_waiters_dec(hb);
2767
2768                 /* Handle spurious wakeups gracefully */
2769                 ret = -EWOULDBLOCK;
2770                 if (timeout && !timeout->task)
2771                         ret = -ETIMEDOUT;
2772                 else if (signal_pending(current))
2773                         ret = -ERESTARTNOINTR;
2774         }
2775         return ret;
2776 }
2777
2778 /**
2779  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2780  * @uaddr:      the futex we initially wait on (non-pi)
2781  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2782  *              the same type, no requeueing from private to shared, etc.
2783  * @val:        the expected value of uaddr
2784  * @abs_time:   absolute timeout
2785  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2786  * @uaddr2:     the pi futex we will take prior to returning to user-space
2787  *
2788  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2789  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2790  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2791  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2792  * without one, the pi logic would not know which task to boost/deboost, if
2793  * there was a need to.
2794  *
2795  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2796  * via the following--
2797  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2798  * 2) wakeup on uaddr2 after a requeue
2799  * 3) signal
2800  * 4) timeout
2801  *
2802  * If 3, cleanup and return -ERESTARTNOINTR.
2803  *
2804  * If 2, we may then block on trying to take the rt_mutex and return via:
2805  * 5) successful lock
2806  * 6) signal
2807  * 7) timeout
2808  * 8) other lock acquisition failure
2809  *
2810  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2811  *
2812  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2813  *
2814  * Return:
2815  *  0 - On success;
2816  * <0 - On error
2817  */
2818 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2819                                  u32 val, ktime_t *abs_time, u32 bitset,
2820                                  u32 __user *uaddr2)
2821 {
2822         struct hrtimer_sleeper timeout, *to = NULL;
2823         struct rt_mutex_waiter rt_waiter;
2824         struct futex_hash_bucket *hb;
2825         union futex_key key2 = FUTEX_KEY_INIT;
2826         struct futex_q q = futex_q_init;
2827         int res, ret;
2828
2829         if (uaddr == uaddr2)
2830                 return -EINVAL;
2831
2832         if (!bitset)
2833                 return -EINVAL;
2834
2835         if (abs_time) {
2836                 to = &timeout;
2837                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2838                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2839                                       HRTIMER_MODE_ABS);
2840                 hrtimer_init_sleeper(to, current);
2841                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2842                                              current->timer_slack_ns);
2843         }
2844
2845         /*
2846          * The waiter is allocated on our stack, manipulated by the requeue
2847          * code while we sleep on uaddr.
2848          */
2849         debug_rt_mutex_init_waiter(&rt_waiter);
2850         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2851         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2852         rt_waiter.task = NULL;
2853
2854         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2855         if (unlikely(ret != 0))
2856                 goto out;
2857
2858         q.bitset = bitset;
2859         q.rt_waiter = &rt_waiter;
2860         q.requeue_pi_key = &key2;
2861
2862         /*
2863          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2864          * count.
2865          */
2866         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2867         if (ret)
2868                 goto out_key2;
2869
2870         /*
2871          * The check above which compares uaddrs is not sufficient for
2872          * shared futexes. We need to compare the keys:
2873          */
2874         if (match_futex(&q.key, &key2)) {
2875                 queue_unlock(hb);
2876                 ret = -EINVAL;
2877                 goto out_put_keys;
2878         }
2879
2880         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2881         futex_wait_queue_me(hb, &q, to);
2882
2883         spin_lock(&hb->lock);
2884         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2885         spin_unlock(&hb->lock);
2886         if (ret)
2887                 goto out_put_keys;
2888
2889         /*
2890          * In order for us to be here, we know our q.key == key2, and since
2891          * we took the hb->lock above, we also know that futex_requeue() has
2892          * completed and we no longer have to concern ourselves with a wakeup
2893          * race with the atomic proxy lock acquisition by the requeue code. The
2894          * futex_requeue dropped our key1 reference and incremented our key2
2895          * reference count.
2896          */
2897
2898         /* Check if the requeue code acquired the second futex for us. */
2899         if (!q.rt_waiter) {
2900                 /*
2901                  * Got the lock. We might not be the anticipated owner if we
2902                  * did a lock-steal - fix up the PI-state in that case.
2903                  */
2904                 if (q.pi_state && (q.pi_state->owner != current)) {
2905                         spin_lock(q.lock_ptr);
2906                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2907                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2908                                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2909                         /*
2910                          * Drop the reference to the pi state which
2911                          * the requeue_pi() code acquired for us.
2912                          */
2913                         free_pi_state(q.pi_state);
2914                         spin_unlock(q.lock_ptr);
2915                 }
2916         } else {
2917                 struct rt_mutex *pi_mutex;
2918
2919                 /*
2920                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2921                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2922                  * the pi_state.
2923                  */
2924                 WARN_ON(!q.pi_state);
2925                 pi_mutex = &q.pi_state->pi_mutex;
2926                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
2927
2928                 spin_lock(q.lock_ptr);
2929                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
2930                         ret = 0;
2931
2932                 debug_rt_mutex_free_waiter(&rt_waiter);
2933                 /*
2934                  * Fixup the pi_state owner and possibly acquire the lock if we
2935                  * haven't already.
2936                  */
2937                 res = fixup_owner(uaddr2, &q, !ret);
2938                 /*
2939                  * If fixup_owner() returned an error, proprogate that.  If it
2940                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2941                  */
2942                 if (res)
2943                         ret = (res < 0) ? res : 0;
2944
2945                 /*
2946                  * If fixup_pi_state_owner() faulted and was unable to handle
2947                  * the fault, unlock the rt_mutex and return the fault to
2948                  * userspace.
2949                  */
2950                 if (ret && rt_mutex_owner(pi_mutex) == current)
2951                         rt_mutex_unlock(pi_mutex);
2952
2953                 /* Unqueue and drop the lock. */
2954                 unqueue_me_pi(&q);
2955         }
2956
2957         if (ret == -EINTR) {
2958                 /*
2959                  * We've already been requeued, but cannot restart by calling
2960                  * futex_lock_pi() directly. We could restart this syscall, but
2961                  * it would detect that the user space "val" changed and return
2962                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2963                  * -EWOULDBLOCK directly.
2964                  */
2965                 ret = -EWOULDBLOCK;
2966         }
2967
2968 out_put_keys:
2969         put_futex_key(&q.key);
2970 out_key2:
2971         put_futex_key(&key2);
2972
2973 out:
2974         if (to) {
2975                 hrtimer_cancel(&to->timer);
2976                 destroy_hrtimer_on_stack(&to->timer);
2977         }
2978         return ret;
2979 }
2980
2981 /*
2982  * Support for robust futexes: the kernel cleans up held futexes at
2983  * thread exit time.
2984  *
2985  * Implementation: user-space maintains a per-thread list of locks it
2986  * is holding. Upon do_exit(), the kernel carefully walks this list,
2987  * and marks all locks that are owned by this thread with the
2988  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2989  * always manipulated with the lock held, so the list is private and
2990  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2991  * field, to allow the kernel to clean up if the thread dies after
2992  * acquiring the lock, but just before it could have added itself to
2993  * the list. There can only be one such pending lock.
2994  */
2995
2996 /**
2997  * sys_set_robust_list() - Set the robust-futex list head of a task
2998  * @head:       pointer to the list-head
2999  * @len:        length of the list-head, as userspace expects
3000  */
3001 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3002                 size_t, len)
3003 {
3004         if (!futex_cmpxchg_enabled)
3005                 return -ENOSYS;
3006         /*
3007          * The kernel knows only one size for now:
3008          */
3009         if (unlikely(len != sizeof(*head)))
3010                 return -EINVAL;
3011
3012         current->robust_list = head;
3013
3014         return 0;
3015 }
3016
3017 /**
3018  * sys_get_robust_list() - Get the robust-futex list head of a task
3019  * @pid:        pid of the process [zero for current task]
3020  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3021  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3022  */
3023 SYSCALL_DEFINE3(get_robust_list, int, pid,
3024                 struct robust_list_head __user * __user *, head_ptr,
3025                 size_t __user *, len_ptr)
3026 {
3027         struct robust_list_head __user *head;
3028         unsigned long ret;
3029         struct task_struct *p;
3030
3031         if (!futex_cmpxchg_enabled)
3032                 return -ENOSYS;
3033
3034         rcu_read_lock();
3035
3036         ret = -ESRCH;
3037         if (!pid)
3038                 p = current;
3039         else {
3040                 p = find_task_by_vpid(pid);
3041                 if (!p)
3042                         goto err_unlock;
3043         }
3044
3045         ret = -EPERM;
3046         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3047                 goto err_unlock;
3048
3049         head = p->robust_list;
3050         rcu_read_unlock();
3051
3052         if (put_user(sizeof(*head), len_ptr))
3053                 return -EFAULT;
3054         return put_user(head, head_ptr);
3055
3056 err_unlock:
3057         rcu_read_unlock();
3058
3059         return ret;
3060 }
3061
3062 /*
3063  * Process a futex-list entry, check whether it's owned by the
3064  * dying task, and do notification if so:
3065  */
3066 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3067 {
3068         u32 uval, uninitialized_var(nval), mval;
3069
3070 retry:
3071         if (get_user(uval, uaddr))
3072                 return -1;
3073
3074         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3075                 /*
3076                  * Ok, this dying thread is truly holding a futex
3077                  * of interest. Set the OWNER_DIED bit atomically
3078                  * via cmpxchg, and if the value had FUTEX_WAITERS
3079                  * set, wake up a waiter (if any). (We have to do a
3080                  * futex_wake() even if OWNER_DIED is already set -
3081                  * to handle the rare but possible case of recursive
3082                  * thread-death.) The rest of the cleanup is done in
3083                  * userspace.
3084                  */
3085                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3086                 /*
3087                  * We are not holding a lock here, but we want to have
3088                  * the pagefault_disable/enable() protection because
3089                  * we want to handle the fault gracefully. If the
3090                  * access fails we try to fault in the futex with R/W
3091                  * verification via get_user_pages. get_user() above
3092                  * does not guarantee R/W access. If that fails we
3093                  * give up and leave the futex locked.
3094                  */
3095                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3096                         if (fault_in_user_writeable(uaddr))
3097                                 return -1;
3098                         goto retry;
3099                 }
3100                 if (nval != uval)
3101                         goto retry;
3102
3103                 /*
3104                  * Wake robust non-PI futexes here. The wakeup of
3105                  * PI futexes happens in exit_pi_state():
3106                  */
3107                 if (!pi && (uval & FUTEX_WAITERS))
3108                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3109         }
3110         return 0;
3111 }
3112
3113 /*
3114  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3115  */
3116 static inline int fetch_robust_entry(struct robust_list __user **entry,
3117                                      struct robust_list __user * __user *head,
3118                                      unsigned int *pi)
3119 {
3120         unsigned long uentry;
3121
3122         if (get_user(uentry, (unsigned long __user *)head))
3123                 return -EFAULT;
3124
3125         *entry = (void __user *)(uentry & ~1UL);
3126         *pi = uentry & 1;
3127
3128         return 0;
3129 }
3130
3131 /*
3132  * Walk curr->robust_list (very carefully, it's a userspace list!)
3133  * and mark any locks found there dead, and notify any waiters.
3134  *
3135  * We silently return on any sign of list-walking problem.
3136  */
3137 void exit_robust_list(struct task_struct *curr)
3138 {
3139         struct robust_list_head __user *head = curr->robust_list;
3140         struct robust_list __user *entry, *next_entry, *pending;
3141         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3142         unsigned int uninitialized_var(next_pi);
3143         unsigned long futex_offset;
3144         int rc;
3145
3146         if (!futex_cmpxchg_enabled)
3147                 return;
3148
3149         /*
3150          * Fetch the list head (which was registered earlier, via
3151          * sys_set_robust_list()):
3152          */
3153         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3154                 return;
3155         /*
3156          * Fetch the relative futex offset:
3157          */
3158         if (get_user(futex_offset, &head->futex_offset))
3159                 return;
3160         /*
3161          * Fetch any possibly pending lock-add first, and handle it
3162          * if it exists:
3163          */
3164         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3165                 return;
3166
3167         next_entry = NULL;      /* avoid warning with gcc */
3168         while (entry != &head->list) {
3169                 /*
3170                  * Fetch the next entry in the list before calling
3171                  * handle_futex_death:
3172                  */
3173                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3174                 /*
3175                  * A pending lock might already be on the list, so
3176                  * don't process it twice:
3177                  */
3178                 if (entry != pending)
3179                         if (handle_futex_death((void __user *)entry + futex_offset,
3180                                                 curr, pi))
3181                                 return;
3182                 if (rc)
3183                         return;
3184                 entry = next_entry;
3185                 pi = next_pi;
3186                 /*
3187                  * Avoid excessively long or circular lists:
3188                  */
3189                 if (!--limit)
3190                         break;
3191
3192                 cond_resched();
3193         }
3194
3195         if (pending)
3196                 handle_futex_death((void __user *)pending + futex_offset,
3197                                    curr, pip);
3198 }
3199
3200 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3201                 u32 __user *uaddr2, u32 val2, u32 val3)
3202 {
3203         int cmd = op & FUTEX_CMD_MASK;
3204         unsigned int flags = 0;
3205
3206         if (!(op & FUTEX_PRIVATE_FLAG))
3207                 flags |= FLAGS_SHARED;
3208
3209         if (op & FUTEX_CLOCK_REALTIME) {
3210                 flags |= FLAGS_CLOCKRT;
3211                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3212                         return -ENOSYS;
3213         }
3214
3215         switch (cmd) {
3216         case FUTEX_LOCK_PI:
3217         case FUTEX_UNLOCK_PI:
3218         case FUTEX_TRYLOCK_PI:
3219         case FUTEX_WAIT_REQUEUE_PI:
3220         case FUTEX_CMP_REQUEUE_PI:
3221                 if (!futex_cmpxchg_enabled)
3222                         return -ENOSYS;
3223         }
3224
3225         switch (cmd) {
3226         case FUTEX_WAIT:
3227                 val3 = FUTEX_BITSET_MATCH_ANY;
3228         case FUTEX_WAIT_BITSET:
3229                 return futex_wait(uaddr, flags, val, timeout, val3);
3230         case FUTEX_WAKE:
3231                 val3 = FUTEX_BITSET_MATCH_ANY;
3232         case FUTEX_WAKE_BITSET:
3233                 return futex_wake(uaddr, flags, val, val3);
3234         case FUTEX_REQUEUE:
3235                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3236         case FUTEX_CMP_REQUEUE:
3237                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3238         case FUTEX_WAKE_OP:
3239                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3240         case FUTEX_LOCK_PI:
3241                 return futex_lock_pi(uaddr, flags, timeout, 0);
3242         case FUTEX_UNLOCK_PI:
3243                 return futex_unlock_pi(uaddr, flags);
3244         case FUTEX_TRYLOCK_PI:
3245                 return futex_lock_pi(uaddr, flags, NULL, 1);
3246         case FUTEX_WAIT_REQUEUE_PI:
3247                 val3 = FUTEX_BITSET_MATCH_ANY;
3248                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3249                                              uaddr2);
3250         case FUTEX_CMP_REQUEUE_PI:
3251                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3252         }
3253         return -ENOSYS;
3254 }
3255
3256
3257 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3258                 struct timespec __user *, utime, u32 __user *, uaddr2,
3259                 u32, val3)
3260 {
3261         struct timespec ts;
3262         ktime_t t, *tp = NULL;
3263         u32 val2 = 0;
3264         int cmd = op & FUTEX_CMD_MASK;
3265
3266         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3267                       cmd == FUTEX_WAIT_BITSET ||
3268                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3269                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3270                         return -EFAULT;
3271                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3272                         return -EFAULT;
3273                 if (!timespec_valid(&ts))
3274                         return -EINVAL;
3275
3276                 t = timespec_to_ktime(ts);
3277                 if (cmd == FUTEX_WAIT)
3278                         t = ktime_add_safe(ktime_get(), t);
3279                 tp = &t;
3280         }
3281         /*
3282          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3283          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3284          */
3285         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3286             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3287                 val2 = (u32) (unsigned long) utime;
3288
3289         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3290 }
3291
3292 static void __init futex_detect_cmpxchg(void)
3293 {
3294 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3295         u32 curval;
3296
3297         /*
3298          * This will fail and we want it. Some arch implementations do
3299          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3300          * functionality. We want to know that before we call in any
3301          * of the complex code paths. Also we want to prevent
3302          * registration of robust lists in that case. NULL is
3303          * guaranteed to fault and we get -EFAULT on functional
3304          * implementation, the non-functional ones will return
3305          * -ENOSYS.
3306          */
3307         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3308                 futex_cmpxchg_enabled = 1;
3309 #endif
3310 }
3311
3312 static int __init futex_init(void)
3313 {
3314         unsigned int futex_shift;
3315         unsigned long i;
3316
3317 #if CONFIG_BASE_SMALL
3318         futex_hashsize = 16;
3319 #else
3320         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3321 #endif
3322
3323         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3324                                                futex_hashsize, 0,
3325                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3326                                                &futex_shift, NULL,
3327                                                futex_hashsize, futex_hashsize);
3328         futex_hashsize = 1UL << futex_shift;
3329
3330         futex_detect_cmpxchg();
3331
3332         for (i = 0; i < futex_hashsize; i++) {
3333                 atomic_set(&futex_queues[i].waiters, 0);
3334                 plist_head_init(&futex_queues[i].chain);
3335                 spin_lock_init(&futex_queues[i].lock);
3336         }
3337
3338         return 0;
3339 }
3340 core_initcall(futex_init);