OSDN Git Service

powerpc/fsl: set fsl,i2c-erratum-a004447 flag for P1010 i2c controllers
[android-x86/kernel.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         lockdep_assert_held(&text_mutex);
487         /*
488          * The optimization/unoptimization refers online_cpus via
489          * stop_machine() and cpu-hotplug modifies online_cpus.
490          * And same time, text_mutex will be held in cpu-hotplug and here.
491          * This combination can cause a deadlock (cpu-hotplug try to lock
492          * text_mutex but stop_machine can not be done because online_cpus
493          * has been changed)
494          * To avoid this deadlock, caller must have locked cpu hotplug
495          * for preventing cpu-hotplug outside of text_mutex locking.
496          */
497         lockdep_assert_cpus_held();
498
499         /* Optimization never be done when disarmed */
500         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501             list_empty(&optimizing_list))
502                 return;
503
504         arch_optimize_kprobes(&optimizing_list);
505 }
506
507 /*
508  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509  * if need) kprobes listed on unoptimizing_list.
510  */
511 static void do_unoptimize_kprobes(void)
512 {
513         struct optimized_kprobe *op, *tmp;
514
515         lockdep_assert_held(&text_mutex);
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524         /* Loop free_list for disarming */
525         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526                 /* Switching from detour code to origin */
527                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528                 /* Disarm probes if marked disabled */
529                 if (kprobe_disabled(&op->kp))
530                         arch_disarm_kprobe(&op->kp);
531                 if (kprobe_unused(&op->kp)) {
532                         /*
533                          * Remove unused probes from hash list. After waiting
534                          * for synchronization, these probes are reclaimed.
535                          * (reclaiming is done by do_free_cleaned_kprobes.)
536                          */
537                         hlist_del_rcu(&op->kp.hlist);
538                 } else
539                         list_del_init(&op->list);
540         }
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 list_del_init(&op->list);
550                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551                         /*
552                          * This must not happen, but if there is a kprobe
553                          * still in use, keep it on kprobes hash list.
554                          */
555                         continue;
556                 }
557                 free_aggr_kprobe(&op->kp);
558         }
559 }
560
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570         mutex_lock(&kprobe_mutex);
571         cpus_read_lock();
572         mutex_lock(&text_mutex);
573         /* Lock modules while optimizing kprobes */
574         mutex_lock(&module_mutex);
575
576         /*
577          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578          * kprobes before waiting for quiesence period.
579          */
580         do_unoptimize_kprobes();
581
582         /*
583          * Step 2: Wait for quiesence period to ensure all potentially
584          * preempted tasks to have normally scheduled. Because optprobe
585          * may modify multiple instructions, there is a chance that Nth
586          * instruction is preempted. In that case, such tasks can return
587          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588          * Note that on non-preemptive kernel, this is transparently converted
589          * to synchronoze_sched() to wait for all interrupts to have completed.
590          */
591         synchronize_rcu_tasks();
592
593         /* Step 3: Optimize kprobes after quiesence period */
594         do_optimize_kprobes();
595
596         /* Step 4: Free cleaned kprobes after quiesence period */
597         do_free_cleaned_kprobes();
598
599         mutex_unlock(&module_mutex);
600         mutex_unlock(&text_mutex);
601         cpus_read_unlock();
602
603         /* Step 5: Kick optimizer again if needed */
604         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
605                 kick_kprobe_optimizer();
606
607         mutex_unlock(&kprobe_mutex);
608 }
609
610 /* Wait for completing optimization and unoptimization */
611 void wait_for_kprobe_optimizer(void)
612 {
613         mutex_lock(&kprobe_mutex);
614
615         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
616                 mutex_unlock(&kprobe_mutex);
617
618                 /* this will also make optimizing_work execute immmediately */
619                 flush_delayed_work(&optimizing_work);
620                 /* @optimizing_work might not have been queued yet, relax */
621                 cpu_relax();
622
623                 mutex_lock(&kprobe_mutex);
624         }
625
626         mutex_unlock(&kprobe_mutex);
627 }
628
629 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
630 {
631         struct optimized_kprobe *_op;
632
633         list_for_each_entry(_op, &unoptimizing_list, list) {
634                 if (op == _op)
635                         return true;
636         }
637
638         return false;
639 }
640
641 /* Optimize kprobe if p is ready to be optimized */
642 static void optimize_kprobe(struct kprobe *p)
643 {
644         struct optimized_kprobe *op;
645
646         /* Check if the kprobe is disabled or not ready for optimization. */
647         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
648             (kprobe_disabled(p) || kprobes_all_disarmed))
649                 return;
650
651         /* kprobes with post_handler can not be optimized */
652         if (p->post_handler)
653                 return;
654
655         op = container_of(p, struct optimized_kprobe, kp);
656
657         /* Check there is no other kprobes at the optimized instructions */
658         if (arch_check_optimized_kprobe(op) < 0)
659                 return;
660
661         /* Check if it is already optimized. */
662         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
663                 if (optprobe_queued_unopt(op)) {
664                         /* This is under unoptimizing. Just dequeue the probe */
665                         list_del_init(&op->list);
666                 }
667                 return;
668         }
669         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
670
671         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
672         if (WARN_ON_ONCE(!list_empty(&op->list)))
673                 return;
674
675         list_add(&op->list, &optimizing_list);
676         kick_kprobe_optimizer();
677 }
678
679 /* Short cut to direct unoptimizing */
680 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
681 {
682         lockdep_assert_cpus_held();
683         arch_unoptimize_kprobe(op);
684         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685         if (kprobe_disabled(&op->kp))
686                 arch_disarm_kprobe(&op->kp);
687 }
688
689 /* Unoptimize a kprobe if p is optimized */
690 static void unoptimize_kprobe(struct kprobe *p, bool force)
691 {
692         struct optimized_kprobe *op;
693
694         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
695                 return; /* This is not an optprobe nor optimized */
696
697         op = container_of(p, struct optimized_kprobe, kp);
698         if (!kprobe_optimized(p))
699                 return;
700
701         if (!list_empty(&op->list)) {
702                 if (optprobe_queued_unopt(op)) {
703                         /* Queued in unoptimizing queue */
704                         if (force) {
705                                 /*
706                                  * Forcibly unoptimize the kprobe here, and queue it
707                                  * in the freeing list for release afterwards.
708                                  */
709                                 force_unoptimize_kprobe(op);
710                                 list_move(&op->list, &freeing_list);
711                         }
712                 } else {
713                         /* Dequeue from the optimizing queue */
714                         list_del_init(&op->list);
715                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
716                 }
717                 return;
718         }
719
720         /* Optimized kprobe case */
721         if (force) {
722                 /* Forcibly update the code: this is a special case */
723                 force_unoptimize_kprobe(op);
724         } else {
725                 list_add(&op->list, &unoptimizing_list);
726                 kick_kprobe_optimizer();
727         }
728 }
729
730 /* Cancel unoptimizing for reusing */
731 static int reuse_unused_kprobe(struct kprobe *ap)
732 {
733         struct optimized_kprobe *op;
734
735         BUG_ON(!kprobe_unused(ap));
736         /*
737          * Unused kprobe MUST be on the way of delayed unoptimizing (means
738          * there is still a relative jump) and disabled.
739          */
740         op = container_of(ap, struct optimized_kprobe, kp);
741         WARN_ON_ONCE(list_empty(&op->list));
742         /* Enable the probe again */
743         ap->flags &= ~KPROBE_FLAG_DISABLED;
744         /* Optimize it again (remove from op->list) */
745         if (!kprobe_optready(ap))
746                 return -EINVAL;
747
748         optimize_kprobe(ap);
749         return 0;
750 }
751
752 /* Remove optimized instructions */
753 static void kill_optimized_kprobe(struct kprobe *p)
754 {
755         struct optimized_kprobe *op;
756
757         op = container_of(p, struct optimized_kprobe, kp);
758         if (!list_empty(&op->list))
759                 /* Dequeue from the (un)optimization queue */
760                 list_del_init(&op->list);
761         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
762
763         if (kprobe_unused(p)) {
764                 /* Enqueue if it is unused */
765                 list_add(&op->list, &freeing_list);
766                 /*
767                  * Remove unused probes from the hash list. After waiting
768                  * for synchronization, this probe is reclaimed.
769                  * (reclaiming is done by do_free_cleaned_kprobes().)
770                  */
771                 hlist_del_rcu(&op->kp.hlist);
772         }
773
774         /* Don't touch the code, because it is already freed. */
775         arch_remove_optimized_kprobe(op);
776 }
777
778 static inline
779 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
780 {
781         if (!kprobe_ftrace(p))
782                 arch_prepare_optimized_kprobe(op, p);
783 }
784
785 /* Try to prepare optimized instructions */
786 static void prepare_optimized_kprobe(struct kprobe *p)
787 {
788         struct optimized_kprobe *op;
789
790         op = container_of(p, struct optimized_kprobe, kp);
791         __prepare_optimized_kprobe(op, p);
792 }
793
794 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
795 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
796 {
797         struct optimized_kprobe *op;
798
799         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
800         if (!op)
801                 return NULL;
802
803         INIT_LIST_HEAD(&op->list);
804         op->kp.addr = p->addr;
805         __prepare_optimized_kprobe(op, p);
806
807         return &op->kp;
808 }
809
810 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
811
812 /*
813  * Prepare an optimized_kprobe and optimize it
814  * NOTE: p must be a normal registered kprobe
815  */
816 static void try_to_optimize_kprobe(struct kprobe *p)
817 {
818         struct kprobe *ap;
819         struct optimized_kprobe *op;
820
821         /* Impossible to optimize ftrace-based kprobe */
822         if (kprobe_ftrace(p))
823                 return;
824
825         /* For preparing optimization, jump_label_text_reserved() is called */
826         cpus_read_lock();
827         jump_label_lock();
828         mutex_lock(&text_mutex);
829
830         ap = alloc_aggr_kprobe(p);
831         if (!ap)
832                 goto out;
833
834         op = container_of(ap, struct optimized_kprobe, kp);
835         if (!arch_prepared_optinsn(&op->optinsn)) {
836                 /* If failed to setup optimizing, fallback to kprobe */
837                 arch_remove_optimized_kprobe(op);
838                 kfree(op);
839                 goto out;
840         }
841
842         init_aggr_kprobe(ap, p);
843         optimize_kprobe(ap);    /* This just kicks optimizer thread */
844
845 out:
846         mutex_unlock(&text_mutex);
847         jump_label_unlock();
848         cpus_read_unlock();
849 }
850
851 #ifdef CONFIG_SYSCTL
852 static void optimize_all_kprobes(void)
853 {
854         struct hlist_head *head;
855         struct kprobe *p;
856         unsigned int i;
857
858         mutex_lock(&kprobe_mutex);
859         /* If optimization is already allowed, just return */
860         if (kprobes_allow_optimization)
861                 goto out;
862
863         cpus_read_lock();
864         kprobes_allow_optimization = true;
865         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
866                 head = &kprobe_table[i];
867                 hlist_for_each_entry_rcu(p, head, hlist)
868                         if (!kprobe_disabled(p))
869                                 optimize_kprobe(p);
870         }
871         cpus_read_unlock();
872         printk(KERN_INFO "Kprobes globally optimized\n");
873 out:
874         mutex_unlock(&kprobe_mutex);
875 }
876
877 static void unoptimize_all_kprobes(void)
878 {
879         struct hlist_head *head;
880         struct kprobe *p;
881         unsigned int i;
882
883         mutex_lock(&kprobe_mutex);
884         /* If optimization is already prohibited, just return */
885         if (!kprobes_allow_optimization) {
886                 mutex_unlock(&kprobe_mutex);
887                 return;
888         }
889
890         cpus_read_lock();
891         kprobes_allow_optimization = false;
892         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
893                 head = &kprobe_table[i];
894                 hlist_for_each_entry_rcu(p, head, hlist) {
895                         if (!kprobe_disabled(p))
896                                 unoptimize_kprobe(p, false);
897                 }
898         }
899         cpus_read_unlock();
900         mutex_unlock(&kprobe_mutex);
901
902         /* Wait for unoptimizing completion */
903         wait_for_kprobe_optimizer();
904         printk(KERN_INFO "Kprobes globally unoptimized\n");
905 }
906
907 static DEFINE_MUTEX(kprobe_sysctl_mutex);
908 int sysctl_kprobes_optimization;
909 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
910                                       void __user *buffer, size_t *length,
911                                       loff_t *ppos)
912 {
913         int ret;
914
915         mutex_lock(&kprobe_sysctl_mutex);
916         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
917         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
918
919         if (sysctl_kprobes_optimization)
920                 optimize_all_kprobes();
921         else
922                 unoptimize_all_kprobes();
923         mutex_unlock(&kprobe_sysctl_mutex);
924
925         return ret;
926 }
927 #endif /* CONFIG_SYSCTL */
928
929 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
930 static void __arm_kprobe(struct kprobe *p)
931 {
932         struct kprobe *_p;
933
934         /* Check collision with other optimized kprobes */
935         _p = get_optimized_kprobe((unsigned long)p->addr);
936         if (unlikely(_p))
937                 /* Fallback to unoptimized kprobe */
938                 unoptimize_kprobe(_p, true);
939
940         arch_arm_kprobe(p);
941         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
942 }
943
944 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
945 static void __disarm_kprobe(struct kprobe *p, bool reopt)
946 {
947         struct kprobe *_p;
948
949         /* Try to unoptimize */
950         unoptimize_kprobe(p, kprobes_all_disarmed);
951
952         if (!kprobe_queued(p)) {
953                 arch_disarm_kprobe(p);
954                 /* If another kprobe was blocked, optimize it. */
955                 _p = get_optimized_kprobe((unsigned long)p->addr);
956                 if (unlikely(_p) && reopt)
957                         optimize_kprobe(_p);
958         }
959         /* TODO: reoptimize others after unoptimized this probe */
960 }
961
962 #else /* !CONFIG_OPTPROBES */
963
964 #define optimize_kprobe(p)                      do {} while (0)
965 #define unoptimize_kprobe(p, f)                 do {} while (0)
966 #define kill_optimized_kprobe(p)                do {} while (0)
967 #define prepare_optimized_kprobe(p)             do {} while (0)
968 #define try_to_optimize_kprobe(p)               do {} while (0)
969 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
970 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
971 #define kprobe_disarmed(p)                      kprobe_disabled(p)
972 #define wait_for_kprobe_optimizer()             do {} while (0)
973
974 static int reuse_unused_kprobe(struct kprobe *ap)
975 {
976         /*
977          * If the optimized kprobe is NOT supported, the aggr kprobe is
978          * released at the same time that the last aggregated kprobe is
979          * unregistered.
980          * Thus there should be no chance to reuse unused kprobe.
981          */
982         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
983         return -EINVAL;
984 }
985
986 static void free_aggr_kprobe(struct kprobe *p)
987 {
988         arch_remove_kprobe(p);
989         kfree(p);
990 }
991
992 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
993 {
994         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
995 }
996 #endif /* CONFIG_OPTPROBES */
997
998 #ifdef CONFIG_KPROBES_ON_FTRACE
999 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1000         .func = kprobe_ftrace_handler,
1001         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1002 };
1003 static int kprobe_ftrace_enabled;
1004
1005 /* Must ensure p->addr is really on ftrace */
1006 static int prepare_kprobe(struct kprobe *p)
1007 {
1008         if (!kprobe_ftrace(p))
1009                 return arch_prepare_kprobe(p);
1010
1011         return arch_prepare_kprobe_ftrace(p);
1012 }
1013
1014 /* Caller must lock kprobe_mutex */
1015 static int arm_kprobe_ftrace(struct kprobe *p)
1016 {
1017         int ret = 0;
1018
1019         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1020                                    (unsigned long)p->addr, 0, 0);
1021         if (ret) {
1022                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1023                          p->addr, ret);
1024                 return ret;
1025         }
1026
1027         if (kprobe_ftrace_enabled == 0) {
1028                 ret = register_ftrace_function(&kprobe_ftrace_ops);
1029                 if (ret) {
1030                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1031                         goto err_ftrace;
1032                 }
1033         }
1034
1035         kprobe_ftrace_enabled++;
1036         return ret;
1037
1038 err_ftrace:
1039         /*
1040          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1041          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1042          * empty filter_hash which would undesirably trace all functions.
1043          */
1044         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1045         return ret;
1046 }
1047
1048 /* Caller must lock kprobe_mutex */
1049 static int disarm_kprobe_ftrace(struct kprobe *p)
1050 {
1051         int ret = 0;
1052
1053         if (kprobe_ftrace_enabled == 1) {
1054                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1055                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1056                         return ret;
1057         }
1058
1059         kprobe_ftrace_enabled--;
1060
1061         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1062                            (unsigned long)p->addr, 1, 0);
1063         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1064                   p->addr, ret);
1065         return ret;
1066 }
1067 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1068 static inline int prepare_kprobe(struct kprobe *p)
1069 {
1070         return arch_prepare_kprobe(p);
1071 }
1072
1073 static inline int arm_kprobe_ftrace(struct kprobe *p)
1074 {
1075         return -ENODEV;
1076 }
1077
1078 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1079 {
1080         return -ENODEV;
1081 }
1082 #endif
1083
1084 /* Arm a kprobe with text_mutex */
1085 static int arm_kprobe(struct kprobe *kp)
1086 {
1087         if (unlikely(kprobe_ftrace(kp)))
1088                 return arm_kprobe_ftrace(kp);
1089
1090         cpus_read_lock();
1091         mutex_lock(&text_mutex);
1092         __arm_kprobe(kp);
1093         mutex_unlock(&text_mutex);
1094         cpus_read_unlock();
1095
1096         return 0;
1097 }
1098
1099 /* Disarm a kprobe with text_mutex */
1100 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1101 {
1102         if (unlikely(kprobe_ftrace(kp)))
1103                 return disarm_kprobe_ftrace(kp);
1104
1105         cpus_read_lock();
1106         mutex_lock(&text_mutex);
1107         __disarm_kprobe(kp, reopt);
1108         mutex_unlock(&text_mutex);
1109         cpus_read_unlock();
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Aggregate handlers for multiple kprobes support - these handlers
1116  * take care of invoking the individual kprobe handlers on p->list
1117  */
1118 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1119 {
1120         struct kprobe *kp;
1121
1122         list_for_each_entry_rcu(kp, &p->list, list) {
1123                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1124                         set_kprobe_instance(kp);
1125                         if (kp->pre_handler(kp, regs))
1126                                 return 1;
1127                 }
1128                 reset_kprobe_instance();
1129         }
1130         return 0;
1131 }
1132 NOKPROBE_SYMBOL(aggr_pre_handler);
1133
1134 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1135                               unsigned long flags)
1136 {
1137         struct kprobe *kp;
1138
1139         list_for_each_entry_rcu(kp, &p->list, list) {
1140                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1141                         set_kprobe_instance(kp);
1142                         kp->post_handler(kp, regs, flags);
1143                         reset_kprobe_instance();
1144                 }
1145         }
1146 }
1147 NOKPROBE_SYMBOL(aggr_post_handler);
1148
1149 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1150                               int trapnr)
1151 {
1152         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1153
1154         /*
1155          * if we faulted "during" the execution of a user specified
1156          * probe handler, invoke just that probe's fault handler
1157          */
1158         if (cur && cur->fault_handler) {
1159                 if (cur->fault_handler(cur, regs, trapnr))
1160                         return 1;
1161         }
1162         return 0;
1163 }
1164 NOKPROBE_SYMBOL(aggr_fault_handler);
1165
1166 /* Walks the list and increments nmissed count for multiprobe case */
1167 void kprobes_inc_nmissed_count(struct kprobe *p)
1168 {
1169         struct kprobe *kp;
1170         if (!kprobe_aggrprobe(p)) {
1171                 p->nmissed++;
1172         } else {
1173                 list_for_each_entry_rcu(kp, &p->list, list)
1174                         kp->nmissed++;
1175         }
1176         return;
1177 }
1178 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1179
1180 void recycle_rp_inst(struct kretprobe_instance *ri,
1181                      struct hlist_head *head)
1182 {
1183         struct kretprobe *rp = ri->rp;
1184
1185         /* remove rp inst off the rprobe_inst_table */
1186         hlist_del(&ri->hlist);
1187         INIT_HLIST_NODE(&ri->hlist);
1188         if (likely(rp)) {
1189                 raw_spin_lock(&rp->lock);
1190                 hlist_add_head(&ri->hlist, &rp->free_instances);
1191                 raw_spin_unlock(&rp->lock);
1192         } else
1193                 /* Unregistering */
1194                 hlist_add_head(&ri->hlist, head);
1195 }
1196 NOKPROBE_SYMBOL(recycle_rp_inst);
1197
1198 void kretprobe_hash_lock(struct task_struct *tsk,
1199                          struct hlist_head **head, unsigned long *flags)
1200 __acquires(hlist_lock)
1201 {
1202         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1203         raw_spinlock_t *hlist_lock;
1204
1205         *head = &kretprobe_inst_table[hash];
1206         hlist_lock = kretprobe_table_lock_ptr(hash);
1207         raw_spin_lock_irqsave(hlist_lock, *flags);
1208 }
1209 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1210
1211 static void kretprobe_table_lock(unsigned long hash,
1212                                  unsigned long *flags)
1213 __acquires(hlist_lock)
1214 {
1215         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1216         raw_spin_lock_irqsave(hlist_lock, *flags);
1217 }
1218 NOKPROBE_SYMBOL(kretprobe_table_lock);
1219
1220 void kretprobe_hash_unlock(struct task_struct *tsk,
1221                            unsigned long *flags)
1222 __releases(hlist_lock)
1223 {
1224         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1225         raw_spinlock_t *hlist_lock;
1226
1227         hlist_lock = kretprobe_table_lock_ptr(hash);
1228         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1229 }
1230 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1231
1232 static void kretprobe_table_unlock(unsigned long hash,
1233                                    unsigned long *flags)
1234 __releases(hlist_lock)
1235 {
1236         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1237         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1238 }
1239 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1240
1241 struct kprobe kprobe_busy = {
1242         .addr = (void *) get_kprobe,
1243 };
1244
1245 void kprobe_busy_begin(void)
1246 {
1247         struct kprobe_ctlblk *kcb;
1248
1249         preempt_disable();
1250         __this_cpu_write(current_kprobe, &kprobe_busy);
1251         kcb = get_kprobe_ctlblk();
1252         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1253 }
1254
1255 void kprobe_busy_end(void)
1256 {
1257         __this_cpu_write(current_kprobe, NULL);
1258         preempt_enable();
1259 }
1260
1261 /*
1262  * This function is called from finish_task_switch when task tk becomes dead,
1263  * so that we can recycle any function-return probe instances associated
1264  * with this task. These left over instances represent probed functions
1265  * that have been called but will never return.
1266  */
1267 void kprobe_flush_task(struct task_struct *tk)
1268 {
1269         struct kretprobe_instance *ri;
1270         struct hlist_head *head, empty_rp;
1271         struct hlist_node *tmp;
1272         unsigned long hash, flags = 0;
1273
1274         if (unlikely(!kprobes_initialized))
1275                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1276                 return;
1277
1278         kprobe_busy_begin();
1279
1280         INIT_HLIST_HEAD(&empty_rp);
1281         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1282         head = &kretprobe_inst_table[hash];
1283         kretprobe_table_lock(hash, &flags);
1284         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1285                 if (ri->task == tk)
1286                         recycle_rp_inst(ri, &empty_rp);
1287         }
1288         kretprobe_table_unlock(hash, &flags);
1289         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1290                 hlist_del(&ri->hlist);
1291                 kfree(ri);
1292         }
1293
1294         kprobe_busy_end();
1295 }
1296 NOKPROBE_SYMBOL(kprobe_flush_task);
1297
1298 static inline void free_rp_inst(struct kretprobe *rp)
1299 {
1300         struct kretprobe_instance *ri;
1301         struct hlist_node *next;
1302
1303         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1304                 hlist_del(&ri->hlist);
1305                 kfree(ri);
1306         }
1307 }
1308
1309 static void cleanup_rp_inst(struct kretprobe *rp)
1310 {
1311         unsigned long flags, hash;
1312         struct kretprobe_instance *ri;
1313         struct hlist_node *next;
1314         struct hlist_head *head;
1315
1316         /* No race here */
1317         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1318                 kretprobe_table_lock(hash, &flags);
1319                 head = &kretprobe_inst_table[hash];
1320                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1321                         if (ri->rp == rp)
1322                                 ri->rp = NULL;
1323                 }
1324                 kretprobe_table_unlock(hash, &flags);
1325         }
1326         free_rp_inst(rp);
1327 }
1328 NOKPROBE_SYMBOL(cleanup_rp_inst);
1329
1330 /* Add the new probe to ap->list */
1331 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1332 {
1333         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1334
1335         if (p->post_handler)
1336                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1337
1338         list_add_rcu(&p->list, &ap->list);
1339         if (p->post_handler && !ap->post_handler)
1340                 ap->post_handler = aggr_post_handler;
1341
1342         return 0;
1343 }
1344
1345 /*
1346  * Fill in the required fields of the "manager kprobe". Replace the
1347  * earlier kprobe in the hlist with the manager kprobe
1348  */
1349 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1350 {
1351         /* Copy p's insn slot to ap */
1352         copy_kprobe(p, ap);
1353         flush_insn_slot(ap);
1354         ap->addr = p->addr;
1355         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1356         ap->pre_handler = aggr_pre_handler;
1357         ap->fault_handler = aggr_fault_handler;
1358         /* We don't care the kprobe which has gone. */
1359         if (p->post_handler && !kprobe_gone(p))
1360                 ap->post_handler = aggr_post_handler;
1361
1362         INIT_LIST_HEAD(&ap->list);
1363         INIT_HLIST_NODE(&ap->hlist);
1364
1365         list_add_rcu(&p->list, &ap->list);
1366         hlist_replace_rcu(&p->hlist, &ap->hlist);
1367 }
1368
1369 /*
1370  * This is the second or subsequent kprobe at the address - handle
1371  * the intricacies
1372  */
1373 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1374 {
1375         int ret = 0;
1376         struct kprobe *ap = orig_p;
1377
1378         cpus_read_lock();
1379
1380         /* For preparing optimization, jump_label_text_reserved() is called */
1381         jump_label_lock();
1382         mutex_lock(&text_mutex);
1383
1384         if (!kprobe_aggrprobe(orig_p)) {
1385                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1386                 ap = alloc_aggr_kprobe(orig_p);
1387                 if (!ap) {
1388                         ret = -ENOMEM;
1389                         goto out;
1390                 }
1391                 init_aggr_kprobe(ap, orig_p);
1392         } else if (kprobe_unused(ap)) {
1393                 /* This probe is going to die. Rescue it */
1394                 ret = reuse_unused_kprobe(ap);
1395                 if (ret)
1396                         goto out;
1397         }
1398
1399         if (kprobe_gone(ap)) {
1400                 /*
1401                  * Attempting to insert new probe at the same location that
1402                  * had a probe in the module vaddr area which already
1403                  * freed. So, the instruction slot has already been
1404                  * released. We need a new slot for the new probe.
1405                  */
1406                 ret = arch_prepare_kprobe(ap);
1407                 if (ret)
1408                         /*
1409                          * Even if fail to allocate new slot, don't need to
1410                          * free aggr_probe. It will be used next time, or
1411                          * freed by unregister_kprobe.
1412                          */
1413                         goto out;
1414
1415                 /* Prepare optimized instructions if possible. */
1416                 prepare_optimized_kprobe(ap);
1417
1418                 /*
1419                  * Clear gone flag to prevent allocating new slot again, and
1420                  * set disabled flag because it is not armed yet.
1421                  */
1422                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1423                             | KPROBE_FLAG_DISABLED;
1424         }
1425
1426         /* Copy ap's insn slot to p */
1427         copy_kprobe(ap, p);
1428         ret = add_new_kprobe(ap, p);
1429
1430 out:
1431         mutex_unlock(&text_mutex);
1432         jump_label_unlock();
1433         cpus_read_unlock();
1434
1435         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1436                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1437                 if (!kprobes_all_disarmed) {
1438                         /* Arm the breakpoint again. */
1439                         ret = arm_kprobe(ap);
1440                         if (ret) {
1441                                 ap->flags |= KPROBE_FLAG_DISABLED;
1442                                 list_del_rcu(&p->list);
1443                                 synchronize_sched();
1444                         }
1445                 }
1446         }
1447         return ret;
1448 }
1449
1450 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1451 {
1452         /* The __kprobes marked functions and entry code must not be probed */
1453         return addr >= (unsigned long)__kprobes_text_start &&
1454                addr < (unsigned long)__kprobes_text_end;
1455 }
1456
1457 bool within_kprobe_blacklist(unsigned long addr)
1458 {
1459         struct kprobe_blacklist_entry *ent;
1460
1461         if (arch_within_kprobe_blacklist(addr))
1462                 return true;
1463         /*
1464          * If there exists a kprobe_blacklist, verify and
1465          * fail any probe registration in the prohibited area
1466          */
1467         list_for_each_entry(ent, &kprobe_blacklist, list) {
1468                 if (addr >= ent->start_addr && addr < ent->end_addr)
1469                         return true;
1470         }
1471
1472         return false;
1473 }
1474
1475 /*
1476  * If we have a symbol_name argument, look it up and add the offset field
1477  * to it. This way, we can specify a relative address to a symbol.
1478  * This returns encoded errors if it fails to look up symbol or invalid
1479  * combination of parameters.
1480  */
1481 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1482                         const char *symbol_name, unsigned int offset)
1483 {
1484         if ((symbol_name && addr) || (!symbol_name && !addr))
1485                 goto invalid;
1486
1487         if (symbol_name) {
1488                 addr = kprobe_lookup_name(symbol_name, offset);
1489                 if (!addr)
1490                         return ERR_PTR(-ENOENT);
1491         }
1492
1493         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1494         if (addr)
1495                 return addr;
1496
1497 invalid:
1498         return ERR_PTR(-EINVAL);
1499 }
1500
1501 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1502 {
1503         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1504 }
1505
1506 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1507 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1508 {
1509         struct kprobe *ap, *list_p;
1510
1511         ap = get_kprobe(p->addr);
1512         if (unlikely(!ap))
1513                 return NULL;
1514
1515         if (p != ap) {
1516                 list_for_each_entry_rcu(list_p, &ap->list, list)
1517                         if (list_p == p)
1518                         /* kprobe p is a valid probe */
1519                                 goto valid;
1520                 return NULL;
1521         }
1522 valid:
1523         return ap;
1524 }
1525
1526 /* Return error if the kprobe is being re-registered */
1527 static inline int check_kprobe_rereg(struct kprobe *p)
1528 {
1529         int ret = 0;
1530
1531         mutex_lock(&kprobe_mutex);
1532         if (__get_valid_kprobe(p))
1533                 ret = -EINVAL;
1534         mutex_unlock(&kprobe_mutex);
1535
1536         return ret;
1537 }
1538
1539 int __weak arch_check_ftrace_location(struct kprobe *p)
1540 {
1541         unsigned long ftrace_addr;
1542
1543         ftrace_addr = ftrace_location((unsigned long)p->addr);
1544         if (ftrace_addr) {
1545 #ifdef CONFIG_KPROBES_ON_FTRACE
1546                 /* Given address is not on the instruction boundary */
1547                 if ((unsigned long)p->addr != ftrace_addr)
1548                         return -EILSEQ;
1549                 p->flags |= KPROBE_FLAG_FTRACE;
1550 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1551                 return -EINVAL;
1552 #endif
1553         }
1554         return 0;
1555 }
1556
1557 static int check_kprobe_address_safe(struct kprobe *p,
1558                                      struct module **probed_mod)
1559 {
1560         int ret;
1561
1562         ret = arch_check_ftrace_location(p);
1563         if (ret)
1564                 return ret;
1565         jump_label_lock();
1566         preempt_disable();
1567
1568         /* Ensure it is not in reserved area nor out of text */
1569         if (!kernel_text_address((unsigned long) p->addr) ||
1570             within_kprobe_blacklist((unsigned long) p->addr) ||
1571             jump_label_text_reserved(p->addr, p->addr) ||
1572             find_bug((unsigned long)p->addr)) {
1573                 ret = -EINVAL;
1574                 goto out;
1575         }
1576
1577         /* Check if are we probing a module */
1578         *probed_mod = __module_text_address((unsigned long) p->addr);
1579         if (*probed_mod) {
1580                 /*
1581                  * We must hold a refcount of the probed module while updating
1582                  * its code to prohibit unexpected unloading.
1583                  */
1584                 if (unlikely(!try_module_get(*probed_mod))) {
1585                         ret = -ENOENT;
1586                         goto out;
1587                 }
1588
1589                 /*
1590                  * If the module freed .init.text, we couldn't insert
1591                  * kprobes in there.
1592                  */
1593                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1594                     (*probed_mod)->state != MODULE_STATE_COMING) {
1595                         module_put(*probed_mod);
1596                         *probed_mod = NULL;
1597                         ret = -ENOENT;
1598                 }
1599         }
1600 out:
1601         preempt_enable();
1602         jump_label_unlock();
1603
1604         return ret;
1605 }
1606
1607 int register_kprobe(struct kprobe *p)
1608 {
1609         int ret;
1610         struct kprobe *old_p;
1611         struct module *probed_mod;
1612         kprobe_opcode_t *addr;
1613
1614         /* Adjust probe address from symbol */
1615         addr = kprobe_addr(p);
1616         if (IS_ERR(addr))
1617                 return PTR_ERR(addr);
1618         p->addr = addr;
1619
1620         ret = check_kprobe_rereg(p);
1621         if (ret)
1622                 return ret;
1623
1624         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1625         p->flags &= KPROBE_FLAG_DISABLED;
1626         p->nmissed = 0;
1627         INIT_LIST_HEAD(&p->list);
1628
1629         ret = check_kprobe_address_safe(p, &probed_mod);
1630         if (ret)
1631                 return ret;
1632
1633         mutex_lock(&kprobe_mutex);
1634
1635         old_p = get_kprobe(p->addr);
1636         if (old_p) {
1637                 /* Since this may unoptimize old_p, locking text_mutex. */
1638                 ret = register_aggr_kprobe(old_p, p);
1639                 goto out;
1640         }
1641
1642         cpus_read_lock();
1643         /* Prevent text modification */
1644         mutex_lock(&text_mutex);
1645         ret = prepare_kprobe(p);
1646         mutex_unlock(&text_mutex);
1647         cpus_read_unlock();
1648         if (ret)
1649                 goto out;
1650
1651         INIT_HLIST_NODE(&p->hlist);
1652         hlist_add_head_rcu(&p->hlist,
1653                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1654
1655         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1656                 ret = arm_kprobe(p);
1657                 if (ret) {
1658                         hlist_del_rcu(&p->hlist);
1659                         synchronize_sched();
1660                         goto out;
1661                 }
1662         }
1663
1664         /* Try to optimize kprobe */
1665         try_to_optimize_kprobe(p);
1666 out:
1667         mutex_unlock(&kprobe_mutex);
1668
1669         if (probed_mod)
1670                 module_put(probed_mod);
1671
1672         return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(register_kprobe);
1675
1676 /* Check if all probes on the aggrprobe are disabled */
1677 static int aggr_kprobe_disabled(struct kprobe *ap)
1678 {
1679         struct kprobe *kp;
1680
1681         list_for_each_entry_rcu(kp, &ap->list, list)
1682                 if (!kprobe_disabled(kp))
1683                         /*
1684                          * There is an active probe on the list.
1685                          * We can't disable this ap.
1686                          */
1687                         return 0;
1688
1689         return 1;
1690 }
1691
1692 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1693 static struct kprobe *__disable_kprobe(struct kprobe *p)
1694 {
1695         struct kprobe *orig_p;
1696         int ret;
1697
1698         /* Get an original kprobe for return */
1699         orig_p = __get_valid_kprobe(p);
1700         if (unlikely(orig_p == NULL))
1701                 return ERR_PTR(-EINVAL);
1702
1703         if (!kprobe_disabled(p)) {
1704                 /* Disable probe if it is a child probe */
1705                 if (p != orig_p)
1706                         p->flags |= KPROBE_FLAG_DISABLED;
1707
1708                 /* Try to disarm and disable this/parent probe */
1709                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1710                         /*
1711                          * If kprobes_all_disarmed is set, orig_p
1712                          * should have already been disarmed, so
1713                          * skip unneed disarming process.
1714                          */
1715                         if (!kprobes_all_disarmed) {
1716                                 ret = disarm_kprobe(orig_p, true);
1717                                 if (ret) {
1718                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1719                                         return ERR_PTR(ret);
1720                                 }
1721                         }
1722                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1723                 }
1724         }
1725
1726         return orig_p;
1727 }
1728
1729 /*
1730  * Unregister a kprobe without a scheduler synchronization.
1731  */
1732 static int __unregister_kprobe_top(struct kprobe *p)
1733 {
1734         struct kprobe *ap, *list_p;
1735
1736         /* Disable kprobe. This will disarm it if needed. */
1737         ap = __disable_kprobe(p);
1738         if (IS_ERR(ap))
1739                 return PTR_ERR(ap);
1740
1741         if (ap == p)
1742                 /*
1743                  * This probe is an independent(and non-optimized) kprobe
1744                  * (not an aggrprobe). Remove from the hash list.
1745                  */
1746                 goto disarmed;
1747
1748         /* Following process expects this probe is an aggrprobe */
1749         WARN_ON(!kprobe_aggrprobe(ap));
1750
1751         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1752                 /*
1753                  * !disarmed could be happen if the probe is under delayed
1754                  * unoptimizing.
1755                  */
1756                 goto disarmed;
1757         else {
1758                 /* If disabling probe has special handlers, update aggrprobe */
1759                 if (p->post_handler && !kprobe_gone(p)) {
1760                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1761                                 if ((list_p != p) && (list_p->post_handler))
1762                                         goto noclean;
1763                         }
1764                         ap->post_handler = NULL;
1765                 }
1766 noclean:
1767                 /*
1768                  * Remove from the aggrprobe: this path will do nothing in
1769                  * __unregister_kprobe_bottom().
1770                  */
1771                 list_del_rcu(&p->list);
1772                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1773                         /*
1774                          * Try to optimize this probe again, because post
1775                          * handler may have been changed.
1776                          */
1777                         optimize_kprobe(ap);
1778         }
1779         return 0;
1780
1781 disarmed:
1782         BUG_ON(!kprobe_disarmed(ap));
1783         hlist_del_rcu(&ap->hlist);
1784         return 0;
1785 }
1786
1787 static void __unregister_kprobe_bottom(struct kprobe *p)
1788 {
1789         struct kprobe *ap;
1790
1791         if (list_empty(&p->list))
1792                 /* This is an independent kprobe */
1793                 arch_remove_kprobe(p);
1794         else if (list_is_singular(&p->list)) {
1795                 /* This is the last child of an aggrprobe */
1796                 ap = list_entry(p->list.next, struct kprobe, list);
1797                 list_del(&p->list);
1798                 free_aggr_kprobe(ap);
1799         }
1800         /* Otherwise, do nothing. */
1801 }
1802
1803 int register_kprobes(struct kprobe **kps, int num)
1804 {
1805         int i, ret = 0;
1806
1807         if (num <= 0)
1808                 return -EINVAL;
1809         for (i = 0; i < num; i++) {
1810                 ret = register_kprobe(kps[i]);
1811                 if (ret < 0) {
1812                         if (i > 0)
1813                                 unregister_kprobes(kps, i);
1814                         break;
1815                 }
1816         }
1817         return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(register_kprobes);
1820
1821 void unregister_kprobe(struct kprobe *p)
1822 {
1823         unregister_kprobes(&p, 1);
1824 }
1825 EXPORT_SYMBOL_GPL(unregister_kprobe);
1826
1827 void unregister_kprobes(struct kprobe **kps, int num)
1828 {
1829         int i;
1830
1831         if (num <= 0)
1832                 return;
1833         mutex_lock(&kprobe_mutex);
1834         for (i = 0; i < num; i++)
1835                 if (__unregister_kprobe_top(kps[i]) < 0)
1836                         kps[i]->addr = NULL;
1837         mutex_unlock(&kprobe_mutex);
1838
1839         synchronize_sched();
1840         for (i = 0; i < num; i++)
1841                 if (kps[i]->addr)
1842                         __unregister_kprobe_bottom(kps[i]);
1843 }
1844 EXPORT_SYMBOL_GPL(unregister_kprobes);
1845
1846 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1847                                         unsigned long val, void *data)
1848 {
1849         return NOTIFY_DONE;
1850 }
1851 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1852
1853 static struct notifier_block kprobe_exceptions_nb = {
1854         .notifier_call = kprobe_exceptions_notify,
1855         .priority = 0x7fffffff /* we need to be notified first */
1856 };
1857
1858 unsigned long __weak arch_deref_entry_point(void *entry)
1859 {
1860         return (unsigned long)entry;
1861 }
1862
1863 #ifdef CONFIG_KRETPROBES
1864 /*
1865  * This kprobe pre_handler is registered with every kretprobe. When probe
1866  * hits it will set up the return probe.
1867  */
1868 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1869 {
1870         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1871         unsigned long hash, flags = 0;
1872         struct kretprobe_instance *ri;
1873
1874         /*
1875          * To avoid deadlocks, prohibit return probing in NMI contexts,
1876          * just skip the probe and increase the (inexact) 'nmissed'
1877          * statistical counter, so that the user is informed that
1878          * something happened:
1879          */
1880         if (unlikely(in_nmi())) {
1881                 rp->nmissed++;
1882                 return 0;
1883         }
1884
1885         /* TODO: consider to only swap the RA after the last pre_handler fired */
1886         hash = hash_ptr(current, KPROBE_HASH_BITS);
1887         raw_spin_lock_irqsave(&rp->lock, flags);
1888         if (!hlist_empty(&rp->free_instances)) {
1889                 ri = hlist_entry(rp->free_instances.first,
1890                                 struct kretprobe_instance, hlist);
1891                 hlist_del(&ri->hlist);
1892                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1893
1894                 ri->rp = rp;
1895                 ri->task = current;
1896
1897                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1898                         raw_spin_lock_irqsave(&rp->lock, flags);
1899                         hlist_add_head(&ri->hlist, &rp->free_instances);
1900                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1901                         return 0;
1902                 }
1903
1904                 arch_prepare_kretprobe(ri, regs);
1905
1906                 /* XXX(hch): why is there no hlist_move_head? */
1907                 INIT_HLIST_NODE(&ri->hlist);
1908                 kretprobe_table_lock(hash, &flags);
1909                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1910                 kretprobe_table_unlock(hash, &flags);
1911         } else {
1912                 rp->nmissed++;
1913                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1914         }
1915         return 0;
1916 }
1917 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1918
1919 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1920 {
1921         return !offset;
1922 }
1923
1924 /**
1925  * kprobe_on_func_entry() -- check whether given address is function entry
1926  * @addr: Target address
1927  * @sym:  Target symbol name
1928  * @offset: The offset from the symbol or the address
1929  *
1930  * This checks whether the given @addr+@offset or @sym+@offset is on the
1931  * function entry address or not.
1932  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1933  * And also it returns -ENOENT if it fails the symbol or address lookup.
1934  * Caller must pass @addr or @sym (either one must be NULL), or this
1935  * returns -EINVAL.
1936  */
1937 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1938 {
1939         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1940
1941         if (IS_ERR(kp_addr))
1942                 return PTR_ERR(kp_addr);
1943
1944         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1945                 return -ENOENT;
1946
1947         if (!arch_kprobe_on_func_entry(offset))
1948                 return -EINVAL;
1949
1950         return 0;
1951 }
1952
1953 int register_kretprobe(struct kretprobe *rp)
1954 {
1955         int ret;
1956         struct kretprobe_instance *inst;
1957         int i;
1958         void *addr;
1959
1960         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1961         if (ret)
1962                 return ret;
1963
1964         /* If only rp->kp.addr is specified, check reregistering kprobes */
1965         if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1966                 return -EINVAL;
1967
1968         if (kretprobe_blacklist_size) {
1969                 addr = kprobe_addr(&rp->kp);
1970                 if (IS_ERR(addr))
1971                         return PTR_ERR(addr);
1972
1973                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1974                         if (kretprobe_blacklist[i].addr == addr)
1975                                 return -EINVAL;
1976                 }
1977         }
1978
1979         rp->kp.pre_handler = pre_handler_kretprobe;
1980         rp->kp.post_handler = NULL;
1981         rp->kp.fault_handler = NULL;
1982
1983         /* Pre-allocate memory for max kretprobe instances */
1984         if (rp->maxactive <= 0) {
1985 #ifdef CONFIG_PREEMPT
1986                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1987 #else
1988                 rp->maxactive = num_possible_cpus();
1989 #endif
1990         }
1991         raw_spin_lock_init(&rp->lock);
1992         INIT_HLIST_HEAD(&rp->free_instances);
1993         for (i = 0; i < rp->maxactive; i++) {
1994                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1995                                rp->data_size, GFP_KERNEL);
1996                 if (inst == NULL) {
1997                         free_rp_inst(rp);
1998                         return -ENOMEM;
1999                 }
2000                 INIT_HLIST_NODE(&inst->hlist);
2001                 hlist_add_head(&inst->hlist, &rp->free_instances);
2002         }
2003
2004         rp->nmissed = 0;
2005         /* Establish function entry probe point */
2006         ret = register_kprobe(&rp->kp);
2007         if (ret != 0)
2008                 free_rp_inst(rp);
2009         return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(register_kretprobe);
2012
2013 int register_kretprobes(struct kretprobe **rps, int num)
2014 {
2015         int ret = 0, i;
2016
2017         if (num <= 0)
2018                 return -EINVAL;
2019         for (i = 0; i < num; i++) {
2020                 ret = register_kretprobe(rps[i]);
2021                 if (ret < 0) {
2022                         if (i > 0)
2023                                 unregister_kretprobes(rps, i);
2024                         break;
2025                 }
2026         }
2027         return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(register_kretprobes);
2030
2031 void unregister_kretprobe(struct kretprobe *rp)
2032 {
2033         unregister_kretprobes(&rp, 1);
2034 }
2035 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2036
2037 void unregister_kretprobes(struct kretprobe **rps, int num)
2038 {
2039         int i;
2040
2041         if (num <= 0)
2042                 return;
2043         mutex_lock(&kprobe_mutex);
2044         for (i = 0; i < num; i++)
2045                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2046                         rps[i]->kp.addr = NULL;
2047         mutex_unlock(&kprobe_mutex);
2048
2049         synchronize_sched();
2050         for (i = 0; i < num; i++) {
2051                 if (rps[i]->kp.addr) {
2052                         __unregister_kprobe_bottom(&rps[i]->kp);
2053                         cleanup_rp_inst(rps[i]);
2054                 }
2055         }
2056 }
2057 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2058
2059 #else /* CONFIG_KRETPROBES */
2060 int register_kretprobe(struct kretprobe *rp)
2061 {
2062         return -ENOSYS;
2063 }
2064 EXPORT_SYMBOL_GPL(register_kretprobe);
2065
2066 int register_kretprobes(struct kretprobe **rps, int num)
2067 {
2068         return -ENOSYS;
2069 }
2070 EXPORT_SYMBOL_GPL(register_kretprobes);
2071
2072 void unregister_kretprobe(struct kretprobe *rp)
2073 {
2074 }
2075 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2076
2077 void unregister_kretprobes(struct kretprobe **rps, int num)
2078 {
2079 }
2080 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2081
2082 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2083 {
2084         return 0;
2085 }
2086 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2087
2088 #endif /* CONFIG_KRETPROBES */
2089
2090 /* Set the kprobe gone and remove its instruction buffer. */
2091 static void kill_kprobe(struct kprobe *p)
2092 {
2093         struct kprobe *kp;
2094
2095         if (WARN_ON_ONCE(kprobe_gone(p)))
2096                 return;
2097
2098         p->flags |= KPROBE_FLAG_GONE;
2099         if (kprobe_aggrprobe(p)) {
2100                 /*
2101                  * If this is an aggr_kprobe, we have to list all the
2102                  * chained probes and mark them GONE.
2103                  */
2104                 list_for_each_entry_rcu(kp, &p->list, list)
2105                         kp->flags |= KPROBE_FLAG_GONE;
2106                 p->post_handler = NULL;
2107                 kill_optimized_kprobe(p);
2108         }
2109         /*
2110          * Here, we can remove insn_slot safely, because no thread calls
2111          * the original probed function (which will be freed soon) any more.
2112          */
2113         arch_remove_kprobe(p);
2114
2115         /*
2116          * The module is going away. We should disarm the kprobe which
2117          * is using ftrace, because ftrace framework is still available at
2118          * MODULE_STATE_GOING notification.
2119          */
2120         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2121                 disarm_kprobe_ftrace(p);
2122 }
2123
2124 /* Disable one kprobe */
2125 int disable_kprobe(struct kprobe *kp)
2126 {
2127         int ret = 0;
2128         struct kprobe *p;
2129
2130         mutex_lock(&kprobe_mutex);
2131
2132         /* Disable this kprobe */
2133         p = __disable_kprobe(kp);
2134         if (IS_ERR(p))
2135                 ret = PTR_ERR(p);
2136
2137         mutex_unlock(&kprobe_mutex);
2138         return ret;
2139 }
2140 EXPORT_SYMBOL_GPL(disable_kprobe);
2141
2142 /* Enable one kprobe */
2143 int enable_kprobe(struct kprobe *kp)
2144 {
2145         int ret = 0;
2146         struct kprobe *p;
2147
2148         mutex_lock(&kprobe_mutex);
2149
2150         /* Check whether specified probe is valid. */
2151         p = __get_valid_kprobe(kp);
2152         if (unlikely(p == NULL)) {
2153                 ret = -EINVAL;
2154                 goto out;
2155         }
2156
2157         if (kprobe_gone(kp)) {
2158                 /* This kprobe has gone, we couldn't enable it. */
2159                 ret = -EINVAL;
2160                 goto out;
2161         }
2162
2163         if (p != kp)
2164                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2165
2166         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2167                 p->flags &= ~KPROBE_FLAG_DISABLED;
2168                 ret = arm_kprobe(p);
2169                 if (ret)
2170                         p->flags |= KPROBE_FLAG_DISABLED;
2171         }
2172 out:
2173         mutex_unlock(&kprobe_mutex);
2174         return ret;
2175 }
2176 EXPORT_SYMBOL_GPL(enable_kprobe);
2177
2178 /* Caller must NOT call this in usual path. This is only for critical case */
2179 void dump_kprobe(struct kprobe *kp)
2180 {
2181         pr_err("Dumping kprobe:\n");
2182         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2183                kp->symbol_name, kp->offset, kp->addr);
2184 }
2185 NOKPROBE_SYMBOL(dump_kprobe);
2186
2187 int kprobe_add_ksym_blacklist(unsigned long entry)
2188 {
2189         struct kprobe_blacklist_entry *ent;
2190         unsigned long offset = 0, size = 0;
2191
2192         if (!kernel_text_address(entry) ||
2193             !kallsyms_lookup_size_offset(entry, &size, &offset))
2194                 return -EINVAL;
2195
2196         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2197         if (!ent)
2198                 return -ENOMEM;
2199         ent->start_addr = entry;
2200         ent->end_addr = entry + size;
2201         INIT_LIST_HEAD(&ent->list);
2202         list_add_tail(&ent->list, &kprobe_blacklist);
2203
2204         return (int)size;
2205 }
2206
2207 /* Add all symbols in given area into kprobe blacklist */
2208 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2209 {
2210         unsigned long entry;
2211         int ret = 0;
2212
2213         for (entry = start; entry < end; entry += ret) {
2214                 ret = kprobe_add_ksym_blacklist(entry);
2215                 if (ret < 0)
2216                         return ret;
2217                 if (ret == 0)   /* In case of alias symbol */
2218                         ret = 1;
2219         }
2220         return 0;
2221 }
2222
2223 int __init __weak arch_populate_kprobe_blacklist(void)
2224 {
2225         return 0;
2226 }
2227
2228 /*
2229  * Lookup and populate the kprobe_blacklist.
2230  *
2231  * Unlike the kretprobe blacklist, we'll need to determine
2232  * the range of addresses that belong to the said functions,
2233  * since a kprobe need not necessarily be at the beginning
2234  * of a function.
2235  */
2236 static int __init populate_kprobe_blacklist(unsigned long *start,
2237                                              unsigned long *end)
2238 {
2239         unsigned long entry;
2240         unsigned long *iter;
2241         int ret;
2242
2243         for (iter = start; iter < end; iter++) {
2244                 entry = arch_deref_entry_point((void *)*iter);
2245                 ret = kprobe_add_ksym_blacklist(entry);
2246                 if (ret == -EINVAL)
2247                         continue;
2248                 if (ret < 0)
2249                         return ret;
2250         }
2251
2252         /* Symbols in __kprobes_text are blacklisted */
2253         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2254                                         (unsigned long)__kprobes_text_end);
2255
2256         return ret ? : arch_populate_kprobe_blacklist();
2257 }
2258
2259 /* Module notifier call back, checking kprobes on the module */
2260 static int kprobes_module_callback(struct notifier_block *nb,
2261                                    unsigned long val, void *data)
2262 {
2263         struct module *mod = data;
2264         struct hlist_head *head;
2265         struct kprobe *p;
2266         unsigned int i;
2267         int checkcore = (val == MODULE_STATE_GOING);
2268
2269         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2270                 return NOTIFY_DONE;
2271
2272         /*
2273          * When MODULE_STATE_GOING was notified, both of module .text and
2274          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2275          * notified, only .init.text section would be freed. We need to
2276          * disable kprobes which have been inserted in the sections.
2277          */
2278         mutex_lock(&kprobe_mutex);
2279         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2280                 head = &kprobe_table[i];
2281                 hlist_for_each_entry_rcu(p, head, hlist) {
2282                         if (kprobe_gone(p))
2283                                 continue;
2284
2285                         if (within_module_init((unsigned long)p->addr, mod) ||
2286                             (checkcore &&
2287                              within_module_core((unsigned long)p->addr, mod))) {
2288                                 /*
2289                                  * The vaddr this probe is installed will soon
2290                                  * be vfreed buy not synced to disk. Hence,
2291                                  * disarming the breakpoint isn't needed.
2292                                  *
2293                                  * Note, this will also move any optimized probes
2294                                  * that are pending to be removed from their
2295                                  * corresponding lists to the freeing_list and
2296                                  * will not be touched by the delayed
2297                                  * kprobe_optimizer work handler.
2298                                  */
2299                                 kill_kprobe(p);
2300                         }
2301                 }
2302         }
2303         mutex_unlock(&kprobe_mutex);
2304         return NOTIFY_DONE;
2305 }
2306
2307 static struct notifier_block kprobe_module_nb = {
2308         .notifier_call = kprobes_module_callback,
2309         .priority = 0
2310 };
2311
2312 /* Markers of _kprobe_blacklist section */
2313 extern unsigned long __start_kprobe_blacklist[];
2314 extern unsigned long __stop_kprobe_blacklist[];
2315
2316 static int __init init_kprobes(void)
2317 {
2318         int i, err = 0;
2319
2320         /* FIXME allocate the probe table, currently defined statically */
2321         /* initialize all list heads */
2322         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2323                 INIT_HLIST_HEAD(&kprobe_table[i]);
2324                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2325                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2326         }
2327
2328         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2329                                         __stop_kprobe_blacklist);
2330         if (err) {
2331                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2332                 pr_err("Please take care of using kprobes.\n");
2333         }
2334
2335         if (kretprobe_blacklist_size) {
2336                 /* lookup the function address from its name */
2337                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2338                         kretprobe_blacklist[i].addr =
2339                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2340                         if (!kretprobe_blacklist[i].addr)
2341                                 printk("kretprobe: lookup failed: %s\n",
2342                                        kretprobe_blacklist[i].name);
2343                 }
2344         }
2345
2346 #if defined(CONFIG_OPTPROBES)
2347 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2348         /* Init kprobe_optinsn_slots */
2349         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2350 #endif
2351         /* By default, kprobes can be optimized */
2352         kprobes_allow_optimization = true;
2353 #endif
2354
2355         /* By default, kprobes are armed */
2356         kprobes_all_disarmed = false;
2357
2358         err = arch_init_kprobes();
2359         if (!err)
2360                 err = register_die_notifier(&kprobe_exceptions_nb);
2361         if (!err)
2362                 err = register_module_notifier(&kprobe_module_nb);
2363
2364         kprobes_initialized = (err == 0);
2365
2366         if (!err)
2367                 init_test_probes();
2368         return err;
2369 }
2370
2371 #ifdef CONFIG_DEBUG_FS
2372 static void report_probe(struct seq_file *pi, struct kprobe *p,
2373                 const char *sym, int offset, char *modname, struct kprobe *pp)
2374 {
2375         char *kprobe_type;
2376         void *addr = p->addr;
2377
2378         if (p->pre_handler == pre_handler_kretprobe)
2379                 kprobe_type = "r";
2380         else
2381                 kprobe_type = "k";
2382
2383         if (!kallsyms_show_value(pi->file->f_cred))
2384                 addr = NULL;
2385
2386         if (sym)
2387                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2388                         addr, kprobe_type, sym, offset,
2389                         (modname ? modname : " "));
2390         else    /* try to use %pS */
2391                 seq_printf(pi, "%px  %s  %pS ",
2392                         addr, kprobe_type, p->addr);
2393
2394         if (!pp)
2395                 pp = p;
2396         seq_printf(pi, "%s%s%s%s\n",
2397                 (kprobe_gone(p) ? "[GONE]" : ""),
2398                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2399                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2400                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2401 }
2402
2403 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2404 {
2405         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2406 }
2407
2408 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2409 {
2410         (*pos)++;
2411         if (*pos >= KPROBE_TABLE_SIZE)
2412                 return NULL;
2413         return pos;
2414 }
2415
2416 static void kprobe_seq_stop(struct seq_file *f, void *v)
2417 {
2418         /* Nothing to do */
2419 }
2420
2421 static int show_kprobe_addr(struct seq_file *pi, void *v)
2422 {
2423         struct hlist_head *head;
2424         struct kprobe *p, *kp;
2425         const char *sym = NULL;
2426         unsigned int i = *(loff_t *) v;
2427         unsigned long offset = 0;
2428         char *modname, namebuf[KSYM_NAME_LEN];
2429
2430         head = &kprobe_table[i];
2431         preempt_disable();
2432         hlist_for_each_entry_rcu(p, head, hlist) {
2433                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2434                                         &offset, &modname, namebuf);
2435                 if (kprobe_aggrprobe(p)) {
2436                         list_for_each_entry_rcu(kp, &p->list, list)
2437                                 report_probe(pi, kp, sym, offset, modname, p);
2438                 } else
2439                         report_probe(pi, p, sym, offset, modname, NULL);
2440         }
2441         preempt_enable();
2442         return 0;
2443 }
2444
2445 static const struct seq_operations kprobes_seq_ops = {
2446         .start = kprobe_seq_start,
2447         .next  = kprobe_seq_next,
2448         .stop  = kprobe_seq_stop,
2449         .show  = show_kprobe_addr
2450 };
2451
2452 static int kprobes_open(struct inode *inode, struct file *filp)
2453 {
2454         return seq_open(filp, &kprobes_seq_ops);
2455 }
2456
2457 static const struct file_operations debugfs_kprobes_operations = {
2458         .open           = kprobes_open,
2459         .read           = seq_read,
2460         .llseek         = seq_lseek,
2461         .release        = seq_release,
2462 };
2463
2464 /* kprobes/blacklist -- shows which functions can not be probed */
2465 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2466 {
2467         return seq_list_start(&kprobe_blacklist, *pos);
2468 }
2469
2470 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2471 {
2472         return seq_list_next(v, &kprobe_blacklist, pos);
2473 }
2474
2475 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2476 {
2477         struct kprobe_blacklist_entry *ent =
2478                 list_entry(v, struct kprobe_blacklist_entry, list);
2479
2480         /*
2481          * If /proc/kallsyms is not showing kernel address, we won't
2482          * show them here either.
2483          */
2484         if (!kallsyms_show_value(m->file->f_cred))
2485                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2486                            (void *)ent->start_addr);
2487         else
2488                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2489                            (void *)ent->end_addr, (void *)ent->start_addr);
2490         return 0;
2491 }
2492
2493 static const struct seq_operations kprobe_blacklist_seq_ops = {
2494         .start = kprobe_blacklist_seq_start,
2495         .next  = kprobe_blacklist_seq_next,
2496         .stop  = kprobe_seq_stop,       /* Reuse void function */
2497         .show  = kprobe_blacklist_seq_show,
2498 };
2499
2500 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2501 {
2502         return seq_open(filp, &kprobe_blacklist_seq_ops);
2503 }
2504
2505 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2506         .open           = kprobe_blacklist_open,
2507         .read           = seq_read,
2508         .llseek         = seq_lseek,
2509         .release        = seq_release,
2510 };
2511
2512 static int arm_all_kprobes(void)
2513 {
2514         struct hlist_head *head;
2515         struct kprobe *p;
2516         unsigned int i, total = 0, errors = 0;
2517         int err, ret = 0;
2518
2519         mutex_lock(&kprobe_mutex);
2520
2521         /* If kprobes are armed, just return */
2522         if (!kprobes_all_disarmed)
2523                 goto already_enabled;
2524
2525         /*
2526          * optimize_kprobe() called by arm_kprobe() checks
2527          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2528          * arm_kprobe.
2529          */
2530         kprobes_all_disarmed = false;
2531         /* Arming kprobes doesn't optimize kprobe itself */
2532         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2533                 head = &kprobe_table[i];
2534                 /* Arm all kprobes on a best-effort basis */
2535                 hlist_for_each_entry_rcu(p, head, hlist) {
2536                         if (!kprobe_disabled(p)) {
2537                                 err = arm_kprobe(p);
2538                                 if (err)  {
2539                                         errors++;
2540                                         ret = err;
2541                                 }
2542                                 total++;
2543                         }
2544                 }
2545         }
2546
2547         if (errors)
2548                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2549                         errors, total);
2550         else
2551                 pr_info("Kprobes globally enabled\n");
2552
2553 already_enabled:
2554         mutex_unlock(&kprobe_mutex);
2555         return ret;
2556 }
2557
2558 static int disarm_all_kprobes(void)
2559 {
2560         struct hlist_head *head;
2561         struct kprobe *p;
2562         unsigned int i, total = 0, errors = 0;
2563         int err, ret = 0;
2564
2565         mutex_lock(&kprobe_mutex);
2566
2567         /* If kprobes are already disarmed, just return */
2568         if (kprobes_all_disarmed) {
2569                 mutex_unlock(&kprobe_mutex);
2570                 return 0;
2571         }
2572
2573         kprobes_all_disarmed = true;
2574
2575         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2576                 head = &kprobe_table[i];
2577                 /* Disarm all kprobes on a best-effort basis */
2578                 hlist_for_each_entry_rcu(p, head, hlist) {
2579                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2580                                 err = disarm_kprobe(p, false);
2581                                 if (err) {
2582                                         errors++;
2583                                         ret = err;
2584                                 }
2585                                 total++;
2586                         }
2587                 }
2588         }
2589
2590         if (errors)
2591                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2592                         errors, total);
2593         else
2594                 pr_info("Kprobes globally disabled\n");
2595
2596         mutex_unlock(&kprobe_mutex);
2597
2598         /* Wait for disarming all kprobes by optimizer */
2599         wait_for_kprobe_optimizer();
2600
2601         return ret;
2602 }
2603
2604 /*
2605  * XXX: The debugfs bool file interface doesn't allow for callbacks
2606  * when the bool state is switched. We can reuse that facility when
2607  * available
2608  */
2609 static ssize_t read_enabled_file_bool(struct file *file,
2610                char __user *user_buf, size_t count, loff_t *ppos)
2611 {
2612         char buf[3];
2613
2614         if (!kprobes_all_disarmed)
2615                 buf[0] = '1';
2616         else
2617                 buf[0] = '0';
2618         buf[1] = '\n';
2619         buf[2] = 0x00;
2620         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2621 }
2622
2623 static ssize_t write_enabled_file_bool(struct file *file,
2624                const char __user *user_buf, size_t count, loff_t *ppos)
2625 {
2626         char buf[32];
2627         size_t buf_size;
2628         int ret = 0;
2629
2630         buf_size = min(count, (sizeof(buf)-1));
2631         if (copy_from_user(buf, user_buf, buf_size))
2632                 return -EFAULT;
2633
2634         buf[buf_size] = '\0';
2635         switch (buf[0]) {
2636         case 'y':
2637         case 'Y':
2638         case '1':
2639                 ret = arm_all_kprobes();
2640                 break;
2641         case 'n':
2642         case 'N':
2643         case '0':
2644                 ret = disarm_all_kprobes();
2645                 break;
2646         default:
2647                 return -EINVAL;
2648         }
2649
2650         if (ret)
2651                 return ret;
2652
2653         return count;
2654 }
2655
2656 static const struct file_operations fops_kp = {
2657         .read =         read_enabled_file_bool,
2658         .write =        write_enabled_file_bool,
2659         .llseek =       default_llseek,
2660 };
2661
2662 static int __init debugfs_kprobe_init(void)
2663 {
2664         struct dentry *dir, *file;
2665         unsigned int value = 1;
2666
2667         dir = debugfs_create_dir("kprobes", NULL);
2668         if (!dir)
2669                 return -ENOMEM;
2670
2671         file = debugfs_create_file("list", 0400, dir, NULL,
2672                                 &debugfs_kprobes_operations);
2673         if (!file)
2674                 goto error;
2675
2676         file = debugfs_create_file("enabled", 0600, dir,
2677                                         &value, &fops_kp);
2678         if (!file)
2679                 goto error;
2680
2681         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2682                                 &debugfs_kprobe_blacklist_ops);
2683         if (!file)
2684                 goto error;
2685
2686         return 0;
2687
2688 error:
2689         debugfs_remove(dir);
2690         return -ENOMEM;
2691 }
2692
2693 late_initcall(debugfs_kprobe_init);
2694 #endif /* CONFIG_DEBUG_FS */
2695
2696 module_init(init_kprobes);