OSDN Git Service

Merge android-4.4.181 (bd858d7) into msm-4.4
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / kernel / power / swap.c
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 static int goldenimage;
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47
48 /*
49  * When reading an {un,}compressed image, we may restore pages in place,
50  * in which case some architectures need these pages cleaning before they
51  * can be executed. We don't know which pages these may be, so clean the lot.
52  */
53 static bool clean_pages_on_read;
54 static bool clean_pages_on_decompress;
55
56 /*
57  *      The swap map is a data structure used for keeping track of each page
58  *      written to a swap partition.  It consists of many swap_map_page
59  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
60  *      These structures are stored on the swap and linked together with the
61  *      help of the .next_swap member.
62  *
63  *      The swap map is created during suspend.  The swap map pages are
64  *      allocated and populated one at a time, so we only need one memory
65  *      page to set up the entire structure.
66  *
67  *      During resume we pick up all swap_map_page structures into a list.
68  */
69
70 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
71
72 /*
73  * Number of free pages that are not high.
74  */
75 static inline unsigned long low_free_pages(void)
76 {
77         return nr_free_pages() - nr_free_highpages();
78 }
79
80 /*
81  * Number of pages required to be kept free while writing the image. Always
82  * half of all available low pages before the writing starts.
83  */
84 static inline unsigned long reqd_free_pages(void)
85 {
86         return low_free_pages() / 2;
87 }
88
89 struct swap_map_page {
90         sector_t entries[MAP_PAGE_ENTRIES];
91         sector_t next_swap;
92 };
93
94 struct swap_map_page_list {
95         struct swap_map_page *map;
96         struct swap_map_page_list *next;
97 };
98
99 /**
100  *      The swap_map_handle structure is used for handling swap in
101  *      a file-alike way
102  */
103
104 struct swap_map_handle {
105         struct swap_map_page *cur;
106         struct swap_map_page_list *maps;
107         sector_t cur_swap;
108         sector_t first_sector;
109         unsigned int k;
110         unsigned long reqd_free_pages;
111         u32 crc32;
112 };
113
114 struct swsusp_header {
115         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
116                       sizeof(u32)];
117         u32     crc32;
118         sector_t image;
119         unsigned int flags;     /* Flags to pass to the "boot" kernel */
120         char    orig_sig[10];
121         char    sig[10];
122 } __packed;
123
124 static struct swsusp_header *swsusp_header;
125
126 /**
127  *      The following functions are used for tracing the allocated
128  *      swap pages, so that they can be freed in case of an error.
129  */
130
131 struct swsusp_extent {
132         struct rb_node node;
133         unsigned long start;
134         unsigned long end;
135 };
136
137 static struct rb_root swsusp_extents = RB_ROOT;
138
139 static int swsusp_extents_insert(unsigned long swap_offset)
140 {
141         struct rb_node **new = &(swsusp_extents.rb_node);
142         struct rb_node *parent = NULL;
143         struct swsusp_extent *ext;
144
145         /* Figure out where to put the new node */
146         while (*new) {
147                 ext = rb_entry(*new, struct swsusp_extent, node);
148                 parent = *new;
149                 if (swap_offset < ext->start) {
150                         /* Try to merge */
151                         if (swap_offset == ext->start - 1) {
152                                 ext->start--;
153                                 return 0;
154                         }
155                         new = &((*new)->rb_left);
156                 } else if (swap_offset > ext->end) {
157                         /* Try to merge */
158                         if (swap_offset == ext->end + 1) {
159                                 ext->end++;
160                                 return 0;
161                         }
162                         new = &((*new)->rb_right);
163                 } else {
164                         /* It already is in the tree */
165                         return -EINVAL;
166                 }
167         }
168         /* Add the new node and rebalance the tree. */
169         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
170         if (!ext)
171                 return -ENOMEM;
172
173         ext->start = swap_offset;
174         ext->end = swap_offset;
175         rb_link_node(&ext->node, parent, new);
176         rb_insert_color(&ext->node, &swsusp_extents);
177         return 0;
178 }
179
180 /**
181  *      alloc_swapdev_block - allocate a swap page and register that it has
182  *      been allocated, so that it can be freed in case of an error.
183  */
184
185 sector_t alloc_swapdev_block(int swap)
186 {
187         unsigned long offset;
188
189         offset = swp_offset(get_swap_page_of_type(swap));
190         if (offset) {
191                 if (swsusp_extents_insert(offset))
192                         swap_free(swp_entry(swap, offset));
193                 else
194                         return swapdev_block(swap, offset);
195         }
196         return 0;
197 }
198
199 /**
200  *      free_all_swap_pages - free swap pages allocated for saving image data.
201  *      It also frees the extents used to register which swap entries had been
202  *      allocated.
203  */
204
205 void free_all_swap_pages(int swap)
206 {
207         struct rb_node *node;
208
209         while ((node = swsusp_extents.rb_node)) {
210                 struct swsusp_extent *ext;
211                 unsigned long offset;
212
213                 ext = container_of(node, struct swsusp_extent, node);
214                 rb_erase(node, &swsusp_extents);
215                 for (offset = ext->start; offset <= ext->end; offset++)
216                         swap_free(swp_entry(swap, offset));
217
218                 kfree(ext);
219         }
220 }
221
222 int swsusp_swap_in_use(void)
223 {
224         return (swsusp_extents.rb_node != NULL);
225 }
226
227 /*
228  * General things
229  */
230
231 static unsigned short root_swap = 0xffff;
232 static struct block_device *hib_resume_bdev;
233
234 struct hib_bio_batch {
235         atomic_t                count;
236         wait_queue_head_t       wait;
237         int                     error;
238 };
239
240 static void hib_init_batch(struct hib_bio_batch *hb)
241 {
242         atomic_set(&hb->count, 0);
243         init_waitqueue_head(&hb->wait);
244         hb->error = 0;
245 }
246
247 static void hib_end_io(struct bio *bio)
248 {
249         struct hib_bio_batch *hb = bio->bi_private;
250         struct page *page = bio->bi_io_vec[0].bv_page;
251
252         if (bio->bi_error) {
253                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
254                                 imajor(bio->bi_bdev->bd_inode),
255                                 iminor(bio->bi_bdev->bd_inode),
256                                 (unsigned long long)bio->bi_iter.bi_sector);
257         }
258
259         if (bio_data_dir(bio) == WRITE)
260                 put_page(page);
261         else if (clean_pages_on_read)
262                 flush_icache_range((unsigned long)page_address(page),
263                                    (unsigned long)page_address(page) + PAGE_SIZE);
264
265         if (bio->bi_error && !hb->error)
266                 hb->error = bio->bi_error;
267         if (atomic_dec_and_test(&hb->count))
268                 wake_up(&hb->wait);
269
270         bio_put(bio);
271 }
272
273 static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
274                 struct hib_bio_batch *hb)
275 {
276         struct page *page = virt_to_page(addr);
277         struct bio *bio;
278         int error = 0;
279
280         bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
281         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
282         bio->bi_bdev = hib_resume_bdev;
283
284         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
285                 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
286                         (unsigned long long)bio->bi_iter.bi_sector);
287                 bio_put(bio);
288                 return -EFAULT;
289         }
290
291         if (hb) {
292                 bio->bi_end_io = hib_end_io;
293                 bio->bi_private = hb;
294                 atomic_inc(&hb->count);
295                 submit_bio(rw, bio);
296         } else {
297                 error = submit_bio_wait(rw, bio);
298                 bio_put(bio);
299         }
300
301         return error;
302 }
303
304 static int hib_wait_io(struct hib_bio_batch *hb)
305 {
306         wait_event(hb->wait, atomic_read(&hb->count) == 0);
307         return hb->error;
308 }
309
310 /*
311  * Saving part
312  */
313
314 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
315 {
316         int error;
317
318         hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
319         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
320             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
321                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
322                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
323                 swsusp_header->image = handle->first_sector;
324                 swsusp_header->flags = flags;
325                 if (flags & SF_CRC32_MODE)
326                         swsusp_header->crc32 = handle->crc32;
327                 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
328                                         swsusp_header, NULL);
329         } else {
330                 printk(KERN_ERR "PM: Swap header not found!\n");
331                 error = -ENODEV;
332         }
333         return error;
334 }
335
336 /**
337  *      swsusp_swap_check - check if the resume device is a swap device
338  *      and get its index (if so)
339  *
340  *      This is called before saving image
341  */
342 static int swsusp_swap_check(void)
343 {
344         int res;
345
346         res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
347                         &hib_resume_bdev);
348         if (res < 0)
349                 return res;
350
351         root_swap = res;
352         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
353         if (res)
354                 return res;
355
356         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
357         if (res < 0)
358                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
359
360         return res;
361 }
362
363 /**
364  *      write_page - Write one page to given swap location.
365  *      @buf:           Address we're writing.
366  *      @offset:        Offset of the swap page we're writing to.
367  *      @hb:            bio completion batch
368  */
369
370 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
371 {
372         void *src;
373         int ret;
374
375         if (!offset)
376                 return -ENOSPC;
377
378         if (hb) {
379                 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
380                                               __GFP_NORETRY);
381                 if (src) {
382                         copy_page(src, buf);
383                 } else {
384                         ret = hib_wait_io(hb); /* Free pages */
385                         if (ret)
386                                 return ret;
387                         src = (void *)__get_free_page(__GFP_RECLAIM |
388                                                       __GFP_NOWARN |
389                                                       __GFP_NORETRY);
390                         if (src) {
391                                 copy_page(src, buf);
392                         } else {
393                                 WARN_ON_ONCE(1);
394                                 hb = NULL;      /* Go synchronous */
395                                 src = buf;
396                         }
397                 }
398         } else {
399                 src = buf;
400         }
401         return hib_submit_io(WRITE_SYNC, offset, src, hb);
402 }
403
404 static void release_swap_writer(struct swap_map_handle *handle)
405 {
406         if (handle->cur)
407                 free_page((unsigned long)handle->cur);
408         handle->cur = NULL;
409 }
410
411 static int get_swap_writer(struct swap_map_handle *handle)
412 {
413         int ret;
414
415         ret = swsusp_swap_check();
416         if (ret) {
417                 if (ret != -ENOSPC)
418                         printk(KERN_ERR "PM: Cannot find swap device, try "
419                                         "swapon -a.\n");
420                 return ret;
421         }
422         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
423         if (!handle->cur) {
424                 ret = -ENOMEM;
425                 goto err_close;
426         }
427         handle->cur_swap = alloc_swapdev_block(root_swap);
428         if (!handle->cur_swap) {
429                 ret = -ENOSPC;
430                 goto err_rel;
431         }
432         handle->k = 0;
433         handle->reqd_free_pages = reqd_free_pages();
434         handle->first_sector = handle->cur_swap;
435         return 0;
436 err_rel:
437         release_swap_writer(handle);
438 err_close:
439         swsusp_close(FMODE_WRITE);
440         return ret;
441 }
442
443 static int swap_write_page(struct swap_map_handle *handle, void *buf,
444                 struct hib_bio_batch *hb)
445 {
446         int error = 0;
447         sector_t offset;
448
449         if (!handle->cur)
450                 return -EINVAL;
451         offset = alloc_swapdev_block(root_swap);
452         error = write_page(buf, offset, hb);
453         if (error)
454                 return error;
455         handle->cur->entries[handle->k++] = offset;
456         if (handle->k >= MAP_PAGE_ENTRIES) {
457                 offset = alloc_swapdev_block(root_swap);
458                 if (!offset)
459                         return -ENOSPC;
460                 handle->cur->next_swap = offset;
461                 error = write_page(handle->cur, handle->cur_swap, hb);
462                 if (error)
463                         goto out;
464                 clear_page(handle->cur);
465                 handle->cur_swap = offset;
466                 handle->k = 0;
467
468                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
469                         error = hib_wait_io(hb);
470                         if (error)
471                                 goto out;
472                         /*
473                          * Recalculate the number of required free pages, to
474                          * make sure we never take more than half.
475                          */
476                         handle->reqd_free_pages = reqd_free_pages();
477                 }
478         }
479  out:
480         return error;
481 }
482
483 static int flush_swap_writer(struct swap_map_handle *handle)
484 {
485         if (handle->cur && handle->cur_swap)
486                 return write_page(handle->cur, handle->cur_swap, NULL);
487         else
488                 return -EINVAL;
489 }
490
491 static int swap_writer_finish(struct swap_map_handle *handle,
492                 unsigned int flags, int error)
493 {
494         if (!error) {
495                 flush_swap_writer(handle);
496                 printk(KERN_INFO "PM: S");
497                 error = mark_swapfiles(handle, flags);
498                 printk("|\n");
499         }
500
501         if (error)
502                 free_all_swap_pages(root_swap);
503         release_swap_writer(handle);
504         swsusp_close(FMODE_WRITE);
505
506         return error;
507 }
508
509 /* We need to remember how much compressed data we need to read. */
510 #define LZO_HEADER      sizeof(size_t)
511
512 /* Number of pages/bytes we'll compress at one time. */
513 #define LZO_UNC_PAGES   32
514 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
515
516 /* Number of pages/bytes we need for compressed data (worst case). */
517 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
518                                      LZO_HEADER, PAGE_SIZE)
519 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
520
521 /* Maximum number of threads for compression/decompression. */
522 #define LZO_THREADS     3
523
524 /* Minimum/maximum number of pages for read buffering. */
525 #define LZO_MIN_RD_PAGES        1024
526 #define LZO_MAX_RD_PAGES        8192
527
528
529 /**
530  *      save_image - save the suspend image data
531  */
532
533 static int save_image(struct swap_map_handle *handle,
534                       struct snapshot_handle *snapshot,
535                       unsigned int nr_to_write)
536 {
537         unsigned int m;
538         int ret;
539         int nr_pages;
540         int err2;
541         struct hib_bio_batch hb;
542         ktime_t start;
543         ktime_t stop;
544
545         hib_init_batch(&hb);
546
547         printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
548                 nr_to_write);
549         m = nr_to_write / 10;
550         if (!m)
551                 m = 1;
552         nr_pages = 0;
553         start = ktime_get();
554         while (1) {
555                 ret = snapshot_read_next(snapshot);
556                 if (ret <= 0)
557                         break;
558                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
559                 if (ret)
560                         break;
561                 if (!(nr_pages % m))
562                         printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
563                                nr_pages / m * 10);
564                 nr_pages++;
565         }
566         err2 = hib_wait_io(&hb);
567         stop = ktime_get();
568         if (!ret)
569                 ret = err2;
570         if (!ret)
571                 printk(KERN_INFO "PM: Image saving done.\n");
572         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
573         return ret;
574 }
575
576 /**
577  * Structure used for CRC32.
578  */
579 struct crc_data {
580         struct task_struct *thr;                  /* thread */
581         atomic_t ready;                           /* ready to start flag */
582         atomic_t stop;                            /* ready to stop flag */
583         unsigned run_threads;                     /* nr current threads */
584         wait_queue_head_t go;                     /* start crc update */
585         wait_queue_head_t done;                   /* crc update done */
586         u32 *crc32;                               /* points to handle's crc32 */
587         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
588         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
589 };
590
591 /**
592  * CRC32 update function that runs in its own thread.
593  */
594 static int crc32_threadfn(void *data)
595 {
596         struct crc_data *d = data;
597         unsigned i;
598
599         while (1) {
600                 wait_event(d->go, atomic_read(&d->ready) ||
601                                   kthread_should_stop());
602                 if (kthread_should_stop()) {
603                         d->thr = NULL;
604                         atomic_set(&d->stop, 1);
605                         wake_up(&d->done);
606                         break;
607                 }
608                 atomic_set(&d->ready, 0);
609
610                 for (i = 0; i < d->run_threads; i++)
611                         *d->crc32 = crc32_le(*d->crc32,
612                                              d->unc[i], *d->unc_len[i]);
613                 atomic_set(&d->stop, 1);
614                 wake_up(&d->done);
615         }
616         return 0;
617 }
618 /**
619  * Structure used for LZO data compression.
620  */
621 struct cmp_data {
622         struct task_struct *thr;                  /* thread */
623         atomic_t ready;                           /* ready to start flag */
624         atomic_t stop;                            /* ready to stop flag */
625         int ret;                                  /* return code */
626         wait_queue_head_t go;                     /* start compression */
627         wait_queue_head_t done;                   /* compression done */
628         size_t unc_len;                           /* uncompressed length */
629         size_t cmp_len;                           /* compressed length */
630         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
631         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
632         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
633 };
634
635 /**
636  * Compression function that runs in its own thread.
637  */
638 static int lzo_compress_threadfn(void *data)
639 {
640         struct cmp_data *d = data;
641
642         while (1) {
643                 wait_event(d->go, atomic_read(&d->ready) ||
644                                   kthread_should_stop());
645                 if (kthread_should_stop()) {
646                         d->thr = NULL;
647                         d->ret = -1;
648                         atomic_set(&d->stop, 1);
649                         wake_up(&d->done);
650                         break;
651                 }
652                 atomic_set(&d->ready, 0);
653
654                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
655                                           d->cmp + LZO_HEADER, &d->cmp_len,
656                                           d->wrk);
657                 atomic_set(&d->stop, 1);
658                 wake_up(&d->done);
659         }
660         return 0;
661 }
662
663 /**
664  * save_image_lzo - Save the suspend image data compressed with LZO.
665  * @handle: Swap map handle to use for saving the image.
666  * @snapshot: Image to read data from.
667  * @nr_to_write: Number of pages to save.
668  */
669 static int save_image_lzo(struct swap_map_handle *handle,
670                           struct snapshot_handle *snapshot,
671                           unsigned int nr_to_write)
672 {
673         unsigned int m;
674         int ret = 0;
675         int nr_pages;
676         int err2;
677         struct hib_bio_batch hb;
678         ktime_t start;
679         ktime_t stop;
680         size_t off;
681         unsigned thr, run_threads, nr_threads;
682         unsigned char *page = NULL;
683         struct cmp_data *data = NULL;
684         struct crc_data *crc = NULL;
685
686         hib_init_batch(&hb);
687
688         /*
689          * We'll limit the number of threads for compression to limit memory
690          * footprint.
691          */
692         nr_threads = num_online_cpus() - 1;
693         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
694
695         page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
696         if (!page) {
697                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
698                 ret = -ENOMEM;
699                 goto out_clean;
700         }
701
702         data = vmalloc(sizeof(*data) * nr_threads);
703         if (!data) {
704                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
705                 ret = -ENOMEM;
706                 goto out_clean;
707         }
708         for (thr = 0; thr < nr_threads; thr++)
709                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
710
711         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
712         if (!crc) {
713                 printk(KERN_ERR "PM: Failed to allocate crc\n");
714                 ret = -ENOMEM;
715                 goto out_clean;
716         }
717         memset(crc, 0, offsetof(struct crc_data, go));
718
719         /*
720          * Start the compression threads.
721          */
722         for (thr = 0; thr < nr_threads; thr++) {
723                 init_waitqueue_head(&data[thr].go);
724                 init_waitqueue_head(&data[thr].done);
725
726                 data[thr].thr = kthread_run(lzo_compress_threadfn,
727                                             &data[thr],
728                                             "image_compress/%u", thr);
729                 if (IS_ERR(data[thr].thr)) {
730                         data[thr].thr = NULL;
731                         printk(KERN_ERR
732                                "PM: Cannot start compression threads\n");
733                         ret = -ENOMEM;
734                         goto out_clean;
735                 }
736         }
737
738         /*
739          * Start the CRC32 thread.
740          */
741         init_waitqueue_head(&crc->go);
742         init_waitqueue_head(&crc->done);
743
744         handle->crc32 = 0;
745         crc->crc32 = &handle->crc32;
746         for (thr = 0; thr < nr_threads; thr++) {
747                 crc->unc[thr] = data[thr].unc;
748                 crc->unc_len[thr] = &data[thr].unc_len;
749         }
750
751         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
752         if (IS_ERR(crc->thr)) {
753                 crc->thr = NULL;
754                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
755                 ret = -ENOMEM;
756                 goto out_clean;
757         }
758
759         /*
760          * Adjust the number of required free pages after all allocations have
761          * been done. We don't want to run out of pages when writing.
762          */
763         handle->reqd_free_pages = reqd_free_pages();
764
765         printk(KERN_INFO
766                 "PM: Using %u thread(s) for compression.\n"
767                 "PM: Compressing and saving image data (%u pages)...\n",
768                 nr_threads, nr_to_write);
769         m = nr_to_write / 10;
770         if (!m)
771                 m = 1;
772         nr_pages = 0;
773         start = ktime_get();
774         for (;;) {
775                 for (thr = 0; thr < nr_threads; thr++) {
776                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
777                                 ret = snapshot_read_next(snapshot);
778                                 if (ret < 0)
779                                         goto out_finish;
780
781                                 if (!ret)
782                                         break;
783
784                                 memcpy(data[thr].unc + off,
785                                        data_of(*snapshot), PAGE_SIZE);
786
787                                 if (!(nr_pages % m))
788                                         printk(KERN_INFO
789                                                "PM: Image saving progress: "
790                                                "%3d%%\n",
791                                                nr_pages / m * 10);
792                                 nr_pages++;
793                         }
794                         if (!off)
795                                 break;
796
797                         data[thr].unc_len = off;
798
799                         atomic_set(&data[thr].ready, 1);
800                         wake_up(&data[thr].go);
801                 }
802
803                 if (!thr)
804                         break;
805
806                 crc->run_threads = thr;
807                 atomic_set(&crc->ready, 1);
808                 wake_up(&crc->go);
809
810                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
811                         wait_event(data[thr].done,
812                                    atomic_read(&data[thr].stop));
813                         atomic_set(&data[thr].stop, 0);
814
815                         ret = data[thr].ret;
816
817                         if (ret < 0) {
818                                 printk(KERN_ERR "PM: LZO compression failed\n");
819                                 goto out_finish;
820                         }
821
822                         if (unlikely(!data[thr].cmp_len ||
823                                      data[thr].cmp_len >
824                                      lzo1x_worst_compress(data[thr].unc_len))) {
825                                 printk(KERN_ERR
826                                        "PM: Invalid LZO compressed length\n");
827                                 ret = -1;
828                                 goto out_finish;
829                         }
830
831                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
832
833                         /*
834                          * Given we are writing one page at a time to disk, we
835                          * copy that much from the buffer, although the last
836                          * bit will likely be smaller than full page. This is
837                          * OK - we saved the length of the compressed data, so
838                          * any garbage at the end will be discarded when we
839                          * read it.
840                          */
841                         for (off = 0;
842                              off < LZO_HEADER + data[thr].cmp_len;
843                              off += PAGE_SIZE) {
844                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
845
846                                 ret = swap_write_page(handle, page, &hb);
847                                 if (ret)
848                                         goto out_finish;
849                         }
850                 }
851
852                 wait_event(crc->done, atomic_read(&crc->stop));
853                 atomic_set(&crc->stop, 0);
854         }
855
856 out_finish:
857         err2 = hib_wait_io(&hb);
858         stop = ktime_get();
859         if (!ret)
860                 ret = err2;
861         if (!ret)
862                 printk(KERN_INFO "PM: Image saving done.\n");
863         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
864 out_clean:
865         if (crc) {
866                 if (crc->thr)
867                         kthread_stop(crc->thr);
868                 kfree(crc);
869         }
870         if (data) {
871                 for (thr = 0; thr < nr_threads; thr++)
872                         if (data[thr].thr)
873                                 kthread_stop(data[thr].thr);
874                 vfree(data);
875         }
876         if (page) free_page((unsigned long)page);
877
878         return ret;
879 }
880
881 /**
882  *      enough_swap - Make sure we have enough swap to save the image.
883  *
884  *      Returns TRUE or FALSE after checking the total amount of swap
885  *      space avaiable from the resume partition.
886  */
887
888 static int enough_swap(unsigned int nr_pages, unsigned int flags)
889 {
890         unsigned int free_swap = count_swap_pages(root_swap, 1);
891         unsigned int required;
892
893         pr_debug("PM: Free swap pages: %u\n", free_swap);
894
895         required = PAGES_FOR_IO + nr_pages;
896         return free_swap > required;
897 }
898
899 /**
900  *      swsusp_write - Write entire image and metadata.
901  *      @flags: flags to pass to the "boot" kernel in the image header
902  *
903  *      It is important _NOT_ to umount filesystems at this point. We want
904  *      them synced (in case something goes wrong) but we DO not want to mark
905  *      filesystem clean: it is not. (And it does not matter, if we resume
906  *      correctly, we'll mark system clean, anyway.)
907  */
908
909 int swsusp_write(unsigned int flags)
910 {
911         struct swap_map_handle handle;
912         struct snapshot_handle snapshot;
913         struct swsusp_info *header;
914         unsigned long pages;
915         int error;
916
917         pages = snapshot_get_image_size();
918         error = get_swap_writer(&handle);
919         if (error) {
920                 printk(KERN_ERR "PM: Cannot get swap writer\n");
921                 return error;
922         }
923         if (flags & SF_NOCOMPRESS_MODE) {
924                 if (!enough_swap(pages, flags)) {
925                         printk(KERN_ERR "PM: Not enough free swap\n");
926                         error = -ENOSPC;
927                         goto out_finish;
928                 }
929         }
930         memset(&snapshot, 0, sizeof(struct snapshot_handle));
931         error = snapshot_read_next(&snapshot);
932         if (error < PAGE_SIZE) {
933                 if (error >= 0)
934                         error = -EFAULT;
935
936                 goto out_finish;
937         }
938         header = (struct swsusp_info *)data_of(snapshot);
939         error = swap_write_page(&handle, header, NULL);
940         if (!error) {
941                 error = (flags & SF_NOCOMPRESS_MODE) ?
942                         save_image(&handle, &snapshot, pages - 1) :
943                         save_image_lzo(&handle, &snapshot, pages - 1);
944         }
945 out_finish:
946         error = swap_writer_finish(&handle, flags, error);
947         return error;
948 }
949
950 /**
951  *      The following functions allow us to read data using a swap map
952  *      in a file-alike way
953  */
954
955 static void release_swap_reader(struct swap_map_handle *handle)
956 {
957         struct swap_map_page_list *tmp;
958
959         while (handle->maps) {
960                 if (handle->maps->map)
961                         free_page((unsigned long)handle->maps->map);
962                 tmp = handle->maps;
963                 handle->maps = handle->maps->next;
964                 kfree(tmp);
965         }
966         handle->cur = NULL;
967 }
968
969 static int get_swap_reader(struct swap_map_handle *handle,
970                 unsigned int *flags_p)
971 {
972         int error;
973         struct swap_map_page_list *tmp, *last;
974         sector_t offset;
975
976         *flags_p = swsusp_header->flags;
977
978         if (!swsusp_header->image) /* how can this happen? */
979                 return -EINVAL;
980
981         handle->cur = NULL;
982         last = handle->maps = NULL;
983         offset = swsusp_header->image;
984         while (offset) {
985                 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
986                 if (!tmp) {
987                         release_swap_reader(handle);
988                         return -ENOMEM;
989                 }
990                 memset(tmp, 0, sizeof(*tmp));
991                 if (!handle->maps)
992                         handle->maps = tmp;
993                 if (last)
994                         last->next = tmp;
995                 last = tmp;
996
997                 tmp->map = (struct swap_map_page *)
998                            __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
999                 if (!tmp->map) {
1000                         release_swap_reader(handle);
1001                         return -ENOMEM;
1002                 }
1003
1004                 error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
1005                 if (error) {
1006                         release_swap_reader(handle);
1007                         return error;
1008                 }
1009                 offset = tmp->map->next_swap;
1010         }
1011         handle->k = 0;
1012         handle->cur = handle->maps->map;
1013         return 0;
1014 }
1015
1016 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1017                 struct hib_bio_batch *hb)
1018 {
1019         sector_t offset;
1020         int error;
1021         struct swap_map_page_list *tmp;
1022
1023         if (!handle->cur)
1024                 return -EINVAL;
1025         offset = handle->cur->entries[handle->k];
1026         if (!offset)
1027                 return -EFAULT;
1028         error = hib_submit_io(READ_SYNC, offset, buf, hb);
1029         if (error)
1030                 return error;
1031         if (++handle->k >= MAP_PAGE_ENTRIES) {
1032                 handle->k = 0;
1033                 free_page((unsigned long)handle->maps->map);
1034                 tmp = handle->maps;
1035                 handle->maps = handle->maps->next;
1036                 kfree(tmp);
1037                 if (!handle->maps)
1038                         release_swap_reader(handle);
1039                 else
1040                         handle->cur = handle->maps->map;
1041         }
1042         return error;
1043 }
1044
1045 static int swap_reader_finish(struct swap_map_handle *handle)
1046 {
1047         release_swap_reader(handle);
1048
1049         return 0;
1050 }
1051
1052 /**
1053  *      load_image - load the image using the swap map handle
1054  *      @handle and the snapshot handle @snapshot
1055  *      (assume there are @nr_pages pages to load)
1056  */
1057
1058 static int load_image(struct swap_map_handle *handle,
1059                       struct snapshot_handle *snapshot,
1060                       unsigned int nr_to_read)
1061 {
1062         unsigned int m;
1063         int ret = 0;
1064         ktime_t start;
1065         ktime_t stop;
1066         struct hib_bio_batch hb;
1067         int err2;
1068         unsigned nr_pages;
1069
1070         hib_init_batch(&hb);
1071
1072         clean_pages_on_read = true;
1073         printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1074                 nr_to_read);
1075         m = nr_to_read / 10;
1076         if (!m)
1077                 m = 1;
1078         nr_pages = 0;
1079         start = ktime_get();
1080         for ( ; ; ) {
1081                 ret = snapshot_write_next(snapshot);
1082                 if (ret <= 0)
1083                         break;
1084                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1085                 if (ret)
1086                         break;
1087                 if (snapshot->sync_read)
1088                         ret = hib_wait_io(&hb);
1089                 if (ret)
1090                         break;
1091                 if (!(nr_pages % m))
1092                         printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1093                                nr_pages / m * 10);
1094                 nr_pages++;
1095         }
1096         err2 = hib_wait_io(&hb);
1097         stop = ktime_get();
1098         if (!ret)
1099                 ret = err2;
1100         if (!ret) {
1101                 printk(KERN_INFO "PM: Image loading done.\n");
1102                 snapshot_write_finalize(snapshot);
1103                 if (!snapshot_image_loaded(snapshot))
1104                         ret = -ENODATA;
1105         }
1106         swsusp_show_speed(start, stop, nr_to_read, "Read");
1107         return ret;
1108 }
1109
1110 /**
1111  * Structure used for LZO data decompression.
1112  */
1113 struct dec_data {
1114         struct task_struct *thr;                  /* thread */
1115         atomic_t ready;                           /* ready to start flag */
1116         atomic_t stop;                            /* ready to stop flag */
1117         int ret;                                  /* return code */
1118         wait_queue_head_t go;                     /* start decompression */
1119         wait_queue_head_t done;                   /* decompression done */
1120         size_t unc_len;                           /* uncompressed length */
1121         size_t cmp_len;                           /* compressed length */
1122         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1123         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1124 };
1125
1126 /**
1127  * Deompression function that runs in its own thread.
1128  */
1129 static int lzo_decompress_threadfn(void *data)
1130 {
1131         struct dec_data *d = data;
1132
1133         while (1) {
1134                 wait_event(d->go, atomic_read(&d->ready) ||
1135                                   kthread_should_stop());
1136                 if (kthread_should_stop()) {
1137                         d->thr = NULL;
1138                         d->ret = -1;
1139                         atomic_set(&d->stop, 1);
1140                         wake_up(&d->done);
1141                         break;
1142                 }
1143                 atomic_set(&d->ready, 0);
1144
1145                 d->unc_len = LZO_UNC_SIZE;
1146                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1147                                                d->unc, &d->unc_len);
1148                 if (clean_pages_on_decompress)
1149                         flush_icache_range((unsigned long)d->unc,
1150                                            (unsigned long)d->unc + d->unc_len);
1151
1152                 atomic_set(&d->stop, 1);
1153                 wake_up(&d->done);
1154         }
1155         return 0;
1156 }
1157
1158 /**
1159  * load_image_lzo - Load compressed image data and decompress them with LZO.
1160  * @handle: Swap map handle to use for loading data.
1161  * @snapshot: Image to copy uncompressed data into.
1162  * @nr_to_read: Number of pages to load.
1163  */
1164 static int load_image_lzo(struct swap_map_handle *handle,
1165                           struct snapshot_handle *snapshot,
1166                           unsigned int nr_to_read)
1167 {
1168         unsigned int m;
1169         int ret = 0;
1170         int eof = 0;
1171         struct hib_bio_batch hb;
1172         ktime_t start;
1173         ktime_t stop;
1174         unsigned nr_pages;
1175         size_t off;
1176         unsigned i, thr, run_threads, nr_threads;
1177         unsigned ring = 0, pg = 0, ring_size = 0,
1178                  have = 0, want, need, asked = 0;
1179         unsigned long read_pages = 0;
1180         unsigned char **page = NULL;
1181         struct dec_data *data = NULL;
1182         struct crc_data *crc = NULL;
1183
1184         hib_init_batch(&hb);
1185
1186         /*
1187          * We'll limit the number of threads for decompression to limit memory
1188          * footprint.
1189          */
1190         nr_threads = num_online_cpus() - 1;
1191         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1192
1193         page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1194         if (!page) {
1195                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1196                 ret = -ENOMEM;
1197                 goto out_clean;
1198         }
1199
1200         data = vmalloc(sizeof(*data) * nr_threads);
1201         if (!data) {
1202                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1203                 ret = -ENOMEM;
1204                 goto out_clean;
1205         }
1206         for (thr = 0; thr < nr_threads; thr++)
1207                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1208
1209         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1210         if (!crc) {
1211                 printk(KERN_ERR "PM: Failed to allocate crc\n");
1212                 ret = -ENOMEM;
1213                 goto out_clean;
1214         }
1215         memset(crc, 0, offsetof(struct crc_data, go));
1216
1217         clean_pages_on_decompress = true;
1218
1219         /*
1220          * Start the decompression threads.
1221          */
1222         for (thr = 0; thr < nr_threads; thr++) {
1223                 init_waitqueue_head(&data[thr].go);
1224                 init_waitqueue_head(&data[thr].done);
1225
1226                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1227                                             &data[thr],
1228                                             "image_decompress/%u", thr);
1229                 if (IS_ERR(data[thr].thr)) {
1230                         data[thr].thr = NULL;
1231                         printk(KERN_ERR
1232                                "PM: Cannot start decompression threads\n");
1233                         ret = -ENOMEM;
1234                         goto out_clean;
1235                 }
1236         }
1237
1238         /*
1239          * Start the CRC32 thread.
1240          */
1241         init_waitqueue_head(&crc->go);
1242         init_waitqueue_head(&crc->done);
1243
1244         handle->crc32 = 0;
1245         crc->crc32 = &handle->crc32;
1246         for (thr = 0; thr < nr_threads; thr++) {
1247                 crc->unc[thr] = data[thr].unc;
1248                 crc->unc_len[thr] = &data[thr].unc_len;
1249         }
1250
1251         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1252         if (IS_ERR(crc->thr)) {
1253                 crc->thr = NULL;
1254                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1255                 ret = -ENOMEM;
1256                 goto out_clean;
1257         }
1258
1259         /*
1260          * Set the number of pages for read buffering.
1261          * This is complete guesswork, because we'll only know the real
1262          * picture once prepare_image() is called, which is much later on
1263          * during the image load phase. We'll assume the worst case and
1264          * say that none of the image pages are from high memory.
1265          */
1266         if (low_free_pages() > snapshot_get_image_size())
1267                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1268         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1269
1270         for (i = 0; i < read_pages; i++) {
1271                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1272                                                   __GFP_RECLAIM | __GFP_HIGH :
1273                                                   __GFP_RECLAIM | __GFP_NOWARN |
1274                                                   __GFP_NORETRY);
1275
1276                 if (!page[i]) {
1277                         if (i < LZO_CMP_PAGES) {
1278                                 ring_size = i;
1279                                 printk(KERN_ERR
1280                                        "PM: Failed to allocate LZO pages\n");
1281                                 ret = -ENOMEM;
1282                                 goto out_clean;
1283                         } else {
1284                                 break;
1285                         }
1286                 }
1287         }
1288         want = ring_size = i;
1289
1290         printk(KERN_INFO
1291                 "PM: Using %u thread(s) for decompression.\n"
1292                 "PM: Loading and decompressing image data (%u pages)...\n",
1293                 nr_threads, nr_to_read);
1294         m = nr_to_read / 10;
1295         if (!m)
1296                 m = 1;
1297         nr_pages = 0;
1298         start = ktime_get();
1299
1300         ret = snapshot_write_next(snapshot);
1301         if (ret <= 0)
1302                 goto out_finish;
1303
1304         for(;;) {
1305                 for (i = 0; !eof && i < want; i++) {
1306                         ret = swap_read_page(handle, page[ring], &hb);
1307                         if (ret) {
1308                                 /*
1309                                  * On real read error, finish. On end of data,
1310                                  * set EOF flag and just exit the read loop.
1311                                  */
1312                                 if (handle->cur &&
1313                                     handle->cur->entries[handle->k]) {
1314                                         goto out_finish;
1315                                 } else {
1316                                         eof = 1;
1317                                         break;
1318                                 }
1319                         }
1320                         if (++ring >= ring_size)
1321                                 ring = 0;
1322                 }
1323                 asked += i;
1324                 want -= i;
1325
1326                 /*
1327                  * We are out of data, wait for some more.
1328                  */
1329                 if (!have) {
1330                         if (!asked)
1331                                 break;
1332
1333                         ret = hib_wait_io(&hb);
1334                         if (ret)
1335                                 goto out_finish;
1336                         have += asked;
1337                         asked = 0;
1338                         if (eof)
1339                                 eof = 2;
1340                 }
1341
1342                 if (crc->run_threads) {
1343                         wait_event(crc->done, atomic_read(&crc->stop));
1344                         atomic_set(&crc->stop, 0);
1345                         crc->run_threads = 0;
1346                 }
1347
1348                 for (thr = 0; have && thr < nr_threads; thr++) {
1349                         data[thr].cmp_len = *(size_t *)page[pg];
1350                         if (unlikely(!data[thr].cmp_len ||
1351                                      data[thr].cmp_len >
1352                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1353                                 printk(KERN_ERR
1354                                        "PM: Invalid LZO compressed length\n");
1355                                 ret = -1;
1356                                 goto out_finish;
1357                         }
1358
1359                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1360                                             PAGE_SIZE);
1361                         if (need > have) {
1362                                 if (eof > 1) {
1363                                         ret = -1;
1364                                         goto out_finish;
1365                                 }
1366                                 break;
1367                         }
1368
1369                         for (off = 0;
1370                              off < LZO_HEADER + data[thr].cmp_len;
1371                              off += PAGE_SIZE) {
1372                                 memcpy(data[thr].cmp + off,
1373                                        page[pg], PAGE_SIZE);
1374                                 have--;
1375                                 want++;
1376                                 if (++pg >= ring_size)
1377                                         pg = 0;
1378                         }
1379
1380                         atomic_set(&data[thr].ready, 1);
1381                         wake_up(&data[thr].go);
1382                 }
1383
1384                 /*
1385                  * Wait for more data while we are decompressing.
1386                  */
1387                 if (have < LZO_CMP_PAGES && asked) {
1388                         ret = hib_wait_io(&hb);
1389                         if (ret)
1390                                 goto out_finish;
1391                         have += asked;
1392                         asked = 0;
1393                         if (eof)
1394                                 eof = 2;
1395                 }
1396
1397                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1398                         wait_event(data[thr].done,
1399                                    atomic_read(&data[thr].stop));
1400                         atomic_set(&data[thr].stop, 0);
1401
1402                         ret = data[thr].ret;
1403
1404                         if (ret < 0) {
1405                                 printk(KERN_ERR
1406                                        "PM: LZO decompression failed\n");
1407                                 goto out_finish;
1408                         }
1409
1410                         if (unlikely(!data[thr].unc_len ||
1411                                      data[thr].unc_len > LZO_UNC_SIZE ||
1412                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1413                                 printk(KERN_ERR
1414                                        "PM: Invalid LZO uncompressed length\n");
1415                                 ret = -1;
1416                                 goto out_finish;
1417                         }
1418
1419                         for (off = 0;
1420                              off < data[thr].unc_len; off += PAGE_SIZE) {
1421                                 memcpy(data_of(*snapshot),
1422                                        data[thr].unc + off, PAGE_SIZE);
1423
1424                                 if (!(nr_pages % m))
1425                                         printk(KERN_INFO
1426                                                "PM: Image loading progress: "
1427                                                "%3d%%\n",
1428                                                nr_pages / m * 10);
1429                                 nr_pages++;
1430
1431                                 ret = snapshot_write_next(snapshot);
1432                                 if (ret <= 0) {
1433                                         crc->run_threads = thr + 1;
1434                                         atomic_set(&crc->ready, 1);
1435                                         wake_up(&crc->go);
1436                                         goto out_finish;
1437                                 }
1438                         }
1439                 }
1440
1441                 crc->run_threads = thr;
1442                 atomic_set(&crc->ready, 1);
1443                 wake_up(&crc->go);
1444         }
1445
1446 out_finish:
1447         if (crc->run_threads) {
1448                 wait_event(crc->done, atomic_read(&crc->stop));
1449                 atomic_set(&crc->stop, 0);
1450         }
1451         stop = ktime_get();
1452         if (!ret) {
1453                 printk(KERN_INFO "PM: Image loading done.\n");
1454                 snapshot_write_finalize(snapshot);
1455                 if (!snapshot_image_loaded(snapshot))
1456                         ret = -ENODATA;
1457                 if (!ret) {
1458                         if (swsusp_header->flags & SF_CRC32_MODE) {
1459                                 if(handle->crc32 != swsusp_header->crc32) {
1460                                         printk(KERN_ERR
1461                                                "PM: Invalid image CRC32!\n");
1462                                         ret = -ENODATA;
1463                                 }
1464                         }
1465                 }
1466         }
1467         swsusp_show_speed(start, stop, nr_to_read, "Read");
1468 out_clean:
1469         for (i = 0; i < ring_size; i++)
1470                 free_page((unsigned long)page[i]);
1471         if (crc) {
1472                 if (crc->thr)
1473                         kthread_stop(crc->thr);
1474                 kfree(crc);
1475         }
1476         if (data) {
1477                 for (thr = 0; thr < nr_threads; thr++)
1478                         if (data[thr].thr)
1479                                 kthread_stop(data[thr].thr);
1480                 vfree(data);
1481         }
1482         vfree(page);
1483
1484         return ret;
1485 }
1486
1487 /**
1488  *      swsusp_read - read the hibernation image.
1489  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1490  *                be written into this memory location
1491  */
1492
1493 int swsusp_read(unsigned int *flags_p)
1494 {
1495         int error;
1496         struct swap_map_handle handle;
1497         struct snapshot_handle snapshot;
1498         struct swsusp_info *header;
1499
1500         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1501         error = snapshot_write_next(&snapshot);
1502         if (error < PAGE_SIZE)
1503                 return error < 0 ? error : -EFAULT;
1504         header = (struct swsusp_info *)data_of(snapshot);
1505         error = get_swap_reader(&handle, flags_p);
1506         if (error)
1507                 goto end;
1508         if (!error)
1509                 error = swap_read_page(&handle, header, NULL);
1510         if (!error) {
1511                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1512                         load_image(&handle, &snapshot, header->pages - 1) :
1513                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1514         }
1515         swap_reader_finish(&handle);
1516 end:
1517         if (!error)
1518                 pr_debug("PM: Image successfully loaded\n");
1519         else
1520                 pr_debug("PM: Error %d resuming\n", error);
1521         return error;
1522 }
1523
1524 /**
1525  *      swsusp_check - Check for swsusp signature in the resume device
1526  */
1527
1528 int swsusp_check(void)
1529 {
1530         int error;
1531
1532         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1533                                             FMODE_READ, NULL);
1534         if (!IS_ERR(hib_resume_bdev)) {
1535                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1536                 clear_page(swsusp_header);
1537                 error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1538                                         swsusp_header, NULL);
1539                 if (error)
1540                         goto put;
1541
1542                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1543                         if (!goldenimage) {
1544                                 pr_debug("PM: corrupt hibernate image header\n");
1545                                 memcpy(swsusp_header->sig,
1546                                         swsusp_header->orig_sig, 10);
1547                         } else {
1548                                 pr_debug("PM: Header corruption avoided\n");
1549                         }
1550                         /* Reset swap signature now */
1551                         error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1552                                                 swsusp_header, NULL);
1553                 } else {
1554                         error = -EINVAL;
1555                 }
1556
1557 put:
1558                 if (error)
1559                         blkdev_put(hib_resume_bdev, FMODE_READ);
1560                 else
1561                         pr_debug("PM: Image signature found, resuming\n");
1562         } else {
1563                 error = PTR_ERR(hib_resume_bdev);
1564         }
1565
1566         if (error)
1567                 pr_debug("PM: Image not found (code %d)\n", error);
1568
1569         return error;
1570 }
1571
1572 /**
1573  *      swsusp_close - close swap device.
1574  */
1575
1576 void swsusp_close(fmode_t mode)
1577 {
1578         if (IS_ERR(hib_resume_bdev)) {
1579                 pr_debug("PM: Image device not initialised\n");
1580                 return;
1581         }
1582
1583         blkdev_put(hib_resume_bdev, mode);
1584 }
1585
1586 /**
1587  *      swsusp_unmark - Unmark swsusp signature in the resume device
1588  */
1589
1590 #ifdef CONFIG_SUSPEND
1591 int swsusp_unmark(void)
1592 {
1593         int error;
1594
1595         hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1596         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1597                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1598                 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1599                                         swsusp_header, NULL);
1600         } else {
1601                 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1602                 error = -ENODEV;
1603         }
1604
1605         /*
1606          * We just returned from suspend, we don't need the image any more.
1607          */
1608         free_all_swap_pages(root_swap);
1609
1610         return error;
1611 }
1612 #endif
1613
1614 static int swsusp_header_init(void)
1615 {
1616         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1617         if (!swsusp_header)
1618                 panic("Could not allocate memory for swsusp_header\n");
1619         return 0;
1620 }
1621
1622 core_initcall(swsusp_header_init);
1623
1624 static int __init golden_image_setup(char *str)
1625 {
1626         goldenimage = 1;
1627         return 1;
1628 }
1629 __setup("golden_image", golden_image_setup);