OSDN Git Service

hpfs: hpfs_error: Remove static buffer, use vsprintf extension %pV instead
[uclinux-h8/linux.git] / kernel / power / swap.c
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  *      The swap map is a data structure used for keeping track of each page
41  *      written to a swap partition.  It consists of many swap_map_page
42  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43  *      These structures are stored on the swap and linked together with the
44  *      help of the .next_swap member.
45  *
46  *      The swap map is created during suspend.  The swap map pages are
47  *      allocated and populated one at a time, so we only need one memory
48  *      page to set up the entire structure.
49  *
50  *      During resume we pick up all swap_map_page structures into a list.
51  */
52
53 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
54
55 /*
56  * Number of free pages that are not high.
57  */
58 static inline unsigned long low_free_pages(void)
59 {
60         return nr_free_pages() - nr_free_highpages();
61 }
62
63 /*
64  * Number of pages required to be kept free while writing the image. Always
65  * half of all available low pages before the writing starts.
66  */
67 static inline unsigned long reqd_free_pages(void)
68 {
69         return low_free_pages() / 2;
70 }
71
72 struct swap_map_page {
73         sector_t entries[MAP_PAGE_ENTRIES];
74         sector_t next_swap;
75 };
76
77 struct swap_map_page_list {
78         struct swap_map_page *map;
79         struct swap_map_page_list *next;
80 };
81
82 /**
83  *      The swap_map_handle structure is used for handling swap in
84  *      a file-alike way
85  */
86
87 struct swap_map_handle {
88         struct swap_map_page *cur;
89         struct swap_map_page_list *maps;
90         sector_t cur_swap;
91         sector_t first_sector;
92         unsigned int k;
93         unsigned long reqd_free_pages;
94         u32 crc32;
95 };
96
97 struct swsusp_header {
98         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99                       sizeof(u32)];
100         u32     crc32;
101         sector_t image;
102         unsigned int flags;     /* Flags to pass to the "boot" kernel */
103         char    orig_sig[10];
104         char    sig[10];
105 } __packed;
106
107 static struct swsusp_header *swsusp_header;
108
109 /**
110  *      The following functions are used for tracing the allocated
111  *      swap pages, so that they can be freed in case of an error.
112  */
113
114 struct swsusp_extent {
115         struct rb_node node;
116         unsigned long start;
117         unsigned long end;
118 };
119
120 static struct rb_root swsusp_extents = RB_ROOT;
121
122 static int swsusp_extents_insert(unsigned long swap_offset)
123 {
124         struct rb_node **new = &(swsusp_extents.rb_node);
125         struct rb_node *parent = NULL;
126         struct swsusp_extent *ext;
127
128         /* Figure out where to put the new node */
129         while (*new) {
130                 ext = rb_entry(*new, struct swsusp_extent, node);
131                 parent = *new;
132                 if (swap_offset < ext->start) {
133                         /* Try to merge */
134                         if (swap_offset == ext->start - 1) {
135                                 ext->start--;
136                                 return 0;
137                         }
138                         new = &((*new)->rb_left);
139                 } else if (swap_offset > ext->end) {
140                         /* Try to merge */
141                         if (swap_offset == ext->end + 1) {
142                                 ext->end++;
143                                 return 0;
144                         }
145                         new = &((*new)->rb_right);
146                 } else {
147                         /* It already is in the tree */
148                         return -EINVAL;
149                 }
150         }
151         /* Add the new node and rebalance the tree. */
152         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153         if (!ext)
154                 return -ENOMEM;
155
156         ext->start = swap_offset;
157         ext->end = swap_offset;
158         rb_link_node(&ext->node, parent, new);
159         rb_insert_color(&ext->node, &swsusp_extents);
160         return 0;
161 }
162
163 /**
164  *      alloc_swapdev_block - allocate a swap page and register that it has
165  *      been allocated, so that it can be freed in case of an error.
166  */
167
168 sector_t alloc_swapdev_block(int swap)
169 {
170         unsigned long offset;
171
172         offset = swp_offset(get_swap_page_of_type(swap));
173         if (offset) {
174                 if (swsusp_extents_insert(offset))
175                         swap_free(swp_entry(swap, offset));
176                 else
177                         return swapdev_block(swap, offset);
178         }
179         return 0;
180 }
181
182 /**
183  *      free_all_swap_pages - free swap pages allocated for saving image data.
184  *      It also frees the extents used to register which swap entries had been
185  *      allocated.
186  */
187
188 void free_all_swap_pages(int swap)
189 {
190         struct rb_node *node;
191
192         while ((node = swsusp_extents.rb_node)) {
193                 struct swsusp_extent *ext;
194                 unsigned long offset;
195
196                 ext = container_of(node, struct swsusp_extent, node);
197                 rb_erase(node, &swsusp_extents);
198                 for (offset = ext->start; offset <= ext->end; offset++)
199                         swap_free(swp_entry(swap, offset));
200
201                 kfree(ext);
202         }
203 }
204
205 int swsusp_swap_in_use(void)
206 {
207         return (swsusp_extents.rb_node != NULL);
208 }
209
210 /*
211  * General things
212  */
213
214 static unsigned short root_swap = 0xffff;
215 static struct block_device *hib_resume_bdev;
216
217 struct hib_bio_batch {
218         atomic_t                count;
219         wait_queue_head_t       wait;
220         int                     error;
221 };
222
223 static void hib_init_batch(struct hib_bio_batch *hb)
224 {
225         atomic_set(&hb->count, 0);
226         init_waitqueue_head(&hb->wait);
227         hb->error = 0;
228 }
229
230 static void hib_end_io(struct bio *bio, int error)
231 {
232         struct hib_bio_batch *hb = bio->bi_private;
233         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
234         struct page *page = bio->bi_io_vec[0].bv_page;
235
236         if (!uptodate || error) {
237                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
238                                 imajor(bio->bi_bdev->bd_inode),
239                                 iminor(bio->bi_bdev->bd_inode),
240                                 (unsigned long long)bio->bi_iter.bi_sector);
241
242                 if (!error)
243                         error = -EIO;
244         }
245
246         if (bio_data_dir(bio) == WRITE)
247                 put_page(page);
248
249         if (error && !hb->error)
250                 hb->error = error;
251         if (atomic_dec_and_test(&hb->count))
252                 wake_up(&hb->wait);
253
254         bio_put(bio);
255 }
256
257 static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
258                 struct hib_bio_batch *hb)
259 {
260         struct page *page = virt_to_page(addr);
261         struct bio *bio;
262         int error = 0;
263
264         bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1);
265         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
266         bio->bi_bdev = hib_resume_bdev;
267
268         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
269                 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
270                         (unsigned long long)bio->bi_iter.bi_sector);
271                 bio_put(bio);
272                 return -EFAULT;
273         }
274
275         if (hb) {
276                 bio->bi_end_io = hib_end_io;
277                 bio->bi_private = hb;
278                 atomic_inc(&hb->count);
279                 submit_bio(rw, bio);
280         } else {
281                 error = submit_bio_wait(rw, bio);
282                 bio_put(bio);
283         }
284
285         return error;
286 }
287
288 static int hib_wait_io(struct hib_bio_batch *hb)
289 {
290         wait_event(hb->wait, atomic_read(&hb->count) == 0);
291         return hb->error;
292 }
293
294 /*
295  * Saving part
296  */
297
298 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
299 {
300         int error;
301
302         hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
303         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
304             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
305                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
306                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
307                 swsusp_header->image = handle->first_sector;
308                 swsusp_header->flags = flags;
309                 if (flags & SF_CRC32_MODE)
310                         swsusp_header->crc32 = handle->crc32;
311                 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
312                                         swsusp_header, NULL);
313         } else {
314                 printk(KERN_ERR "PM: Swap header not found!\n");
315                 error = -ENODEV;
316         }
317         return error;
318 }
319
320 /**
321  *      swsusp_swap_check - check if the resume device is a swap device
322  *      and get its index (if so)
323  *
324  *      This is called before saving image
325  */
326 static int swsusp_swap_check(void)
327 {
328         int res;
329
330         res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
331                         &hib_resume_bdev);
332         if (res < 0)
333                 return res;
334
335         root_swap = res;
336         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
337         if (res)
338                 return res;
339
340         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
341         if (res < 0)
342                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
343
344         return res;
345 }
346
347 /**
348  *      write_page - Write one page to given swap location.
349  *      @buf:           Address we're writing.
350  *      @offset:        Offset of the swap page we're writing to.
351  *      @hb:            bio completion batch
352  */
353
354 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
355 {
356         void *src;
357         int ret;
358
359         if (!offset)
360                 return -ENOSPC;
361
362         if (hb) {
363                 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
364                                               __GFP_NORETRY);
365                 if (src) {
366                         copy_page(src, buf);
367                 } else {
368                         ret = hib_wait_io(hb); /* Free pages */
369                         if (ret)
370                                 return ret;
371                         src = (void *)__get_free_page(__GFP_WAIT |
372                                                       __GFP_NOWARN |
373                                                       __GFP_NORETRY);
374                         if (src) {
375                                 copy_page(src, buf);
376                         } else {
377                                 WARN_ON_ONCE(1);
378                                 hb = NULL;      /* Go synchronous */
379                                 src = buf;
380                         }
381                 }
382         } else {
383                 src = buf;
384         }
385         return hib_submit_io(WRITE_SYNC, offset, src, hb);
386 }
387
388 static void release_swap_writer(struct swap_map_handle *handle)
389 {
390         if (handle->cur)
391                 free_page((unsigned long)handle->cur);
392         handle->cur = NULL;
393 }
394
395 static int get_swap_writer(struct swap_map_handle *handle)
396 {
397         int ret;
398
399         ret = swsusp_swap_check();
400         if (ret) {
401                 if (ret != -ENOSPC)
402                         printk(KERN_ERR "PM: Cannot find swap device, try "
403                                         "swapon -a.\n");
404                 return ret;
405         }
406         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
407         if (!handle->cur) {
408                 ret = -ENOMEM;
409                 goto err_close;
410         }
411         handle->cur_swap = alloc_swapdev_block(root_swap);
412         if (!handle->cur_swap) {
413                 ret = -ENOSPC;
414                 goto err_rel;
415         }
416         handle->k = 0;
417         handle->reqd_free_pages = reqd_free_pages();
418         handle->first_sector = handle->cur_swap;
419         return 0;
420 err_rel:
421         release_swap_writer(handle);
422 err_close:
423         swsusp_close(FMODE_WRITE);
424         return ret;
425 }
426
427 static int swap_write_page(struct swap_map_handle *handle, void *buf,
428                 struct hib_bio_batch *hb)
429 {
430         int error = 0;
431         sector_t offset;
432
433         if (!handle->cur)
434                 return -EINVAL;
435         offset = alloc_swapdev_block(root_swap);
436         error = write_page(buf, offset, hb);
437         if (error)
438                 return error;
439         handle->cur->entries[handle->k++] = offset;
440         if (handle->k >= MAP_PAGE_ENTRIES) {
441                 offset = alloc_swapdev_block(root_swap);
442                 if (!offset)
443                         return -ENOSPC;
444                 handle->cur->next_swap = offset;
445                 error = write_page(handle->cur, handle->cur_swap, hb);
446                 if (error)
447                         goto out;
448                 clear_page(handle->cur);
449                 handle->cur_swap = offset;
450                 handle->k = 0;
451
452                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
453                         error = hib_wait_io(hb);
454                         if (error)
455                                 goto out;
456                         /*
457                          * Recalculate the number of required free pages, to
458                          * make sure we never take more than half.
459                          */
460                         handle->reqd_free_pages = reqd_free_pages();
461                 }
462         }
463  out:
464         return error;
465 }
466
467 static int flush_swap_writer(struct swap_map_handle *handle)
468 {
469         if (handle->cur && handle->cur_swap)
470                 return write_page(handle->cur, handle->cur_swap, NULL);
471         else
472                 return -EINVAL;
473 }
474
475 static int swap_writer_finish(struct swap_map_handle *handle,
476                 unsigned int flags, int error)
477 {
478         if (!error) {
479                 flush_swap_writer(handle);
480                 printk(KERN_INFO "PM: S");
481                 error = mark_swapfiles(handle, flags);
482                 printk("|\n");
483         }
484
485         if (error)
486                 free_all_swap_pages(root_swap);
487         release_swap_writer(handle);
488         swsusp_close(FMODE_WRITE);
489
490         return error;
491 }
492
493 /* We need to remember how much compressed data we need to read. */
494 #define LZO_HEADER      sizeof(size_t)
495
496 /* Number of pages/bytes we'll compress at one time. */
497 #define LZO_UNC_PAGES   32
498 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
499
500 /* Number of pages/bytes we need for compressed data (worst case). */
501 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
502                                      LZO_HEADER, PAGE_SIZE)
503 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
504
505 /* Maximum number of threads for compression/decompression. */
506 #define LZO_THREADS     3
507
508 /* Minimum/maximum number of pages for read buffering. */
509 #define LZO_MIN_RD_PAGES        1024
510 #define LZO_MAX_RD_PAGES        8192
511
512
513 /**
514  *      save_image - save the suspend image data
515  */
516
517 static int save_image(struct swap_map_handle *handle,
518                       struct snapshot_handle *snapshot,
519                       unsigned int nr_to_write)
520 {
521         unsigned int m;
522         int ret;
523         int nr_pages;
524         int err2;
525         struct hib_bio_batch hb;
526         ktime_t start;
527         ktime_t stop;
528
529         hib_init_batch(&hb);
530
531         printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
532                 nr_to_write);
533         m = nr_to_write / 10;
534         if (!m)
535                 m = 1;
536         nr_pages = 0;
537         start = ktime_get();
538         while (1) {
539                 ret = snapshot_read_next(snapshot);
540                 if (ret <= 0)
541                         break;
542                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
543                 if (ret)
544                         break;
545                 if (!(nr_pages % m))
546                         printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
547                                nr_pages / m * 10);
548                 nr_pages++;
549         }
550         err2 = hib_wait_io(&hb);
551         stop = ktime_get();
552         if (!ret)
553                 ret = err2;
554         if (!ret)
555                 printk(KERN_INFO "PM: Image saving done.\n");
556         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
557         return ret;
558 }
559
560 /**
561  * Structure used for CRC32.
562  */
563 struct crc_data {
564         struct task_struct *thr;                  /* thread */
565         atomic_t ready;                           /* ready to start flag */
566         atomic_t stop;                            /* ready to stop flag */
567         unsigned run_threads;                     /* nr current threads */
568         wait_queue_head_t go;                     /* start crc update */
569         wait_queue_head_t done;                   /* crc update done */
570         u32 *crc32;                               /* points to handle's crc32 */
571         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
572         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
573 };
574
575 /**
576  * CRC32 update function that runs in its own thread.
577  */
578 static int crc32_threadfn(void *data)
579 {
580         struct crc_data *d = data;
581         unsigned i;
582
583         while (1) {
584                 wait_event(d->go, atomic_read(&d->ready) ||
585                                   kthread_should_stop());
586                 if (kthread_should_stop()) {
587                         d->thr = NULL;
588                         atomic_set(&d->stop, 1);
589                         wake_up(&d->done);
590                         break;
591                 }
592                 atomic_set(&d->ready, 0);
593
594                 for (i = 0; i < d->run_threads; i++)
595                         *d->crc32 = crc32_le(*d->crc32,
596                                              d->unc[i], *d->unc_len[i]);
597                 atomic_set(&d->stop, 1);
598                 wake_up(&d->done);
599         }
600         return 0;
601 }
602 /**
603  * Structure used for LZO data compression.
604  */
605 struct cmp_data {
606         struct task_struct *thr;                  /* thread */
607         atomic_t ready;                           /* ready to start flag */
608         atomic_t stop;                            /* ready to stop flag */
609         int ret;                                  /* return code */
610         wait_queue_head_t go;                     /* start compression */
611         wait_queue_head_t done;                   /* compression done */
612         size_t unc_len;                           /* uncompressed length */
613         size_t cmp_len;                           /* compressed length */
614         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
615         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
616         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
617 };
618
619 /**
620  * Compression function that runs in its own thread.
621  */
622 static int lzo_compress_threadfn(void *data)
623 {
624         struct cmp_data *d = data;
625
626         while (1) {
627                 wait_event(d->go, atomic_read(&d->ready) ||
628                                   kthread_should_stop());
629                 if (kthread_should_stop()) {
630                         d->thr = NULL;
631                         d->ret = -1;
632                         atomic_set(&d->stop, 1);
633                         wake_up(&d->done);
634                         break;
635                 }
636                 atomic_set(&d->ready, 0);
637
638                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
639                                           d->cmp + LZO_HEADER, &d->cmp_len,
640                                           d->wrk);
641                 atomic_set(&d->stop, 1);
642                 wake_up(&d->done);
643         }
644         return 0;
645 }
646
647 /**
648  * save_image_lzo - Save the suspend image data compressed with LZO.
649  * @handle: Swap map handle to use for saving the image.
650  * @snapshot: Image to read data from.
651  * @nr_to_write: Number of pages to save.
652  */
653 static int save_image_lzo(struct swap_map_handle *handle,
654                           struct snapshot_handle *snapshot,
655                           unsigned int nr_to_write)
656 {
657         unsigned int m;
658         int ret = 0;
659         int nr_pages;
660         int err2;
661         struct hib_bio_batch hb;
662         ktime_t start;
663         ktime_t stop;
664         size_t off;
665         unsigned thr, run_threads, nr_threads;
666         unsigned char *page = NULL;
667         struct cmp_data *data = NULL;
668         struct crc_data *crc = NULL;
669
670         hib_init_batch(&hb);
671
672         /*
673          * We'll limit the number of threads for compression to limit memory
674          * footprint.
675          */
676         nr_threads = num_online_cpus() - 1;
677         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
678
679         page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
680         if (!page) {
681                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
682                 ret = -ENOMEM;
683                 goto out_clean;
684         }
685
686         data = vmalloc(sizeof(*data) * nr_threads);
687         if (!data) {
688                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
689                 ret = -ENOMEM;
690                 goto out_clean;
691         }
692         for (thr = 0; thr < nr_threads; thr++)
693                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
694
695         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
696         if (!crc) {
697                 printk(KERN_ERR "PM: Failed to allocate crc\n");
698                 ret = -ENOMEM;
699                 goto out_clean;
700         }
701         memset(crc, 0, offsetof(struct crc_data, go));
702
703         /*
704          * Start the compression threads.
705          */
706         for (thr = 0; thr < nr_threads; thr++) {
707                 init_waitqueue_head(&data[thr].go);
708                 init_waitqueue_head(&data[thr].done);
709
710                 data[thr].thr = kthread_run(lzo_compress_threadfn,
711                                             &data[thr],
712                                             "image_compress/%u", thr);
713                 if (IS_ERR(data[thr].thr)) {
714                         data[thr].thr = NULL;
715                         printk(KERN_ERR
716                                "PM: Cannot start compression threads\n");
717                         ret = -ENOMEM;
718                         goto out_clean;
719                 }
720         }
721
722         /*
723          * Start the CRC32 thread.
724          */
725         init_waitqueue_head(&crc->go);
726         init_waitqueue_head(&crc->done);
727
728         handle->crc32 = 0;
729         crc->crc32 = &handle->crc32;
730         for (thr = 0; thr < nr_threads; thr++) {
731                 crc->unc[thr] = data[thr].unc;
732                 crc->unc_len[thr] = &data[thr].unc_len;
733         }
734
735         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
736         if (IS_ERR(crc->thr)) {
737                 crc->thr = NULL;
738                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
739                 ret = -ENOMEM;
740                 goto out_clean;
741         }
742
743         /*
744          * Adjust the number of required free pages after all allocations have
745          * been done. We don't want to run out of pages when writing.
746          */
747         handle->reqd_free_pages = reqd_free_pages();
748
749         printk(KERN_INFO
750                 "PM: Using %u thread(s) for compression.\n"
751                 "PM: Compressing and saving image data (%u pages)...\n",
752                 nr_threads, nr_to_write);
753         m = nr_to_write / 10;
754         if (!m)
755                 m = 1;
756         nr_pages = 0;
757         start = ktime_get();
758         for (;;) {
759                 for (thr = 0; thr < nr_threads; thr++) {
760                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
761                                 ret = snapshot_read_next(snapshot);
762                                 if (ret < 0)
763                                         goto out_finish;
764
765                                 if (!ret)
766                                         break;
767
768                                 memcpy(data[thr].unc + off,
769                                        data_of(*snapshot), PAGE_SIZE);
770
771                                 if (!(nr_pages % m))
772                                         printk(KERN_INFO
773                                                "PM: Image saving progress: "
774                                                "%3d%%\n",
775                                                nr_pages / m * 10);
776                                 nr_pages++;
777                         }
778                         if (!off)
779                                 break;
780
781                         data[thr].unc_len = off;
782
783                         atomic_set(&data[thr].ready, 1);
784                         wake_up(&data[thr].go);
785                 }
786
787                 if (!thr)
788                         break;
789
790                 crc->run_threads = thr;
791                 atomic_set(&crc->ready, 1);
792                 wake_up(&crc->go);
793
794                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
795                         wait_event(data[thr].done,
796                                    atomic_read(&data[thr].stop));
797                         atomic_set(&data[thr].stop, 0);
798
799                         ret = data[thr].ret;
800
801                         if (ret < 0) {
802                                 printk(KERN_ERR "PM: LZO compression failed\n");
803                                 goto out_finish;
804                         }
805
806                         if (unlikely(!data[thr].cmp_len ||
807                                      data[thr].cmp_len >
808                                      lzo1x_worst_compress(data[thr].unc_len))) {
809                                 printk(KERN_ERR
810                                        "PM: Invalid LZO compressed length\n");
811                                 ret = -1;
812                                 goto out_finish;
813                         }
814
815                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
816
817                         /*
818                          * Given we are writing one page at a time to disk, we
819                          * copy that much from the buffer, although the last
820                          * bit will likely be smaller than full page. This is
821                          * OK - we saved the length of the compressed data, so
822                          * any garbage at the end will be discarded when we
823                          * read it.
824                          */
825                         for (off = 0;
826                              off < LZO_HEADER + data[thr].cmp_len;
827                              off += PAGE_SIZE) {
828                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
829
830                                 ret = swap_write_page(handle, page, &hb);
831                                 if (ret)
832                                         goto out_finish;
833                         }
834                 }
835
836                 wait_event(crc->done, atomic_read(&crc->stop));
837                 atomic_set(&crc->stop, 0);
838         }
839
840 out_finish:
841         err2 = hib_wait_io(&hb);
842         stop = ktime_get();
843         if (!ret)
844                 ret = err2;
845         if (!ret)
846                 printk(KERN_INFO "PM: Image saving done.\n");
847         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
848 out_clean:
849         if (crc) {
850                 if (crc->thr)
851                         kthread_stop(crc->thr);
852                 kfree(crc);
853         }
854         if (data) {
855                 for (thr = 0; thr < nr_threads; thr++)
856                         if (data[thr].thr)
857                                 kthread_stop(data[thr].thr);
858                 vfree(data);
859         }
860         if (page) free_page((unsigned long)page);
861
862         return ret;
863 }
864
865 /**
866  *      enough_swap - Make sure we have enough swap to save the image.
867  *
868  *      Returns TRUE or FALSE after checking the total amount of swap
869  *      space avaiable from the resume partition.
870  */
871
872 static int enough_swap(unsigned int nr_pages, unsigned int flags)
873 {
874         unsigned int free_swap = count_swap_pages(root_swap, 1);
875         unsigned int required;
876
877         pr_debug("PM: Free swap pages: %u\n", free_swap);
878
879         required = PAGES_FOR_IO + nr_pages;
880         return free_swap > required;
881 }
882
883 /**
884  *      swsusp_write - Write entire image and metadata.
885  *      @flags: flags to pass to the "boot" kernel in the image header
886  *
887  *      It is important _NOT_ to umount filesystems at this point. We want
888  *      them synced (in case something goes wrong) but we DO not want to mark
889  *      filesystem clean: it is not. (And it does not matter, if we resume
890  *      correctly, we'll mark system clean, anyway.)
891  */
892
893 int swsusp_write(unsigned int flags)
894 {
895         struct swap_map_handle handle;
896         struct snapshot_handle snapshot;
897         struct swsusp_info *header;
898         unsigned long pages;
899         int error;
900
901         pages = snapshot_get_image_size();
902         error = get_swap_writer(&handle);
903         if (error) {
904                 printk(KERN_ERR "PM: Cannot get swap writer\n");
905                 return error;
906         }
907         if (flags & SF_NOCOMPRESS_MODE) {
908                 if (!enough_swap(pages, flags)) {
909                         printk(KERN_ERR "PM: Not enough free swap\n");
910                         error = -ENOSPC;
911                         goto out_finish;
912                 }
913         }
914         memset(&snapshot, 0, sizeof(struct snapshot_handle));
915         error = snapshot_read_next(&snapshot);
916         if (error < PAGE_SIZE) {
917                 if (error >= 0)
918                         error = -EFAULT;
919
920                 goto out_finish;
921         }
922         header = (struct swsusp_info *)data_of(snapshot);
923         error = swap_write_page(&handle, header, NULL);
924         if (!error) {
925                 error = (flags & SF_NOCOMPRESS_MODE) ?
926                         save_image(&handle, &snapshot, pages - 1) :
927                         save_image_lzo(&handle, &snapshot, pages - 1);
928         }
929 out_finish:
930         error = swap_writer_finish(&handle, flags, error);
931         return error;
932 }
933
934 /**
935  *      The following functions allow us to read data using a swap map
936  *      in a file-alike way
937  */
938
939 static void release_swap_reader(struct swap_map_handle *handle)
940 {
941         struct swap_map_page_list *tmp;
942
943         while (handle->maps) {
944                 if (handle->maps->map)
945                         free_page((unsigned long)handle->maps->map);
946                 tmp = handle->maps;
947                 handle->maps = handle->maps->next;
948                 kfree(tmp);
949         }
950         handle->cur = NULL;
951 }
952
953 static int get_swap_reader(struct swap_map_handle *handle,
954                 unsigned int *flags_p)
955 {
956         int error;
957         struct swap_map_page_list *tmp, *last;
958         sector_t offset;
959
960         *flags_p = swsusp_header->flags;
961
962         if (!swsusp_header->image) /* how can this happen? */
963                 return -EINVAL;
964
965         handle->cur = NULL;
966         last = handle->maps = NULL;
967         offset = swsusp_header->image;
968         while (offset) {
969                 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
970                 if (!tmp) {
971                         release_swap_reader(handle);
972                         return -ENOMEM;
973                 }
974                 memset(tmp, 0, sizeof(*tmp));
975                 if (!handle->maps)
976                         handle->maps = tmp;
977                 if (last)
978                         last->next = tmp;
979                 last = tmp;
980
981                 tmp->map = (struct swap_map_page *)
982                            __get_free_page(__GFP_WAIT | __GFP_HIGH);
983                 if (!tmp->map) {
984                         release_swap_reader(handle);
985                         return -ENOMEM;
986                 }
987
988                 error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
989                 if (error) {
990                         release_swap_reader(handle);
991                         return error;
992                 }
993                 offset = tmp->map->next_swap;
994         }
995         handle->k = 0;
996         handle->cur = handle->maps->map;
997         return 0;
998 }
999
1000 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1001                 struct hib_bio_batch *hb)
1002 {
1003         sector_t offset;
1004         int error;
1005         struct swap_map_page_list *tmp;
1006
1007         if (!handle->cur)
1008                 return -EINVAL;
1009         offset = handle->cur->entries[handle->k];
1010         if (!offset)
1011                 return -EFAULT;
1012         error = hib_submit_io(READ_SYNC, offset, buf, hb);
1013         if (error)
1014                 return error;
1015         if (++handle->k >= MAP_PAGE_ENTRIES) {
1016                 handle->k = 0;
1017                 free_page((unsigned long)handle->maps->map);
1018                 tmp = handle->maps;
1019                 handle->maps = handle->maps->next;
1020                 kfree(tmp);
1021                 if (!handle->maps)
1022                         release_swap_reader(handle);
1023                 else
1024                         handle->cur = handle->maps->map;
1025         }
1026         return error;
1027 }
1028
1029 static int swap_reader_finish(struct swap_map_handle *handle)
1030 {
1031         release_swap_reader(handle);
1032
1033         return 0;
1034 }
1035
1036 /**
1037  *      load_image - load the image using the swap map handle
1038  *      @handle and the snapshot handle @snapshot
1039  *      (assume there are @nr_pages pages to load)
1040  */
1041
1042 static int load_image(struct swap_map_handle *handle,
1043                       struct snapshot_handle *snapshot,
1044                       unsigned int nr_to_read)
1045 {
1046         unsigned int m;
1047         int ret = 0;
1048         ktime_t start;
1049         ktime_t stop;
1050         struct hib_bio_batch hb;
1051         int err2;
1052         unsigned nr_pages;
1053
1054         hib_init_batch(&hb);
1055
1056         printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1057                 nr_to_read);
1058         m = nr_to_read / 10;
1059         if (!m)
1060                 m = 1;
1061         nr_pages = 0;
1062         start = ktime_get();
1063         for ( ; ; ) {
1064                 ret = snapshot_write_next(snapshot);
1065                 if (ret <= 0)
1066                         break;
1067                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1068                 if (ret)
1069                         break;
1070                 if (snapshot->sync_read)
1071                         ret = hib_wait_io(&hb);
1072                 if (ret)
1073                         break;
1074                 if (!(nr_pages % m))
1075                         printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1076                                nr_pages / m * 10);
1077                 nr_pages++;
1078         }
1079         err2 = hib_wait_io(&hb);
1080         stop = ktime_get();
1081         if (!ret)
1082                 ret = err2;
1083         if (!ret) {
1084                 printk(KERN_INFO "PM: Image loading done.\n");
1085                 snapshot_write_finalize(snapshot);
1086                 if (!snapshot_image_loaded(snapshot))
1087                         ret = -ENODATA;
1088         }
1089         swsusp_show_speed(start, stop, nr_to_read, "Read");
1090         return ret;
1091 }
1092
1093 /**
1094  * Structure used for LZO data decompression.
1095  */
1096 struct dec_data {
1097         struct task_struct *thr;                  /* thread */
1098         atomic_t ready;                           /* ready to start flag */
1099         atomic_t stop;                            /* ready to stop flag */
1100         int ret;                                  /* return code */
1101         wait_queue_head_t go;                     /* start decompression */
1102         wait_queue_head_t done;                   /* decompression done */
1103         size_t unc_len;                           /* uncompressed length */
1104         size_t cmp_len;                           /* compressed length */
1105         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1106         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1107 };
1108
1109 /**
1110  * Deompression function that runs in its own thread.
1111  */
1112 static int lzo_decompress_threadfn(void *data)
1113 {
1114         struct dec_data *d = data;
1115
1116         while (1) {
1117                 wait_event(d->go, atomic_read(&d->ready) ||
1118                                   kthread_should_stop());
1119                 if (kthread_should_stop()) {
1120                         d->thr = NULL;
1121                         d->ret = -1;
1122                         atomic_set(&d->stop, 1);
1123                         wake_up(&d->done);
1124                         break;
1125                 }
1126                 atomic_set(&d->ready, 0);
1127
1128                 d->unc_len = LZO_UNC_SIZE;
1129                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1130                                                d->unc, &d->unc_len);
1131                 atomic_set(&d->stop, 1);
1132                 wake_up(&d->done);
1133         }
1134         return 0;
1135 }
1136
1137 /**
1138  * load_image_lzo - Load compressed image data and decompress them with LZO.
1139  * @handle: Swap map handle to use for loading data.
1140  * @snapshot: Image to copy uncompressed data into.
1141  * @nr_to_read: Number of pages to load.
1142  */
1143 static int load_image_lzo(struct swap_map_handle *handle,
1144                           struct snapshot_handle *snapshot,
1145                           unsigned int nr_to_read)
1146 {
1147         unsigned int m;
1148         int ret = 0;
1149         int eof = 0;
1150         struct hib_bio_batch hb;
1151         ktime_t start;
1152         ktime_t stop;
1153         unsigned nr_pages;
1154         size_t off;
1155         unsigned i, thr, run_threads, nr_threads;
1156         unsigned ring = 0, pg = 0, ring_size = 0,
1157                  have = 0, want, need, asked = 0;
1158         unsigned long read_pages = 0;
1159         unsigned char **page = NULL;
1160         struct dec_data *data = NULL;
1161         struct crc_data *crc = NULL;
1162
1163         hib_init_batch(&hb);
1164
1165         /*
1166          * We'll limit the number of threads for decompression to limit memory
1167          * footprint.
1168          */
1169         nr_threads = num_online_cpus() - 1;
1170         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1171
1172         page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1173         if (!page) {
1174                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1175                 ret = -ENOMEM;
1176                 goto out_clean;
1177         }
1178
1179         data = vmalloc(sizeof(*data) * nr_threads);
1180         if (!data) {
1181                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1182                 ret = -ENOMEM;
1183                 goto out_clean;
1184         }
1185         for (thr = 0; thr < nr_threads; thr++)
1186                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1187
1188         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1189         if (!crc) {
1190                 printk(KERN_ERR "PM: Failed to allocate crc\n");
1191                 ret = -ENOMEM;
1192                 goto out_clean;
1193         }
1194         memset(crc, 0, offsetof(struct crc_data, go));
1195
1196         /*
1197          * Start the decompression threads.
1198          */
1199         for (thr = 0; thr < nr_threads; thr++) {
1200                 init_waitqueue_head(&data[thr].go);
1201                 init_waitqueue_head(&data[thr].done);
1202
1203                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1204                                             &data[thr],
1205                                             "image_decompress/%u", thr);
1206                 if (IS_ERR(data[thr].thr)) {
1207                         data[thr].thr = NULL;
1208                         printk(KERN_ERR
1209                                "PM: Cannot start decompression threads\n");
1210                         ret = -ENOMEM;
1211                         goto out_clean;
1212                 }
1213         }
1214
1215         /*
1216          * Start the CRC32 thread.
1217          */
1218         init_waitqueue_head(&crc->go);
1219         init_waitqueue_head(&crc->done);
1220
1221         handle->crc32 = 0;
1222         crc->crc32 = &handle->crc32;
1223         for (thr = 0; thr < nr_threads; thr++) {
1224                 crc->unc[thr] = data[thr].unc;
1225                 crc->unc_len[thr] = &data[thr].unc_len;
1226         }
1227
1228         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1229         if (IS_ERR(crc->thr)) {
1230                 crc->thr = NULL;
1231                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1232                 ret = -ENOMEM;
1233                 goto out_clean;
1234         }
1235
1236         /*
1237          * Set the number of pages for read buffering.
1238          * This is complete guesswork, because we'll only know the real
1239          * picture once prepare_image() is called, which is much later on
1240          * during the image load phase. We'll assume the worst case and
1241          * say that none of the image pages are from high memory.
1242          */
1243         if (low_free_pages() > snapshot_get_image_size())
1244                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1245         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1246
1247         for (i = 0; i < read_pages; i++) {
1248                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1249                                                   __GFP_WAIT | __GFP_HIGH :
1250                                                   __GFP_WAIT | __GFP_NOWARN |
1251                                                   __GFP_NORETRY);
1252
1253                 if (!page[i]) {
1254                         if (i < LZO_CMP_PAGES) {
1255                                 ring_size = i;
1256                                 printk(KERN_ERR
1257                                        "PM: Failed to allocate LZO pages\n");
1258                                 ret = -ENOMEM;
1259                                 goto out_clean;
1260                         } else {
1261                                 break;
1262                         }
1263                 }
1264         }
1265         want = ring_size = i;
1266
1267         printk(KERN_INFO
1268                 "PM: Using %u thread(s) for decompression.\n"
1269                 "PM: Loading and decompressing image data (%u pages)...\n",
1270                 nr_threads, nr_to_read);
1271         m = nr_to_read / 10;
1272         if (!m)
1273                 m = 1;
1274         nr_pages = 0;
1275         start = ktime_get();
1276
1277         ret = snapshot_write_next(snapshot);
1278         if (ret <= 0)
1279                 goto out_finish;
1280
1281         for(;;) {
1282                 for (i = 0; !eof && i < want; i++) {
1283                         ret = swap_read_page(handle, page[ring], &hb);
1284                         if (ret) {
1285                                 /*
1286                                  * On real read error, finish. On end of data,
1287                                  * set EOF flag and just exit the read loop.
1288                                  */
1289                                 if (handle->cur &&
1290                                     handle->cur->entries[handle->k]) {
1291                                         goto out_finish;
1292                                 } else {
1293                                         eof = 1;
1294                                         break;
1295                                 }
1296                         }
1297                         if (++ring >= ring_size)
1298                                 ring = 0;
1299                 }
1300                 asked += i;
1301                 want -= i;
1302
1303                 /*
1304                  * We are out of data, wait for some more.
1305                  */
1306                 if (!have) {
1307                         if (!asked)
1308                                 break;
1309
1310                         ret = hib_wait_io(&hb);
1311                         if (ret)
1312                                 goto out_finish;
1313                         have += asked;
1314                         asked = 0;
1315                         if (eof)
1316                                 eof = 2;
1317                 }
1318
1319                 if (crc->run_threads) {
1320                         wait_event(crc->done, atomic_read(&crc->stop));
1321                         atomic_set(&crc->stop, 0);
1322                         crc->run_threads = 0;
1323                 }
1324
1325                 for (thr = 0; have && thr < nr_threads; thr++) {
1326                         data[thr].cmp_len = *(size_t *)page[pg];
1327                         if (unlikely(!data[thr].cmp_len ||
1328                                      data[thr].cmp_len >
1329                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1330                                 printk(KERN_ERR
1331                                        "PM: Invalid LZO compressed length\n");
1332                                 ret = -1;
1333                                 goto out_finish;
1334                         }
1335
1336                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1337                                             PAGE_SIZE);
1338                         if (need > have) {
1339                                 if (eof > 1) {
1340                                         ret = -1;
1341                                         goto out_finish;
1342                                 }
1343                                 break;
1344                         }
1345
1346                         for (off = 0;
1347                              off < LZO_HEADER + data[thr].cmp_len;
1348                              off += PAGE_SIZE) {
1349                                 memcpy(data[thr].cmp + off,
1350                                        page[pg], PAGE_SIZE);
1351                                 have--;
1352                                 want++;
1353                                 if (++pg >= ring_size)
1354                                         pg = 0;
1355                         }
1356
1357                         atomic_set(&data[thr].ready, 1);
1358                         wake_up(&data[thr].go);
1359                 }
1360
1361                 /*
1362                  * Wait for more data while we are decompressing.
1363                  */
1364                 if (have < LZO_CMP_PAGES && asked) {
1365                         ret = hib_wait_io(&hb);
1366                         if (ret)
1367                                 goto out_finish;
1368                         have += asked;
1369                         asked = 0;
1370                         if (eof)
1371                                 eof = 2;
1372                 }
1373
1374                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1375                         wait_event(data[thr].done,
1376                                    atomic_read(&data[thr].stop));
1377                         atomic_set(&data[thr].stop, 0);
1378
1379                         ret = data[thr].ret;
1380
1381                         if (ret < 0) {
1382                                 printk(KERN_ERR
1383                                        "PM: LZO decompression failed\n");
1384                                 goto out_finish;
1385                         }
1386
1387                         if (unlikely(!data[thr].unc_len ||
1388                                      data[thr].unc_len > LZO_UNC_SIZE ||
1389                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1390                                 printk(KERN_ERR
1391                                        "PM: Invalid LZO uncompressed length\n");
1392                                 ret = -1;
1393                                 goto out_finish;
1394                         }
1395
1396                         for (off = 0;
1397                              off < data[thr].unc_len; off += PAGE_SIZE) {
1398                                 memcpy(data_of(*snapshot),
1399                                        data[thr].unc + off, PAGE_SIZE);
1400
1401                                 if (!(nr_pages % m))
1402                                         printk(KERN_INFO
1403                                                "PM: Image loading progress: "
1404                                                "%3d%%\n",
1405                                                nr_pages / m * 10);
1406                                 nr_pages++;
1407
1408                                 ret = snapshot_write_next(snapshot);
1409                                 if (ret <= 0) {
1410                                         crc->run_threads = thr + 1;
1411                                         atomic_set(&crc->ready, 1);
1412                                         wake_up(&crc->go);
1413                                         goto out_finish;
1414                                 }
1415                         }
1416                 }
1417
1418                 crc->run_threads = thr;
1419                 atomic_set(&crc->ready, 1);
1420                 wake_up(&crc->go);
1421         }
1422
1423 out_finish:
1424         if (crc->run_threads) {
1425                 wait_event(crc->done, atomic_read(&crc->stop));
1426                 atomic_set(&crc->stop, 0);
1427         }
1428         stop = ktime_get();
1429         if (!ret) {
1430                 printk(KERN_INFO "PM: Image loading done.\n");
1431                 snapshot_write_finalize(snapshot);
1432                 if (!snapshot_image_loaded(snapshot))
1433                         ret = -ENODATA;
1434                 if (!ret) {
1435                         if (swsusp_header->flags & SF_CRC32_MODE) {
1436                                 if(handle->crc32 != swsusp_header->crc32) {
1437                                         printk(KERN_ERR
1438                                                "PM: Invalid image CRC32!\n");
1439                                         ret = -ENODATA;
1440                                 }
1441                         }
1442                 }
1443         }
1444         swsusp_show_speed(start, stop, nr_to_read, "Read");
1445 out_clean:
1446         for (i = 0; i < ring_size; i++)
1447                 free_page((unsigned long)page[i]);
1448         if (crc) {
1449                 if (crc->thr)
1450                         kthread_stop(crc->thr);
1451                 kfree(crc);
1452         }
1453         if (data) {
1454                 for (thr = 0; thr < nr_threads; thr++)
1455                         if (data[thr].thr)
1456                                 kthread_stop(data[thr].thr);
1457                 vfree(data);
1458         }
1459         vfree(page);
1460
1461         return ret;
1462 }
1463
1464 /**
1465  *      swsusp_read - read the hibernation image.
1466  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1467  *                be written into this memory location
1468  */
1469
1470 int swsusp_read(unsigned int *flags_p)
1471 {
1472         int error;
1473         struct swap_map_handle handle;
1474         struct snapshot_handle snapshot;
1475         struct swsusp_info *header;
1476
1477         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1478         error = snapshot_write_next(&snapshot);
1479         if (error < PAGE_SIZE)
1480                 return error < 0 ? error : -EFAULT;
1481         header = (struct swsusp_info *)data_of(snapshot);
1482         error = get_swap_reader(&handle, flags_p);
1483         if (error)
1484                 goto end;
1485         if (!error)
1486                 error = swap_read_page(&handle, header, NULL);
1487         if (!error) {
1488                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1489                         load_image(&handle, &snapshot, header->pages - 1) :
1490                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1491         }
1492         swap_reader_finish(&handle);
1493 end:
1494         if (!error)
1495                 pr_debug("PM: Image successfully loaded\n");
1496         else
1497                 pr_debug("PM: Error %d resuming\n", error);
1498         return error;
1499 }
1500
1501 /**
1502  *      swsusp_check - Check for swsusp signature in the resume device
1503  */
1504
1505 int swsusp_check(void)
1506 {
1507         int error;
1508
1509         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1510                                             FMODE_READ, NULL);
1511         if (!IS_ERR(hib_resume_bdev)) {
1512                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1513                 clear_page(swsusp_header);
1514                 error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1515                                         swsusp_header, NULL);
1516                 if (error)
1517                         goto put;
1518
1519                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1520                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1521                         /* Reset swap signature now */
1522                         error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1523                                                 swsusp_header, NULL);
1524                 } else {
1525                         error = -EINVAL;
1526                 }
1527
1528 put:
1529                 if (error)
1530                         blkdev_put(hib_resume_bdev, FMODE_READ);
1531                 else
1532                         pr_debug("PM: Image signature found, resuming\n");
1533         } else {
1534                 error = PTR_ERR(hib_resume_bdev);
1535         }
1536
1537         if (error)
1538                 pr_debug("PM: Image not found (code %d)\n", error);
1539
1540         return error;
1541 }
1542
1543 /**
1544  *      swsusp_close - close swap device.
1545  */
1546
1547 void swsusp_close(fmode_t mode)
1548 {
1549         if (IS_ERR(hib_resume_bdev)) {
1550                 pr_debug("PM: Image device not initialised\n");
1551                 return;
1552         }
1553
1554         blkdev_put(hib_resume_bdev, mode);
1555 }
1556
1557 /**
1558  *      swsusp_unmark - Unmark swsusp signature in the resume device
1559  */
1560
1561 #ifdef CONFIG_SUSPEND
1562 int swsusp_unmark(void)
1563 {
1564         int error;
1565
1566         hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1567         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1568                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1569                 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1570                                         swsusp_header, NULL);
1571         } else {
1572                 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1573                 error = -ENODEV;
1574         }
1575
1576         /*
1577          * We just returned from suspend, we don't need the image any more.
1578          */
1579         free_all_swap_pages(root_swap);
1580
1581         return error;
1582 }
1583 #endif
1584
1585 static int swsusp_header_init(void)
1586 {
1587         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1588         if (!swsusp_header)
1589                 panic("Could not allocate memory for swsusp_header\n");
1590         return 0;
1591 }
1592
1593 core_initcall(swsusp_header_init);