OSDN Git Service

4c1af96836f66206d0d5f2e05f2e3c5927fa5755
[android-x86/kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #define RCU_KTHREAD_PRIO 1
34
35 #ifdef CONFIG_RCU_BOOST
36 #include "../locking/rtmutex_common.h"
37 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #else
39 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #endif
41
42 #ifdef CONFIG_RCU_NOCB_CPU
43 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
45 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46 static char __initdata nocb_buf[NR_CPUS * 5];
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49 /*
50  * Check the RCU kernel configuration parameters and print informative
51  * messages about anything out of the ordinary.  If you like #ifdef, you
52  * will love this function.
53  */
54 static void __init rcu_bootup_announce_oddness(void)
55 {
56 #ifdef CONFIG_RCU_TRACE
57         pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #endif
59 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61                CONFIG_RCU_FANOUT);
62 #endif
63 #ifdef CONFIG_RCU_FANOUT_EXACT
64         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #endif
66 #ifdef CONFIG_RCU_FAST_NO_HZ
67         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #endif
69 #ifdef CONFIG_PROVE_RCU
70         pr_info("\tRCU lockdep checking is enabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73         pr_info("\tRCU torture testing starts during boot.\n");
74 #endif
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76         pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #endif
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79         pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #endif
81 #if NUM_RCU_LVL_4 != 0
82         pr_info("\tFour-level hierarchy is enabled.\n");
83 #endif
84         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86         if (nr_cpu_ids != NR_CPUS)
87                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 }
89
90 #ifdef CONFIG_TREE_PREEMPT_RCU
91
92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96
97 /*
98  * Tell them what RCU they are running.
99  */
100 static void __init rcu_bootup_announce(void)
101 {
102         pr_info("Preemptible hierarchical RCU implementation.\n");
103         rcu_bootup_announce_oddness();
104 }
105
106 /*
107  * Return the number of RCU-preempt batches processed thus far
108  * for debug and statistics.
109  */
110 long rcu_batches_completed_preempt(void)
111 {
112         return rcu_preempt_state.completed;
113 }
114 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
115
116 /*
117  * Return the number of RCU batches processed thus far for debug & stats.
118  */
119 long rcu_batches_completed(void)
120 {
121         return rcu_batches_completed_preempt();
122 }
123 EXPORT_SYMBOL_GPL(rcu_batches_completed);
124
125 /*
126  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127  * that this just means that the task currently running on the CPU is
128  * not in a quiescent state.  There might be any number of tasks blocked
129  * while in an RCU read-side critical section.
130  *
131  * Unlike the other rcu_*_qs() functions, callers to this function
132  * must disable irqs in order to protect the assignment to
133  * ->rcu_read_unlock_special.
134  */
135 static void rcu_preempt_qs(int cpu)
136 {
137         struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
138
139         if (rdp->passed_quiesce == 0)
140                 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
141         rdp->passed_quiesce = 1;
142         current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
143 }
144
145 /*
146  * We have entered the scheduler, and the current task might soon be
147  * context-switched away from.  If this task is in an RCU read-side
148  * critical section, we will no longer be able to rely on the CPU to
149  * record that fact, so we enqueue the task on the blkd_tasks list.
150  * The task will dequeue itself when it exits the outermost enclosing
151  * RCU read-side critical section.  Therefore, the current grace period
152  * cannot be permitted to complete until the blkd_tasks list entries
153  * predating the current grace period drain, in other words, until
154  * rnp->gp_tasks becomes NULL.
155  *
156  * Caller must disable preemption.
157  */
158 static void rcu_preempt_note_context_switch(int cpu)
159 {
160         struct task_struct *t = current;
161         unsigned long flags;
162         struct rcu_data *rdp;
163         struct rcu_node *rnp;
164
165         if (t->rcu_read_lock_nesting > 0 &&
166             (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
167
168                 /* Possibly blocking in an RCU read-side critical section. */
169                 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
170                 rnp = rdp->mynode;
171                 raw_spin_lock_irqsave(&rnp->lock, flags);
172                 smp_mb__after_unlock_lock();
173                 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
174                 t->rcu_blocked_node = rnp;
175
176                 /*
177                  * If this CPU has already checked in, then this task
178                  * will hold up the next grace period rather than the
179                  * current grace period.  Queue the task accordingly.
180                  * If the task is queued for the current grace period
181                  * (i.e., this CPU has not yet passed through a quiescent
182                  * state for the current grace period), then as long
183                  * as that task remains queued, the current grace period
184                  * cannot end.  Note that there is some uncertainty as
185                  * to exactly when the current grace period started.
186                  * We take a conservative approach, which can result
187                  * in unnecessarily waiting on tasks that started very
188                  * slightly after the current grace period began.  C'est
189                  * la vie!!!
190                  *
191                  * But first, note that the current CPU must still be
192                  * on line!
193                  */
194                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
195                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
196                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
197                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
198                         rnp->gp_tasks = &t->rcu_node_entry;
199 #ifdef CONFIG_RCU_BOOST
200                         if (rnp->boost_tasks != NULL)
201                                 rnp->boost_tasks = rnp->gp_tasks;
202 #endif /* #ifdef CONFIG_RCU_BOOST */
203                 } else {
204                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
205                         if (rnp->qsmask & rdp->grpmask)
206                                 rnp->gp_tasks = &t->rcu_node_entry;
207                 }
208                 trace_rcu_preempt_task(rdp->rsp->name,
209                                        t->pid,
210                                        (rnp->qsmask & rdp->grpmask)
211                                        ? rnp->gpnum
212                                        : rnp->gpnum + 1);
213                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
214         } else if (t->rcu_read_lock_nesting < 0 &&
215                    t->rcu_read_unlock_special) {
216
217                 /*
218                  * Complete exit from RCU read-side critical section on
219                  * behalf of preempted instance of __rcu_read_unlock().
220                  */
221                 rcu_read_unlock_special(t);
222         }
223
224         /*
225          * Either we were not in an RCU read-side critical section to
226          * begin with, or we have now recorded that critical section
227          * globally.  Either way, we can now note a quiescent state
228          * for this CPU.  Again, if we were in an RCU read-side critical
229          * section, and if that critical section was blocking the current
230          * grace period, then the fact that the task has been enqueued
231          * means that we continue to block the current grace period.
232          */
233         local_irq_save(flags);
234         rcu_preempt_qs(cpu);
235         local_irq_restore(flags);
236 }
237
238 /*
239  * Check for preempted RCU readers blocking the current grace period
240  * for the specified rcu_node structure.  If the caller needs a reliable
241  * answer, it must hold the rcu_node's ->lock.
242  */
243 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
244 {
245         return rnp->gp_tasks != NULL;
246 }
247
248 /*
249  * Record a quiescent state for all tasks that were previously queued
250  * on the specified rcu_node structure and that were blocking the current
251  * RCU grace period.  The caller must hold the specified rnp->lock with
252  * irqs disabled, and this lock is released upon return, but irqs remain
253  * disabled.
254  */
255 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
256         __releases(rnp->lock)
257 {
258         unsigned long mask;
259         struct rcu_node *rnp_p;
260
261         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
262                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
263                 return;  /* Still need more quiescent states! */
264         }
265
266         rnp_p = rnp->parent;
267         if (rnp_p == NULL) {
268                 /*
269                  * Either there is only one rcu_node in the tree,
270                  * or tasks were kicked up to root rcu_node due to
271                  * CPUs going offline.
272                  */
273                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
274                 return;
275         }
276
277         /* Report up the rest of the hierarchy. */
278         mask = rnp->grpmask;
279         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
280         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
281         smp_mb__after_unlock_lock();
282         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
283 }
284
285 /*
286  * Advance a ->blkd_tasks-list pointer to the next entry, instead
287  * returning NULL if at the end of the list.
288  */
289 static struct list_head *rcu_next_node_entry(struct task_struct *t,
290                                              struct rcu_node *rnp)
291 {
292         struct list_head *np;
293
294         np = t->rcu_node_entry.next;
295         if (np == &rnp->blkd_tasks)
296                 np = NULL;
297         return np;
298 }
299
300 /*
301  * Handle special cases during rcu_read_unlock(), such as needing to
302  * notify RCU core processing or task having blocked during the RCU
303  * read-side critical section.
304  */
305 void rcu_read_unlock_special(struct task_struct *t)
306 {
307         int empty;
308         int empty_exp;
309         int empty_exp_now;
310         unsigned long flags;
311         struct list_head *np;
312 #ifdef CONFIG_RCU_BOOST
313         bool drop_boost_mutex = false;
314 #endif /* #ifdef CONFIG_RCU_BOOST */
315         struct rcu_node *rnp;
316         int special;
317
318         /* NMI handlers cannot block and cannot safely manipulate state. */
319         if (in_nmi())
320                 return;
321
322         local_irq_save(flags);
323
324         /*
325          * If RCU core is waiting for this CPU to exit critical section,
326          * let it know that we have done so.
327          */
328         special = t->rcu_read_unlock_special;
329         if (special & RCU_READ_UNLOCK_NEED_QS) {
330                 rcu_preempt_qs(smp_processor_id());
331                 if (!t->rcu_read_unlock_special) {
332                         local_irq_restore(flags);
333                         return;
334                 }
335         }
336
337         /* Hardware IRQ handlers cannot block, complain if they get here. */
338         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339                 local_irq_restore(flags);
340                 return;
341         }
342
343         /* Clean up if blocked during RCU read-side critical section. */
344         if (special & RCU_READ_UNLOCK_BLOCKED) {
345                 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
346
347                 /*
348                  * Remove this task from the list it blocked on.  The
349                  * task can migrate while we acquire the lock, but at
350                  * most one time.  So at most two passes through loop.
351                  */
352                 for (;;) {
353                         rnp = t->rcu_blocked_node;
354                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355                         smp_mb__after_unlock_lock();
356                         if (rnp == t->rcu_blocked_node)
357                                 break;
358                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359                 }
360                 empty = !rcu_preempt_blocked_readers_cgp(rnp);
361                 empty_exp = !rcu_preempted_readers_exp(rnp);
362                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363                 np = rcu_next_node_entry(t, rnp);
364                 list_del_init(&t->rcu_node_entry);
365                 t->rcu_blocked_node = NULL;
366                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367                                                 rnp->gpnum, t->pid);
368                 if (&t->rcu_node_entry == rnp->gp_tasks)
369                         rnp->gp_tasks = np;
370                 if (&t->rcu_node_entry == rnp->exp_tasks)
371                         rnp->exp_tasks = np;
372 #ifdef CONFIG_RCU_BOOST
373                 if (&t->rcu_node_entry == rnp->boost_tasks)
374                         rnp->boost_tasks = np;
375                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377 #endif /* #ifdef CONFIG_RCU_BOOST */
378
379                 /*
380                  * If this was the last task on the current list, and if
381                  * we aren't waiting on any CPUs, report the quiescent state.
382                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
383                  * so we must take a snapshot of the expedited state.
384                  */
385                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
386                 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
387                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
388                                                          rnp->gpnum,
389                                                          0, rnp->qsmask,
390                                                          rnp->level,
391                                                          rnp->grplo,
392                                                          rnp->grphi,
393                                                          !!rnp->gp_tasks);
394                         rcu_report_unblock_qs_rnp(rnp, flags);
395                 } else {
396                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
397                 }
398
399 #ifdef CONFIG_RCU_BOOST
400                 /* Unboost if we were boosted. */
401                 if (drop_boost_mutex) {
402                         rt_mutex_unlock(&rnp->boost_mtx);
403                         complete(&rnp->boost_completion);
404                 }
405 #endif /* #ifdef CONFIG_RCU_BOOST */
406
407                 /*
408                  * If this was the last task on the expedited lists,
409                  * then we need to report up the rcu_node hierarchy.
410                  */
411                 if (!empty_exp && empty_exp_now)
412                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
413         } else {
414                 local_irq_restore(flags);
415         }
416 }
417
418 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
419
420 /*
421  * Dump detailed information for all tasks blocking the current RCU
422  * grace period on the specified rcu_node structure.
423  */
424 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
425 {
426         unsigned long flags;
427         struct task_struct *t;
428
429         raw_spin_lock_irqsave(&rnp->lock, flags);
430         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
431                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
432                 return;
433         }
434         t = list_entry(rnp->gp_tasks,
435                        struct task_struct, rcu_node_entry);
436         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
437                 sched_show_task(t);
438         raw_spin_unlock_irqrestore(&rnp->lock, flags);
439 }
440
441 /*
442  * Dump detailed information for all tasks blocking the current RCU
443  * grace period.
444  */
445 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
446 {
447         struct rcu_node *rnp = rcu_get_root(rsp);
448
449         rcu_print_detail_task_stall_rnp(rnp);
450         rcu_for_each_leaf_node(rsp, rnp)
451                 rcu_print_detail_task_stall_rnp(rnp);
452 }
453
454 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455
456 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
457 {
458 }
459
460 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
461
462 #ifdef CONFIG_RCU_CPU_STALL_INFO
463
464 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465 {
466         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467                rnp->level, rnp->grplo, rnp->grphi);
468 }
469
470 static void rcu_print_task_stall_end(void)
471 {
472         pr_cont("\n");
473 }
474
475 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476
477 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478 {
479 }
480
481 static void rcu_print_task_stall_end(void)
482 {
483 }
484
485 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486
487 /*
488  * Scan the current list of tasks blocked within RCU read-side critical
489  * sections, printing out the tid of each.
490  */
491 static int rcu_print_task_stall(struct rcu_node *rnp)
492 {
493         struct task_struct *t;
494         int ndetected = 0;
495
496         if (!rcu_preempt_blocked_readers_cgp(rnp))
497                 return 0;
498         rcu_print_task_stall_begin(rnp);
499         t = list_entry(rnp->gp_tasks,
500                        struct task_struct, rcu_node_entry);
501         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502                 pr_cont(" P%d", t->pid);
503                 ndetected++;
504         }
505         rcu_print_task_stall_end();
506         return ndetected;
507 }
508
509 /*
510  * Check that the list of blocked tasks for the newly completed grace
511  * period is in fact empty.  It is a serious bug to complete a grace
512  * period that still has RCU readers blocked!  This function must be
513  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514  * must be held by the caller.
515  *
516  * Also, if there are blocked tasks on the list, they automatically
517  * block the newly created grace period, so set up ->gp_tasks accordingly.
518  */
519 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520 {
521         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522         if (!list_empty(&rnp->blkd_tasks))
523                 rnp->gp_tasks = rnp->blkd_tasks.next;
524         WARN_ON_ONCE(rnp->qsmask);
525 }
526
527 #ifdef CONFIG_HOTPLUG_CPU
528
529 /*
530  * Handle tasklist migration for case in which all CPUs covered by the
531  * specified rcu_node have gone offline.  Move them up to the root
532  * rcu_node.  The reason for not just moving them to the immediate
533  * parent is to remove the need for rcu_read_unlock_special() to
534  * make more than two attempts to acquire the target rcu_node's lock.
535  * Returns true if there were tasks blocking the current RCU grace
536  * period.
537  *
538  * Returns 1 if there was previously a task blocking the current grace
539  * period on the specified rcu_node structure.
540  *
541  * The caller must hold rnp->lock with irqs disabled.
542  */
543 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544                                      struct rcu_node *rnp,
545                                      struct rcu_data *rdp)
546 {
547         struct list_head *lp;
548         struct list_head *lp_root;
549         int retval = 0;
550         struct rcu_node *rnp_root = rcu_get_root(rsp);
551         struct task_struct *t;
552
553         if (rnp == rnp_root) {
554                 WARN_ONCE(1, "Last CPU thought to be offlined?");
555                 return 0;  /* Shouldn't happen: at least one CPU online. */
556         }
557
558         /* If we are on an internal node, complain bitterly. */
559         WARN_ON_ONCE(rnp != rdp->mynode);
560
561         /*
562          * Move tasks up to root rcu_node.  Don't try to get fancy for
563          * this corner-case operation -- just put this node's tasks
564          * at the head of the root node's list, and update the root node's
565          * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566          * if non-NULL.  This might result in waiting for more tasks than
567          * absolutely necessary, but this is a good performance/complexity
568          * tradeoff.
569          */
570         if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571                 retval |= RCU_OFL_TASKS_NORM_GP;
572         if (rcu_preempted_readers_exp(rnp))
573                 retval |= RCU_OFL_TASKS_EXP_GP;
574         lp = &rnp->blkd_tasks;
575         lp_root = &rnp_root->blkd_tasks;
576         while (!list_empty(lp)) {
577                 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578                 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579                 smp_mb__after_unlock_lock();
580                 list_del(&t->rcu_node_entry);
581                 t->rcu_blocked_node = rnp_root;
582                 list_add(&t->rcu_node_entry, lp_root);
583                 if (&t->rcu_node_entry == rnp->gp_tasks)
584                         rnp_root->gp_tasks = rnp->gp_tasks;
585                 if (&t->rcu_node_entry == rnp->exp_tasks)
586                         rnp_root->exp_tasks = rnp->exp_tasks;
587 #ifdef CONFIG_RCU_BOOST
588                 if (&t->rcu_node_entry == rnp->boost_tasks)
589                         rnp_root->boost_tasks = rnp->boost_tasks;
590 #endif /* #ifdef CONFIG_RCU_BOOST */
591                 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592         }
593
594         rnp->gp_tasks = NULL;
595         rnp->exp_tasks = NULL;
596 #ifdef CONFIG_RCU_BOOST
597         rnp->boost_tasks = NULL;
598         /*
599          * In case root is being boosted and leaf was not.  Make sure
600          * that we boost the tasks blocking the current grace period
601          * in this case.
602          */
603         raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604         smp_mb__after_unlock_lock();
605         if (rnp_root->boost_tasks != NULL &&
606             rnp_root->boost_tasks != rnp_root->gp_tasks &&
607             rnp_root->boost_tasks != rnp_root->exp_tasks)
608                 rnp_root->boost_tasks = rnp_root->gp_tasks;
609         raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610 #endif /* #ifdef CONFIG_RCU_BOOST */
611
612         return retval;
613 }
614
615 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
616
617 /*
618  * Check for a quiescent state from the current CPU.  When a task blocks,
619  * the task is recorded in the corresponding CPU's rcu_node structure,
620  * which is checked elsewhere.
621  *
622  * Caller must disable hard irqs.
623  */
624 static void rcu_preempt_check_callbacks(int cpu)
625 {
626         struct task_struct *t = current;
627
628         if (t->rcu_read_lock_nesting == 0) {
629                 rcu_preempt_qs(cpu);
630                 return;
631         }
632         if (t->rcu_read_lock_nesting > 0 &&
633             per_cpu(rcu_preempt_data, cpu).qs_pending)
634                 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
635 }
636
637 #ifdef CONFIG_RCU_BOOST
638
639 static void rcu_preempt_do_callbacks(void)
640 {
641         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
642 }
643
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645
646 /*
647  * Queue a preemptible-RCU callback for invocation after a grace period.
648  */
649 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
650 {
651         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654
655 /**
656  * synchronize_rcu - wait until a grace period has elapsed.
657  *
658  * Control will return to the caller some time after a full grace
659  * period has elapsed, in other words after all currently executing RCU
660  * read-side critical sections have completed.  Note, however, that
661  * upon return from synchronize_rcu(), the caller might well be executing
662  * concurrently with new RCU read-side critical sections that began while
663  * synchronize_rcu() was waiting.  RCU read-side critical sections are
664  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665  *
666  * See the description of synchronize_sched() for more detailed information
667  * on memory ordering guarantees.
668  */
669 void synchronize_rcu(void)
670 {
671         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
672                            !lock_is_held(&rcu_lock_map) &&
673                            !lock_is_held(&rcu_sched_lock_map),
674                            "Illegal synchronize_rcu() in RCU read-side critical section");
675         if (!rcu_scheduler_active)
676                 return;
677         if (rcu_expedited)
678                 synchronize_rcu_expedited();
679         else
680                 wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683
684 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
685 static unsigned long sync_rcu_preempt_exp_count;
686 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
687
688 /*
689  * Return non-zero if there are any tasks in RCU read-side critical
690  * sections blocking the current preemptible-RCU expedited grace period.
691  * If there is no preemptible-RCU expedited grace period currently in
692  * progress, returns zero unconditionally.
693  */
694 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
695 {
696         return rnp->exp_tasks != NULL;
697 }
698
699 /*
700  * return non-zero if there is no RCU expedited grace period in progress
701  * for the specified rcu_node structure, in other words, if all CPUs and
702  * tasks covered by the specified rcu_node structure have done their bit
703  * for the current expedited grace period.  Works only for preemptible
704  * RCU -- other RCU implementation use other means.
705  *
706  * Caller must hold sync_rcu_preempt_exp_mutex.
707  */
708 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
709 {
710         return !rcu_preempted_readers_exp(rnp) &&
711                ACCESS_ONCE(rnp->expmask) == 0;
712 }
713
714 /*
715  * Report the exit from RCU read-side critical section for the last task
716  * that queued itself during or before the current expedited preemptible-RCU
717  * grace period.  This event is reported either to the rcu_node structure on
718  * which the task was queued or to one of that rcu_node structure's ancestors,
719  * recursively up the tree.  (Calm down, calm down, we do the recursion
720  * iteratively!)
721  *
722  * Most callers will set the "wake" flag, but the task initiating the
723  * expedited grace period need not wake itself.
724  *
725  * Caller must hold sync_rcu_preempt_exp_mutex.
726  */
727 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
728                                bool wake)
729 {
730         unsigned long flags;
731         unsigned long mask;
732
733         raw_spin_lock_irqsave(&rnp->lock, flags);
734         smp_mb__after_unlock_lock();
735         for (;;) {
736                 if (!sync_rcu_preempt_exp_done(rnp)) {
737                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
738                         break;
739                 }
740                 if (rnp->parent == NULL) {
741                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
742                         if (wake) {
743                                 smp_mb(); /* EGP done before wake_up(). */
744                                 wake_up(&sync_rcu_preempt_exp_wq);
745                         }
746                         break;
747                 }
748                 mask = rnp->grpmask;
749                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
750                 rnp = rnp->parent;
751                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
752                 smp_mb__after_unlock_lock();
753                 rnp->expmask &= ~mask;
754         }
755 }
756
757 /*
758  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
759  * grace period for the specified rcu_node structure.  If there are no such
760  * tasks, report it up the rcu_node hierarchy.
761  *
762  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
763  * CPU hotplug operations.
764  */
765 static void
766 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
767 {
768         unsigned long flags;
769         int must_wait = 0;
770
771         raw_spin_lock_irqsave(&rnp->lock, flags);
772         smp_mb__after_unlock_lock();
773         if (list_empty(&rnp->blkd_tasks)) {
774                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
775         } else {
776                 rnp->exp_tasks = rnp->blkd_tasks.next;
777                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
778                 must_wait = 1;
779         }
780         if (!must_wait)
781                 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
782 }
783
784 /**
785  * synchronize_rcu_expedited - Brute-force RCU grace period
786  *
787  * Wait for an RCU-preempt grace period, but expedite it.  The basic
788  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
789  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
790  * significant time on all CPUs and is unfriendly to real-time workloads,
791  * so is thus not recommended for any sort of common-case code.
792  * In fact, if you are using synchronize_rcu_expedited() in a loop,
793  * please restructure your code to batch your updates, and then Use a
794  * single synchronize_rcu() instead.
795  *
796  * Note that it is illegal to call this function while holding any lock
797  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
798  * to call this function from a CPU-hotplug notifier.  Failing to observe
799  * these restriction will result in deadlock.
800  */
801 void synchronize_rcu_expedited(void)
802 {
803         unsigned long flags;
804         struct rcu_node *rnp;
805         struct rcu_state *rsp = &rcu_preempt_state;
806         unsigned long snap;
807         int trycount = 0;
808
809         smp_mb(); /* Caller's modifications seen first by other CPUs. */
810         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
811         smp_mb(); /* Above access cannot bleed into critical section. */
812
813         /*
814          * Block CPU-hotplug operations.  This means that any CPU-hotplug
815          * operation that finds an rcu_node structure with tasks in the
816          * process of being boosted will know that all tasks blocking
817          * this expedited grace period will already be in the process of
818          * being boosted.  This simplifies the process of moving tasks
819          * from leaf to root rcu_node structures.
820          */
821         get_online_cpus();
822
823         /*
824          * Acquire lock, falling back to synchronize_rcu() if too many
825          * lock-acquisition failures.  Of course, if someone does the
826          * expedited grace period for us, just leave.
827          */
828         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829                 if (ULONG_CMP_LT(snap,
830                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831                         put_online_cpus();
832                         goto mb_ret; /* Others did our work for us. */
833                 }
834                 if (trycount++ < 10) {
835                         udelay(trycount * num_online_cpus());
836                 } else {
837                         put_online_cpus();
838                         wait_rcu_gp(call_rcu);
839                         return;
840                 }
841         }
842         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843                 put_online_cpus();
844                 goto unlock_mb_ret; /* Others did our work for us. */
845         }
846
847         /* force all RCU readers onto ->blkd_tasks lists. */
848         synchronize_sched_expedited();
849
850         /* Initialize ->expmask for all non-leaf rcu_node structures. */
851         rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852                 raw_spin_lock_irqsave(&rnp->lock, flags);
853                 smp_mb__after_unlock_lock();
854                 rnp->expmask = rnp->qsmaskinit;
855                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
856         }
857
858         /* Snapshot current state of ->blkd_tasks lists. */
859         rcu_for_each_leaf_node(rsp, rnp)
860                 sync_rcu_preempt_exp_init(rsp, rnp);
861         if (NUM_RCU_NODES > 1)
862                 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863
864         put_online_cpus();
865
866         /* Wait for snapshotted ->blkd_tasks lists to drain. */
867         rnp = rcu_get_root(rsp);
868         wait_event(sync_rcu_preempt_exp_wq,
869                    sync_rcu_preempt_exp_done(rnp));
870
871         /* Clean up and exit. */
872         smp_mb(); /* ensure expedited GP seen before counter increment. */
873         ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
874 unlock_mb_ret:
875         mutex_unlock(&sync_rcu_preempt_exp_mutex);
876 mb_ret:
877         smp_mb(); /* ensure subsequent action seen after grace period. */
878 }
879 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
880
881 /**
882  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
883  *
884  * Note that this primitive does not necessarily wait for an RCU grace period
885  * to complete.  For example, if there are no RCU callbacks queued anywhere
886  * in the system, then rcu_barrier() is within its rights to return
887  * immediately, without waiting for anything, much less an RCU grace period.
888  */
889 void rcu_barrier(void)
890 {
891         _rcu_barrier(&rcu_preempt_state);
892 }
893 EXPORT_SYMBOL_GPL(rcu_barrier);
894
895 /*
896  * Initialize preemptible RCU's state structures.
897  */
898 static void __init __rcu_init_preempt(void)
899 {
900         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
901 }
902
903 /*
904  * Check for a task exiting while in a preemptible-RCU read-side
905  * critical section, clean up if so.  No need to issue warnings,
906  * as debug_check_no_locks_held() already does this if lockdep
907  * is enabled.
908  */
909 void exit_rcu(void)
910 {
911         struct task_struct *t = current;
912
913         if (likely(list_empty(&current->rcu_node_entry)))
914                 return;
915         t->rcu_read_lock_nesting = 1;
916         barrier();
917         t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
918         __rcu_read_unlock();
919 }
920
921 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
922
923 static struct rcu_state *rcu_state_p = &rcu_sched_state;
924
925 /*
926  * Tell them what RCU they are running.
927  */
928 static void __init rcu_bootup_announce(void)
929 {
930         pr_info("Hierarchical RCU implementation.\n");
931         rcu_bootup_announce_oddness();
932 }
933
934 /*
935  * Return the number of RCU batches processed thus far for debug & stats.
936  */
937 long rcu_batches_completed(void)
938 {
939         return rcu_batches_completed_sched();
940 }
941 EXPORT_SYMBOL_GPL(rcu_batches_completed);
942
943 /*
944  * Because preemptible RCU does not exist, we never have to check for
945  * CPUs being in quiescent states.
946  */
947 static void rcu_preempt_note_context_switch(int cpu)
948 {
949 }
950
951 /*
952  * Because preemptible RCU does not exist, there are never any preempted
953  * RCU readers.
954  */
955 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
956 {
957         return 0;
958 }
959
960 #ifdef CONFIG_HOTPLUG_CPU
961
962 /* Because preemptible RCU does not exist, no quieting of tasks. */
963 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
964         __releases(rnp->lock)
965 {
966         raw_spin_unlock_irqrestore(&rnp->lock, flags);
967 }
968
969 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
970
971 /*
972  * Because preemptible RCU does not exist, we never have to check for
973  * tasks blocked within RCU read-side critical sections.
974  */
975 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
976 {
977 }
978
979 /*
980  * Because preemptible RCU does not exist, we never have to check for
981  * tasks blocked within RCU read-side critical sections.
982  */
983 static int rcu_print_task_stall(struct rcu_node *rnp)
984 {
985         return 0;
986 }
987
988 /*
989  * Because there is no preemptible RCU, there can be no readers blocked,
990  * so there is no need to check for blocked tasks.  So check only for
991  * bogus qsmask values.
992  */
993 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
994 {
995         WARN_ON_ONCE(rnp->qsmask);
996 }
997
998 #ifdef CONFIG_HOTPLUG_CPU
999
1000 /*
1001  * Because preemptible RCU does not exist, it never needs to migrate
1002  * tasks that were blocked within RCU read-side critical sections, and
1003  * such non-existent tasks cannot possibly have been blocking the current
1004  * grace period.
1005  */
1006 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1007                                      struct rcu_node *rnp,
1008                                      struct rcu_data *rdp)
1009 {
1010         return 0;
1011 }
1012
1013 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1014
1015 /*
1016  * Because preemptible RCU does not exist, it never has any callbacks
1017  * to check.
1018  */
1019 static void rcu_preempt_check_callbacks(int cpu)
1020 {
1021 }
1022
1023 /*
1024  * Wait for an rcu-preempt grace period, but make it happen quickly.
1025  * But because preemptible RCU does not exist, map to rcu-sched.
1026  */
1027 void synchronize_rcu_expedited(void)
1028 {
1029         synchronize_sched_expedited();
1030 }
1031 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1032
1033 #ifdef CONFIG_HOTPLUG_CPU
1034
1035 /*
1036  * Because preemptible RCU does not exist, there is never any need to
1037  * report on tasks preempted in RCU read-side critical sections during
1038  * expedited RCU grace periods.
1039  */
1040 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1041                                bool wake)
1042 {
1043 }
1044
1045 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1046
1047 /*
1048  * Because preemptible RCU does not exist, rcu_barrier() is just
1049  * another name for rcu_barrier_sched().
1050  */
1051 void rcu_barrier(void)
1052 {
1053         rcu_barrier_sched();
1054 }
1055 EXPORT_SYMBOL_GPL(rcu_barrier);
1056
1057 /*
1058  * Because preemptible RCU does not exist, it need not be initialized.
1059  */
1060 static void __init __rcu_init_preempt(void)
1061 {
1062 }
1063
1064 /*
1065  * Because preemptible RCU does not exist, tasks cannot possibly exit
1066  * while in preemptible RCU read-side critical sections.
1067  */
1068 void exit_rcu(void)
1069 {
1070 }
1071
1072 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1073
1074 #ifdef CONFIG_RCU_BOOST
1075
1076 #include "../locking/rtmutex_common.h"
1077
1078 #ifdef CONFIG_RCU_TRACE
1079
1080 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1081 {
1082         if (list_empty(&rnp->blkd_tasks))
1083                 rnp->n_balk_blkd_tasks++;
1084         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1085                 rnp->n_balk_exp_gp_tasks++;
1086         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1087                 rnp->n_balk_boost_tasks++;
1088         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1089                 rnp->n_balk_notblocked++;
1090         else if (rnp->gp_tasks != NULL &&
1091                  ULONG_CMP_LT(jiffies, rnp->boost_time))
1092                 rnp->n_balk_notyet++;
1093         else
1094                 rnp->n_balk_nos++;
1095 }
1096
1097 #else /* #ifdef CONFIG_RCU_TRACE */
1098
1099 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1100 {
1101 }
1102
1103 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1104
1105 static void rcu_wake_cond(struct task_struct *t, int status)
1106 {
1107         /*
1108          * If the thread is yielding, only wake it when this
1109          * is invoked from idle
1110          */
1111         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1112                 wake_up_process(t);
1113 }
1114
1115 /*
1116  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1117  * or ->boost_tasks, advancing the pointer to the next task in the
1118  * ->blkd_tasks list.
1119  *
1120  * Note that irqs must be enabled: boosting the task can block.
1121  * Returns 1 if there are more tasks needing to be boosted.
1122  */
1123 static int rcu_boost(struct rcu_node *rnp)
1124 {
1125         unsigned long flags;
1126         struct task_struct *t;
1127         struct list_head *tb;
1128
1129         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1130                 return 0;  /* Nothing left to boost. */
1131
1132         raw_spin_lock_irqsave(&rnp->lock, flags);
1133         smp_mb__after_unlock_lock();
1134
1135         /*
1136          * Recheck under the lock: all tasks in need of boosting
1137          * might exit their RCU read-side critical sections on their own.
1138          */
1139         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1140                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1141                 return 0;
1142         }
1143
1144         /*
1145          * Preferentially boost tasks blocking expedited grace periods.
1146          * This cannot starve the normal grace periods because a second
1147          * expedited grace period must boost all blocked tasks, including
1148          * those blocking the pre-existing normal grace period.
1149          */
1150         if (rnp->exp_tasks != NULL) {
1151                 tb = rnp->exp_tasks;
1152                 rnp->n_exp_boosts++;
1153         } else {
1154                 tb = rnp->boost_tasks;
1155                 rnp->n_normal_boosts++;
1156         }
1157         rnp->n_tasks_boosted++;
1158
1159         /*
1160          * We boost task t by manufacturing an rt_mutex that appears to
1161          * be held by task t.  We leave a pointer to that rt_mutex where
1162          * task t can find it, and task t will release the mutex when it
1163          * exits its outermost RCU read-side critical section.  Then
1164          * simply acquiring this artificial rt_mutex will boost task
1165          * t's priority.  (Thanks to tglx for suggesting this approach!)
1166          *
1167          * Note that task t must acquire rnp->lock to remove itself from
1168          * the ->blkd_tasks list, which it will do from exit() if from
1169          * nowhere else.  We therefore are guaranteed that task t will
1170          * stay around at least until we drop rnp->lock.  Note that
1171          * rnp->lock also resolves races between our priority boosting
1172          * and task t's exiting its outermost RCU read-side critical
1173          * section.
1174          */
1175         t = container_of(tb, struct task_struct, rcu_node_entry);
1176         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1177         init_completion(&rnp->boost_completion);
1178         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179         /* Lock only for side effect: boosts task t's priority. */
1180         rt_mutex_lock(&rnp->boost_mtx);
1181         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1182
1183         /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1184         wait_for_completion(&rnp->boost_completion);
1185
1186         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1187                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1188 }
1189
1190 /*
1191  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1192  * root rcu_node.
1193  */
1194 static int rcu_boost_kthread(void *arg)
1195 {
1196         struct rcu_node *rnp = (struct rcu_node *)arg;
1197         int spincnt = 0;
1198         int more2boost;
1199
1200         trace_rcu_utilization(TPS("Start boost kthread@init"));
1201         for (;;) {
1202                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1203                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1204                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1205                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1206                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1207                 more2boost = rcu_boost(rnp);
1208                 if (more2boost)
1209                         spincnt++;
1210                 else
1211                         spincnt = 0;
1212                 if (spincnt > 10) {
1213                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1214                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1215                         schedule_timeout_interruptible(2);
1216                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1217                         spincnt = 0;
1218                 }
1219         }
1220         /* NOTREACHED */
1221         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1222         return 0;
1223 }
1224
1225 /*
1226  * Check to see if it is time to start boosting RCU readers that are
1227  * blocking the current grace period, and, if so, tell the per-rcu_node
1228  * kthread to start boosting them.  If there is an expedited grace
1229  * period in progress, it is always time to boost.
1230  *
1231  * The caller must hold rnp->lock, which this function releases.
1232  * The ->boost_kthread_task is immortal, so we don't need to worry
1233  * about it going away.
1234  */
1235 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1236         __releases(rnp->lock)
1237 {
1238         struct task_struct *t;
1239
1240         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1241                 rnp->n_balk_exp_gp_tasks++;
1242                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1243                 return;
1244         }
1245         if (rnp->exp_tasks != NULL ||
1246             (rnp->gp_tasks != NULL &&
1247              rnp->boost_tasks == NULL &&
1248              rnp->qsmask == 0 &&
1249              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1250                 if (rnp->exp_tasks == NULL)
1251                         rnp->boost_tasks = rnp->gp_tasks;
1252                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1253                 t = rnp->boost_kthread_task;
1254                 if (t)
1255                         rcu_wake_cond(t, rnp->boost_kthread_status);
1256         } else {
1257                 rcu_initiate_boost_trace(rnp);
1258                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259         }
1260 }
1261
1262 /*
1263  * Wake up the per-CPU kthread to invoke RCU callbacks.
1264  */
1265 static void invoke_rcu_callbacks_kthread(void)
1266 {
1267         unsigned long flags;
1268
1269         local_irq_save(flags);
1270         __this_cpu_write(rcu_cpu_has_work, 1);
1271         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1272             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1273                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1274                               __this_cpu_read(rcu_cpu_kthread_status));
1275         }
1276         local_irq_restore(flags);
1277 }
1278
1279 /*
1280  * Is the current CPU running the RCU-callbacks kthread?
1281  * Caller must have preemption disabled.
1282  */
1283 static bool rcu_is_callbacks_kthread(void)
1284 {
1285         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1286 }
1287
1288 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1289
1290 /*
1291  * Do priority-boost accounting for the start of a new grace period.
1292  */
1293 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1294 {
1295         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1296 }
1297
1298 /*
1299  * Create an RCU-boost kthread for the specified node if one does not
1300  * already exist.  We only create this kthread for preemptible RCU.
1301  * Returns zero if all is well, a negated errno otherwise.
1302  */
1303 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1304                                                  struct rcu_node *rnp)
1305 {
1306         int rnp_index = rnp - &rsp->node[0];
1307         unsigned long flags;
1308         struct sched_param sp;
1309         struct task_struct *t;
1310
1311         if (&rcu_preempt_state != rsp)
1312                 return 0;
1313
1314         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1315                 return 0;
1316
1317         rsp->boost = 1;
1318         if (rnp->boost_kthread_task != NULL)
1319                 return 0;
1320         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1321                            "rcub/%d", rnp_index);
1322         if (IS_ERR(t))
1323                 return PTR_ERR(t);
1324         raw_spin_lock_irqsave(&rnp->lock, flags);
1325         smp_mb__after_unlock_lock();
1326         rnp->boost_kthread_task = t;
1327         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328         sp.sched_priority = RCU_BOOST_PRIO;
1329         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1330         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1331         return 0;
1332 }
1333
1334 static void rcu_kthread_do_work(void)
1335 {
1336         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1337         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1338         rcu_preempt_do_callbacks();
1339 }
1340
1341 static void rcu_cpu_kthread_setup(unsigned int cpu)
1342 {
1343         struct sched_param sp;
1344
1345         sp.sched_priority = RCU_KTHREAD_PRIO;
1346         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1347 }
1348
1349 static void rcu_cpu_kthread_park(unsigned int cpu)
1350 {
1351         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1352 }
1353
1354 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1355 {
1356         return __this_cpu_read(rcu_cpu_has_work);
1357 }
1358
1359 /*
1360  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1361  * RCU softirq used in flavors and configurations of RCU that do not
1362  * support RCU priority boosting.
1363  */
1364 static void rcu_cpu_kthread(unsigned int cpu)
1365 {
1366         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1367         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1368         int spincnt;
1369
1370         for (spincnt = 0; spincnt < 10; spincnt++) {
1371                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1372                 local_bh_disable();
1373                 *statusp = RCU_KTHREAD_RUNNING;
1374                 this_cpu_inc(rcu_cpu_kthread_loops);
1375                 local_irq_disable();
1376                 work = *workp;
1377                 *workp = 0;
1378                 local_irq_enable();
1379                 if (work)
1380                         rcu_kthread_do_work();
1381                 local_bh_enable();
1382                 if (*workp == 0) {
1383                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1384                         *statusp = RCU_KTHREAD_WAITING;
1385                         return;
1386                 }
1387         }
1388         *statusp = RCU_KTHREAD_YIELDING;
1389         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1390         schedule_timeout_interruptible(2);
1391         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1392         *statusp = RCU_KTHREAD_WAITING;
1393 }
1394
1395 /*
1396  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1397  * served by the rcu_node in question.  The CPU hotplug lock is still
1398  * held, so the value of rnp->qsmaskinit will be stable.
1399  *
1400  * We don't include outgoingcpu in the affinity set, use -1 if there is
1401  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1402  * this function allows the kthread to execute on any CPU.
1403  */
1404 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1405 {
1406         struct task_struct *t = rnp->boost_kthread_task;
1407         unsigned long mask = rnp->qsmaskinit;
1408         cpumask_var_t cm;
1409         int cpu;
1410
1411         if (!t)
1412                 return;
1413         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1414                 return;
1415         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1416                 if ((mask & 0x1) && cpu != outgoingcpu)
1417                         cpumask_set_cpu(cpu, cm);
1418         if (cpumask_weight(cm) == 0) {
1419                 cpumask_setall(cm);
1420                 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1421                         cpumask_clear_cpu(cpu, cm);
1422                 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1423         }
1424         set_cpus_allowed_ptr(t, cm);
1425         free_cpumask_var(cm);
1426 }
1427
1428 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1429         .store                  = &rcu_cpu_kthread_task,
1430         .thread_should_run      = rcu_cpu_kthread_should_run,
1431         .thread_fn              = rcu_cpu_kthread,
1432         .thread_comm            = "rcuc/%u",
1433         .setup                  = rcu_cpu_kthread_setup,
1434         .park                   = rcu_cpu_kthread_park,
1435 };
1436
1437 /*
1438  * Spawn all kthreads -- called as soon as the scheduler is running.
1439  */
1440 static int __init rcu_spawn_kthreads(void)
1441 {
1442         struct rcu_node *rnp;
1443         int cpu;
1444
1445         rcu_scheduler_fully_active = 1;
1446         for_each_possible_cpu(cpu)
1447                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1448         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1449         rnp = rcu_get_root(rcu_state_p);
1450         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1451         if (NUM_RCU_NODES > 1) {
1452                 rcu_for_each_leaf_node(rcu_state_p, rnp)
1453                         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1454         }
1455         return 0;
1456 }
1457 early_initcall(rcu_spawn_kthreads);
1458
1459 static void rcu_prepare_kthreads(int cpu)
1460 {
1461         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1462         struct rcu_node *rnp = rdp->mynode;
1463
1464         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1465         if (rcu_scheduler_fully_active)
1466                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1467 }
1468
1469 #else /* #ifdef CONFIG_RCU_BOOST */
1470
1471 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1472         __releases(rnp->lock)
1473 {
1474         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1475 }
1476
1477 static void invoke_rcu_callbacks_kthread(void)
1478 {
1479         WARN_ON_ONCE(1);
1480 }
1481
1482 static bool rcu_is_callbacks_kthread(void)
1483 {
1484         return false;
1485 }
1486
1487 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1488 {
1489 }
1490
1491 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1492 {
1493 }
1494
1495 static int __init rcu_scheduler_really_started(void)
1496 {
1497         rcu_scheduler_fully_active = 1;
1498         return 0;
1499 }
1500 early_initcall(rcu_scheduler_really_started);
1501
1502 static void rcu_prepare_kthreads(int cpu)
1503 {
1504 }
1505
1506 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1507
1508 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1509
1510 /*
1511  * Check to see if any future RCU-related work will need to be done
1512  * by the current CPU, even if none need be done immediately, returning
1513  * 1 if so.  This function is part of the RCU implementation; it is -not-
1514  * an exported member of the RCU API.
1515  *
1516  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1517  * any flavor of RCU.
1518  */
1519 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1520 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1521 {
1522         *delta_jiffies = ULONG_MAX;
1523         return rcu_cpu_has_callbacks(cpu, NULL);
1524 }
1525 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1526
1527 /*
1528  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1529  * after it.
1530  */
1531 static void rcu_cleanup_after_idle(int cpu)
1532 {
1533 }
1534
1535 /*
1536  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1537  * is nothing.
1538  */
1539 static void rcu_prepare_for_idle(int cpu)
1540 {
1541 }
1542
1543 /*
1544  * Don't bother keeping a running count of the number of RCU callbacks
1545  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1546  */
1547 static void rcu_idle_count_callbacks_posted(void)
1548 {
1549 }
1550
1551 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1552
1553 /*
1554  * This code is invoked when a CPU goes idle, at which point we want
1555  * to have the CPU do everything required for RCU so that it can enter
1556  * the energy-efficient dyntick-idle mode.  This is handled by a
1557  * state machine implemented by rcu_prepare_for_idle() below.
1558  *
1559  * The following three proprocessor symbols control this state machine:
1560  *
1561  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1562  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1563  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1564  *      benchmarkers who might otherwise be tempted to set this to a large
1565  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1566  *      system.  And if you are -that- concerned about energy efficiency,
1567  *      just power the system down and be done with it!
1568  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1569  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1570  *      callbacks pending.  Setting this too high can OOM your system.
1571  *
1572  * The values below work well in practice.  If future workloads require
1573  * adjustment, they can be converted into kernel config parameters, though
1574  * making the state machine smarter might be a better option.
1575  */
1576 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1577 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1578
1579 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1580 module_param(rcu_idle_gp_delay, int, 0644);
1581 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1582 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1583
1584 extern int tick_nohz_active;
1585
1586 /*
1587  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1588  * only if it has been awhile since the last time we did so.  Afterwards,
1589  * if there are any callbacks ready for immediate invocation, return true.
1590  */
1591 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1592 {
1593         bool cbs_ready = false;
1594         struct rcu_data *rdp;
1595         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1596         struct rcu_node *rnp;
1597         struct rcu_state *rsp;
1598
1599         /* Exit early if we advanced recently. */
1600         if (jiffies == rdtp->last_advance_all)
1601                 return 0;
1602         rdtp->last_advance_all = jiffies;
1603
1604         for_each_rcu_flavor(rsp) {
1605                 rdp = this_cpu_ptr(rsp->rda);
1606                 rnp = rdp->mynode;
1607
1608                 /*
1609                  * Don't bother checking unless a grace period has
1610                  * completed since we last checked and there are
1611                  * callbacks not yet ready to invoke.
1612                  */
1613                 if (rdp->completed != rnp->completed &&
1614                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1615                         note_gp_changes(rsp, rdp);
1616
1617                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1618                         cbs_ready = true;
1619         }
1620         return cbs_ready;
1621 }
1622
1623 /*
1624  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1625  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1626  * caller to set the timeout based on whether or not there are non-lazy
1627  * callbacks.
1628  *
1629  * The caller must have disabled interrupts.
1630  */
1631 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1632 int rcu_needs_cpu(int cpu, unsigned long *dj)
1633 {
1634         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1635
1636         /* Snapshot to detect later posting of non-lazy callback. */
1637         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1638
1639         /* If no callbacks, RCU doesn't need the CPU. */
1640         if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1641                 *dj = ULONG_MAX;
1642                 return 0;
1643         }
1644
1645         /* Attempt to advance callbacks. */
1646         if (rcu_try_advance_all_cbs()) {
1647                 /* Some ready to invoke, so initiate later invocation. */
1648                 invoke_rcu_core();
1649                 return 1;
1650         }
1651         rdtp->last_accelerate = jiffies;
1652
1653         /* Request timer delay depending on laziness, and round. */
1654         if (!rdtp->all_lazy) {
1655                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1656                                rcu_idle_gp_delay) - jiffies;
1657         } else {
1658                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1659         }
1660         return 0;
1661 }
1662 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1663
1664 /*
1665  * Prepare a CPU for idle from an RCU perspective.  The first major task
1666  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1667  * The second major task is to check to see if a non-lazy callback has
1668  * arrived at a CPU that previously had only lazy callbacks.  The third
1669  * major task is to accelerate (that is, assign grace-period numbers to)
1670  * any recently arrived callbacks.
1671  *
1672  * The caller must have disabled interrupts.
1673  */
1674 static void rcu_prepare_for_idle(int cpu)
1675 {
1676 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1677         bool needwake;
1678         struct rcu_data *rdp;
1679         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1680         struct rcu_node *rnp;
1681         struct rcu_state *rsp;
1682         int tne;
1683
1684         /* Handle nohz enablement switches conservatively. */
1685         tne = ACCESS_ONCE(tick_nohz_active);
1686         if (tne != rdtp->tick_nohz_enabled_snap) {
1687                 if (rcu_cpu_has_callbacks(cpu, NULL))
1688                         invoke_rcu_core(); /* force nohz to see update. */
1689                 rdtp->tick_nohz_enabled_snap = tne;
1690                 return;
1691         }
1692         if (!tne)
1693                 return;
1694
1695         /* If this is a no-CBs CPU, no callbacks, just return. */
1696         if (rcu_is_nocb_cpu(cpu))
1697                 return;
1698
1699         /*
1700          * If a non-lazy callback arrived at a CPU having only lazy
1701          * callbacks, invoke RCU core for the side-effect of recalculating
1702          * idle duration on re-entry to idle.
1703          */
1704         if (rdtp->all_lazy &&
1705             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1706                 rdtp->all_lazy = false;
1707                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1708                 invoke_rcu_core();
1709                 return;
1710         }
1711
1712         /*
1713          * If we have not yet accelerated this jiffy, accelerate all
1714          * callbacks on this CPU.
1715          */
1716         if (rdtp->last_accelerate == jiffies)
1717                 return;
1718         rdtp->last_accelerate = jiffies;
1719         for_each_rcu_flavor(rsp) {
1720                 rdp = per_cpu_ptr(rsp->rda, cpu);
1721                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1722                         continue;
1723                 rnp = rdp->mynode;
1724                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1725                 smp_mb__after_unlock_lock();
1726                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1727                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1728                 if (needwake)
1729                         rcu_gp_kthread_wake(rsp);
1730         }
1731 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1732 }
1733
1734 /*
1735  * Clean up for exit from idle.  Attempt to advance callbacks based on
1736  * any grace periods that elapsed while the CPU was idle, and if any
1737  * callbacks are now ready to invoke, initiate invocation.
1738  */
1739 static void rcu_cleanup_after_idle(int cpu)
1740 {
1741 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1742         if (rcu_is_nocb_cpu(cpu))
1743                 return;
1744         if (rcu_try_advance_all_cbs())
1745                 invoke_rcu_core();
1746 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1747 }
1748
1749 /*
1750  * Keep a running count of the number of non-lazy callbacks posted
1751  * on this CPU.  This running counter (which is never decremented) allows
1752  * rcu_prepare_for_idle() to detect when something out of the idle loop
1753  * posts a callback, even if an equal number of callbacks are invoked.
1754  * Of course, callbacks should only be posted from within a trace event
1755  * designed to be called from idle or from within RCU_NONIDLE().
1756  */
1757 static void rcu_idle_count_callbacks_posted(void)
1758 {
1759         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1760 }
1761
1762 /*
1763  * Data for flushing lazy RCU callbacks at OOM time.
1764  */
1765 static atomic_t oom_callback_count;
1766 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1767
1768 /*
1769  * RCU OOM callback -- decrement the outstanding count and deliver the
1770  * wake-up if we are the last one.
1771  */
1772 static void rcu_oom_callback(struct rcu_head *rhp)
1773 {
1774         if (atomic_dec_and_test(&oom_callback_count))
1775                 wake_up(&oom_callback_wq);
1776 }
1777
1778 /*
1779  * Post an rcu_oom_notify callback on the current CPU if it has at
1780  * least one lazy callback.  This will unnecessarily post callbacks
1781  * to CPUs that already have a non-lazy callback at the end of their
1782  * callback list, but this is an infrequent operation, so accept some
1783  * extra overhead to keep things simple.
1784  */
1785 static void rcu_oom_notify_cpu(void *unused)
1786 {
1787         struct rcu_state *rsp;
1788         struct rcu_data *rdp;
1789
1790         for_each_rcu_flavor(rsp) {
1791                 rdp = raw_cpu_ptr(rsp->rda);
1792                 if (rdp->qlen_lazy != 0) {
1793                         atomic_inc(&oom_callback_count);
1794                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1795                 }
1796         }
1797 }
1798
1799 /*
1800  * If low on memory, ensure that each CPU has a non-lazy callback.
1801  * This will wake up CPUs that have only lazy callbacks, in turn
1802  * ensuring that they free up the corresponding memory in a timely manner.
1803  * Because an uncertain amount of memory will be freed in some uncertain
1804  * timeframe, we do not claim to have freed anything.
1805  */
1806 static int rcu_oom_notify(struct notifier_block *self,
1807                           unsigned long notused, void *nfreed)
1808 {
1809         int cpu;
1810
1811         /* Wait for callbacks from earlier instance to complete. */
1812         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1813         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1814
1815         /*
1816          * Prevent premature wakeup: ensure that all increments happen
1817          * before there is a chance of the counter reaching zero.
1818          */
1819         atomic_set(&oom_callback_count, 1);
1820
1821         get_online_cpus();
1822         for_each_online_cpu(cpu) {
1823                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1824                 cond_resched();
1825         }
1826         put_online_cpus();
1827
1828         /* Unconditionally decrement: no need to wake ourselves up. */
1829         atomic_dec(&oom_callback_count);
1830
1831         return NOTIFY_OK;
1832 }
1833
1834 static struct notifier_block rcu_oom_nb = {
1835         .notifier_call = rcu_oom_notify
1836 };
1837
1838 static int __init rcu_register_oom_notifier(void)
1839 {
1840         register_oom_notifier(&rcu_oom_nb);
1841         return 0;
1842 }
1843 early_initcall(rcu_register_oom_notifier);
1844
1845 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1846
1847 #ifdef CONFIG_RCU_CPU_STALL_INFO
1848
1849 #ifdef CONFIG_RCU_FAST_NO_HZ
1850
1851 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1852 {
1853         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1854         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1855
1856         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1857                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1858                 ulong2long(nlpd),
1859                 rdtp->all_lazy ? 'L' : '.',
1860                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1861 }
1862
1863 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1864
1865 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1866 {
1867         *cp = '\0';
1868 }
1869
1870 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1871
1872 /* Initiate the stall-info list. */
1873 static void print_cpu_stall_info_begin(void)
1874 {
1875         pr_cont("\n");
1876 }
1877
1878 /*
1879  * Print out diagnostic information for the specified stalled CPU.
1880  *
1881  * If the specified CPU is aware of the current RCU grace period
1882  * (flavor specified by rsp), then print the number of scheduling
1883  * clock interrupts the CPU has taken during the time that it has
1884  * been aware.  Otherwise, print the number of RCU grace periods
1885  * that this CPU is ignorant of, for example, "1" if the CPU was
1886  * aware of the previous grace period.
1887  *
1888  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1889  */
1890 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1891 {
1892         char fast_no_hz[72];
1893         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1894         struct rcu_dynticks *rdtp = rdp->dynticks;
1895         char *ticks_title;
1896         unsigned long ticks_value;
1897
1898         if (rsp->gpnum == rdp->gpnum) {
1899                 ticks_title = "ticks this GP";
1900                 ticks_value = rdp->ticks_this_gp;
1901         } else {
1902                 ticks_title = "GPs behind";
1903                 ticks_value = rsp->gpnum - rdp->gpnum;
1904         }
1905         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1906         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1907                cpu, ticks_value, ticks_title,
1908                atomic_read(&rdtp->dynticks) & 0xfff,
1909                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1910                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1911                fast_no_hz);
1912 }
1913
1914 /* Terminate the stall-info list. */
1915 static void print_cpu_stall_info_end(void)
1916 {
1917         pr_err("\t");
1918 }
1919
1920 /* Zero ->ticks_this_gp for all flavors of RCU. */
1921 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1922 {
1923         rdp->ticks_this_gp = 0;
1924         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1925 }
1926
1927 /* Increment ->ticks_this_gp for all flavors of RCU. */
1928 static void increment_cpu_stall_ticks(void)
1929 {
1930         struct rcu_state *rsp;
1931
1932         for_each_rcu_flavor(rsp)
1933                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1934 }
1935
1936 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1937
1938 static void print_cpu_stall_info_begin(void)
1939 {
1940         pr_cont(" {");
1941 }
1942
1943 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1944 {
1945         pr_cont(" %d", cpu);
1946 }
1947
1948 static void print_cpu_stall_info_end(void)
1949 {
1950         pr_cont("} ");
1951 }
1952
1953 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1954 {
1955 }
1956
1957 static void increment_cpu_stall_ticks(void)
1958 {
1959 }
1960
1961 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1962
1963 #ifdef CONFIG_RCU_NOCB_CPU
1964
1965 /*
1966  * Offload callback processing from the boot-time-specified set of CPUs
1967  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1968  * kthread created that pulls the callbacks from the corresponding CPU,
1969  * waits for a grace period to elapse, and invokes the callbacks.
1970  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1971  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1972  * has been specified, in which case each kthread actively polls its
1973  * CPU.  (Which isn't so great for energy efficiency, but which does
1974  * reduce RCU's overhead on that CPU.)
1975  *
1976  * This is intended to be used in conjunction with Frederic Weisbecker's
1977  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1978  * running CPU-bound user-mode computations.
1979  *
1980  * Offloading of callback processing could also in theory be used as
1981  * an energy-efficiency measure because CPUs with no RCU callbacks
1982  * queued are more aggressive about entering dyntick-idle mode.
1983  */
1984
1985
1986 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1987 static int __init rcu_nocb_setup(char *str)
1988 {
1989         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1990         have_rcu_nocb_mask = true;
1991         cpulist_parse(str, rcu_nocb_mask);
1992         return 1;
1993 }
1994 __setup("rcu_nocbs=", rcu_nocb_setup);
1995
1996 static int __init parse_rcu_nocb_poll(char *arg)
1997 {
1998         rcu_nocb_poll = 1;
1999         return 0;
2000 }
2001 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2002
2003 /*
2004  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2005  * grace period.
2006  */
2007 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2008 {
2009         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2010 }
2011
2012 /*
2013  * Set the root rcu_node structure's ->need_future_gp field
2014  * based on the sum of those of all rcu_node structures.  This does
2015  * double-count the root rcu_node structure's requests, but this
2016  * is necessary to handle the possibility of a rcu_nocb_kthread()
2017  * having awakened during the time that the rcu_node structures
2018  * were being updated for the end of the previous grace period.
2019  */
2020 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2021 {
2022         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2023 }
2024
2025 static void rcu_init_one_nocb(struct rcu_node *rnp)
2026 {
2027         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2028         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2029 }
2030
2031 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2032 /* Is the specified CPU a no-CBs CPU? */
2033 bool rcu_is_nocb_cpu(int cpu)
2034 {
2035         if (have_rcu_nocb_mask)
2036                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2037         return false;
2038 }
2039 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2040
2041 /*
2042  * Kick the leader kthread for this NOCB group.
2043  */
2044 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2045 {
2046         struct rcu_data *rdp_leader = rdp->nocb_leader;
2047
2048         if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2049                 return;
2050         if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2051                 /* Prior xchg orders against prior callback enqueue. */
2052                 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2053                 wake_up(&rdp_leader->nocb_wq);
2054         }
2055 }
2056
2057 /*
2058  * Enqueue the specified string of rcu_head structures onto the specified
2059  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2060  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2061  * counts are supplied by rhcount and rhcount_lazy.
2062  *
2063  * If warranted, also wake up the kthread servicing this CPUs queues.
2064  */
2065 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2066                                     struct rcu_head *rhp,
2067                                     struct rcu_head **rhtp,
2068                                     int rhcount, int rhcount_lazy,
2069                                     unsigned long flags)
2070 {
2071         int len;
2072         struct rcu_head **old_rhpp;
2073         struct task_struct *t;
2074
2075         /* Enqueue the callback on the nocb list and update counts. */
2076         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2077         ACCESS_ONCE(*old_rhpp) = rhp;
2078         atomic_long_add(rhcount, &rdp->nocb_q_count);
2079         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2080
2081         /* If we are not being polled and there is a kthread, awaken it ... */
2082         t = ACCESS_ONCE(rdp->nocb_kthread);
2083         if (rcu_nocb_poll || !t) {
2084                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2085                                     TPS("WakeNotPoll"));
2086                 return;
2087         }
2088         len = atomic_long_read(&rdp->nocb_q_count);
2089         if (old_rhpp == &rdp->nocb_head) {
2090                 if (!irqs_disabled_flags(flags)) {
2091                         /* ... if queue was empty ... */
2092                         wake_nocb_leader(rdp, false);
2093                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2094                                             TPS("WakeEmpty"));
2095                 } else {
2096                         rdp->nocb_defer_wakeup = true;
2097                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2098                                             TPS("WakeEmptyIsDeferred"));
2099                 }
2100                 rdp->qlen_last_fqs_check = 0;
2101         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2102                 /* ... or if many callbacks queued. */
2103                 wake_nocb_leader(rdp, true);
2104                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2105                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2106         } else {
2107                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2108         }
2109         return;
2110 }
2111
2112 /*
2113  * This is a helper for __call_rcu(), which invokes this when the normal
2114  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2115  * function returns failure back to __call_rcu(), which can complain
2116  * appropriately.
2117  *
2118  * Otherwise, this function queues the callback where the corresponding
2119  * "rcuo" kthread can find it.
2120  */
2121 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2122                             bool lazy, unsigned long flags)
2123 {
2124
2125         if (!rcu_is_nocb_cpu(rdp->cpu))
2126                 return false;
2127         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2128         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2129                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2130                                          (unsigned long)rhp->func,
2131                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2132                                          -atomic_long_read(&rdp->nocb_q_count));
2133         else
2134                 trace_rcu_callback(rdp->rsp->name, rhp,
2135                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2136                                    -atomic_long_read(&rdp->nocb_q_count));
2137         return true;
2138 }
2139
2140 /*
2141  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2142  * not a no-CBs CPU.
2143  */
2144 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2145                                                      struct rcu_data *rdp,
2146                                                      unsigned long flags)
2147 {
2148         long ql = rsp->qlen;
2149         long qll = rsp->qlen_lazy;
2150
2151         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2152         if (!rcu_is_nocb_cpu(smp_processor_id()))
2153                 return false;
2154         rsp->qlen = 0;
2155         rsp->qlen_lazy = 0;
2156
2157         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2158         if (rsp->orphan_donelist != NULL) {
2159                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2160                                         rsp->orphan_donetail, ql, qll, flags);
2161                 ql = qll = 0;
2162                 rsp->orphan_donelist = NULL;
2163                 rsp->orphan_donetail = &rsp->orphan_donelist;
2164         }
2165         if (rsp->orphan_nxtlist != NULL) {
2166                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2167                                         rsp->orphan_nxttail, ql, qll, flags);
2168                 ql = qll = 0;
2169                 rsp->orphan_nxtlist = NULL;
2170                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2171         }
2172         return true;
2173 }
2174
2175 /*
2176  * If necessary, kick off a new grace period, and either way wait
2177  * for a subsequent grace period to complete.
2178  */
2179 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2180 {
2181         unsigned long c;
2182         bool d;
2183         unsigned long flags;
2184         bool needwake;
2185         struct rcu_node *rnp = rdp->mynode;
2186
2187         raw_spin_lock_irqsave(&rnp->lock, flags);
2188         smp_mb__after_unlock_lock();
2189         needwake = rcu_start_future_gp(rnp, rdp, &c);
2190         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2191         if (needwake)
2192                 rcu_gp_kthread_wake(rdp->rsp);
2193
2194         /*
2195          * Wait for the grace period.  Do so interruptibly to avoid messing
2196          * up the load average.
2197          */
2198         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2199         for (;;) {
2200                 wait_event_interruptible(
2201                         rnp->nocb_gp_wq[c & 0x1],
2202                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2203                 if (likely(d))
2204                         break;
2205                 flush_signals(current);
2206                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2207         }
2208         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2209         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2210 }
2211
2212 /*
2213  * Leaders come here to wait for additional callbacks to show up.
2214  * This function does not return until callbacks appear.
2215  */
2216 static void nocb_leader_wait(struct rcu_data *my_rdp)
2217 {
2218         bool firsttime = true;
2219         bool gotcbs;
2220         struct rcu_data *rdp;
2221         struct rcu_head **tail;
2222
2223 wait_again:
2224
2225         /* Wait for callbacks to appear. */
2226         if (!rcu_nocb_poll) {
2227                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2228                 wait_event_interruptible(my_rdp->nocb_wq,
2229                                 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2230                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2231         } else if (firsttime) {
2232                 firsttime = false; /* Don't drown trace log with "Poll"! */
2233                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2234         }
2235
2236         /*
2237          * Each pass through the following loop checks a follower for CBs.
2238          * We are our own first follower.  Any CBs found are moved to
2239          * nocb_gp_head, where they await a grace period.
2240          */
2241         gotcbs = false;
2242         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2243                 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2244                 if (!rdp->nocb_gp_head)
2245                         continue;  /* No CBs here, try next follower. */
2246
2247                 /* Move callbacks to wait-for-GP list, which is empty. */
2248                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2249                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2250                 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2251                 rdp->nocb_gp_count_lazy =
2252                         atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2253                 gotcbs = true;
2254         }
2255
2256         /*
2257          * If there were no callbacks, sleep a bit, rescan after a
2258          * memory barrier, and go retry.
2259          */
2260         if (unlikely(!gotcbs)) {
2261                 if (!rcu_nocb_poll)
2262                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2263                                             "WokeEmpty");
2264                 flush_signals(current);
2265                 schedule_timeout_interruptible(1);
2266
2267                 /* Rescan in case we were a victim of memory ordering. */
2268                 my_rdp->nocb_leader_sleep = true;
2269                 smp_mb();  /* Ensure _sleep true before scan. */
2270                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2271                         if (ACCESS_ONCE(rdp->nocb_head)) {
2272                                 /* Found CB, so short-circuit next wait. */
2273                                 my_rdp->nocb_leader_sleep = false;
2274                                 break;
2275                         }
2276                 goto wait_again;
2277         }
2278
2279         /* Wait for one grace period. */
2280         rcu_nocb_wait_gp(my_rdp);
2281
2282         /*
2283          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2284          * We set it now, but recheck for new callbacks while
2285          * traversing our follower list.
2286          */
2287         my_rdp->nocb_leader_sleep = true;
2288         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2289
2290         /* Each pass through the following loop wakes a follower, if needed. */
2291         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2292                 if (ACCESS_ONCE(rdp->nocb_head))
2293                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2294                 if (!rdp->nocb_gp_head)
2295                         continue; /* No CBs, so no need to wake follower. */
2296
2297                 /* Append callbacks to follower's "done" list. */
2298                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2299                 *tail = rdp->nocb_gp_head;
2300                 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2301                 atomic_long_add(rdp->nocb_gp_count_lazy,
2302                                 &rdp->nocb_follower_count_lazy);
2303                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2304                         /*
2305                          * List was empty, wake up the follower.
2306                          * Memory barriers supplied by atomic_long_add().
2307                          */
2308                         wake_up(&rdp->nocb_wq);
2309                 }
2310         }
2311
2312         /* If we (the leader) don't have CBs, go wait some more. */
2313         if (!my_rdp->nocb_follower_head)
2314                 goto wait_again;
2315 }
2316
2317 /*
2318  * Followers come here to wait for additional callbacks to show up.
2319  * This function does not return until callbacks appear.
2320  */
2321 static void nocb_follower_wait(struct rcu_data *rdp)
2322 {
2323         bool firsttime = true;
2324
2325         for (;;) {
2326                 if (!rcu_nocb_poll) {
2327                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2328                                             "FollowerSleep");
2329                         wait_event_interruptible(rdp->nocb_wq,
2330                                                  ACCESS_ONCE(rdp->nocb_follower_head));
2331                 } else if (firsttime) {
2332                         /* Don't drown trace log with "Poll"! */
2333                         firsttime = false;
2334                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2335                 }
2336                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2337                         /* ^^^ Ensure CB invocation follows _head test. */
2338                         return;
2339                 }
2340                 if (!rcu_nocb_poll)
2341                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2342                                             "WokeEmpty");
2343                 flush_signals(current);
2344                 schedule_timeout_interruptible(1);
2345         }
2346 }
2347
2348 /*
2349  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2350  * callbacks queued by the corresponding no-CBs CPU, however, there is
2351  * an optional leader-follower relationship so that the grace-period
2352  * kthreads don't have to do quite so many wakeups.
2353  */
2354 static int rcu_nocb_kthread(void *arg)
2355 {
2356         int c, cl;
2357         struct rcu_head *list;
2358         struct rcu_head *next;
2359         struct rcu_head **tail;
2360         struct rcu_data *rdp = arg;
2361
2362         /* Each pass through this loop invokes one batch of callbacks */
2363         for (;;) {
2364                 /* Wait for callbacks. */
2365                 if (rdp->nocb_leader == rdp)
2366                         nocb_leader_wait(rdp);
2367                 else
2368                         nocb_follower_wait(rdp);
2369
2370                 /* Pull the ready-to-invoke callbacks onto local list. */
2371                 list = ACCESS_ONCE(rdp->nocb_follower_head);
2372                 BUG_ON(!list);
2373                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2374                 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2375                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2376                 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2377                 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2378                 rdp->nocb_p_count += c;
2379                 rdp->nocb_p_count_lazy += cl;
2380
2381                 /* Each pass through the following loop invokes a callback. */
2382                 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2383                 c = cl = 0;
2384                 while (list) {
2385                         next = list->next;
2386                         /* Wait for enqueuing to complete, if needed. */
2387                         while (next == NULL && &list->next != tail) {
2388                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2389                                                     TPS("WaitQueue"));
2390                                 schedule_timeout_interruptible(1);
2391                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2392                                                     TPS("WokeQueue"));
2393                                 next = list->next;
2394                         }
2395                         debug_rcu_head_unqueue(list);
2396                         local_bh_disable();
2397                         if (__rcu_reclaim(rdp->rsp->name, list))
2398                                 cl++;
2399                         c++;
2400                         local_bh_enable();
2401                         list = next;
2402                 }
2403                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2404                 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2405                 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2406                 rdp->n_nocbs_invoked += c;
2407         }
2408         return 0;
2409 }
2410
2411 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2412 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2413 {
2414         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2415 }
2416
2417 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2418 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2419 {
2420         if (!rcu_nocb_need_deferred_wakeup(rdp))
2421                 return;
2422         ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2423         wake_nocb_leader(rdp, false);
2424         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2425 }
2426
2427 void __init rcu_init_nohz(void)
2428 {
2429         int cpu;
2430         bool need_rcu_nocb_mask = true;
2431         struct rcu_state *rsp;
2432
2433 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2434         need_rcu_nocb_mask = false;
2435 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2436
2437 #if defined(CONFIG_NO_HZ_FULL)
2438         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2439                 need_rcu_nocb_mask = true;
2440 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2441
2442         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2443                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2444                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2445                         return;
2446                 }
2447                 have_rcu_nocb_mask = true;
2448         }
2449         if (!have_rcu_nocb_mask)
2450                 return;
2451
2452 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2453         pr_info("\tOffload RCU callbacks from CPU 0\n");
2454         cpumask_set_cpu(0, rcu_nocb_mask);
2455 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2456 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2457         pr_info("\tOffload RCU callbacks from all CPUs\n");
2458         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2459 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2460 #if defined(CONFIG_NO_HZ_FULL)
2461         if (tick_nohz_full_running)
2462                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2463 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2464
2465         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2466                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2467                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2468                             rcu_nocb_mask);
2469         }
2470         cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2471         pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2472         if (rcu_nocb_poll)
2473                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2474
2475         for_each_rcu_flavor(rsp) {
2476                 for_each_cpu(cpu, rcu_nocb_mask) {
2477                         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2478
2479                         /*
2480                          * If there are early callbacks, they will need
2481                          * to be moved to the nocb lists.
2482                          */
2483                         WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2484                                      &rdp->nxtlist &&
2485                                      rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2486                         init_nocb_callback_list(rdp);
2487                 }
2488         }
2489 }
2490
2491 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2492 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2493 {
2494         rdp->nocb_tail = &rdp->nocb_head;
2495         init_waitqueue_head(&rdp->nocb_wq);
2496         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2497 }
2498
2499 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2500 static int rcu_nocb_leader_stride = -1;
2501 module_param(rcu_nocb_leader_stride, int, 0444);
2502
2503 /*
2504  * Create a kthread for each RCU flavor for each no-CBs CPU.
2505  * Also initialize leader-follower relationships.
2506  */
2507 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2508 {
2509         int cpu;
2510         int ls = rcu_nocb_leader_stride;
2511         int nl = 0;  /* Next leader. */
2512         struct rcu_data *rdp;
2513         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2514         struct rcu_data *rdp_prev = NULL;
2515         struct task_struct *t;
2516
2517         if (rcu_nocb_mask == NULL)
2518                 return;
2519         if (ls == -1) {
2520                 ls = int_sqrt(nr_cpu_ids);
2521                 rcu_nocb_leader_stride = ls;
2522         }
2523
2524         /*
2525          * Each pass through this loop sets up one rcu_data structure and
2526          * spawns one rcu_nocb_kthread().
2527          */
2528         for_each_cpu(cpu, rcu_nocb_mask) {
2529                 rdp = per_cpu_ptr(rsp->rda, cpu);
2530                 if (rdp->cpu >= nl) {
2531                         /* New leader, set up for followers & next leader. */
2532                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2533                         rdp->nocb_leader = rdp;
2534                         rdp_leader = rdp;
2535                 } else {
2536                         /* Another follower, link to previous leader. */
2537                         rdp->nocb_leader = rdp_leader;
2538                         rdp_prev->nocb_next_follower = rdp;
2539                 }
2540                 rdp_prev = rdp;
2541
2542                 /* Spawn the kthread for this CPU. */
2543                 t = kthread_run(rcu_nocb_kthread, rdp,
2544                                 "rcuo%c/%d", rsp->abbr, cpu);
2545                 BUG_ON(IS_ERR(t));
2546                 ACCESS_ONCE(rdp->nocb_kthread) = t;
2547         }
2548 }
2549
2550 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2551 static bool init_nocb_callback_list(struct rcu_data *rdp)
2552 {
2553         if (rcu_nocb_mask == NULL ||
2554             !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2555                 return false;
2556         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2557         return true;
2558 }
2559
2560 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2561
2562 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2563 {
2564 }
2565
2566 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2567 {
2568 }
2569
2570 static void rcu_init_one_nocb(struct rcu_node *rnp)
2571 {
2572 }
2573
2574 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2575                             bool lazy, unsigned long flags)
2576 {
2577         return false;
2578 }
2579
2580 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2581                                                      struct rcu_data *rdp,
2582                                                      unsigned long flags)
2583 {
2584         return false;
2585 }
2586
2587 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2588 {
2589 }
2590
2591 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2592 {
2593         return false;
2594 }
2595
2596 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2597 {
2598 }
2599
2600 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2601 {
2602 }
2603
2604 static bool init_nocb_callback_list(struct rcu_data *rdp)
2605 {
2606         return false;
2607 }
2608
2609 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2610
2611 /*
2612  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2613  * arbitrarily long period of time with the scheduling-clock tick turned
2614  * off.  RCU will be paying attention to this CPU because it is in the
2615  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2616  * machine because the scheduling-clock tick has been disabled.  Therefore,
2617  * if an adaptive-ticks CPU is failing to respond to the current grace
2618  * period and has not be idle from an RCU perspective, kick it.
2619  */
2620 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2621 {
2622 #ifdef CONFIG_NO_HZ_FULL
2623         if (tick_nohz_full_cpu(cpu))
2624                 smp_send_reschedule(cpu);
2625 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2626 }
2627
2628
2629 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2630
2631 /*
2632  * Define RCU flavor that holds sysidle state.  This needs to be the
2633  * most active flavor of RCU.
2634  */
2635 #ifdef CONFIG_PREEMPT_RCU
2636 static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2637 #else /* #ifdef CONFIG_PREEMPT_RCU */
2638 static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2639 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2640
2641 static int full_sysidle_state;          /* Current system-idle state. */
2642 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2643 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2644 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2645 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2646 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2647
2648 /*
2649  * Invoked to note exit from irq or task transition to idle.  Note that
2650  * usermode execution does -not- count as idle here!  After all, we want
2651  * to detect full-system idle states, not RCU quiescent states and grace
2652  * periods.  The caller must have disabled interrupts.
2653  */
2654 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2655 {
2656         unsigned long j;
2657
2658         /* Adjust nesting, check for fully idle. */
2659         if (irq) {
2660                 rdtp->dynticks_idle_nesting--;
2661                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2662                 if (rdtp->dynticks_idle_nesting != 0)
2663                         return;  /* Still not fully idle. */
2664         } else {
2665                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2666                     DYNTICK_TASK_NEST_VALUE) {
2667                         rdtp->dynticks_idle_nesting = 0;
2668                 } else {
2669                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2670                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2671                         return;  /* Still not fully idle. */
2672                 }
2673         }
2674
2675         /* Record start of fully idle period. */
2676         j = jiffies;
2677         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2678         smp_mb__before_atomic();
2679         atomic_inc(&rdtp->dynticks_idle);
2680         smp_mb__after_atomic();
2681         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2682 }
2683
2684 /*
2685  * Unconditionally force exit from full system-idle state.  This is
2686  * invoked when a normal CPU exits idle, but must be called separately
2687  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2688  * is that the timekeeping CPU is permitted to take scheduling-clock
2689  * interrupts while the system is in system-idle state, and of course
2690  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2691  * interrupt from any other type of interrupt.
2692  */
2693 void rcu_sysidle_force_exit(void)
2694 {
2695         int oldstate = ACCESS_ONCE(full_sysidle_state);
2696         int newoldstate;
2697
2698         /*
2699          * Each pass through the following loop attempts to exit full
2700          * system-idle state.  If contention proves to be a problem,
2701          * a trylock-based contention tree could be used here.
2702          */
2703         while (oldstate > RCU_SYSIDLE_SHORT) {
2704                 newoldstate = cmpxchg(&full_sysidle_state,
2705                                       oldstate, RCU_SYSIDLE_NOT);
2706                 if (oldstate == newoldstate &&
2707                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2708                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2709                         return; /* We cleared it, done! */
2710                 }
2711                 oldstate = newoldstate;
2712         }
2713         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2714 }
2715
2716 /*
2717  * Invoked to note entry to irq or task transition from idle.  Note that
2718  * usermode execution does -not- count as idle here!  The caller must
2719  * have disabled interrupts.
2720  */
2721 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2722 {
2723         /* Adjust nesting, check for already non-idle. */
2724         if (irq) {
2725                 rdtp->dynticks_idle_nesting++;
2726                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2727                 if (rdtp->dynticks_idle_nesting != 1)
2728                         return; /* Already non-idle. */
2729         } else {
2730                 /*
2731                  * Allow for irq misnesting.  Yes, it really is possible
2732                  * to enter an irq handler then never leave it, and maybe
2733                  * also vice versa.  Handle both possibilities.
2734                  */
2735                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2736                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2737                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2738                         return; /* Already non-idle. */
2739                 } else {
2740                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2741                 }
2742         }
2743
2744         /* Record end of idle period. */
2745         smp_mb__before_atomic();
2746         atomic_inc(&rdtp->dynticks_idle);
2747         smp_mb__after_atomic();
2748         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2749
2750         /*
2751          * If we are the timekeeping CPU, we are permitted to be non-idle
2752          * during a system-idle state.  This must be the case, because
2753          * the timekeeping CPU has to take scheduling-clock interrupts
2754          * during the time that the system is transitioning to full
2755          * system-idle state.  This means that the timekeeping CPU must
2756          * invoke rcu_sysidle_force_exit() directly if it does anything
2757          * more than take a scheduling-clock interrupt.
2758          */
2759         if (smp_processor_id() == tick_do_timer_cpu)
2760                 return;
2761
2762         /* Update system-idle state: We are clearly no longer fully idle! */
2763         rcu_sysidle_force_exit();
2764 }
2765
2766 /*
2767  * Check to see if the current CPU is idle.  Note that usermode execution
2768  * does not count as idle.  The caller must have disabled interrupts.
2769  */
2770 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2771                                   unsigned long *maxj)
2772 {
2773         int cur;
2774         unsigned long j;
2775         struct rcu_dynticks *rdtp = rdp->dynticks;
2776
2777         /*
2778          * If some other CPU has already reported non-idle, if this is
2779          * not the flavor of RCU that tracks sysidle state, or if this
2780          * is an offline or the timekeeping CPU, nothing to do.
2781          */
2782         if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2783             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2784                 return;
2785         if (rcu_gp_in_progress(rdp->rsp))
2786                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2787
2788         /* Pick up current idle and NMI-nesting counter and check. */
2789         cur = atomic_read(&rdtp->dynticks_idle);
2790         if (cur & 0x1) {
2791                 *isidle = false; /* We are not idle! */
2792                 return;
2793         }
2794         smp_mb(); /* Read counters before timestamps. */
2795
2796         /* Pick up timestamps. */
2797         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2798         /* If this CPU entered idle more recently, update maxj timestamp. */
2799         if (ULONG_CMP_LT(*maxj, j))
2800                 *maxj = j;
2801 }
2802
2803 /*
2804  * Is this the flavor of RCU that is handling full-system idle?
2805  */
2806 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2807 {
2808         return rsp == rcu_sysidle_state;
2809 }
2810
2811 /*
2812  * Return a delay in jiffies based on the number of CPUs, rcu_node
2813  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2814  * systems more time to transition to full-idle state in order to
2815  * avoid the cache thrashing that otherwise occur on the state variable.
2816  * Really small systems (less than a couple of tens of CPUs) should
2817  * instead use a single global atomically incremented counter, and later
2818  * versions of this will automatically reconfigure themselves accordingly.
2819  */
2820 static unsigned long rcu_sysidle_delay(void)
2821 {
2822         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2823                 return 0;
2824         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2825 }
2826
2827 /*
2828  * Advance the full-system-idle state.  This is invoked when all of
2829  * the non-timekeeping CPUs are idle.
2830  */
2831 static void rcu_sysidle(unsigned long j)
2832 {
2833         /* Check the current state. */
2834         switch (ACCESS_ONCE(full_sysidle_state)) {
2835         case RCU_SYSIDLE_NOT:
2836
2837                 /* First time all are idle, so note a short idle period. */
2838                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2839                 break;
2840
2841         case RCU_SYSIDLE_SHORT:
2842
2843                 /*
2844                  * Idle for a bit, time to advance to next state?
2845                  * cmpxchg failure means race with non-idle, let them win.
2846                  */
2847                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2848                         (void)cmpxchg(&full_sysidle_state,
2849                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2850                 break;
2851
2852         case RCU_SYSIDLE_LONG:
2853
2854                 /*
2855                  * Do an additional check pass before advancing to full.
2856                  * cmpxchg failure means race with non-idle, let them win.
2857                  */
2858                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2859                         (void)cmpxchg(&full_sysidle_state,
2860                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2861                 break;
2862
2863         default:
2864                 break;
2865         }
2866 }
2867
2868 /*
2869  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2870  * back to the beginning.
2871  */
2872 static void rcu_sysidle_cancel(void)
2873 {
2874         smp_mb();
2875         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2876                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2877 }
2878
2879 /*
2880  * Update the sysidle state based on the results of a force-quiescent-state
2881  * scan of the CPUs' dyntick-idle state.
2882  */
2883 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2884                                unsigned long maxj, bool gpkt)
2885 {
2886         if (rsp != rcu_sysidle_state)
2887                 return;  /* Wrong flavor, ignore. */
2888         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2889                 return;  /* Running state machine from timekeeping CPU. */
2890         if (isidle)
2891                 rcu_sysidle(maxj);    /* More idle! */
2892         else
2893                 rcu_sysidle_cancel(); /* Idle is over. */
2894 }
2895
2896 /*
2897  * Wrapper for rcu_sysidle_report() when called from the grace-period
2898  * kthread's context.
2899  */
2900 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2901                                   unsigned long maxj)
2902 {
2903         rcu_sysidle_report(rsp, isidle, maxj, true);
2904 }
2905
2906 /* Callback and function for forcing an RCU grace period. */
2907 struct rcu_sysidle_head {
2908         struct rcu_head rh;
2909         int inuse;
2910 };
2911
2912 static void rcu_sysidle_cb(struct rcu_head *rhp)
2913 {
2914         struct rcu_sysidle_head *rshp;
2915
2916         /*
2917          * The following memory barrier is needed to replace the
2918          * memory barriers that would normally be in the memory
2919          * allocator.
2920          */
2921         smp_mb();  /* grace period precedes setting inuse. */
2922
2923         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2924         ACCESS_ONCE(rshp->inuse) = 0;
2925 }
2926
2927 /*
2928  * Check to see if the system is fully idle, other than the timekeeping CPU.
2929  * The caller must have disabled interrupts.
2930  */
2931 bool rcu_sys_is_idle(void)
2932 {
2933         static struct rcu_sysidle_head rsh;
2934         int rss = ACCESS_ONCE(full_sysidle_state);
2935
2936         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2937                 return false;
2938
2939         /* Handle small-system case by doing a full scan of CPUs. */
2940         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2941                 int oldrss = rss - 1;
2942
2943                 /*
2944                  * One pass to advance to each state up to _FULL.
2945                  * Give up if any pass fails to advance the state.
2946                  */
2947                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2948                         int cpu;
2949                         bool isidle = true;
2950                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2951                         struct rcu_data *rdp;
2952
2953                         /* Scan all the CPUs looking for nonidle CPUs. */
2954                         for_each_possible_cpu(cpu) {
2955                                 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2956                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2957                                 if (!isidle)
2958                                         break;
2959                         }
2960                         rcu_sysidle_report(rcu_sysidle_state,
2961                                            isidle, maxj, false);
2962                         oldrss = rss;
2963                         rss = ACCESS_ONCE(full_sysidle_state);
2964                 }
2965         }
2966
2967         /* If this is the first observation of an idle period, record it. */
2968         if (rss == RCU_SYSIDLE_FULL) {
2969                 rss = cmpxchg(&full_sysidle_state,
2970                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2971                 return rss == RCU_SYSIDLE_FULL;
2972         }
2973
2974         smp_mb(); /* ensure rss load happens before later caller actions. */
2975
2976         /* If already fully idle, tell the caller (in case of races). */
2977         if (rss == RCU_SYSIDLE_FULL_NOTED)
2978                 return true;
2979
2980         /*
2981          * If we aren't there yet, and a grace period is not in flight,
2982          * initiate a grace period.  Either way, tell the caller that
2983          * we are not there yet.  We use an xchg() rather than an assignment
2984          * to make up for the memory barriers that would otherwise be
2985          * provided by the memory allocator.
2986          */
2987         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2988             !rcu_gp_in_progress(rcu_sysidle_state) &&
2989             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2990                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2991         return false;
2992 }
2993
2994 /*
2995  * Initialize dynticks sysidle state for CPUs coming online.
2996  */
2997 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2998 {
2999         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3000 }
3001
3002 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3003
3004 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3005 {
3006 }
3007
3008 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3009 {
3010 }
3011
3012 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3013                                   unsigned long *maxj)
3014 {
3015 }
3016
3017 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3018 {
3019         return false;
3020 }
3021
3022 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3023                                   unsigned long maxj)
3024 {
3025 }
3026
3027 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3028 {
3029 }
3030
3031 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3032
3033 /*
3034  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3035  * grace-period kthread will do force_quiescent_state() processing?
3036  * The idea is to avoid waking up RCU core processing on such a
3037  * CPU unless the grace period has extended for too long.
3038  *
3039  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3040  * CONFIG_RCU_NOCB_CPU CPUs.
3041  */
3042 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3043 {
3044 #ifdef CONFIG_NO_HZ_FULL
3045         if (tick_nohz_full_cpu(smp_processor_id()) &&
3046             (!rcu_gp_in_progress(rsp) ||
3047              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3048                 return 1;
3049 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3050         return 0;
3051 }
3052
3053 /*
3054  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3055  * timekeeping CPU.
3056  */
3057 static void rcu_bind_gp_kthread(void)
3058 {
3059         int __maybe_unused cpu;
3060
3061         if (!tick_nohz_full_enabled())
3062                 return;
3063 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3064         cpu = tick_do_timer_cpu;
3065         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3066                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3067 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3068         if (!is_housekeeping_cpu(raw_smp_processor_id()))
3069                 housekeeping_affine(current);
3070 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3071 }