OSDN Git Service

rcu: Avoid data-race in rcu_gp_fqs_check_wake()
[tomoyo/tomoyo-test1.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (RCU_NUM_LVLS >= 4)
40                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41         if (RCU_FANOUT_LEAF != 16)
42                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43                         RCU_FANOUT_LEAF);
44         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46                         rcu_fanout_leaf);
47         if (nr_cpu_ids != NR_CPUS)
48                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53         if (blimit != DEFAULT_RCU_BLIMIT)
54                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55         if (qhimark != DEFAULT_RCU_QHIMARK)
56                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57         if (qlowmark != DEFAULT_RCU_QLOMARK)
58                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59         if (jiffies_till_first_fqs != ULONG_MAX)
60                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61         if (jiffies_till_next_fqs != ULONG_MAX)
62                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63         if (jiffies_till_sched_qs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65         if (rcu_kick_kthreads)
66                 pr_info("\tKick kthreads if too-long grace period.\n");
67         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69         if (gp_preinit_delay)
70                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71         if (gp_init_delay)
72                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73         if (gp_cleanup_delay)
74                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75         if (!use_softirq)
76                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78                 pr_info("\tRCU debug extended QS entry/exit.\n");
79         rcupdate_announce_bootup_oddness();
80 }
81
82 #ifdef CONFIG_PREEMPT_RCU
83
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86
87 /*
88  * Tell them what RCU they are running.
89  */
90 static void __init rcu_bootup_announce(void)
91 {
92         pr_info("Preemptible hierarchical RCU implementation.\n");
93         rcu_bootup_announce_oddness();
94 }
95
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS    0x8
98 #define RCU_EXP_TASKS   0x4
99 #define RCU_GP_BLKD     0x2
100 #define RCU_EXP_BLKD    0x1
101
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131         __releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137         struct task_struct *t = current;
138
139         raw_lockdep_assert_held_rcu_node(rnp);
140         WARN_ON_ONCE(rdp->mynode != rnp);
141         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142         /* RCU better not be waiting on newly onlined CPUs! */
143         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144                      rdp->grpmask);
145
146         /*
147          * Decide where to queue the newly blocked task.  In theory,
148          * this could be an if-statement.  In practice, when I tried
149          * that, it was quite messy.
150          */
151         switch (blkd_state) {
152         case 0:
153         case                RCU_EXP_TASKS:
154         case                RCU_EXP_TASKS + RCU_GP_BLKD:
155         case RCU_GP_TASKS:
156         case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158                 /*
159                  * Blocking neither GP, or first task blocking the normal
160                  * GP but not blocking the already-waiting expedited GP.
161                  * Queue at the head of the list to avoid unnecessarily
162                  * blocking the already-waiting GPs.
163                  */
164                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165                 break;
166
167         case                                              RCU_EXP_BLKD:
168         case                                RCU_GP_BLKD:
169         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174                 /*
175                  * First task arriving that blocks either GP, or first task
176                  * arriving that blocks the expedited GP (with the normal
177                  * GP already waiting), or a task arriving that blocks
178                  * both GPs with both GPs already waiting.  Queue at the
179                  * tail of the list to avoid any GP waiting on any of the
180                  * already queued tasks that are not blocking it.
181                  */
182                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183                 break;
184
185         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188
189                 /*
190                  * Second or subsequent task blocking the expedited GP.
191                  * The task either does not block the normal GP, or is the
192                  * first task blocking the normal GP.  Queue just after
193                  * the first task blocking the expedited GP.
194                  */
195                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196                 break;
197
198         case RCU_GP_TASKS +                 RCU_GP_BLKD:
199         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201                 /*
202                  * Second or subsequent task blocking the normal GP.
203                  * The task does not block the expedited GP. Queue just
204                  * after the first task blocking the normal GP.
205                  */
206                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207                 break;
208
209         default:
210
211                 /* Yet another exercise in excessive paranoia. */
212                 WARN_ON_ONCE(1);
213                 break;
214         }
215
216         /*
217          * We have now queued the task.  If it was the first one to
218          * block either grace period, update the ->gp_tasks and/or
219          * ->exp_tasks pointers, respectively, to reference the newly
220          * blocked tasks.
221          */
222         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
224                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225         }
226         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227                 rnp->exp_tasks = &t->rcu_node_entry;
228         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229                      !(rnp->qsmask & rdp->grpmask));
230         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231                      !(rnp->expmask & rdp->grpmask));
232         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233
234         /*
235          * Report the quiescent state for the expedited GP.  This expedited
236          * GP should not be able to end until we report, so there should be
237          * no need to check for a subsequent expedited GP.  (Though we are
238          * still in a quiescent state in any case.)
239          */
240         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241                 rcu_report_exp_rdp(rdp);
242         else
243                 WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
259 static void rcu_qs(void)
260 {
261         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263                 trace_rcu_grace_period(TPS("rcu_preempt"),
264                                        __this_cpu_read(rcu_data.gp_seq),
265                                        TPS("cpuqs"));
266                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269         }
270 }
271
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
285 void rcu_note_context_switch(bool preempt)
286 {
287         struct task_struct *t = current;
288         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289         struct rcu_node *rnp;
290
291         trace_rcu_utilization(TPS("Start context switch"));
292         lockdep_assert_irqs_disabled();
293         WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
294         if (t->rcu_read_lock_nesting > 0 &&
295             !t->rcu_read_unlock_special.b.blocked) {
296
297                 /* Possibly blocking in an RCU read-side critical section. */
298                 rnp = rdp->mynode;
299                 raw_spin_lock_rcu_node(rnp);
300                 t->rcu_read_unlock_special.b.blocked = true;
301                 t->rcu_blocked_node = rnp;
302
303                 /*
304                  * Verify the CPU's sanity, trace the preemption, and
305                  * then queue the task as required based on the states
306                  * of any ongoing and expedited grace periods.
307                  */
308                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310                 trace_rcu_preempt_task(rcu_state.name,
311                                        t->pid,
312                                        (rnp->qsmask & rdp->grpmask)
313                                        ? rnp->gp_seq
314                                        : rcu_seq_snap(&rnp->gp_seq));
315                 rcu_preempt_ctxt_queue(rnp, rdp);
316         } else {
317                 rcu_preempt_deferred_qs(t);
318         }
319
320         /*
321          * Either we were not in an RCU read-side critical section to
322          * begin with, or we have now recorded that critical section
323          * globally.  Either way, we can now note a quiescent state
324          * for this CPU.  Again, if we were in an RCU read-side critical
325          * section, and if that critical section was blocking the current
326          * grace period, then the fact that the task has been enqueued
327          * means that we continue to block the current grace period.
328          */
329         rcu_qs();
330         if (rdp->exp_deferred_qs)
331                 rcu_report_exp_rdp(rdp);
332         trace_rcu_utilization(TPS("End context switch"));
333 }
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
335
336 /*
337  * Check for preempted RCU readers blocking the current grace period
338  * for the specified rcu_node structure.  If the caller needs a reliable
339  * answer, it must hold the rcu_node's ->lock.
340  */
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
342 {
343         return READ_ONCE(rnp->gp_tasks) != NULL;
344 }
345
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
350
351 /*
352  * Preemptible RCU implementation for rcu_read_lock().
353  * Just increment ->rcu_read_lock_nesting, shared state will be updated
354  * if we block.
355  */
356 void __rcu_read_lock(void)
357 {
358         current->rcu_read_lock_nesting++;
359         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360                 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
361         barrier();  /* critical section after entry code. */
362 }
363 EXPORT_SYMBOL_GPL(__rcu_read_lock);
364
365 /*
366  * Preemptible RCU implementation for rcu_read_unlock().
367  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
368  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369  * invoke rcu_read_unlock_special() to clean up after a context switch
370  * in an RCU read-side critical section and other special cases.
371  */
372 void __rcu_read_unlock(void)
373 {
374         struct task_struct *t = current;
375
376         if (t->rcu_read_lock_nesting != 1) {
377                 --t->rcu_read_lock_nesting;
378         } else {
379                 barrier();  /* critical section before exit code. */
380                 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
381                 barrier();  /* assign before ->rcu_read_unlock_special load */
382                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383                         rcu_read_unlock_special(t);
384                 barrier();  /* ->rcu_read_unlock_special load before assign */
385                 t->rcu_read_lock_nesting = 0;
386         }
387         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388                 int rrln = t->rcu_read_lock_nesting;
389
390                 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
391         }
392 }
393 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394
395 /*
396  * Advance a ->blkd_tasks-list pointer to the next entry, instead
397  * returning NULL if at the end of the list.
398  */
399 static struct list_head *rcu_next_node_entry(struct task_struct *t,
400                                              struct rcu_node *rnp)
401 {
402         struct list_head *np;
403
404         np = t->rcu_node_entry.next;
405         if (np == &rnp->blkd_tasks)
406                 np = NULL;
407         return np;
408 }
409
410 /*
411  * Return true if the specified rcu_node structure has tasks that were
412  * preempted within an RCU read-side critical section.
413  */
414 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415 {
416         return !list_empty(&rnp->blkd_tasks);
417 }
418
419 /*
420  * Report deferred quiescent states.  The deferral time can
421  * be quite short, for example, in the case of the call from
422  * rcu_read_unlock_special().
423  */
424 static void
425 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
426 {
427         bool empty_exp;
428         bool empty_norm;
429         bool empty_exp_now;
430         struct list_head *np;
431         bool drop_boost_mutex = false;
432         struct rcu_data *rdp;
433         struct rcu_node *rnp;
434         union rcu_special special;
435
436         /*
437          * If RCU core is waiting for this CPU to exit its critical section,
438          * report the fact that it has exited.  Because irqs are disabled,
439          * t->rcu_read_unlock_special cannot change.
440          */
441         special = t->rcu_read_unlock_special;
442         rdp = this_cpu_ptr(&rcu_data);
443         if (!special.s && !rdp->exp_deferred_qs) {
444                 local_irq_restore(flags);
445                 return;
446         }
447         t->rcu_read_unlock_special.b.deferred_qs = false;
448         if (special.b.need_qs) {
449                 rcu_qs();
450                 t->rcu_read_unlock_special.b.need_qs = false;
451                 if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
452                         local_irq_restore(flags);
453                         return;
454                 }
455         }
456
457         /*
458          * Respond to a request by an expedited grace period for a
459          * quiescent state from this CPU.  Note that requests from
460          * tasks are handled when removing the task from the
461          * blocked-tasks list below.
462          */
463         if (rdp->exp_deferred_qs) {
464                 rcu_report_exp_rdp(rdp);
465                 if (!t->rcu_read_unlock_special.s) {
466                         local_irq_restore(flags);
467                         return;
468                 }
469         }
470
471         /* Clean up if blocked during RCU read-side critical section. */
472         if (special.b.blocked) {
473                 t->rcu_read_unlock_special.b.blocked = false;
474
475                 /*
476                  * Remove this task from the list it blocked on.  The task
477                  * now remains queued on the rcu_node corresponding to the
478                  * CPU it first blocked on, so there is no longer any need
479                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
480                  */
481                 rnp = t->rcu_blocked_node;
482                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
484                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
485                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
487                              (!empty_norm || rnp->qsmask));
488                 empty_exp = sync_rcu_preempt_exp_done(rnp);
489                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
490                 np = rcu_next_node_entry(t, rnp);
491                 list_del_init(&t->rcu_node_entry);
492                 t->rcu_blocked_node = NULL;
493                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
494                                                 rnp->gp_seq, t->pid);
495                 if (&t->rcu_node_entry == rnp->gp_tasks)
496                         WRITE_ONCE(rnp->gp_tasks, np);
497                 if (&t->rcu_node_entry == rnp->exp_tasks)
498                         rnp->exp_tasks = np;
499                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
500                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502                         if (&t->rcu_node_entry == rnp->boost_tasks)
503                                 rnp->boost_tasks = np;
504                 }
505
506                 /*
507                  * If this was the last task on the current list, and if
508                  * we aren't waiting on any CPUs, report the quiescent state.
509                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510                  * so we must take a snapshot of the expedited state.
511                  */
512                 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
513                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
514                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
515                                                          rnp->gp_seq,
516                                                          0, rnp->qsmask,
517                                                          rnp->level,
518                                                          rnp->grplo,
519                                                          rnp->grphi,
520                                                          !!rnp->gp_tasks);
521                         rcu_report_unblock_qs_rnp(rnp, flags);
522                 } else {
523                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
524                 }
525
526                 /* Unboost if we were boosted. */
527                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
528                         rt_mutex_futex_unlock(&rnp->boost_mtx);
529
530                 /*
531                  * If this was the last task on the expedited lists,
532                  * then we need to report up the rcu_node hierarchy.
533                  */
534                 if (!empty_exp && empty_exp_now)
535                         rcu_report_exp_rnp(rnp, true);
536         } else {
537                 local_irq_restore(flags);
538         }
539 }
540
541 /*
542  * Is a deferred quiescent-state pending, and are we also not in
543  * an RCU read-side critical section?  It is the caller's responsibility
544  * to ensure it is otherwise safe to report any deferred quiescent
545  * states.  The reason for this is that it is safe to report a
546  * quiescent state during context switch even though preemption
547  * is disabled.  This function cannot be expected to understand these
548  * nuances, so the caller must handle them.
549  */
550 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
551 {
552         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
553                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
554                t->rcu_read_lock_nesting <= 0;
555 }
556
557 /*
558  * Report a deferred quiescent state if needed and safe to do so.
559  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
560  * not being in an RCU read-side critical section.  The caller must
561  * evaluate safety in terms of interrupt, softirq, and preemption
562  * disabling.
563  */
564 static void rcu_preempt_deferred_qs(struct task_struct *t)
565 {
566         unsigned long flags;
567         bool couldrecurse = t->rcu_read_lock_nesting >= 0;
568
569         if (!rcu_preempt_need_deferred_qs(t))
570                 return;
571         if (couldrecurse)
572                 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
573         local_irq_save(flags);
574         rcu_preempt_deferred_qs_irqrestore(t, flags);
575         if (couldrecurse)
576                 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
577 }
578
579 /*
580  * Minimal handler to give the scheduler a chance to re-evaluate.
581  */
582 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
583 {
584         struct rcu_data *rdp;
585
586         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
587         rdp->defer_qs_iw_pending = false;
588 }
589
590 /*
591  * Handle special cases during rcu_read_unlock(), such as needing to
592  * notify RCU core processing or task having blocked during the RCU
593  * read-side critical section.
594  */
595 static void rcu_read_unlock_special(struct task_struct *t)
596 {
597         unsigned long flags;
598         bool preempt_bh_were_disabled =
599                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
600         bool irqs_were_disabled;
601
602         /* NMI handlers cannot block and cannot safely manipulate state. */
603         if (in_nmi())
604                 return;
605
606         local_irq_save(flags);
607         irqs_were_disabled = irqs_disabled_flags(flags);
608         if (preempt_bh_were_disabled || irqs_were_disabled) {
609                 bool exp;
610                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611                 struct rcu_node *rnp = rdp->mynode;
612
613                 t->rcu_read_unlock_special.b.exp_hint = false;
614                 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
615                       (rdp->grpmask & rnp->expmask) ||
616                       tick_nohz_full_cpu(rdp->cpu);
617                 // Need to defer quiescent state until everything is enabled.
618                 if (irqs_were_disabled && use_softirq &&
619                     (in_interrupt() ||
620                      (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
621                         // Using softirq, safe to awaken, and we get
622                         // no help from enabling irqs, unlike bh/preempt.
623                         raise_softirq_irqoff(RCU_SOFTIRQ);
624                 } else {
625                         // Enabling BH or preempt does reschedule, so...
626                         // Also if no expediting or NO_HZ_FULL, slow is OK.
627                         set_tsk_need_resched(current);
628                         set_preempt_need_resched();
629                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
630                             !rdp->defer_qs_iw_pending && exp) {
631                                 // Get scheduler to re-evaluate and call hooks.
632                                 // If !IRQ_WORK, FQS scan will eventually IPI.
633                                 init_irq_work(&rdp->defer_qs_iw,
634                                               rcu_preempt_deferred_qs_handler);
635                                 rdp->defer_qs_iw_pending = true;
636                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
637                         }
638                 }
639                 t->rcu_read_unlock_special.b.deferred_qs = true;
640                 local_irq_restore(flags);
641                 return;
642         }
643         WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
644         rcu_preempt_deferred_qs_irqrestore(t, flags);
645 }
646
647 /*
648  * Check that the list of blocked tasks for the newly completed grace
649  * period is in fact empty.  It is a serious bug to complete a grace
650  * period that still has RCU readers blocked!  This function must be
651  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
652  * must be held by the caller.
653  *
654  * Also, if there are blocked tasks on the list, they automatically
655  * block the newly created grace period, so set up ->gp_tasks accordingly.
656  */
657 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
658 {
659         struct task_struct *t;
660
661         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
662         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
663                 dump_blkd_tasks(rnp, 10);
664         if (rcu_preempt_has_tasks(rnp) &&
665             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
666                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
667                 t = container_of(rnp->gp_tasks, struct task_struct,
668                                  rcu_node_entry);
669                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
670                                                 rnp->gp_seq, t->pid);
671         }
672         WARN_ON_ONCE(rnp->qsmask);
673 }
674
675 /*
676  * Check for a quiescent state from the current CPU, including voluntary
677  * context switches for Tasks RCU.  When a task blocks, the task is
678  * recorded in the corresponding CPU's rcu_node structure, which is checked
679  * elsewhere, hence this function need only check for quiescent states
680  * related to the current CPU, not to those related to tasks.
681  */
682 static void rcu_flavor_sched_clock_irq(int user)
683 {
684         struct task_struct *t = current;
685
686         if (user || rcu_is_cpu_rrupt_from_idle()) {
687                 rcu_note_voluntary_context_switch(current);
688         }
689         if (t->rcu_read_lock_nesting > 0 ||
690             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
691                 /* No QS, force context switch if deferred. */
692                 if (rcu_preempt_need_deferred_qs(t)) {
693                         set_tsk_need_resched(t);
694                         set_preempt_need_resched();
695                 }
696         } else if (rcu_preempt_need_deferred_qs(t)) {
697                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
698                 return;
699         } else if (!t->rcu_read_lock_nesting) {
700                 rcu_qs(); /* Report immediate QS. */
701                 return;
702         }
703
704         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
705         if (t->rcu_read_lock_nesting > 0 &&
706             __this_cpu_read(rcu_data.core_needs_qs) &&
707             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
708             !t->rcu_read_unlock_special.b.need_qs &&
709             time_after(jiffies, rcu_state.gp_start + HZ))
710                 t->rcu_read_unlock_special.b.need_qs = true;
711 }
712
713 /*
714  * Check for a task exiting while in a preemptible-RCU read-side
715  * critical section, clean up if so.  No need to issue warnings, as
716  * debug_check_no_locks_held() already does this if lockdep is enabled.
717  * Besides, if this function does anything other than just immediately
718  * return, there was a bug of some sort.  Spewing warnings from this
719  * function is like as not to simply obscure important prior warnings.
720  */
721 void exit_rcu(void)
722 {
723         struct task_struct *t = current;
724
725         if (unlikely(!list_empty(&current->rcu_node_entry))) {
726                 t->rcu_read_lock_nesting = 1;
727                 barrier();
728                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
729         } else if (unlikely(t->rcu_read_lock_nesting)) {
730                 t->rcu_read_lock_nesting = 1;
731         } else {
732                 return;
733         }
734         __rcu_read_unlock();
735         rcu_preempt_deferred_qs(current);
736 }
737
738 /*
739  * Dump the blocked-tasks state, but limit the list dump to the
740  * specified number of elements.
741  */
742 static void
743 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
744 {
745         int cpu;
746         int i;
747         struct list_head *lhp;
748         bool onl;
749         struct rcu_data *rdp;
750         struct rcu_node *rnp1;
751
752         raw_lockdep_assert_held_rcu_node(rnp);
753         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
754                 __func__, rnp->grplo, rnp->grphi, rnp->level,
755                 (long)rnp->gp_seq, (long)rnp->completedqs);
756         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
757                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
758                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
759         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
760                 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
761                 rnp->exp_tasks);
762         pr_info("%s: ->blkd_tasks", __func__);
763         i = 0;
764         list_for_each(lhp, &rnp->blkd_tasks) {
765                 pr_cont(" %p", lhp);
766                 if (++i >= ncheck)
767                         break;
768         }
769         pr_cont("\n");
770         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
771                 rdp = per_cpu_ptr(&rcu_data, cpu);
772                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
773                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
774                         cpu, ".o"[onl],
775                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
776                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
777         }
778 }
779
780 #else /* #ifdef CONFIG_PREEMPT_RCU */
781
782 /*
783  * Tell them what RCU they are running.
784  */
785 static void __init rcu_bootup_announce(void)
786 {
787         pr_info("Hierarchical RCU implementation.\n");
788         rcu_bootup_announce_oddness();
789 }
790
791 /*
792  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
793  * how many quiescent states passed, just if there was at least one since
794  * the start of the grace period, this just sets a flag.  The caller must
795  * have disabled preemption.
796  */
797 static void rcu_qs(void)
798 {
799         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
800         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
801                 return;
802         trace_rcu_grace_period(TPS("rcu_sched"),
803                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
804         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
805         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
806                 return;
807         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
808         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
809 }
810
811 /*
812  * Register an urgently needed quiescent state.  If there is an
813  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
814  * dyntick-idle quiescent state visible to other CPUs, which will in
815  * some cases serve for expedited as well as normal grace periods.
816  * Either way, register a lightweight quiescent state.
817  */
818 void rcu_all_qs(void)
819 {
820         unsigned long flags;
821
822         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
823                 return;
824         preempt_disable();
825         /* Load rcu_urgent_qs before other flags. */
826         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
827                 preempt_enable();
828                 return;
829         }
830         this_cpu_write(rcu_data.rcu_urgent_qs, false);
831         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
832                 local_irq_save(flags);
833                 rcu_momentary_dyntick_idle();
834                 local_irq_restore(flags);
835         }
836         rcu_qs();
837         preempt_enable();
838 }
839 EXPORT_SYMBOL_GPL(rcu_all_qs);
840
841 /*
842  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
843  */
844 void rcu_note_context_switch(bool preempt)
845 {
846         trace_rcu_utilization(TPS("Start context switch"));
847         rcu_qs();
848         /* Load rcu_urgent_qs before other flags. */
849         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
850                 goto out;
851         this_cpu_write(rcu_data.rcu_urgent_qs, false);
852         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
853                 rcu_momentary_dyntick_idle();
854         if (!preempt)
855                 rcu_tasks_qs(current);
856 out:
857         trace_rcu_utilization(TPS("End context switch"));
858 }
859 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
860
861 /*
862  * Because preemptible RCU does not exist, there are never any preempted
863  * RCU readers.
864  */
865 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
866 {
867         return 0;
868 }
869
870 /*
871  * Because there is no preemptible RCU, there can be no readers blocked.
872  */
873 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
874 {
875         return false;
876 }
877
878 /*
879  * Because there is no preemptible RCU, there can be no deferred quiescent
880  * states.
881  */
882 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
883 {
884         return false;
885 }
886 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
887
888 /*
889  * Because there is no preemptible RCU, there can be no readers blocked,
890  * so there is no need to check for blocked tasks.  So check only for
891  * bogus qsmask values.
892  */
893 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
894 {
895         WARN_ON_ONCE(rnp->qsmask);
896 }
897
898 /*
899  * Check to see if this CPU is in a non-context-switch quiescent state,
900  * namely user mode and idle loop.
901  */
902 static void rcu_flavor_sched_clock_irq(int user)
903 {
904         if (user || rcu_is_cpu_rrupt_from_idle()) {
905
906                 /*
907                  * Get here if this CPU took its interrupt from user
908                  * mode or from the idle loop, and if this is not a
909                  * nested interrupt.  In this case, the CPU is in
910                  * a quiescent state, so note it.
911                  *
912                  * No memory barrier is required here because rcu_qs()
913                  * references only CPU-local variables that other CPUs
914                  * neither access nor modify, at least not while the
915                  * corresponding CPU is online.
916                  */
917
918                 rcu_qs();
919         }
920 }
921
922 /*
923  * Because preemptible RCU does not exist, tasks cannot possibly exit
924  * while in preemptible RCU read-side critical sections.
925  */
926 void exit_rcu(void)
927 {
928 }
929
930 /*
931  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
932  */
933 static void
934 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
935 {
936         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
937 }
938
939 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
940
941 /*
942  * If boosting, set rcuc kthreads to realtime priority.
943  */
944 static void rcu_cpu_kthread_setup(unsigned int cpu)
945 {
946 #ifdef CONFIG_RCU_BOOST
947         struct sched_param sp;
948
949         sp.sched_priority = kthread_prio;
950         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
951 #endif /* #ifdef CONFIG_RCU_BOOST */
952 }
953
954 #ifdef CONFIG_RCU_BOOST
955
956 /*
957  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
958  * or ->boost_tasks, advancing the pointer to the next task in the
959  * ->blkd_tasks list.
960  *
961  * Note that irqs must be enabled: boosting the task can block.
962  * Returns 1 if there are more tasks needing to be boosted.
963  */
964 static int rcu_boost(struct rcu_node *rnp)
965 {
966         unsigned long flags;
967         struct task_struct *t;
968         struct list_head *tb;
969
970         if (READ_ONCE(rnp->exp_tasks) == NULL &&
971             READ_ONCE(rnp->boost_tasks) == NULL)
972                 return 0;  /* Nothing left to boost. */
973
974         raw_spin_lock_irqsave_rcu_node(rnp, flags);
975
976         /*
977          * Recheck under the lock: all tasks in need of boosting
978          * might exit their RCU read-side critical sections on their own.
979          */
980         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
981                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
982                 return 0;
983         }
984
985         /*
986          * Preferentially boost tasks blocking expedited grace periods.
987          * This cannot starve the normal grace periods because a second
988          * expedited grace period must boost all blocked tasks, including
989          * those blocking the pre-existing normal grace period.
990          */
991         if (rnp->exp_tasks != NULL)
992                 tb = rnp->exp_tasks;
993         else
994                 tb = rnp->boost_tasks;
995
996         /*
997          * We boost task t by manufacturing an rt_mutex that appears to
998          * be held by task t.  We leave a pointer to that rt_mutex where
999          * task t can find it, and task t will release the mutex when it
1000          * exits its outermost RCU read-side critical section.  Then
1001          * simply acquiring this artificial rt_mutex will boost task
1002          * t's priority.  (Thanks to tglx for suggesting this approach!)
1003          *
1004          * Note that task t must acquire rnp->lock to remove itself from
1005          * the ->blkd_tasks list, which it will do from exit() if from
1006          * nowhere else.  We therefore are guaranteed that task t will
1007          * stay around at least until we drop rnp->lock.  Note that
1008          * rnp->lock also resolves races between our priority boosting
1009          * and task t's exiting its outermost RCU read-side critical
1010          * section.
1011          */
1012         t = container_of(tb, struct task_struct, rcu_node_entry);
1013         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1014         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1015         /* Lock only for side effect: boosts task t's priority. */
1016         rt_mutex_lock(&rnp->boost_mtx);
1017         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1018
1019         return READ_ONCE(rnp->exp_tasks) != NULL ||
1020                READ_ONCE(rnp->boost_tasks) != NULL;
1021 }
1022
1023 /*
1024  * Priority-boosting kthread, one per leaf rcu_node.
1025  */
1026 static int rcu_boost_kthread(void *arg)
1027 {
1028         struct rcu_node *rnp = (struct rcu_node *)arg;
1029         int spincnt = 0;
1030         int more2boost;
1031
1032         trace_rcu_utilization(TPS("Start boost kthread@init"));
1033         for (;;) {
1034                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1035                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1036                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1037                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1038                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1039                 more2boost = rcu_boost(rnp);
1040                 if (more2boost)
1041                         spincnt++;
1042                 else
1043                         spincnt = 0;
1044                 if (spincnt > 10) {
1045                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1046                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1047                         schedule_timeout_interruptible(2);
1048                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1049                         spincnt = 0;
1050                 }
1051         }
1052         /* NOTREACHED */
1053         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1054         return 0;
1055 }
1056
1057 /*
1058  * Check to see if it is time to start boosting RCU readers that are
1059  * blocking the current grace period, and, if so, tell the per-rcu_node
1060  * kthread to start boosting them.  If there is an expedited grace
1061  * period in progress, it is always time to boost.
1062  *
1063  * The caller must hold rnp->lock, which this function releases.
1064  * The ->boost_kthread_task is immortal, so we don't need to worry
1065  * about it going away.
1066  */
1067 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1068         __releases(rnp->lock)
1069 {
1070         raw_lockdep_assert_held_rcu_node(rnp);
1071         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1072                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1073                 return;
1074         }
1075         if (rnp->exp_tasks != NULL ||
1076             (rnp->gp_tasks != NULL &&
1077              rnp->boost_tasks == NULL &&
1078              rnp->qsmask == 0 &&
1079              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1080                 if (rnp->exp_tasks == NULL)
1081                         rnp->boost_tasks = rnp->gp_tasks;
1082                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1083                 rcu_wake_cond(rnp->boost_kthread_task,
1084                               rnp->boost_kthread_status);
1085         } else {
1086                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1087         }
1088 }
1089
1090 /*
1091  * Is the current CPU running the RCU-callbacks kthread?
1092  * Caller must have preemption disabled.
1093  */
1094 static bool rcu_is_callbacks_kthread(void)
1095 {
1096         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1097 }
1098
1099 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1100
1101 /*
1102  * Do priority-boost accounting for the start of a new grace period.
1103  */
1104 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1105 {
1106         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1107 }
1108
1109 /*
1110  * Create an RCU-boost kthread for the specified node if one does not
1111  * already exist.  We only create this kthread for preemptible RCU.
1112  * Returns zero if all is well, a negated errno otherwise.
1113  */
1114 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1115 {
1116         int rnp_index = rnp - rcu_get_root();
1117         unsigned long flags;
1118         struct sched_param sp;
1119         struct task_struct *t;
1120
1121         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1122                 return;
1123
1124         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1125                 return;
1126
1127         rcu_state.boost = 1;
1128
1129         if (rnp->boost_kthread_task != NULL)
1130                 return;
1131
1132         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1133                            "rcub/%d", rnp_index);
1134         if (WARN_ON_ONCE(IS_ERR(t)))
1135                 return;
1136
1137         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1138         rnp->boost_kthread_task = t;
1139         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1140         sp.sched_priority = kthread_prio;
1141         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1142         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1143 }
1144
1145 /*
1146  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1147  * served by the rcu_node in question.  The CPU hotplug lock is still
1148  * held, so the value of rnp->qsmaskinit will be stable.
1149  *
1150  * We don't include outgoingcpu in the affinity set, use -1 if there is
1151  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1152  * this function allows the kthread to execute on any CPU.
1153  */
1154 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1155 {
1156         struct task_struct *t = rnp->boost_kthread_task;
1157         unsigned long mask = rcu_rnp_online_cpus(rnp);
1158         cpumask_var_t cm;
1159         int cpu;
1160
1161         if (!t)
1162                 return;
1163         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1164                 return;
1165         for_each_leaf_node_possible_cpu(rnp, cpu)
1166                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1167                     cpu != outgoingcpu)
1168                         cpumask_set_cpu(cpu, cm);
1169         if (cpumask_weight(cm) == 0)
1170                 cpumask_setall(cm);
1171         set_cpus_allowed_ptr(t, cm);
1172         free_cpumask_var(cm);
1173 }
1174
1175 /*
1176  * Spawn boost kthreads -- called as soon as the scheduler is running.
1177  */
1178 static void __init rcu_spawn_boost_kthreads(void)
1179 {
1180         struct rcu_node *rnp;
1181
1182         rcu_for_each_leaf_node(rnp)
1183                 rcu_spawn_one_boost_kthread(rnp);
1184 }
1185
1186 static void rcu_prepare_kthreads(int cpu)
1187 {
1188         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1189         struct rcu_node *rnp = rdp->mynode;
1190
1191         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1192         if (rcu_scheduler_fully_active)
1193                 rcu_spawn_one_boost_kthread(rnp);
1194 }
1195
1196 #else /* #ifdef CONFIG_RCU_BOOST */
1197
1198 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1199         __releases(rnp->lock)
1200 {
1201         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1202 }
1203
1204 static bool rcu_is_callbacks_kthread(void)
1205 {
1206         return false;
1207 }
1208
1209 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1210 {
1211 }
1212
1213 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1214 {
1215 }
1216
1217 static void __init rcu_spawn_boost_kthreads(void)
1218 {
1219 }
1220
1221 static void rcu_prepare_kthreads(int cpu)
1222 {
1223 }
1224
1225 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1226
1227 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1228
1229 /*
1230  * Check to see if any future non-offloaded RCU-related work will need
1231  * to be done by the current CPU, even if none need be done immediately,
1232  * returning 1 if so.  This function is part of the RCU implementation;
1233  * it is -not- an exported member of the RCU API.
1234  *
1235  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1236  * CPU has RCU callbacks queued.
1237  */
1238 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1239 {
1240         *nextevt = KTIME_MAX;
1241         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1242                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1243 }
1244
1245 /*
1246  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1247  * after it.
1248  */
1249 static void rcu_cleanup_after_idle(void)
1250 {
1251 }
1252
1253 /*
1254  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1255  * is nothing.
1256  */
1257 static void rcu_prepare_for_idle(void)
1258 {
1259 }
1260
1261 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1262
1263 /*
1264  * This code is invoked when a CPU goes idle, at which point we want
1265  * to have the CPU do everything required for RCU so that it can enter
1266  * the energy-efficient dyntick-idle mode.  This is handled by a
1267  * state machine implemented by rcu_prepare_for_idle() below.
1268  *
1269  * The following three proprocessor symbols control this state machine:
1270  *
1271  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1272  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1273  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1274  *      benchmarkers who might otherwise be tempted to set this to a large
1275  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1276  *      system.  And if you are -that- concerned about energy efficiency,
1277  *      just power the system down and be done with it!
1278  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1279  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1280  *      callbacks pending.  Setting this too high can OOM your system.
1281  *
1282  * The values below work well in practice.  If future workloads require
1283  * adjustment, they can be converted into kernel config parameters, though
1284  * making the state machine smarter might be a better option.
1285  */
1286 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1287 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1288
1289 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1290 module_param(rcu_idle_gp_delay, int, 0644);
1291 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1292 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1293
1294 /*
1295  * Try to advance callbacks on the current CPU, but only if it has been
1296  * awhile since the last time we did so.  Afterwards, if there are any
1297  * callbacks ready for immediate invocation, return true.
1298  */
1299 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1300 {
1301         bool cbs_ready = false;
1302         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1303         struct rcu_node *rnp;
1304
1305         /* Exit early if we advanced recently. */
1306         if (jiffies == rdp->last_advance_all)
1307                 return false;
1308         rdp->last_advance_all = jiffies;
1309
1310         rnp = rdp->mynode;
1311
1312         /*
1313          * Don't bother checking unless a grace period has
1314          * completed since we last checked and there are
1315          * callbacks not yet ready to invoke.
1316          */
1317         if ((rcu_seq_completed_gp(rdp->gp_seq,
1318                                   rcu_seq_current(&rnp->gp_seq)) ||
1319              unlikely(READ_ONCE(rdp->gpwrap))) &&
1320             rcu_segcblist_pend_cbs(&rdp->cblist))
1321                 note_gp_changes(rdp);
1322
1323         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1324                 cbs_ready = true;
1325         return cbs_ready;
1326 }
1327
1328 /*
1329  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1330  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1331  * caller to set the timeout based on whether or not there are non-lazy
1332  * callbacks.
1333  *
1334  * The caller must have disabled interrupts.
1335  */
1336 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1337 {
1338         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1339         unsigned long dj;
1340
1341         lockdep_assert_irqs_disabled();
1342
1343         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1344         if (rcu_segcblist_empty(&rdp->cblist) ||
1345             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1346                 *nextevt = KTIME_MAX;
1347                 return 0;
1348         }
1349
1350         /* Attempt to advance callbacks. */
1351         if (rcu_try_advance_all_cbs()) {
1352                 /* Some ready to invoke, so initiate later invocation. */
1353                 invoke_rcu_core();
1354                 return 1;
1355         }
1356         rdp->last_accelerate = jiffies;
1357
1358         /* Request timer delay depending on laziness, and round. */
1359         rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1360         if (rdp->all_lazy) {
1361                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1362         } else {
1363                 dj = round_up(rcu_idle_gp_delay + jiffies,
1364                                rcu_idle_gp_delay) - jiffies;
1365         }
1366         *nextevt = basemono + dj * TICK_NSEC;
1367         return 0;
1368 }
1369
1370 /*
1371  * Prepare a CPU for idle from an RCU perspective.  The first major task
1372  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1373  * The second major task is to check to see if a non-lazy callback has
1374  * arrived at a CPU that previously had only lazy callbacks.  The third
1375  * major task is to accelerate (that is, assign grace-period numbers to)
1376  * any recently arrived callbacks.
1377  *
1378  * The caller must have disabled interrupts.
1379  */
1380 static void rcu_prepare_for_idle(void)
1381 {
1382         bool needwake;
1383         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1384         struct rcu_node *rnp;
1385         int tne;
1386
1387         lockdep_assert_irqs_disabled();
1388         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1389                 return;
1390
1391         /* Handle nohz enablement switches conservatively. */
1392         tne = READ_ONCE(tick_nohz_active);
1393         if (tne != rdp->tick_nohz_enabled_snap) {
1394                 if (!rcu_segcblist_empty(&rdp->cblist))
1395                         invoke_rcu_core(); /* force nohz to see update. */
1396                 rdp->tick_nohz_enabled_snap = tne;
1397                 return;
1398         }
1399         if (!tne)
1400                 return;
1401
1402         /*
1403          * If a non-lazy callback arrived at a CPU having only lazy
1404          * callbacks, invoke RCU core for the side-effect of recalculating
1405          * idle duration on re-entry to idle.
1406          */
1407         if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1408                 rdp->all_lazy = false;
1409                 invoke_rcu_core();
1410                 return;
1411         }
1412
1413         /*
1414          * If we have not yet accelerated this jiffy, accelerate all
1415          * callbacks on this CPU.
1416          */
1417         if (rdp->last_accelerate == jiffies)
1418                 return;
1419         rdp->last_accelerate = jiffies;
1420         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1421                 rnp = rdp->mynode;
1422                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1423                 needwake = rcu_accelerate_cbs(rnp, rdp);
1424                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1425                 if (needwake)
1426                         rcu_gp_kthread_wake();
1427         }
1428 }
1429
1430 /*
1431  * Clean up for exit from idle.  Attempt to advance callbacks based on
1432  * any grace periods that elapsed while the CPU was idle, and if any
1433  * callbacks are now ready to invoke, initiate invocation.
1434  */
1435 static void rcu_cleanup_after_idle(void)
1436 {
1437         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1438
1439         lockdep_assert_irqs_disabled();
1440         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1441                 return;
1442         if (rcu_try_advance_all_cbs())
1443                 invoke_rcu_core();
1444 }
1445
1446 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1447
1448 #ifdef CONFIG_RCU_NOCB_CPU
1449
1450 /*
1451  * Offload callback processing from the boot-time-specified set of CPUs
1452  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1453  * created that pull the callbacks from the corresponding CPU, wait for
1454  * a grace period to elapse, and invoke the callbacks.  These kthreads
1455  * are organized into GP kthreads, which manage incoming callbacks, wait for
1456  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1457  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1458  * do a wake_up() on their GP kthread when they insert a callback into any
1459  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1460  * in which case each kthread actively polls its CPU.  (Which isn't so great
1461  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1462  *
1463  * This is intended to be used in conjunction with Frederic Weisbecker's
1464  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1465  * running CPU-bound user-mode computations.
1466  *
1467  * Offloading of callbacks can also be used as an energy-efficiency
1468  * measure because CPUs with no RCU callbacks queued are more aggressive
1469  * about entering dyntick-idle mode.
1470  */
1471
1472
1473 /*
1474  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1475  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1476  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1477  * given, a warning is emitted and all CPUs are offloaded.
1478  */
1479 static int __init rcu_nocb_setup(char *str)
1480 {
1481         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1482         if (!strcasecmp(str, "all"))
1483                 cpumask_setall(rcu_nocb_mask);
1484         else
1485                 if (cpulist_parse(str, rcu_nocb_mask)) {
1486                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1487                         cpumask_setall(rcu_nocb_mask);
1488                 }
1489         return 1;
1490 }
1491 __setup("rcu_nocbs=", rcu_nocb_setup);
1492
1493 static int __init parse_rcu_nocb_poll(char *arg)
1494 {
1495         rcu_nocb_poll = true;
1496         return 0;
1497 }
1498 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1499
1500 /*
1501  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1502  * After all, the main point of bypassing is to avoid lock contention
1503  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1504  */
1505 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1506 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1507
1508 /*
1509  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1510  * lock isn't immediately available, increment ->nocb_lock_contended to
1511  * flag the contention.
1512  */
1513 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1514 {
1515         lockdep_assert_irqs_disabled();
1516         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1517                 return;
1518         atomic_inc(&rdp->nocb_lock_contended);
1519         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1520         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1521         raw_spin_lock(&rdp->nocb_bypass_lock);
1522         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1523         atomic_dec(&rdp->nocb_lock_contended);
1524 }
1525
1526 /*
1527  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1528  * not contended.  Please note that this is extremely special-purpose,
1529  * relying on the fact that at most two kthreads and one CPU contend for
1530  * this lock, and also that the two kthreads are guaranteed to have frequent
1531  * grace-period-duration time intervals between successive acquisitions
1532  * of the lock.  This allows us to use an extremely simple throttling
1533  * mechanism, and further to apply it only to the CPU doing floods of
1534  * call_rcu() invocations.  Don't try this at home!
1535  */
1536 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1537 {
1538         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1539         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1540                 cpu_relax();
1541 }
1542
1543 /*
1544  * Conditionally acquire the specified rcu_data structure's
1545  * ->nocb_bypass_lock.
1546  */
1547 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1548 {
1549         lockdep_assert_irqs_disabled();
1550         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1551 }
1552
1553 /*
1554  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1555  */
1556 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1557 {
1558         lockdep_assert_irqs_disabled();
1559         raw_spin_unlock(&rdp->nocb_bypass_lock);
1560 }
1561
1562 /*
1563  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1564  * if it corresponds to a no-CBs CPU.
1565  */
1566 static void rcu_nocb_lock(struct rcu_data *rdp)
1567 {
1568         lockdep_assert_irqs_disabled();
1569         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1570                 return;
1571         raw_spin_lock(&rdp->nocb_lock);
1572 }
1573
1574 /*
1575  * Release the specified rcu_data structure's ->nocb_lock, but only
1576  * if it corresponds to a no-CBs CPU.
1577  */
1578 static void rcu_nocb_unlock(struct rcu_data *rdp)
1579 {
1580         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1581                 lockdep_assert_irqs_disabled();
1582                 raw_spin_unlock(&rdp->nocb_lock);
1583         }
1584 }
1585
1586 /*
1587  * Release the specified rcu_data structure's ->nocb_lock and restore
1588  * interrupts, but only if it corresponds to a no-CBs CPU.
1589  */
1590 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1591                                        unsigned long flags)
1592 {
1593         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1594                 lockdep_assert_irqs_disabled();
1595                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1596         } else {
1597                 local_irq_restore(flags);
1598         }
1599 }
1600
1601 /* Lockdep check that ->cblist may be safely accessed. */
1602 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1603 {
1604         lockdep_assert_irqs_disabled();
1605         if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1606             cpu_online(rdp->cpu))
1607                 lockdep_assert_held(&rdp->nocb_lock);
1608 }
1609
1610 /*
1611  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1612  * grace period.
1613  */
1614 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1615 {
1616         swake_up_all(sq);
1617 }
1618
1619 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1620 {
1621         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1622 }
1623
1624 static void rcu_init_one_nocb(struct rcu_node *rnp)
1625 {
1626         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1627         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1628 }
1629
1630 /* Is the specified CPU a no-CBs CPU? */
1631 bool rcu_is_nocb_cpu(int cpu)
1632 {
1633         if (cpumask_available(rcu_nocb_mask))
1634                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1635         return false;
1636 }
1637
1638 /*
1639  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1640  * and this function releases it.
1641  */
1642 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1643                            unsigned long flags)
1644         __releases(rdp->nocb_lock)
1645 {
1646         bool needwake = false;
1647         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1648
1649         lockdep_assert_held(&rdp->nocb_lock);
1650         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1651                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1652                                     TPS("AlreadyAwake"));
1653                 rcu_nocb_unlock_irqrestore(rdp, flags);
1654                 return;
1655         }
1656         del_timer(&rdp->nocb_timer);
1657         rcu_nocb_unlock_irqrestore(rdp, flags);
1658         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1659         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1660                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1661                 needwake = true;
1662                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1663         }
1664         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1665         if (needwake)
1666                 wake_up_process(rdp_gp->nocb_gp_kthread);
1667 }
1668
1669 /*
1670  * Arrange to wake the GP kthread for this NOCB group at some future
1671  * time when it is safe to do so.
1672  */
1673 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1674                                const char *reason)
1675 {
1676         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1677                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1678         if (rdp->nocb_defer_wakeup < waketype)
1679                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1680         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1681 }
1682
1683 /*
1684  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1685  * However, if there is a callback to be enqueued and if ->nocb_bypass
1686  * proves to be initially empty, just return false because the no-CB GP
1687  * kthread may need to be awakened in this case.
1688  *
1689  * Note that this function always returns true if rhp is NULL.
1690  */
1691 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1692                                      unsigned long j)
1693 {
1694         struct rcu_cblist rcl;
1695
1696         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1697         rcu_lockdep_assert_cblist_protected(rdp);
1698         lockdep_assert_held(&rdp->nocb_bypass_lock);
1699         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1700                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1701                 return false;
1702         }
1703         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1704         if (rhp)
1705                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1706         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1707         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1708         WRITE_ONCE(rdp->nocb_bypass_first, j);
1709         rcu_nocb_bypass_unlock(rdp);
1710         return true;
1711 }
1712
1713 /*
1714  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1715  * However, if there is a callback to be enqueued and if ->nocb_bypass
1716  * proves to be initially empty, just return false because the no-CB GP
1717  * kthread may need to be awakened in this case.
1718  *
1719  * Note that this function always returns true if rhp is NULL.
1720  */
1721 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1722                                   unsigned long j)
1723 {
1724         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1725                 return true;
1726         rcu_lockdep_assert_cblist_protected(rdp);
1727         rcu_nocb_bypass_lock(rdp);
1728         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1729 }
1730
1731 /*
1732  * If the ->nocb_bypass_lock is immediately available, flush the
1733  * ->nocb_bypass queue into ->cblist.
1734  */
1735 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1736 {
1737         rcu_lockdep_assert_cblist_protected(rdp);
1738         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1739             !rcu_nocb_bypass_trylock(rdp))
1740                 return;
1741         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1742 }
1743
1744 /*
1745  * See whether it is appropriate to use the ->nocb_bypass list in order
1746  * to control contention on ->nocb_lock.  A limited number of direct
1747  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1748  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1749  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1750  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1751  * used if ->cblist is empty, because otherwise callbacks can be stranded
1752  * on ->nocb_bypass because we cannot count on the current CPU ever again
1753  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1754  * non-empty, the corresponding no-CBs grace-period kthread must not be
1755  * in an indefinite sleep state.
1756  *
1757  * Finally, it is not permitted to use the bypass during early boot,
1758  * as doing so would confuse the auto-initialization code.  Besides
1759  * which, there is no point in worrying about lock contention while
1760  * there is only one CPU in operation.
1761  */
1762 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1763                                 bool *was_alldone, unsigned long flags)
1764 {
1765         unsigned long c;
1766         unsigned long cur_gp_seq;
1767         unsigned long j = jiffies;
1768         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1769
1770         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1771                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1772                 return false; /* Not offloaded, no bypassing. */
1773         }
1774         lockdep_assert_irqs_disabled();
1775
1776         // Don't use ->nocb_bypass during early boot.
1777         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1778                 rcu_nocb_lock(rdp);
1779                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1780                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1781                 return false;
1782         }
1783
1784         // If we have advanced to a new jiffy, reset counts to allow
1785         // moving back from ->nocb_bypass to ->cblist.
1786         if (j == rdp->nocb_nobypass_last) {
1787                 c = rdp->nocb_nobypass_count + 1;
1788         } else {
1789                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1790                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1791                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1792                                  nocb_nobypass_lim_per_jiffy))
1793                         c = 0;
1794                 else if (c > nocb_nobypass_lim_per_jiffy)
1795                         c = nocb_nobypass_lim_per_jiffy;
1796         }
1797         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1798
1799         // If there hasn't yet been all that many ->cblist enqueues
1800         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1801         // ->nocb_bypass first.
1802         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1803                 rcu_nocb_lock(rdp);
1804                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1805                 if (*was_alldone)
1806                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1807                                             TPS("FirstQ"));
1808                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1809                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1810                 return false; // Caller must enqueue the callback.
1811         }
1812
1813         // If ->nocb_bypass has been used too long or is too full,
1814         // flush ->nocb_bypass to ->cblist.
1815         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1816             ncbs >= qhimark) {
1817                 rcu_nocb_lock(rdp);
1818                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1819                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1820                         if (*was_alldone)
1821                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1822                                                     TPS("FirstQ"));
1823                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1824                         return false; // Caller must enqueue the callback.
1825                 }
1826                 if (j != rdp->nocb_gp_adv_time &&
1827                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1828                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1829                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1830                         rdp->nocb_gp_adv_time = j;
1831                 }
1832                 rcu_nocb_unlock_irqrestore(rdp, flags);
1833                 return true; // Callback already enqueued.
1834         }
1835
1836         // We need to use the bypass.
1837         rcu_nocb_wait_contended(rdp);
1838         rcu_nocb_bypass_lock(rdp);
1839         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1840         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1841         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1842         if (!ncbs) {
1843                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1844                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1845         }
1846         rcu_nocb_bypass_unlock(rdp);
1847         smp_mb(); /* Order enqueue before wake. */
1848         if (ncbs) {
1849                 local_irq_restore(flags);
1850         } else {
1851                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1852                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1853                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1854                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1855                                             TPS("FirstBQwake"));
1856                         __call_rcu_nocb_wake(rdp, true, flags);
1857                 } else {
1858                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1859                                             TPS("FirstBQnoWake"));
1860                         rcu_nocb_unlock_irqrestore(rdp, flags);
1861                 }
1862         }
1863         return true; // Callback already enqueued.
1864 }
1865
1866 /*
1867  * Awaken the no-CBs grace-period kthead if needed, either due to it
1868  * legitimately being asleep or due to overload conditions.
1869  *
1870  * If warranted, also wake up the kthread servicing this CPUs queues.
1871  */
1872 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1873                                  unsigned long flags)
1874                                  __releases(rdp->nocb_lock)
1875 {
1876         unsigned long cur_gp_seq;
1877         unsigned long j;
1878         long len;
1879         struct task_struct *t;
1880
1881         // If we are being polled or there is no kthread, just leave.
1882         t = READ_ONCE(rdp->nocb_gp_kthread);
1883         if (rcu_nocb_poll || !t) {
1884                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1885                                     TPS("WakeNotPoll"));
1886                 rcu_nocb_unlock_irqrestore(rdp, flags);
1887                 return;
1888         }
1889         // Need to actually to a wakeup.
1890         len = rcu_segcblist_n_cbs(&rdp->cblist);
1891         if (was_alldone) {
1892                 rdp->qlen_last_fqs_check = len;
1893                 if (!irqs_disabled_flags(flags)) {
1894                         /* ... if queue was empty ... */
1895                         wake_nocb_gp(rdp, false, flags);
1896                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1897                                             TPS("WakeEmpty"));
1898                 } else {
1899                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1900                                            TPS("WakeEmptyIsDeferred"));
1901                         rcu_nocb_unlock_irqrestore(rdp, flags);
1902                 }
1903         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1904                 /* ... or if many callbacks queued. */
1905                 rdp->qlen_last_fqs_check = len;
1906                 j = jiffies;
1907                 if (j != rdp->nocb_gp_adv_time &&
1908                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1909                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1910                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1911                         rdp->nocb_gp_adv_time = j;
1912                 }
1913                 smp_mb(); /* Enqueue before timer_pending(). */
1914                 if ((rdp->nocb_cb_sleep ||
1915                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1916                     !timer_pending(&rdp->nocb_bypass_timer))
1917                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1918                                            TPS("WakeOvfIsDeferred"));
1919                 rcu_nocb_unlock_irqrestore(rdp, flags);
1920         } else {
1921                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1922                 rcu_nocb_unlock_irqrestore(rdp, flags);
1923         }
1924         return;
1925 }
1926
1927 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1928 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1929 {
1930         unsigned long flags;
1931         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1932
1933         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1934         rcu_nocb_lock_irqsave(rdp, flags);
1935         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1936         __call_rcu_nocb_wake(rdp, true, flags);
1937 }
1938
1939 /*
1940  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1941  * or for grace periods to end.
1942  */
1943 static void nocb_gp_wait(struct rcu_data *my_rdp)
1944 {
1945         bool bypass = false;
1946         long bypass_ncbs;
1947         int __maybe_unused cpu = my_rdp->cpu;
1948         unsigned long cur_gp_seq;
1949         unsigned long flags;
1950         bool gotcbs = false;
1951         unsigned long j = jiffies;
1952         bool needwait_gp = false; // This prevents actual uninitialized use.
1953         bool needwake;
1954         bool needwake_gp;
1955         struct rcu_data *rdp;
1956         struct rcu_node *rnp;
1957         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1958
1959         /*
1960          * Each pass through the following loop checks for CBs and for the
1961          * nearest grace period (if any) to wait for next.  The CB kthreads
1962          * and the global grace-period kthread are awakened if needed.
1963          */
1964         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1965                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1966                 rcu_nocb_lock_irqsave(rdp, flags);
1967                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968                 if (bypass_ncbs &&
1969                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1970                      bypass_ncbs > 2 * qhimark)) {
1971                         // Bypass full or old, so flush it.
1972                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1973                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1974                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1975                         rcu_nocb_unlock_irqrestore(rdp, flags);
1976                         continue; /* No callbacks here, try next. */
1977                 }
1978                 if (bypass_ncbs) {
1979                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1980                                             TPS("Bypass"));
1981                         bypass = true;
1982                 }
1983                 rnp = rdp->mynode;
1984                 if (bypass) {  // Avoid race with first bypass CB.
1985                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1986                                    RCU_NOCB_WAKE_NOT);
1987                         del_timer(&my_rdp->nocb_timer);
1988                 }
1989                 // Advance callbacks if helpful and low contention.
1990                 needwake_gp = false;
1991                 if (!rcu_segcblist_restempty(&rdp->cblist,
1992                                              RCU_NEXT_READY_TAIL) ||
1993                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1994                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1995                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1996                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1997                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1998                 }
1999                 // Need to wait on some grace period?
2000                 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2001                                                       RCU_NEXT_READY_TAIL));
2002                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2003                         if (!needwait_gp ||
2004                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2005                                 wait_gp_seq = cur_gp_seq;
2006                         needwait_gp = true;
2007                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2008                                             TPS("NeedWaitGP"));
2009                 }
2010                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2011                         needwake = rdp->nocb_cb_sleep;
2012                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
2013                         smp_mb(); /* CB invocation -after- GP end. */
2014                 } else {
2015                         needwake = false;
2016                 }
2017                 rcu_nocb_unlock_irqrestore(rdp, flags);
2018                 if (needwake) {
2019                         swake_up_one(&rdp->nocb_cb_wq);
2020                         gotcbs = true;
2021                 }
2022                 if (needwake_gp)
2023                         rcu_gp_kthread_wake();
2024         }
2025
2026         my_rdp->nocb_gp_bypass = bypass;
2027         my_rdp->nocb_gp_gp = needwait_gp;
2028         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2029         if (bypass && !rcu_nocb_poll) {
2030                 // At least one child with non-empty ->nocb_bypass, so set
2031                 // timer in order to avoid stranding its callbacks.
2032                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2033                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2034                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2035         }
2036         if (rcu_nocb_poll) {
2037                 /* Polling, so trace if first poll in the series. */
2038                 if (gotcbs)
2039                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2040                 schedule_timeout_interruptible(1);
2041         } else if (!needwait_gp) {
2042                 /* Wait for callbacks to appear. */
2043                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2044                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2045                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2046                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2047         } else {
2048                 rnp = my_rdp->mynode;
2049                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2050                 swait_event_interruptible_exclusive(
2051                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2052                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2053                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2054                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2055         }
2056         if (!rcu_nocb_poll) {
2057                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2058                 if (bypass)
2059                         del_timer(&my_rdp->nocb_bypass_timer);
2060                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2061                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2062         }
2063         my_rdp->nocb_gp_seq = -1;
2064         WARN_ON(signal_pending(current));
2065 }
2066
2067 /*
2068  * No-CBs grace-period-wait kthread.  There is one of these per group
2069  * of CPUs, but only once at least one CPU in that group has come online
2070  * at least once since boot.  This kthread checks for newly posted
2071  * callbacks from any of the CPUs it is responsible for, waits for a
2072  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2073  * that then have callback-invocation work to do.
2074  */
2075 static int rcu_nocb_gp_kthread(void *arg)
2076 {
2077         struct rcu_data *rdp = arg;
2078
2079         for (;;) {
2080                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2081                 nocb_gp_wait(rdp);
2082                 cond_resched_tasks_rcu_qs();
2083         }
2084         return 0;
2085 }
2086
2087 /*
2088  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2089  * then, if there are no more, wait for more to appear.
2090  */
2091 static void nocb_cb_wait(struct rcu_data *rdp)
2092 {
2093         unsigned long cur_gp_seq;
2094         unsigned long flags;
2095         bool needwake_gp = false;
2096         struct rcu_node *rnp = rdp->mynode;
2097
2098         local_irq_save(flags);
2099         rcu_momentary_dyntick_idle();
2100         local_irq_restore(flags);
2101         local_bh_disable();
2102         rcu_do_batch(rdp);
2103         local_bh_enable();
2104         lockdep_assert_irqs_enabled();
2105         rcu_nocb_lock_irqsave(rdp, flags);
2106         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2107             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2108             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2109                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2110                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2111         }
2112         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2113                 rcu_nocb_unlock_irqrestore(rdp, flags);
2114                 if (needwake_gp)
2115                         rcu_gp_kthread_wake();
2116                 return;
2117         }
2118
2119         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2120         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2121         rcu_nocb_unlock_irqrestore(rdp, flags);
2122         if (needwake_gp)
2123                 rcu_gp_kthread_wake();
2124         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2125                                  !READ_ONCE(rdp->nocb_cb_sleep));
2126         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2127                 /* ^^^ Ensure CB invocation follows _sleep test. */
2128                 return;
2129         }
2130         WARN_ON(signal_pending(current));
2131         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2132 }
2133
2134 /*
2135  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2136  * nocb_cb_wait() to do the dirty work.
2137  */
2138 static int rcu_nocb_cb_kthread(void *arg)
2139 {
2140         struct rcu_data *rdp = arg;
2141
2142         // Each pass through this loop does one callback batch, and,
2143         // if there are no more ready callbacks, waits for them.
2144         for (;;) {
2145                 nocb_cb_wait(rdp);
2146                 cond_resched_tasks_rcu_qs();
2147         }
2148         return 0;
2149 }
2150
2151 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2152 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2153 {
2154         return READ_ONCE(rdp->nocb_defer_wakeup);
2155 }
2156
2157 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2158 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2159 {
2160         unsigned long flags;
2161         int ndw;
2162
2163         rcu_nocb_lock_irqsave(rdp, flags);
2164         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2165                 rcu_nocb_unlock_irqrestore(rdp, flags);
2166                 return;
2167         }
2168         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2169         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2170         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2171         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2172 }
2173
2174 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2175 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2176 {
2177         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2178
2179         do_nocb_deferred_wakeup_common(rdp);
2180 }
2181
2182 /*
2183  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2184  * This means we do an inexact common-case check.  Note that if
2185  * we miss, ->nocb_timer will eventually clean things up.
2186  */
2187 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2188 {
2189         if (rcu_nocb_need_deferred_wakeup(rdp))
2190                 do_nocb_deferred_wakeup_common(rdp);
2191 }
2192
2193 void __init rcu_init_nohz(void)
2194 {
2195         int cpu;
2196         bool need_rcu_nocb_mask = false;
2197         struct rcu_data *rdp;
2198
2199 #if defined(CONFIG_NO_HZ_FULL)
2200         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2201                 need_rcu_nocb_mask = true;
2202 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2203
2204         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2205                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2206                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2207                         return;
2208                 }
2209         }
2210         if (!cpumask_available(rcu_nocb_mask))
2211                 return;
2212
2213 #if defined(CONFIG_NO_HZ_FULL)
2214         if (tick_nohz_full_running)
2215                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2216 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2217
2218         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2219                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2220                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2221                             rcu_nocb_mask);
2222         }
2223         if (cpumask_empty(rcu_nocb_mask))
2224                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2225         else
2226                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2227                         cpumask_pr_args(rcu_nocb_mask));
2228         if (rcu_nocb_poll)
2229                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2230
2231         for_each_cpu(cpu, rcu_nocb_mask) {
2232                 rdp = per_cpu_ptr(&rcu_data, cpu);
2233                 if (rcu_segcblist_empty(&rdp->cblist))
2234                         rcu_segcblist_init(&rdp->cblist);
2235                 rcu_segcblist_offload(&rdp->cblist);
2236         }
2237         rcu_organize_nocb_kthreads();
2238 }
2239
2240 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2241 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2242 {
2243         init_swait_queue_head(&rdp->nocb_cb_wq);
2244         init_swait_queue_head(&rdp->nocb_gp_wq);
2245         raw_spin_lock_init(&rdp->nocb_lock);
2246         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2247         raw_spin_lock_init(&rdp->nocb_gp_lock);
2248         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2249         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2250         rcu_cblist_init(&rdp->nocb_bypass);
2251 }
2252
2253 /*
2254  * If the specified CPU is a no-CBs CPU that does not already have its
2255  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2256  * for this CPU's group has not yet been created, spawn it as well.
2257  */
2258 static void rcu_spawn_one_nocb_kthread(int cpu)
2259 {
2260         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2261         struct rcu_data *rdp_gp;
2262         struct task_struct *t;
2263
2264         /*
2265          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2266          * then nothing to do.
2267          */
2268         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2269                 return;
2270
2271         /* If we didn't spawn the GP kthread first, reorganize! */
2272         rdp_gp = rdp->nocb_gp_rdp;
2273         if (!rdp_gp->nocb_gp_kthread) {
2274                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2275                                 "rcuog/%d", rdp_gp->cpu);
2276                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2277                         return;
2278                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2279         }
2280
2281         /* Spawn the kthread for this CPU. */
2282         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2283                         "rcuo%c/%d", rcu_state.abbr, cpu);
2284         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2285                 return;
2286         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2287         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2288 }
2289
2290 /*
2291  * If the specified CPU is a no-CBs CPU that does not already have its
2292  * rcuo kthread, spawn it.
2293  */
2294 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2295 {
2296         if (rcu_scheduler_fully_active)
2297                 rcu_spawn_one_nocb_kthread(cpu);
2298 }
2299
2300 /*
2301  * Once the scheduler is running, spawn rcuo kthreads for all online
2302  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2303  * non-boot CPUs come online -- if this changes, we will need to add
2304  * some mutual exclusion.
2305  */
2306 static void __init rcu_spawn_nocb_kthreads(void)
2307 {
2308         int cpu;
2309
2310         for_each_online_cpu(cpu)
2311                 rcu_spawn_cpu_nocb_kthread(cpu);
2312 }
2313
2314 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2315 static int rcu_nocb_gp_stride = -1;
2316 module_param(rcu_nocb_gp_stride, int, 0444);
2317
2318 /*
2319  * Initialize GP-CB relationships for all no-CBs CPU.
2320  */
2321 static void __init rcu_organize_nocb_kthreads(void)
2322 {
2323         int cpu;
2324         bool firsttime = true;
2325         bool gotnocbs = false;
2326         bool gotnocbscbs = true;
2327         int ls = rcu_nocb_gp_stride;
2328         int nl = 0;  /* Next GP kthread. */
2329         struct rcu_data *rdp;
2330         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2331         struct rcu_data *rdp_prev = NULL;
2332
2333         if (!cpumask_available(rcu_nocb_mask))
2334                 return;
2335         if (ls == -1) {
2336                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2337                 rcu_nocb_gp_stride = ls;
2338         }
2339
2340         /*
2341          * Each pass through this loop sets up one rcu_data structure.
2342          * Should the corresponding CPU come online in the future, then
2343          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2344          */
2345         for_each_cpu(cpu, rcu_nocb_mask) {
2346                 rdp = per_cpu_ptr(&rcu_data, cpu);
2347                 if (rdp->cpu >= nl) {
2348                         /* New GP kthread, set up for CBs & next GP. */
2349                         gotnocbs = true;
2350                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2351                         rdp->nocb_gp_rdp = rdp;
2352                         rdp_gp = rdp;
2353                         if (dump_tree) {
2354                                 if (!firsttime)
2355                                         pr_cont("%s\n", gotnocbscbs
2356                                                         ? "" : " (self only)");
2357                                 gotnocbscbs = false;
2358                                 firsttime = false;
2359                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2360                                          __func__, cpu);
2361                         }
2362                 } else {
2363                         /* Another CB kthread, link to previous GP kthread. */
2364                         gotnocbscbs = true;
2365                         rdp->nocb_gp_rdp = rdp_gp;
2366                         rdp_prev->nocb_next_cb_rdp = rdp;
2367                         if (dump_tree)
2368                                 pr_cont(" %d", cpu);
2369                 }
2370                 rdp_prev = rdp;
2371         }
2372         if (gotnocbs && dump_tree)
2373                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2374 }
2375
2376 /*
2377  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2378  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2379  */
2380 void rcu_bind_current_to_nocb(void)
2381 {
2382         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2383                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2384 }
2385 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2386
2387 /*
2388  * Dump out nocb grace-period kthread state for the specified rcu_data
2389  * structure.
2390  */
2391 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2392 {
2393         struct rcu_node *rnp = rdp->mynode;
2394
2395         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2396                 rdp->cpu,
2397                 "kK"[!!rdp->nocb_gp_kthread],
2398                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2399                 "dD"[!!rdp->nocb_defer_wakeup],
2400                 "tT"[timer_pending(&rdp->nocb_timer)],
2401                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2402                 "sS"[!!rdp->nocb_gp_sleep],
2403                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2404                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2405                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2406                 ".B"[!!rdp->nocb_gp_bypass],
2407                 ".G"[!!rdp->nocb_gp_gp],
2408                 (long)rdp->nocb_gp_seq,
2409                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2410 }
2411
2412 /* Dump out nocb kthread state for the specified rcu_data structure. */
2413 static void show_rcu_nocb_state(struct rcu_data *rdp)
2414 {
2415         struct rcu_segcblist *rsclp = &rdp->cblist;
2416         bool waslocked;
2417         bool wastimer;
2418         bool wassleep;
2419
2420         if (rdp->nocb_gp_rdp == rdp)
2421                 show_rcu_nocb_gp_state(rdp);
2422
2423         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2424                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2425                 "kK"[!!rdp->nocb_cb_kthread],
2426                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2427                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2428                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2429                 "sS"[!!rdp->nocb_cb_sleep],
2430                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2431                 jiffies - rdp->nocb_bypass_first,
2432                 jiffies - rdp->nocb_nobypass_last,
2433                 rdp->nocb_nobypass_count,
2434                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2435                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2436                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2437                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2438                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2439                 rcu_segcblist_n_cbs(&rdp->cblist));
2440
2441         /* It is OK for GP kthreads to have GP state. */
2442         if (rdp->nocb_gp_rdp == rdp)
2443                 return;
2444
2445         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2446         wastimer = timer_pending(&rdp->nocb_timer);
2447         wassleep = swait_active(&rdp->nocb_gp_wq);
2448         if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2449             !waslocked && !wastimer && !wassleep)
2450                 return;  /* Nothing untowards. */
2451
2452         pr_info("   !!! %c%c%c%c %c\n",
2453                 "lL"[waslocked],
2454                 "dD"[!!rdp->nocb_defer_wakeup],
2455                 "tT"[wastimer],
2456                 "sS"[!!rdp->nocb_gp_sleep],
2457                 ".W"[wassleep]);
2458 }
2459
2460 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2461
2462 /* No ->nocb_lock to acquire.  */
2463 static void rcu_nocb_lock(struct rcu_data *rdp)
2464 {
2465 }
2466
2467 /* No ->nocb_lock to release.  */
2468 static void rcu_nocb_unlock(struct rcu_data *rdp)
2469 {
2470 }
2471
2472 /* No ->nocb_lock to release.  */
2473 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2474                                        unsigned long flags)
2475 {
2476         local_irq_restore(flags);
2477 }
2478
2479 /* Lockdep check that ->cblist may be safely accessed. */
2480 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2481 {
2482         lockdep_assert_irqs_disabled();
2483 }
2484
2485 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2486 {
2487 }
2488
2489 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2490 {
2491         return NULL;
2492 }
2493
2494 static void rcu_init_one_nocb(struct rcu_node *rnp)
2495 {
2496 }
2497
2498 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2499                                   unsigned long j)
2500 {
2501         return true;
2502 }
2503
2504 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2505                                 bool *was_alldone, unsigned long flags)
2506 {
2507         return false;
2508 }
2509
2510 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2511                                  unsigned long flags)
2512 {
2513         WARN_ON_ONCE(1);  /* Should be dead code! */
2514 }
2515
2516 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2517 {
2518 }
2519
2520 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2521 {
2522         return false;
2523 }
2524
2525 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2526 {
2527 }
2528
2529 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2530 {
2531 }
2532
2533 static void __init rcu_spawn_nocb_kthreads(void)
2534 {
2535 }
2536
2537 static void show_rcu_nocb_state(struct rcu_data *rdp)
2538 {
2539 }
2540
2541 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2542
2543 /*
2544  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2545  * grace-period kthread will do force_quiescent_state() processing?
2546  * The idea is to avoid waking up RCU core processing on such a
2547  * CPU unless the grace period has extended for too long.
2548  *
2549  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2550  * CONFIG_RCU_NOCB_CPU CPUs.
2551  */
2552 static bool rcu_nohz_full_cpu(void)
2553 {
2554 #ifdef CONFIG_NO_HZ_FULL
2555         if (tick_nohz_full_cpu(smp_processor_id()) &&
2556             (!rcu_gp_in_progress() ||
2557              ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2558                 return true;
2559 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2560         return false;
2561 }
2562
2563 /*
2564  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2565  */
2566 static void rcu_bind_gp_kthread(void)
2567 {
2568         if (!tick_nohz_full_enabled())
2569                 return;
2570         housekeeping_affine(current, HK_FLAG_RCU);
2571 }
2572
2573 /* Record the current task on dyntick-idle entry. */
2574 static void rcu_dynticks_task_enter(void)
2575 {
2576 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2577         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2578 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2579 }
2580
2581 /* Record no current task on dyntick-idle exit. */
2582 static void rcu_dynticks_task_exit(void)
2583 {
2584 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2585         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2586 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2587 }