OSDN Git Service

04939053c823aadcdc9fa4ac53a8f775147220f6
[tomoyo/tomoyo-test1.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/alarmtimer.h>
24 #include <linux/mutex.h>
25 #include <linux/platform_device.h>
26 #include <linux/posix-timers.h>
27 #include <linux/workqueue.h>
28 #include <linux/freezer.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/alarmtimer.h>
32
33 /**
34  * struct alarm_base - Alarm timer bases
35  * @lock:               Lock for syncrhonized access to the base
36  * @timerqueue:         Timerqueue head managing the list of events
37  * @gettime:            Function to read the time correlating to the base
38  * @base_clockid:       clockid for the base
39  */
40 static struct alarm_base {
41         spinlock_t              lock;
42         struct timerqueue_head  timerqueue;
43         ktime_t                 (*gettime)(void);
44         clockid_t               base_clockid;
45 } alarm_bases[ALARM_NUMTYPE];
46
47 /* freezer information to handle clock_nanosleep triggered wakeups */
48 static enum alarmtimer_type freezer_alarmtype;
49 static ktime_t freezer_expires;
50 static ktime_t freezer_delta;
51 static DEFINE_SPINLOCK(freezer_delta_lock);
52
53 static struct wakeup_source *ws;
54
55 #ifdef CONFIG_RTC_CLASS
56 /* rtc timer and device for setting alarm wakeups at suspend */
57 static struct rtc_timer         rtctimer;
58 static struct rtc_device        *rtcdev;
59 static DEFINE_SPINLOCK(rtcdev_lock);
60
61 /**
62  * alarmtimer_get_rtcdev - Return selected rtcdevice
63  *
64  * This function returns the rtc device to use for wakealarms.
65  * If one has not already been chosen, it checks to see if a
66  * functional rtc device is available.
67  */
68 struct rtc_device *alarmtimer_get_rtcdev(void)
69 {
70         unsigned long flags;
71         struct rtc_device *ret;
72
73         spin_lock_irqsave(&rtcdev_lock, flags);
74         ret = rtcdev;
75         spin_unlock_irqrestore(&rtcdev_lock, flags);
76
77         return ret;
78 }
79 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
80
81 static int alarmtimer_rtc_add_device(struct device *dev,
82                                 struct class_interface *class_intf)
83 {
84         unsigned long flags;
85         struct rtc_device *rtc = to_rtc_device(dev);
86
87         if (rtcdev)
88                 return -EBUSY;
89
90         if (!rtc->ops->set_alarm)
91                 return -1;
92         if (!device_may_wakeup(rtc->dev.parent))
93                 return -1;
94
95         spin_lock_irqsave(&rtcdev_lock, flags);
96         if (!rtcdev) {
97                 rtcdev = rtc;
98                 /* hold a reference so it doesn't go away */
99                 get_device(dev);
100         }
101         spin_unlock_irqrestore(&rtcdev_lock, flags);
102         return 0;
103 }
104
105 static inline void alarmtimer_rtc_timer_init(void)
106 {
107         rtc_timer_init(&rtctimer, NULL, NULL);
108 }
109
110 static struct class_interface alarmtimer_rtc_interface = {
111         .add_dev = &alarmtimer_rtc_add_device,
112 };
113
114 static int alarmtimer_rtc_interface_setup(void)
115 {
116         alarmtimer_rtc_interface.class = rtc_class;
117         return class_interface_register(&alarmtimer_rtc_interface);
118 }
119 static void alarmtimer_rtc_interface_remove(void)
120 {
121         class_interface_unregister(&alarmtimer_rtc_interface);
122 }
123 #else
124 struct rtc_device *alarmtimer_get_rtcdev(void)
125 {
126         return NULL;
127 }
128 #define rtcdev (NULL)
129 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
130 static inline void alarmtimer_rtc_interface_remove(void) { }
131 static inline void alarmtimer_rtc_timer_init(void) { }
132 #endif
133
134 /**
135  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
136  * @base: pointer to the base where the timer is being run
137  * @alarm: pointer to alarm being enqueued.
138  *
139  * Adds alarm to a alarm_base timerqueue
140  *
141  * Must hold base->lock when calling.
142  */
143 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
144 {
145         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
146                 timerqueue_del(&base->timerqueue, &alarm->node);
147
148         timerqueue_add(&base->timerqueue, &alarm->node);
149         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
150 }
151
152 /**
153  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
154  * @base: pointer to the base where the timer is running
155  * @alarm: pointer to alarm being removed
156  *
157  * Removes alarm to a alarm_base timerqueue
158  *
159  * Must hold base->lock when calling.
160  */
161 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
162 {
163         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
164                 return;
165
166         timerqueue_del(&base->timerqueue, &alarm->node);
167         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
168 }
169
170
171 /**
172  * alarmtimer_fired - Handles alarm hrtimer being fired.
173  * @timer: pointer to hrtimer being run
174  *
175  * When a alarm timer fires, this runs through the timerqueue to
176  * see which alarms expired, and runs those. If there are more alarm
177  * timers queued for the future, we set the hrtimer to fire when
178  * when the next future alarm timer expires.
179  */
180 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
181 {
182         struct alarm *alarm = container_of(timer, struct alarm, timer);
183         struct alarm_base *base = &alarm_bases[alarm->type];
184         unsigned long flags;
185         int ret = HRTIMER_NORESTART;
186         int restart = ALARMTIMER_NORESTART;
187
188         spin_lock_irqsave(&base->lock, flags);
189         alarmtimer_dequeue(base, alarm);
190         spin_unlock_irqrestore(&base->lock, flags);
191
192         if (alarm->function)
193                 restart = alarm->function(alarm, base->gettime());
194
195         spin_lock_irqsave(&base->lock, flags);
196         if (restart != ALARMTIMER_NORESTART) {
197                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
198                 alarmtimer_enqueue(base, alarm);
199                 ret = HRTIMER_RESTART;
200         }
201         spin_unlock_irqrestore(&base->lock, flags);
202
203         trace_alarmtimer_fired(alarm, base->gettime());
204         return ret;
205
206 }
207
208 ktime_t alarm_expires_remaining(const struct alarm *alarm)
209 {
210         struct alarm_base *base = &alarm_bases[alarm->type];
211         return ktime_sub(alarm->node.expires, base->gettime());
212 }
213 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
214
215 #ifdef CONFIG_RTC_CLASS
216 /**
217  * alarmtimer_suspend - Suspend time callback
218  * @dev: unused
219  * @state: unused
220  *
221  * When we are going into suspend, we look through the bases
222  * to see which is the soonest timer to expire. We then
223  * set an rtc timer to fire that far into the future, which
224  * will wake us from suspend.
225  */
226 static int alarmtimer_suspend(struct device *dev)
227 {
228         ktime_t min, now, expires;
229         int i, ret, type;
230         struct rtc_device *rtc;
231         unsigned long flags;
232         struct rtc_time tm;
233
234         spin_lock_irqsave(&freezer_delta_lock, flags);
235         min = freezer_delta;
236         expires = freezer_expires;
237         type = freezer_alarmtype;
238         freezer_delta = 0;
239         spin_unlock_irqrestore(&freezer_delta_lock, flags);
240
241         rtc = alarmtimer_get_rtcdev();
242         /* If we have no rtcdev, just return */
243         if (!rtc)
244                 return 0;
245
246         /* Find the soonest timer to expire*/
247         for (i = 0; i < ALARM_NUMTYPE; i++) {
248                 struct alarm_base *base = &alarm_bases[i];
249                 struct timerqueue_node *next;
250                 ktime_t delta;
251
252                 spin_lock_irqsave(&base->lock, flags);
253                 next = timerqueue_getnext(&base->timerqueue);
254                 spin_unlock_irqrestore(&base->lock, flags);
255                 if (!next)
256                         continue;
257                 delta = ktime_sub(next->expires, base->gettime());
258                 if (!min || (delta < min)) {
259                         expires = next->expires;
260                         min = delta;
261                         type = i;
262                 }
263         }
264         if (min == 0)
265                 return 0;
266
267         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
268                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
269                 return -EBUSY;
270         }
271
272         trace_alarmtimer_suspend(expires, type);
273
274         /* Setup an rtc timer to fire that far in the future */
275         rtc_timer_cancel(rtc, &rtctimer);
276         rtc_read_time(rtc, &tm);
277         now = rtc_tm_to_ktime(tm);
278         now = ktime_add(now, min);
279
280         /* Set alarm, if in the past reject suspend briefly to handle */
281         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
282         if (ret < 0)
283                 __pm_wakeup_event(ws, MSEC_PER_SEC);
284         return ret;
285 }
286
287 static int alarmtimer_resume(struct device *dev)
288 {
289         struct rtc_device *rtc;
290
291         rtc = alarmtimer_get_rtcdev();
292         if (rtc)
293                 rtc_timer_cancel(rtc, &rtctimer);
294         return 0;
295 }
296
297 #else
298 static int alarmtimer_suspend(struct device *dev)
299 {
300         return 0;
301 }
302
303 static int alarmtimer_resume(struct device *dev)
304 {
305         return 0;
306 }
307 #endif
308
309 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
310 {
311         struct alarm_base *base;
312         unsigned long flags;
313         ktime_t delta;
314
315         switch(type) {
316         case ALARM_REALTIME:
317                 base = &alarm_bases[ALARM_REALTIME];
318                 type = ALARM_REALTIME_FREEZER;
319                 break;
320         case ALARM_BOOTTIME:
321                 base = &alarm_bases[ALARM_BOOTTIME];
322                 type = ALARM_BOOTTIME_FREEZER;
323                 break;
324         default:
325                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
326                 return;
327         }
328
329         delta = ktime_sub(absexp, base->gettime());
330
331         spin_lock_irqsave(&freezer_delta_lock, flags);
332         if (!freezer_delta || (delta < freezer_delta)) {
333                 freezer_delta = delta;
334                 freezer_expires = absexp;
335                 freezer_alarmtype = type;
336         }
337         spin_unlock_irqrestore(&freezer_delta_lock, flags);
338 }
339
340
341 /**
342  * alarm_init - Initialize an alarm structure
343  * @alarm: ptr to alarm to be initialized
344  * @type: the type of the alarm
345  * @function: callback that is run when the alarm fires
346  */
347 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
348                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
349 {
350         timerqueue_init(&alarm->node);
351         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
352                         HRTIMER_MODE_ABS);
353         alarm->timer.function = alarmtimer_fired;
354         alarm->function = function;
355         alarm->type = type;
356         alarm->state = ALARMTIMER_STATE_INACTIVE;
357 }
358 EXPORT_SYMBOL_GPL(alarm_init);
359
360 /**
361  * alarm_start - Sets an absolute alarm to fire
362  * @alarm: ptr to alarm to set
363  * @start: time to run the alarm
364  */
365 void alarm_start(struct alarm *alarm, ktime_t start)
366 {
367         struct alarm_base *base = &alarm_bases[alarm->type];
368         unsigned long flags;
369
370         spin_lock_irqsave(&base->lock, flags);
371         alarm->node.expires = start;
372         alarmtimer_enqueue(base, alarm);
373         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
374         spin_unlock_irqrestore(&base->lock, flags);
375
376         trace_alarmtimer_start(alarm, base->gettime());
377 }
378 EXPORT_SYMBOL_GPL(alarm_start);
379
380 /**
381  * alarm_start_relative - Sets a relative alarm to fire
382  * @alarm: ptr to alarm to set
383  * @start: time relative to now to run the alarm
384  */
385 void alarm_start_relative(struct alarm *alarm, ktime_t start)
386 {
387         struct alarm_base *base = &alarm_bases[alarm->type];
388
389         start = ktime_add(start, base->gettime());
390         alarm_start(alarm, start);
391 }
392 EXPORT_SYMBOL_GPL(alarm_start_relative);
393
394 void alarm_restart(struct alarm *alarm)
395 {
396         struct alarm_base *base = &alarm_bases[alarm->type];
397         unsigned long flags;
398
399         spin_lock_irqsave(&base->lock, flags);
400         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
401         hrtimer_restart(&alarm->timer);
402         alarmtimer_enqueue(base, alarm);
403         spin_unlock_irqrestore(&base->lock, flags);
404 }
405 EXPORT_SYMBOL_GPL(alarm_restart);
406
407 /**
408  * alarm_try_to_cancel - Tries to cancel an alarm timer
409  * @alarm: ptr to alarm to be canceled
410  *
411  * Returns 1 if the timer was canceled, 0 if it was not running,
412  * and -1 if the callback was running
413  */
414 int alarm_try_to_cancel(struct alarm *alarm)
415 {
416         struct alarm_base *base = &alarm_bases[alarm->type];
417         unsigned long flags;
418         int ret;
419
420         spin_lock_irqsave(&base->lock, flags);
421         ret = hrtimer_try_to_cancel(&alarm->timer);
422         if (ret >= 0)
423                 alarmtimer_dequeue(base, alarm);
424         spin_unlock_irqrestore(&base->lock, flags);
425
426         trace_alarmtimer_cancel(alarm, base->gettime());
427         return ret;
428 }
429 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
430
431
432 /**
433  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
434  * @alarm: ptr to alarm to be canceled
435  *
436  * Returns 1 if the timer was canceled, 0 if it was not active.
437  */
438 int alarm_cancel(struct alarm *alarm)
439 {
440         for (;;) {
441                 int ret = alarm_try_to_cancel(alarm);
442                 if (ret >= 0)
443                         return ret;
444                 cpu_relax();
445         }
446 }
447 EXPORT_SYMBOL_GPL(alarm_cancel);
448
449
450 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
451 {
452         u64 overrun = 1;
453         ktime_t delta;
454
455         delta = ktime_sub(now, alarm->node.expires);
456
457         if (delta < 0)
458                 return 0;
459
460         if (unlikely(delta >= interval)) {
461                 s64 incr = ktime_to_ns(interval);
462
463                 overrun = ktime_divns(delta, incr);
464
465                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
466                                                         incr*overrun);
467
468                 if (alarm->node.expires > now)
469                         return overrun;
470                 /*
471                  * This (and the ktime_add() below) is the
472                  * correction for exact:
473                  */
474                 overrun++;
475         }
476
477         alarm->node.expires = ktime_add(alarm->node.expires, interval);
478         return overrun;
479 }
480 EXPORT_SYMBOL_GPL(alarm_forward);
481
482 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
483 {
484         struct alarm_base *base = &alarm_bases[alarm->type];
485
486         return alarm_forward(alarm, base->gettime(), interval);
487 }
488 EXPORT_SYMBOL_GPL(alarm_forward_now);
489
490
491 /**
492  * clock2alarm - helper that converts from clockid to alarmtypes
493  * @clockid: clockid.
494  */
495 static enum alarmtimer_type clock2alarm(clockid_t clockid)
496 {
497         if (clockid == CLOCK_REALTIME_ALARM)
498                 return ALARM_REALTIME;
499         if (clockid == CLOCK_BOOTTIME_ALARM)
500                 return ALARM_BOOTTIME;
501         return -1;
502 }
503
504 /**
505  * alarm_handle_timer - Callback for posix timers
506  * @alarm: alarm that fired
507  *
508  * Posix timer callback for expired alarm timers.
509  */
510 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
511                                                         ktime_t now)
512 {
513         unsigned long flags;
514         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
515                                                 it.alarm.alarmtimer);
516         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
517
518         spin_lock_irqsave(&ptr->it_lock, flags);
519         if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
520                 if (IS_ENABLED(CONFIG_POSIX_TIMERS) &&
521                     posix_timer_event(ptr, 0) != 0)
522                         ptr->it_overrun++;
523         }
524
525         /* Re-add periodic timers */
526         if (ptr->it.alarm.interval) {
527                 ptr->it_overrun += alarm_forward(alarm, now,
528                                                 ptr->it.alarm.interval);
529                 result = ALARMTIMER_RESTART;
530         }
531         spin_unlock_irqrestore(&ptr->it_lock, flags);
532
533         return result;
534 }
535
536 /**
537  * alarm_clock_getres - posix getres interface
538  * @which_clock: clockid
539  * @tp: timespec to fill
540  *
541  * Returns the granularity of underlying alarm base clock
542  */
543 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
544 {
545         if (!alarmtimer_get_rtcdev())
546                 return -EINVAL;
547
548         tp->tv_sec = 0;
549         tp->tv_nsec = hrtimer_resolution;
550         return 0;
551 }
552
553 /**
554  * alarm_clock_get - posix clock_get interface
555  * @which_clock: clockid
556  * @tp: timespec to fill.
557  *
558  * Provides the underlying alarm base time.
559  */
560 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
561 {
562         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
563
564         if (!alarmtimer_get_rtcdev())
565                 return -EINVAL;
566
567         *tp = ktime_to_timespec(base->gettime());
568         return 0;
569 }
570
571 /**
572  * alarm_timer_create - posix timer_create interface
573  * @new_timer: k_itimer pointer to manage
574  *
575  * Initializes the k_itimer structure.
576  */
577 static int alarm_timer_create(struct k_itimer *new_timer)
578 {
579         enum  alarmtimer_type type;
580
581         if (!alarmtimer_get_rtcdev())
582                 return -ENOTSUPP;
583
584         if (!capable(CAP_WAKE_ALARM))
585                 return -EPERM;
586
587         type = clock2alarm(new_timer->it_clock);
588         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
589         return 0;
590 }
591
592 /**
593  * alarm_timer_get - posix timer_get interface
594  * @new_timer: k_itimer pointer
595  * @cur_setting: itimerspec data to fill
596  *
597  * Copies out the current itimerspec data
598  */
599 static void alarm_timer_get(struct k_itimer *timr,
600                                 struct itimerspec *cur_setting)
601 {
602         ktime_t relative_expiry_time =
603                 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
604
605         if (ktime_to_ns(relative_expiry_time) > 0) {
606                 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
607         } else {
608                 cur_setting->it_value.tv_sec = 0;
609                 cur_setting->it_value.tv_nsec = 0;
610         }
611
612         cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
613 }
614
615 /**
616  * alarm_timer_del - posix timer_del interface
617  * @timr: k_itimer pointer to be deleted
618  *
619  * Cancels any programmed alarms for the given timer.
620  */
621 static int alarm_timer_del(struct k_itimer *timr)
622 {
623         if (!rtcdev)
624                 return -ENOTSUPP;
625
626         if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
627                 return TIMER_RETRY;
628
629         return 0;
630 }
631
632 /**
633  * alarm_timer_set - posix timer_set interface
634  * @timr: k_itimer pointer to be deleted
635  * @flags: timer flags
636  * @new_setting: itimerspec to be used
637  * @old_setting: itimerspec being replaced
638  *
639  * Sets the timer to new_setting, and starts the timer.
640  */
641 static int alarm_timer_set(struct k_itimer *timr, int flags,
642                                 struct itimerspec *new_setting,
643                                 struct itimerspec *old_setting)
644 {
645         ktime_t exp;
646
647         if (!rtcdev)
648                 return -ENOTSUPP;
649
650         if (flags & ~TIMER_ABSTIME)
651                 return -EINVAL;
652
653         if (old_setting)
654                 alarm_timer_get(timr, old_setting);
655
656         /* If the timer was already set, cancel it */
657         if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
658                 return TIMER_RETRY;
659
660         /* start the timer */
661         timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
662         exp = timespec_to_ktime(new_setting->it_value);
663         /* Convert (if necessary) to absolute time */
664         if (flags != TIMER_ABSTIME) {
665                 ktime_t now;
666
667                 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
668                 exp = ktime_add(now, exp);
669         }
670
671         alarm_start(&timr->it.alarm.alarmtimer, exp);
672         return 0;
673 }
674
675 /**
676  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
677  * @alarm: ptr to alarm that fired
678  *
679  * Wakes up the task that set the alarmtimer
680  */
681 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
682                                                                 ktime_t now)
683 {
684         struct task_struct *task = (struct task_struct *)alarm->data;
685
686         alarm->data = NULL;
687         if (task)
688                 wake_up_process(task);
689         return ALARMTIMER_NORESTART;
690 }
691
692 /**
693  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
694  * @alarm: ptr to alarmtimer
695  * @absexp: absolute expiration time
696  *
697  * Sets the alarm timer and sleeps until it is fired or interrupted.
698  */
699 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
700 {
701         alarm->data = (void *)current;
702         do {
703                 set_current_state(TASK_INTERRUPTIBLE);
704                 alarm_start(alarm, absexp);
705                 if (likely(alarm->data))
706                         schedule();
707
708                 alarm_cancel(alarm);
709         } while (alarm->data && !signal_pending(current));
710
711         __set_current_state(TASK_RUNNING);
712
713         return (alarm->data == NULL);
714 }
715
716
717 /**
718  * update_rmtp - Update remaining timespec value
719  * @exp: expiration time
720  * @type: timer type
721  * @rmtp: user pointer to remaining timepsec value
722  *
723  * Helper function that fills in rmtp value with time between
724  * now and the exp value
725  */
726 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
727                         struct timespec __user *rmtp)
728 {
729         struct timespec rmt;
730         ktime_t rem;
731
732         rem = ktime_sub(exp, alarm_bases[type].gettime());
733
734         if (rem <= 0)
735                 return 0;
736         rmt = ktime_to_timespec(rem);
737
738         if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
739                 return -EFAULT;
740
741         return 1;
742
743 }
744
745 /**
746  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
747  * @restart: ptr to restart block
748  *
749  * Handles restarted clock_nanosleep calls
750  */
751 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
752 {
753         enum  alarmtimer_type type = restart->nanosleep.clockid;
754         ktime_t exp;
755         struct timespec __user  *rmtp;
756         struct alarm alarm;
757         int ret = 0;
758
759         exp = restart->nanosleep.expires;
760         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
761
762         if (alarmtimer_do_nsleep(&alarm, exp))
763                 goto out;
764
765         if (freezing(current))
766                 alarmtimer_freezerset(exp, type);
767
768         rmtp = restart->nanosleep.rmtp;
769         if (rmtp) {
770                 ret = update_rmtp(exp, type, rmtp);
771                 if (ret <= 0)
772                         goto out;
773         }
774
775
776         /* The other values in restart are already filled in */
777         ret = -ERESTART_RESTARTBLOCK;
778 out:
779         return ret;
780 }
781
782 /**
783  * alarm_timer_nsleep - alarmtimer nanosleep
784  * @which_clock: clockid
785  * @flags: determins abstime or relative
786  * @tsreq: requested sleep time (abs or rel)
787  * @rmtp: remaining sleep time saved
788  *
789  * Handles clock_nanosleep calls against _ALARM clockids
790  */
791 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
792                      struct timespec *tsreq, struct timespec __user *rmtp)
793 {
794         enum  alarmtimer_type type = clock2alarm(which_clock);
795         struct alarm alarm;
796         ktime_t exp;
797         int ret = 0;
798         struct restart_block *restart;
799
800         if (!alarmtimer_get_rtcdev())
801                 return -ENOTSUPP;
802
803         if (flags & ~TIMER_ABSTIME)
804                 return -EINVAL;
805
806         if (!capable(CAP_WAKE_ALARM))
807                 return -EPERM;
808
809         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
810
811         exp = timespec_to_ktime(*tsreq);
812         /* Convert (if necessary) to absolute time */
813         if (flags != TIMER_ABSTIME) {
814                 ktime_t now = alarm_bases[type].gettime();
815                 exp = ktime_add(now, exp);
816         }
817
818         if (alarmtimer_do_nsleep(&alarm, exp))
819                 goto out;
820
821         if (freezing(current))
822                 alarmtimer_freezerset(exp, type);
823
824         /* abs timers don't set remaining time or restart */
825         if (flags == TIMER_ABSTIME) {
826                 ret = -ERESTARTNOHAND;
827                 goto out;
828         }
829
830         if (rmtp) {
831                 ret = update_rmtp(exp, type, rmtp);
832                 if (ret <= 0)
833                         goto out;
834         }
835
836         restart = &current->restart_block;
837         restart->fn = alarm_timer_nsleep_restart;
838         restart->nanosleep.clockid = type;
839         restart->nanosleep.expires = exp;
840         restart->nanosleep.rmtp = rmtp;
841         ret = -ERESTART_RESTARTBLOCK;
842
843 out:
844         return ret;
845 }
846
847
848 /* Suspend hook structures */
849 static const struct dev_pm_ops alarmtimer_pm_ops = {
850         .suspend = alarmtimer_suspend,
851         .resume = alarmtimer_resume,
852 };
853
854 static struct platform_driver alarmtimer_driver = {
855         .driver = {
856                 .name = "alarmtimer",
857                 .pm = &alarmtimer_pm_ops,
858         }
859 };
860
861 /**
862  * alarmtimer_init - Initialize alarm timer code
863  *
864  * This function initializes the alarm bases and registers
865  * the posix clock ids.
866  */
867 static int __init alarmtimer_init(void)
868 {
869         struct platform_device *pdev;
870         int error = 0;
871         int i;
872         struct k_clock alarm_clock = {
873                 .clock_getres   = alarm_clock_getres,
874                 .clock_get      = alarm_clock_get,
875                 .timer_create   = alarm_timer_create,
876                 .timer_set      = alarm_timer_set,
877                 .timer_del      = alarm_timer_del,
878                 .timer_get      = alarm_timer_get,
879                 .nsleep         = alarm_timer_nsleep,
880         };
881
882         alarmtimer_rtc_timer_init();
883
884         if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
885                 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
886                 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
887         }
888
889         /* Initialize alarm bases */
890         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
891         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
892         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
893         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
894         for (i = 0; i < ALARM_NUMTYPE; i++) {
895                 timerqueue_init_head(&alarm_bases[i].timerqueue);
896                 spin_lock_init(&alarm_bases[i].lock);
897         }
898
899         error = alarmtimer_rtc_interface_setup();
900         if (error)
901                 return error;
902
903         error = platform_driver_register(&alarmtimer_driver);
904         if (error)
905                 goto out_if;
906
907         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
908         if (IS_ERR(pdev)) {
909                 error = PTR_ERR(pdev);
910                 goto out_drv;
911         }
912         ws = wakeup_source_register("alarmtimer");
913         return 0;
914
915 out_drv:
916         platform_driver_unregister(&alarmtimer_driver);
917 out_if:
918         alarmtimer_rtc_interface_remove();
919         return error;
920 }
921 device_initcall(alarmtimer_init);