OSDN Git Service

Merge tag 'gpio-v5.0-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[uclinux-h8/linux.git] / kernel / time / tick-broadcast.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19
20 #include "tick-internal.h"
21
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
37 static void tick_broadcast_clear_oneshot(int cpu);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
39 #else
40 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
41 static inline void tick_broadcast_clear_oneshot(int cpu) { }
42 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
43 #endif
44
45 /*
46  * Debugging: see timer_list.c
47  */
48 struct tick_device *tick_get_broadcast_device(void)
49 {
50         return &tick_broadcast_device;
51 }
52
53 struct cpumask *tick_get_broadcast_mask(void)
54 {
55         return tick_broadcast_mask;
56 }
57
58 /*
59  * Start the device in periodic mode
60  */
61 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
62 {
63         if (bc)
64                 tick_setup_periodic(bc, 1);
65 }
66
67 /*
68  * Check, if the device can be utilized as broadcast device:
69  */
70 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
71                                         struct clock_event_device *newdev)
72 {
73         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
74             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
75             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
76                 return false;
77
78         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
79             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
80                 return false;
81
82         return !curdev || newdev->rating > curdev->rating;
83 }
84
85 /*
86  * Conditionally install/replace broadcast device
87  */
88 void tick_install_broadcast_device(struct clock_event_device *dev)
89 {
90         struct clock_event_device *cur = tick_broadcast_device.evtdev;
91
92         if (!tick_check_broadcast_device(cur, dev))
93                 return;
94
95         if (!try_module_get(dev->owner))
96                 return;
97
98         clockevents_exchange_device(cur, dev);
99         if (cur)
100                 cur->event_handler = clockevents_handle_noop;
101         tick_broadcast_device.evtdev = dev;
102         if (!cpumask_empty(tick_broadcast_mask))
103                 tick_broadcast_start_periodic(dev);
104         /*
105          * Inform all cpus about this. We might be in a situation
106          * where we did not switch to oneshot mode because the per cpu
107          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
108          * of a oneshot capable broadcast device. Without that
109          * notification the systems stays stuck in periodic mode
110          * forever.
111          */
112         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
113                 tick_clock_notify();
114 }
115
116 /*
117  * Check, if the device is the broadcast device
118  */
119 int tick_is_broadcast_device(struct clock_event_device *dev)
120 {
121         return (dev && tick_broadcast_device.evtdev == dev);
122 }
123
124 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
125 {
126         int ret = -ENODEV;
127
128         if (tick_is_broadcast_device(dev)) {
129                 raw_spin_lock(&tick_broadcast_lock);
130                 ret = __clockevents_update_freq(dev, freq);
131                 raw_spin_unlock(&tick_broadcast_lock);
132         }
133         return ret;
134 }
135
136
137 static void err_broadcast(const struct cpumask *mask)
138 {
139         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
140 }
141
142 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
143 {
144         if (!dev->broadcast)
145                 dev->broadcast = tick_broadcast;
146         if (!dev->broadcast) {
147                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
148                              dev->name);
149                 dev->broadcast = err_broadcast;
150         }
151 }
152
153 /*
154  * Check, if the device is disfunctional and a place holder, which
155  * needs to be handled by the broadcast device.
156  */
157 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
158 {
159         struct clock_event_device *bc = tick_broadcast_device.evtdev;
160         unsigned long flags;
161         int ret = 0;
162
163         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
164
165         /*
166          * Devices might be registered with both periodic and oneshot
167          * mode disabled. This signals, that the device needs to be
168          * operated from the broadcast device and is a placeholder for
169          * the cpu local device.
170          */
171         if (!tick_device_is_functional(dev)) {
172                 dev->event_handler = tick_handle_periodic;
173                 tick_device_setup_broadcast_func(dev);
174                 cpumask_set_cpu(cpu, tick_broadcast_mask);
175                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
176                         tick_broadcast_start_periodic(bc);
177                 else
178                         tick_broadcast_setup_oneshot(bc);
179                 ret = 1;
180         } else {
181                 /*
182                  * Clear the broadcast bit for this cpu if the
183                  * device is not power state affected.
184                  */
185                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
186                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
187                 else
188                         tick_device_setup_broadcast_func(dev);
189
190                 /*
191                  * Clear the broadcast bit if the CPU is not in
192                  * periodic broadcast on state.
193                  */
194                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
195                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
196
197                 switch (tick_broadcast_device.mode) {
198                 case TICKDEV_MODE_ONESHOT:
199                         /*
200                          * If the system is in oneshot mode we can
201                          * unconditionally clear the oneshot mask bit,
202                          * because the CPU is running and therefore
203                          * not in an idle state which causes the power
204                          * state affected device to stop. Let the
205                          * caller initialize the device.
206                          */
207                         tick_broadcast_clear_oneshot(cpu);
208                         ret = 0;
209                         break;
210
211                 case TICKDEV_MODE_PERIODIC:
212                         /*
213                          * If the system is in periodic mode, check
214                          * whether the broadcast device can be
215                          * switched off now.
216                          */
217                         if (cpumask_empty(tick_broadcast_mask) && bc)
218                                 clockevents_shutdown(bc);
219                         /*
220                          * If we kept the cpu in the broadcast mask,
221                          * tell the caller to leave the per cpu device
222                          * in shutdown state. The periodic interrupt
223                          * is delivered by the broadcast device, if
224                          * the broadcast device exists and is not
225                          * hrtimer based.
226                          */
227                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
228                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
229                         break;
230                 default:
231                         break;
232                 }
233         }
234         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235         return ret;
236 }
237
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242         struct clock_event_device *evt = td->evtdev;
243
244         if (!evt)
245                 return -ENODEV;
246
247         if (!evt->event_handler)
248                 return -EINVAL;
249
250         evt->event_handler(evt);
251         return 0;
252 }
253 #endif
254
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static bool tick_do_broadcast(struct cpumask *mask)
259 {
260         int cpu = smp_processor_id();
261         struct tick_device *td;
262         bool local = false;
263
264         /*
265          * Check, if the current cpu is in the mask
266          */
267         if (cpumask_test_cpu(cpu, mask)) {
268                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
269
270                 cpumask_clear_cpu(cpu, mask);
271                 /*
272                  * We only run the local handler, if the broadcast
273                  * device is not hrtimer based. Otherwise we run into
274                  * a hrtimer recursion.
275                  *
276                  * local timer_interrupt()
277                  *   local_handler()
278                  *     expire_hrtimers()
279                  *       bc_handler()
280                  *         local_handler()
281                  *           expire_hrtimers()
282                  */
283                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
284         }
285
286         if (!cpumask_empty(mask)) {
287                 /*
288                  * It might be necessary to actually check whether the devices
289                  * have different broadcast functions. For now, just use the
290                  * one of the first device. This works as long as we have this
291                  * misfeature only on x86 (lapic)
292                  */
293                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
294                 td->evtdev->broadcast(mask);
295         }
296         return local;
297 }
298
299 /*
300  * Periodic broadcast:
301  * - invoke the broadcast handlers
302  */
303 static bool tick_do_periodic_broadcast(void)
304 {
305         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
306         return tick_do_broadcast(tmpmask);
307 }
308
309 /*
310  * Event handler for periodic broadcast ticks
311  */
312 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
313 {
314         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
315         bool bc_local;
316
317         raw_spin_lock(&tick_broadcast_lock);
318
319         /* Handle spurious interrupts gracefully */
320         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
321                 raw_spin_unlock(&tick_broadcast_lock);
322                 return;
323         }
324
325         bc_local = tick_do_periodic_broadcast();
326
327         if (clockevent_state_oneshot(dev)) {
328                 ktime_t next = ktime_add(dev->next_event, tick_period);
329
330                 clockevents_program_event(dev, next, true);
331         }
332         raw_spin_unlock(&tick_broadcast_lock);
333
334         /*
335          * We run the handler of the local cpu after dropping
336          * tick_broadcast_lock because the handler might deadlock when
337          * trying to switch to oneshot mode.
338          */
339         if (bc_local)
340                 td->evtdev->event_handler(td->evtdev);
341 }
342
343 /**
344  * tick_broadcast_control - Enable/disable or force broadcast mode
345  * @mode:       The selected broadcast mode
346  *
347  * Called when the system enters a state where affected tick devices
348  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
349  */
350 void tick_broadcast_control(enum tick_broadcast_mode mode)
351 {
352         struct clock_event_device *bc, *dev;
353         struct tick_device *td;
354         int cpu, bc_stopped;
355         unsigned long flags;
356
357         /* Protects also the local clockevent device. */
358         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
359         td = this_cpu_ptr(&tick_cpu_device);
360         dev = td->evtdev;
361
362         /*
363          * Is the device not affected by the powerstate ?
364          */
365         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
366                 goto out;
367
368         if (!tick_device_is_functional(dev))
369                 goto out;
370
371         cpu = smp_processor_id();
372         bc = tick_broadcast_device.evtdev;
373         bc_stopped = cpumask_empty(tick_broadcast_mask);
374
375         switch (mode) {
376         case TICK_BROADCAST_FORCE:
377                 tick_broadcast_forced = 1;
378         case TICK_BROADCAST_ON:
379                 cpumask_set_cpu(cpu, tick_broadcast_on);
380                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
381                         /*
382                          * Only shutdown the cpu local device, if:
383                          *
384                          * - the broadcast device exists
385                          * - the broadcast device is not a hrtimer based one
386                          * - the broadcast device is in periodic mode to
387                          *   avoid a hickup during switch to oneshot mode
388                          */
389                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
390                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
391                                 clockevents_shutdown(dev);
392                 }
393                 break;
394
395         case TICK_BROADCAST_OFF:
396                 if (tick_broadcast_forced)
397                         break;
398                 cpumask_clear_cpu(cpu, tick_broadcast_on);
399                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
400                         if (tick_broadcast_device.mode ==
401                             TICKDEV_MODE_PERIODIC)
402                                 tick_setup_periodic(dev, 0);
403                 }
404                 break;
405         }
406
407         if (bc) {
408                 if (cpumask_empty(tick_broadcast_mask)) {
409                         if (!bc_stopped)
410                                 clockevents_shutdown(bc);
411                 } else if (bc_stopped) {
412                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
413                                 tick_broadcast_start_periodic(bc);
414                         else
415                                 tick_broadcast_setup_oneshot(bc);
416                 }
417         }
418 out:
419         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
420 }
421 EXPORT_SYMBOL_GPL(tick_broadcast_control);
422
423 /*
424  * Set the periodic handler depending on broadcast on/off
425  */
426 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
427 {
428         if (!broadcast)
429                 dev->event_handler = tick_handle_periodic;
430         else
431                 dev->event_handler = tick_handle_periodic_broadcast;
432 }
433
434 #ifdef CONFIG_HOTPLUG_CPU
435 /*
436  * Remove a CPU from broadcasting
437  */
438 void tick_shutdown_broadcast(unsigned int cpu)
439 {
440         struct clock_event_device *bc;
441         unsigned long flags;
442
443         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
444
445         bc = tick_broadcast_device.evtdev;
446         cpumask_clear_cpu(cpu, tick_broadcast_mask);
447         cpumask_clear_cpu(cpu, tick_broadcast_on);
448
449         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
450                 if (bc && cpumask_empty(tick_broadcast_mask))
451                         clockevents_shutdown(bc);
452         }
453
454         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
455 }
456 #endif
457
458 void tick_suspend_broadcast(void)
459 {
460         struct clock_event_device *bc;
461         unsigned long flags;
462
463         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
464
465         bc = tick_broadcast_device.evtdev;
466         if (bc)
467                 clockevents_shutdown(bc);
468
469         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
470 }
471
472 /*
473  * This is called from tick_resume_local() on a resuming CPU. That's
474  * called from the core resume function, tick_unfreeze() and the magic XEN
475  * resume hackery.
476  *
477  * In none of these cases the broadcast device mode can change and the
478  * bit of the resuming CPU in the broadcast mask is safe as well.
479  */
480 bool tick_resume_check_broadcast(void)
481 {
482         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
483                 return false;
484         else
485                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
486 }
487
488 void tick_resume_broadcast(void)
489 {
490         struct clock_event_device *bc;
491         unsigned long flags;
492
493         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
494
495         bc = tick_broadcast_device.evtdev;
496
497         if (bc) {
498                 clockevents_tick_resume(bc);
499
500                 switch (tick_broadcast_device.mode) {
501                 case TICKDEV_MODE_PERIODIC:
502                         if (!cpumask_empty(tick_broadcast_mask))
503                                 tick_broadcast_start_periodic(bc);
504                         break;
505                 case TICKDEV_MODE_ONESHOT:
506                         if (!cpumask_empty(tick_broadcast_mask))
507                                 tick_resume_broadcast_oneshot(bc);
508                         break;
509                 }
510         }
511         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
512 }
513
514 #ifdef CONFIG_TICK_ONESHOT
515
516 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
517 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
518 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
519
520 /*
521  * Exposed for debugging: see timer_list.c
522  */
523 struct cpumask *tick_get_broadcast_oneshot_mask(void)
524 {
525         return tick_broadcast_oneshot_mask;
526 }
527
528 /*
529  * Called before going idle with interrupts disabled. Checks whether a
530  * broadcast event from the other core is about to happen. We detected
531  * that in tick_broadcast_oneshot_control(). The callsite can use this
532  * to avoid a deep idle transition as we are about to get the
533  * broadcast IPI right away.
534  */
535 int tick_check_broadcast_expired(void)
536 {
537         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
538 }
539
540 /*
541  * Set broadcast interrupt affinity
542  */
543 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
544                                         const struct cpumask *cpumask)
545 {
546         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
547                 return;
548
549         if (cpumask_equal(bc->cpumask, cpumask))
550                 return;
551
552         bc->cpumask = cpumask;
553         irq_set_affinity(bc->irq, bc->cpumask);
554 }
555
556 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
557                                      ktime_t expires)
558 {
559         if (!clockevent_state_oneshot(bc))
560                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
561
562         clockevents_program_event(bc, expires, 1);
563         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
564 }
565
566 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
567 {
568         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
569 }
570
571 /*
572  * Called from irq_enter() when idle was interrupted to reenable the
573  * per cpu device.
574  */
575 void tick_check_oneshot_broadcast_this_cpu(void)
576 {
577         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
578                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
579
580                 /*
581                  * We might be in the middle of switching over from
582                  * periodic to oneshot. If the CPU has not yet
583                  * switched over, leave the device alone.
584                  */
585                 if (td->mode == TICKDEV_MODE_ONESHOT) {
586                         clockevents_switch_state(td->evtdev,
587                                               CLOCK_EVT_STATE_ONESHOT);
588                 }
589         }
590 }
591
592 /*
593  * Handle oneshot mode broadcasting
594  */
595 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
596 {
597         struct tick_device *td;
598         ktime_t now, next_event;
599         int cpu, next_cpu = 0;
600         bool bc_local;
601
602         raw_spin_lock(&tick_broadcast_lock);
603         dev->next_event = KTIME_MAX;
604         next_event = KTIME_MAX;
605         cpumask_clear(tmpmask);
606         now = ktime_get();
607         /* Find all expired events */
608         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
609                 /*
610                  * Required for !SMP because for_each_cpu() reports
611                  * unconditionally CPU0 as set on UP kernels.
612                  */
613                 if (!IS_ENABLED(CONFIG_SMP) &&
614                     cpumask_empty(tick_broadcast_oneshot_mask))
615                         break;
616
617                 td = &per_cpu(tick_cpu_device, cpu);
618                 if (td->evtdev->next_event <= now) {
619                         cpumask_set_cpu(cpu, tmpmask);
620                         /*
621                          * Mark the remote cpu in the pending mask, so
622                          * it can avoid reprogramming the cpu local
623                          * timer in tick_broadcast_oneshot_control().
624                          */
625                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
626                 } else if (td->evtdev->next_event < next_event) {
627                         next_event = td->evtdev->next_event;
628                         next_cpu = cpu;
629                 }
630         }
631
632         /*
633          * Remove the current cpu from the pending mask. The event is
634          * delivered immediately in tick_do_broadcast() !
635          */
636         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
637
638         /* Take care of enforced broadcast requests */
639         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
640         cpumask_clear(tick_broadcast_force_mask);
641
642         /*
643          * Sanity check. Catch the case where we try to broadcast to
644          * offline cpus.
645          */
646         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
647                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
648
649         /*
650          * Wakeup the cpus which have an expired event.
651          */
652         bc_local = tick_do_broadcast(tmpmask);
653
654         /*
655          * Two reasons for reprogram:
656          *
657          * - The global event did not expire any CPU local
658          * events. This happens in dyntick mode, as the maximum PIT
659          * delta is quite small.
660          *
661          * - There are pending events on sleeping CPUs which were not
662          * in the event mask
663          */
664         if (next_event != KTIME_MAX)
665                 tick_broadcast_set_event(dev, next_cpu, next_event);
666
667         raw_spin_unlock(&tick_broadcast_lock);
668
669         if (bc_local) {
670                 td = this_cpu_ptr(&tick_cpu_device);
671                 td->evtdev->event_handler(td->evtdev);
672         }
673 }
674
675 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
676 {
677         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
678                 return 0;
679         if (bc->next_event == KTIME_MAX)
680                 return 0;
681         return bc->bound_on == cpu ? -EBUSY : 0;
682 }
683
684 static void broadcast_shutdown_local(struct clock_event_device *bc,
685                                      struct clock_event_device *dev)
686 {
687         /*
688          * For hrtimer based broadcasting we cannot shutdown the cpu
689          * local device if our own event is the first one to expire or
690          * if we own the broadcast timer.
691          */
692         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
693                 if (broadcast_needs_cpu(bc, smp_processor_id()))
694                         return;
695                 if (dev->next_event < bc->next_event)
696                         return;
697         }
698         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
699 }
700
701 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
702 {
703         struct clock_event_device *bc, *dev;
704         int cpu, ret = 0;
705         ktime_t now;
706
707         /*
708          * If there is no broadcast device, tell the caller not to go
709          * into deep idle.
710          */
711         if (!tick_broadcast_device.evtdev)
712                 return -EBUSY;
713
714         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
715
716         raw_spin_lock(&tick_broadcast_lock);
717         bc = tick_broadcast_device.evtdev;
718         cpu = smp_processor_id();
719
720         if (state == TICK_BROADCAST_ENTER) {
721                 /*
722                  * If the current CPU owns the hrtimer broadcast
723                  * mechanism, it cannot go deep idle and we do not add
724                  * the CPU to the broadcast mask. We don't have to go
725                  * through the EXIT path as the local timer is not
726                  * shutdown.
727                  */
728                 ret = broadcast_needs_cpu(bc, cpu);
729                 if (ret)
730                         goto out;
731
732                 /*
733                  * If the broadcast device is in periodic mode, we
734                  * return.
735                  */
736                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
737                         /* If it is a hrtimer based broadcast, return busy */
738                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
739                                 ret = -EBUSY;
740                         goto out;
741                 }
742
743                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
744                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
745
746                         /* Conditionally shut down the local timer. */
747                         broadcast_shutdown_local(bc, dev);
748
749                         /*
750                          * We only reprogram the broadcast timer if we
751                          * did not mark ourself in the force mask and
752                          * if the cpu local event is earlier than the
753                          * broadcast event. If the current CPU is in
754                          * the force mask, then we are going to be
755                          * woken by the IPI right away; we return
756                          * busy, so the CPU does not try to go deep
757                          * idle.
758                          */
759                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
760                                 ret = -EBUSY;
761                         } else if (dev->next_event < bc->next_event) {
762                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
763                                 /*
764                                  * In case of hrtimer broadcasts the
765                                  * programming might have moved the
766                                  * timer to this cpu. If yes, remove
767                                  * us from the broadcast mask and
768                                  * return busy.
769                                  */
770                                 ret = broadcast_needs_cpu(bc, cpu);
771                                 if (ret) {
772                                         cpumask_clear_cpu(cpu,
773                                                 tick_broadcast_oneshot_mask);
774                                 }
775                         }
776                 }
777         } else {
778                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
779                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
780                         /*
781                          * The cpu which was handling the broadcast
782                          * timer marked this cpu in the broadcast
783                          * pending mask and fired the broadcast
784                          * IPI. So we are going to handle the expired
785                          * event anyway via the broadcast IPI
786                          * handler. No need to reprogram the timer
787                          * with an already expired event.
788                          */
789                         if (cpumask_test_and_clear_cpu(cpu,
790                                        tick_broadcast_pending_mask))
791                                 goto out;
792
793                         /*
794                          * Bail out if there is no next event.
795                          */
796                         if (dev->next_event == KTIME_MAX)
797                                 goto out;
798                         /*
799                          * If the pending bit is not set, then we are
800                          * either the CPU handling the broadcast
801                          * interrupt or we got woken by something else.
802                          *
803                          * We are not longer in the broadcast mask, so
804                          * if the cpu local expiry time is already
805                          * reached, we would reprogram the cpu local
806                          * timer with an already expired event.
807                          *
808                          * This can lead to a ping-pong when we return
809                          * to idle and therefor rearm the broadcast
810                          * timer before the cpu local timer was able
811                          * to fire. This happens because the forced
812                          * reprogramming makes sure that the event
813                          * will happen in the future and depending on
814                          * the min_delta setting this might be far
815                          * enough out that the ping-pong starts.
816                          *
817                          * If the cpu local next_event has expired
818                          * then we know that the broadcast timer
819                          * next_event has expired as well and
820                          * broadcast is about to be handled. So we
821                          * avoid reprogramming and enforce that the
822                          * broadcast handler, which did not run yet,
823                          * will invoke the cpu local handler.
824                          *
825                          * We cannot call the handler directly from
826                          * here, because we might be in a NOHZ phase
827                          * and we did not go through the irq_enter()
828                          * nohz fixups.
829                          */
830                         now = ktime_get();
831                         if (dev->next_event <= now) {
832                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
833                                 goto out;
834                         }
835                         /*
836                          * We got woken by something else. Reprogram
837                          * the cpu local timer device.
838                          */
839                         tick_program_event(dev->next_event, 1);
840                 }
841         }
842 out:
843         raw_spin_unlock(&tick_broadcast_lock);
844         return ret;
845 }
846
847 /*
848  * Reset the one shot broadcast for a cpu
849  *
850  * Called with tick_broadcast_lock held
851  */
852 static void tick_broadcast_clear_oneshot(int cpu)
853 {
854         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
855         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
856 }
857
858 static void tick_broadcast_init_next_event(struct cpumask *mask,
859                                            ktime_t expires)
860 {
861         struct tick_device *td;
862         int cpu;
863
864         for_each_cpu(cpu, mask) {
865                 td = &per_cpu(tick_cpu_device, cpu);
866                 if (td->evtdev)
867                         td->evtdev->next_event = expires;
868         }
869 }
870
871 /**
872  * tick_broadcast_setup_oneshot - setup the broadcast device
873  */
874 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
875 {
876         int cpu = smp_processor_id();
877
878         if (!bc)
879                 return;
880
881         /* Set it up only once ! */
882         if (bc->event_handler != tick_handle_oneshot_broadcast) {
883                 int was_periodic = clockevent_state_periodic(bc);
884
885                 bc->event_handler = tick_handle_oneshot_broadcast;
886
887                 /*
888                  * We must be careful here. There might be other CPUs
889                  * waiting for periodic broadcast. We need to set the
890                  * oneshot_mask bits for those and program the
891                  * broadcast device to fire.
892                  */
893                 cpumask_copy(tmpmask, tick_broadcast_mask);
894                 cpumask_clear_cpu(cpu, tmpmask);
895                 cpumask_or(tick_broadcast_oneshot_mask,
896                            tick_broadcast_oneshot_mask, tmpmask);
897
898                 if (was_periodic && !cpumask_empty(tmpmask)) {
899                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
900                         tick_broadcast_init_next_event(tmpmask,
901                                                        tick_next_period);
902                         tick_broadcast_set_event(bc, cpu, tick_next_period);
903                 } else
904                         bc->next_event = KTIME_MAX;
905         } else {
906                 /*
907                  * The first cpu which switches to oneshot mode sets
908                  * the bit for all other cpus which are in the general
909                  * (periodic) broadcast mask. So the bit is set and
910                  * would prevent the first broadcast enter after this
911                  * to program the bc device.
912                  */
913                 tick_broadcast_clear_oneshot(cpu);
914         }
915 }
916
917 /*
918  * Select oneshot operating mode for the broadcast device
919  */
920 void tick_broadcast_switch_to_oneshot(void)
921 {
922         struct clock_event_device *bc;
923         unsigned long flags;
924
925         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
926
927         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
928         bc = tick_broadcast_device.evtdev;
929         if (bc)
930                 tick_broadcast_setup_oneshot(bc);
931
932         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
933 }
934
935 #ifdef CONFIG_HOTPLUG_CPU
936 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
937 {
938         struct clock_event_device *bc;
939         unsigned long flags;
940
941         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
942         bc = tick_broadcast_device.evtdev;
943
944         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
945                 /* This moves the broadcast assignment to this CPU: */
946                 clockevents_program_event(bc, bc->next_event, 1);
947         }
948         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
949 }
950
951 /*
952  * Remove a dead CPU from broadcasting
953  */
954 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
955 {
956         unsigned long flags;
957
958         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
959
960         /*
961          * Clear the broadcast masks for the dead cpu, but do not stop
962          * the broadcast device!
963          */
964         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
965         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
966         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
967
968         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
969 }
970 #endif
971
972 /*
973  * Check, whether the broadcast device is in one shot mode
974  */
975 int tick_broadcast_oneshot_active(void)
976 {
977         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
978 }
979
980 /*
981  * Check whether the broadcast device supports oneshot.
982  */
983 bool tick_broadcast_oneshot_available(void)
984 {
985         struct clock_event_device *bc = tick_broadcast_device.evtdev;
986
987         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
988 }
989
990 #else
991 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
992 {
993         struct clock_event_device *bc = tick_broadcast_device.evtdev;
994
995         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
996                 return -EBUSY;
997
998         return 0;
999 }
1000 #endif
1001
1002 void __init tick_broadcast_init(void)
1003 {
1004         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1005         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1006         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1007 #ifdef CONFIG_TICK_ONESHOT
1008         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1009         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1010         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1011 #endif
1012 }