OSDN Git Service

ARM: dts: at91: sama5d3: define clock rate range for tcb1
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / kernel / time / time.c
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *                             adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *      Introduced error checking for many cases in adjtimex().
21  *      Updated NTP code according to technical memorandum Jan '96
22  *      "A Kernel Model for Precision Timekeeping" by Dave Mills
23  *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *      (Even though the technical memorandum forbids it)
25  * 2004-07-14    Christoph Lameter
26  *      Added getnstimeofday to allow the posix timer functions to return
27  *      with nanosecond accuracy
28  */
29
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44
45 #include <generated/timeconst.h>
46 #include "timekeeping.h"
47
48 /*
49  * The timezone where the local system is located.  Used as a default by some
50  * programs who obtain this value by using gettimeofday.
51  */
52 struct timezone sys_tz;
53
54 EXPORT_SYMBOL(sys_tz);
55
56 #ifdef __ARCH_WANT_SYS_TIME
57
58 /*
59  * sys_time() can be implemented in user-level using
60  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
61  * why not move it into the appropriate arch directory (for those
62  * architectures that need it).
63  */
64 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 {
66         time_t i = get_seconds();
67
68         if (tloc) {
69                 if (put_user(i,tloc))
70                         return -EFAULT;
71         }
72         force_successful_syscall_return();
73         return i;
74 }
75
76 /*
77  * sys_stime() can be implemented in user-level using
78  * sys_settimeofday().  Is this for backwards compatibility?  If so,
79  * why not move it into the appropriate arch directory (for those
80  * architectures that need it).
81  */
82
83 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 {
85         struct timespec tv;
86         int err;
87
88         if (get_user(tv.tv_sec, tptr))
89                 return -EFAULT;
90
91         tv.tv_nsec = 0;
92
93         err = security_settime(&tv, NULL);
94         if (err)
95                 return err;
96
97         do_settimeofday(&tv);
98         return 0;
99 }
100
101 #endif /* __ARCH_WANT_SYS_TIME */
102
103 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
104                 struct timezone __user *, tz)
105 {
106         if (likely(tv != NULL)) {
107                 struct timeval ktv;
108                 do_gettimeofday(&ktv);
109                 if (copy_to_user(tv, &ktv, sizeof(ktv)))
110                         return -EFAULT;
111         }
112         if (unlikely(tz != NULL)) {
113                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
114                         return -EFAULT;
115         }
116         return 0;
117 }
118
119 /*
120  * Indicates if there is an offset between the system clock and the hardware
121  * clock/persistent clock/rtc.
122  */
123 int persistent_clock_is_local;
124
125 /*
126  * Adjust the time obtained from the CMOS to be UTC time instead of
127  * local time.
128  *
129  * This is ugly, but preferable to the alternatives.  Otherwise we
130  * would either need to write a program to do it in /etc/rc (and risk
131  * confusion if the program gets run more than once; it would also be
132  * hard to make the program warp the clock precisely n hours)  or
133  * compile in the timezone information into the kernel.  Bad, bad....
134  *
135  *                                              - TYT, 1992-01-01
136  *
137  * The best thing to do is to keep the CMOS clock in universal time (UTC)
138  * as real UNIX machines always do it. This avoids all headaches about
139  * daylight saving times and warping kernel clocks.
140  */
141 static inline void warp_clock(void)
142 {
143         if (sys_tz.tz_minuteswest != 0) {
144                 struct timespec adjust;
145
146                 persistent_clock_is_local = 1;
147                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
148                 adjust.tv_nsec = 0;
149                 timekeeping_inject_offset(&adjust);
150         }
151 }
152
153 /*
154  * In case for some reason the CMOS clock has not already been running
155  * in UTC, but in some local time: The first time we set the timezone,
156  * we will warp the clock so that it is ticking UTC time instead of
157  * local time. Presumably, if someone is setting the timezone then we
158  * are running in an environment where the programs understand about
159  * timezones. This should be done at boot time in the /etc/rc script,
160  * as soon as possible, so that the clock can be set right. Otherwise,
161  * various programs will get confused when the clock gets warped.
162  */
163
164 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
165 {
166         static int firsttime = 1;
167         int error = 0;
168
169         if (tv && !timespec_valid(tv))
170                 return -EINVAL;
171
172         error = security_settime(tv, tz);
173         if (error)
174                 return error;
175
176         if (tz) {
177                 /* Verify we're witin the +-15 hrs range */
178                 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
179                         return -EINVAL;
180
181                 sys_tz = *tz;
182                 update_vsyscall_tz();
183                 if (firsttime) {
184                         firsttime = 0;
185                         if (!tv)
186                                 warp_clock();
187                 }
188         }
189         if (tv)
190                 return do_settimeofday(tv);
191         return 0;
192 }
193
194 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
195                 struct timezone __user *, tz)
196 {
197         struct timeval user_tv;
198         struct timespec new_ts;
199         struct timezone new_tz;
200
201         if (tv) {
202                 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
203                         return -EFAULT;
204
205                 if (!timeval_valid(&user_tv))
206                         return -EINVAL;
207
208                 new_ts.tv_sec = user_tv.tv_sec;
209                 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
210         }
211         if (tz) {
212                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
213                         return -EFAULT;
214         }
215
216         return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
217 }
218
219 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
220 {
221         struct timex txc;               /* Local copy of parameter */
222         int ret;
223
224         /* Copy the user data space into the kernel copy
225          * structure. But bear in mind that the structures
226          * may change
227          */
228         if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
229                 return -EFAULT;
230         ret = do_adjtimex(&txc);
231         return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
232 }
233
234 /**
235  * current_fs_time - Return FS time
236  * @sb: Superblock.
237  *
238  * Return the current time truncated to the time granularity supported by
239  * the fs.
240  */
241 struct timespec current_fs_time(struct super_block *sb)
242 {
243         struct timespec now = current_kernel_time();
244         return timespec_trunc(now, sb->s_time_gran);
245 }
246 EXPORT_SYMBOL(current_fs_time);
247
248 /*
249  * Convert jiffies to milliseconds and back.
250  *
251  * Avoid unnecessary multiplications/divisions in the
252  * two most common HZ cases:
253  */
254 unsigned int jiffies_to_msecs(const unsigned long j)
255 {
256 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
257         return (MSEC_PER_SEC / HZ) * j;
258 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
259         return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
260 #else
261 # if BITS_PER_LONG == 32
262         return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
263                HZ_TO_MSEC_SHR32;
264 # else
265         return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
266 # endif
267 #endif
268 }
269 EXPORT_SYMBOL(jiffies_to_msecs);
270
271 unsigned int jiffies_to_usecs(const unsigned long j)
272 {
273         /*
274          * Hz usually doesn't go much further MSEC_PER_SEC.
275          * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
276          */
277         BUILD_BUG_ON(HZ > USEC_PER_SEC);
278
279 #if !(USEC_PER_SEC % HZ)
280         return (USEC_PER_SEC / HZ) * j;
281 #else
282 # if BITS_PER_LONG == 32
283         return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
284 # else
285         return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
286 # endif
287 #endif
288 }
289 EXPORT_SYMBOL(jiffies_to_usecs);
290
291 /**
292  * timespec_trunc - Truncate timespec to a granularity
293  * @t: Timespec
294  * @gran: Granularity in ns.
295  *
296  * Truncate a timespec to a granularity. Always rounds down. gran must
297  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
298  */
299 struct timespec timespec_trunc(struct timespec t, unsigned gran)
300 {
301         /* Avoid division in the common cases 1 ns and 1 s. */
302         if (gran == 1) {
303                 /* nothing */
304         } else if (gran == NSEC_PER_SEC) {
305                 t.tv_nsec = 0;
306         } else if (gran > 1 && gran < NSEC_PER_SEC) {
307                 t.tv_nsec -= t.tv_nsec % gran;
308         } else {
309                 WARN(1, "illegal file time granularity: %u", gran);
310         }
311         return t;
312 }
313 EXPORT_SYMBOL(timespec_trunc);
314
315 /*
316  * mktime64 - Converts date to seconds.
317  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
320  *
321  * [For the Julian calendar (which was used in Russia before 1917,
322  * Britain & colonies before 1752, anywhere else before 1582,
323  * and is still in use by some communities) leave out the
324  * -year/100+year/400 terms, and add 10.]
325  *
326  * This algorithm was first published by Gauss (I think).
327  */
328 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
329                 const unsigned int day, const unsigned int hour,
330                 const unsigned int min, const unsigned int sec)
331 {
332         unsigned int mon = mon0, year = year0;
333
334         /* 1..12 -> 11,12,1..10 */
335         if (0 >= (int) (mon -= 2)) {
336                 mon += 12;      /* Puts Feb last since it has leap day */
337                 year -= 1;
338         }
339
340         return ((((time64_t)
341                   (year/4 - year/100 + year/400 + 367*mon/12 + day) +
342                   year*365 - 719499
343             )*24 + hour /* now have hours */
344           )*60 + min /* now have minutes */
345         )*60 + sec; /* finally seconds */
346 }
347 EXPORT_SYMBOL(mktime64);
348
349 /**
350  * set_normalized_timespec - set timespec sec and nsec parts and normalize
351  *
352  * @ts:         pointer to timespec variable to be set
353  * @sec:        seconds to set
354  * @nsec:       nanoseconds to set
355  *
356  * Set seconds and nanoseconds field of a timespec variable and
357  * normalize to the timespec storage format
358  *
359  * Note: The tv_nsec part is always in the range of
360  *      0 <= tv_nsec < NSEC_PER_SEC
361  * For negative values only the tv_sec field is negative !
362  */
363 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
364 {
365         while (nsec >= NSEC_PER_SEC) {
366                 /*
367                  * The following asm() prevents the compiler from
368                  * optimising this loop into a modulo operation. See
369                  * also __iter_div_u64_rem() in include/linux/time.h
370                  */
371                 asm("" : "+rm"(nsec));
372                 nsec -= NSEC_PER_SEC;
373                 ++sec;
374         }
375         while (nsec < 0) {
376                 asm("" : "+rm"(nsec));
377                 nsec += NSEC_PER_SEC;
378                 --sec;
379         }
380         ts->tv_sec = sec;
381         ts->tv_nsec = nsec;
382 }
383 EXPORT_SYMBOL(set_normalized_timespec);
384
385 /**
386  * ns_to_timespec - Convert nanoseconds to timespec
387  * @nsec:       the nanoseconds value to be converted
388  *
389  * Returns the timespec representation of the nsec parameter.
390  */
391 struct timespec ns_to_timespec(const s64 nsec)
392 {
393         struct timespec ts;
394         s32 rem;
395
396         if (!nsec)
397                 return (struct timespec) {0, 0};
398
399         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
400         if (unlikely(rem < 0)) {
401                 ts.tv_sec--;
402                 rem += NSEC_PER_SEC;
403         }
404         ts.tv_nsec = rem;
405
406         return ts;
407 }
408 EXPORT_SYMBOL(ns_to_timespec);
409
410 /**
411  * ns_to_timeval - Convert nanoseconds to timeval
412  * @nsec:       the nanoseconds value to be converted
413  *
414  * Returns the timeval representation of the nsec parameter.
415  */
416 struct timeval ns_to_timeval(const s64 nsec)
417 {
418         struct timespec ts = ns_to_timespec(nsec);
419         struct timeval tv;
420
421         tv.tv_sec = ts.tv_sec;
422         tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
423
424         return tv;
425 }
426 EXPORT_SYMBOL(ns_to_timeval);
427
428 #if BITS_PER_LONG == 32
429 /**
430  * set_normalized_timespec - set timespec sec and nsec parts and normalize
431  *
432  * @ts:         pointer to timespec variable to be set
433  * @sec:        seconds to set
434  * @nsec:       nanoseconds to set
435  *
436  * Set seconds and nanoseconds field of a timespec variable and
437  * normalize to the timespec storage format
438  *
439  * Note: The tv_nsec part is always in the range of
440  *      0 <= tv_nsec < NSEC_PER_SEC
441  * For negative values only the tv_sec field is negative !
442  */
443 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
444 {
445         while (nsec >= NSEC_PER_SEC) {
446                 /*
447                  * The following asm() prevents the compiler from
448                  * optimising this loop into a modulo operation. See
449                  * also __iter_div_u64_rem() in include/linux/time.h
450                  */
451                 asm("" : "+rm"(nsec));
452                 nsec -= NSEC_PER_SEC;
453                 ++sec;
454         }
455         while (nsec < 0) {
456                 asm("" : "+rm"(nsec));
457                 nsec += NSEC_PER_SEC;
458                 --sec;
459         }
460         ts->tv_sec = sec;
461         ts->tv_nsec = nsec;
462 }
463 EXPORT_SYMBOL(set_normalized_timespec64);
464
465 /**
466  * ns_to_timespec64 - Convert nanoseconds to timespec64
467  * @nsec:       the nanoseconds value to be converted
468  *
469  * Returns the timespec64 representation of the nsec parameter.
470  */
471 struct timespec64 ns_to_timespec64(const s64 nsec)
472 {
473         struct timespec64 ts;
474         s32 rem;
475
476         if (!nsec)
477                 return (struct timespec64) {0, 0};
478
479         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
480         if (unlikely(rem < 0)) {
481                 ts.tv_sec--;
482                 rem += NSEC_PER_SEC;
483         }
484         ts.tv_nsec = rem;
485
486         return ts;
487 }
488 EXPORT_SYMBOL(ns_to_timespec64);
489 #endif
490 /**
491  * msecs_to_jiffies: - convert milliseconds to jiffies
492  * @m:  time in milliseconds
493  *
494  * conversion is done as follows:
495  *
496  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
497  *
498  * - 'too large' values [that would result in larger than
499  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
500  *
501  * - all other values are converted to jiffies by either multiplying
502  *   the input value by a factor or dividing it with a factor and
503  *   handling any 32-bit overflows.
504  *   for the details see __msecs_to_jiffies()
505  *
506  * msecs_to_jiffies() checks for the passed in value being a constant
507  * via __builtin_constant_p() allowing gcc to eliminate most of the
508  * code, __msecs_to_jiffies() is called if the value passed does not
509  * allow constant folding and the actual conversion must be done at
510  * runtime.
511  * the _msecs_to_jiffies helpers are the HZ dependent conversion
512  * routines found in include/linux/jiffies.h
513  */
514 unsigned long __msecs_to_jiffies(const unsigned int m)
515 {
516         /*
517          * Negative value, means infinite timeout:
518          */
519         if ((int)m < 0)
520                 return MAX_JIFFY_OFFSET;
521         return _msecs_to_jiffies(m);
522 }
523 EXPORT_SYMBOL(__msecs_to_jiffies);
524
525 unsigned long __usecs_to_jiffies(const unsigned int u)
526 {
527         if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
528                 return MAX_JIFFY_OFFSET;
529         return _usecs_to_jiffies(u);
530 }
531 EXPORT_SYMBOL(__usecs_to_jiffies);
532
533 /*
534  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
535  * that a remainder subtract here would not do the right thing as the
536  * resolution values don't fall on second boundries.  I.e. the line:
537  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
538  * Note that due to the small error in the multiplier here, this
539  * rounding is incorrect for sufficiently large values of tv_nsec, but
540  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
541  * OK.
542  *
543  * Rather, we just shift the bits off the right.
544  *
545  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
546  * value to a scaled second value.
547  */
548 static unsigned long
549 __timespec64_to_jiffies(u64 sec, long nsec)
550 {
551         nsec = nsec + TICK_NSEC - 1;
552
553         if (sec >= MAX_SEC_IN_JIFFIES){
554                 sec = MAX_SEC_IN_JIFFIES;
555                 nsec = 0;
556         }
557         return ((sec * SEC_CONVERSION) +
558                 (((u64)nsec * NSEC_CONVERSION) >>
559                  (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
560
561 }
562
563 static unsigned long
564 __timespec_to_jiffies(unsigned long sec, long nsec)
565 {
566         return __timespec64_to_jiffies((u64)sec, nsec);
567 }
568
569 unsigned long
570 timespec64_to_jiffies(const struct timespec64 *value)
571 {
572         return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
573 }
574 EXPORT_SYMBOL(timespec64_to_jiffies);
575
576 void
577 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
578 {
579         /*
580          * Convert jiffies to nanoseconds and separate with
581          * one divide.
582          */
583         u32 rem;
584         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
585                                     NSEC_PER_SEC, &rem);
586         value->tv_nsec = rem;
587 }
588 EXPORT_SYMBOL(jiffies_to_timespec64);
589
590 /*
591  * We could use a similar algorithm to timespec_to_jiffies (with a
592  * different multiplier for usec instead of nsec). But this has a
593  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
594  * usec value, since it's not necessarily integral.
595  *
596  * We could instead round in the intermediate scaled representation
597  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
598  * perilous: the scaling introduces a small positive error, which
599  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
600  * units to the intermediate before shifting) leads to accidental
601  * overflow and overestimates.
602  *
603  * At the cost of one additional multiplication by a constant, just
604  * use the timespec implementation.
605  */
606 unsigned long
607 timeval_to_jiffies(const struct timeval *value)
608 {
609         return __timespec_to_jiffies(value->tv_sec,
610                                      value->tv_usec * NSEC_PER_USEC);
611 }
612 EXPORT_SYMBOL(timeval_to_jiffies);
613
614 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
615 {
616         /*
617          * Convert jiffies to nanoseconds and separate with
618          * one divide.
619          */
620         u32 rem;
621
622         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
623                                     NSEC_PER_SEC, &rem);
624         value->tv_usec = rem / NSEC_PER_USEC;
625 }
626 EXPORT_SYMBOL(jiffies_to_timeval);
627
628 /*
629  * Convert jiffies/jiffies_64 to clock_t and back.
630  */
631 clock_t jiffies_to_clock_t(unsigned long x)
632 {
633 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
634 # if HZ < USER_HZ
635         return x * (USER_HZ / HZ);
636 # else
637         return x / (HZ / USER_HZ);
638 # endif
639 #else
640         return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
641 #endif
642 }
643 EXPORT_SYMBOL(jiffies_to_clock_t);
644
645 unsigned long clock_t_to_jiffies(unsigned long x)
646 {
647 #if (HZ % USER_HZ)==0
648         if (x >= ~0UL / (HZ / USER_HZ))
649                 return ~0UL;
650         return x * (HZ / USER_HZ);
651 #else
652         /* Don't worry about loss of precision here .. */
653         if (x >= ~0UL / HZ * USER_HZ)
654                 return ~0UL;
655
656         /* .. but do try to contain it here */
657         return div_u64((u64)x * HZ, USER_HZ);
658 #endif
659 }
660 EXPORT_SYMBOL(clock_t_to_jiffies);
661
662 u64 jiffies_64_to_clock_t(u64 x)
663 {
664 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
665 # if HZ < USER_HZ
666         x = div_u64(x * USER_HZ, HZ);
667 # elif HZ > USER_HZ
668         x = div_u64(x, HZ / USER_HZ);
669 # else
670         /* Nothing to do */
671 # endif
672 #else
673         /*
674          * There are better ways that don't overflow early,
675          * but even this doesn't overflow in hundreds of years
676          * in 64 bits, so..
677          */
678         x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
679 #endif
680         return x;
681 }
682 EXPORT_SYMBOL(jiffies_64_to_clock_t);
683
684 u64 nsec_to_clock_t(u64 x)
685 {
686 #if (NSEC_PER_SEC % USER_HZ) == 0
687         return div_u64(x, NSEC_PER_SEC / USER_HZ);
688 #elif (USER_HZ % 512) == 0
689         return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
690 #else
691         /*
692          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
693          * overflow after 64.99 years.
694          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
695          */
696         return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
697 #endif
698 }
699
700 /**
701  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
702  *
703  * @n:  nsecs in u64
704  *
705  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
706  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
707  * for scheduler, not for use in device drivers to calculate timeout value.
708  *
709  * note:
710  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
711  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
712  */
713 u64 nsecs_to_jiffies64(u64 n)
714 {
715 #if (NSEC_PER_SEC % HZ) == 0
716         /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
717         return div_u64(n, NSEC_PER_SEC / HZ);
718 #elif (HZ % 512) == 0
719         /* overflow after 292 years if HZ = 1024 */
720         return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
721 #else
722         /*
723          * Generic case - optimized for cases where HZ is a multiple of 3.
724          * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
725          */
726         return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
727 #endif
728 }
729 EXPORT_SYMBOL(nsecs_to_jiffies64);
730
731 /**
732  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
733  *
734  * @n:  nsecs in u64
735  *
736  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
737  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
738  * for scheduler, not for use in device drivers to calculate timeout value.
739  *
740  * note:
741  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
742  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
743  */
744 unsigned long nsecs_to_jiffies(u64 n)
745 {
746         return (unsigned long)nsecs_to_jiffies64(n);
747 }
748 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
749
750 /*
751  * Add two timespec values and do a safety check for overflow.
752  * It's assumed that both values are valid (>= 0)
753  */
754 struct timespec timespec_add_safe(const struct timespec lhs,
755                                   const struct timespec rhs)
756 {
757         struct timespec res;
758
759         set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
760                                 lhs.tv_nsec + rhs.tv_nsec);
761
762         if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
763                 res.tv_sec = TIME_T_MAX;
764
765         return res;
766 }