OSDN Git Service

3365e32dc2086f4afc82d3147be7826e634f0bf8
[uclinux-h8/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 /*
122  * These simple flag variables are managed
123  * without locks, which is racy, but ok since
124  * we don't really care about being super
125  * precise about how many events were seen,
126  * just that a problem was observed.
127  */
128 static int timekeeping_underflow_seen;
129 static int timekeeping_overflow_seen;
130
131 /* last_warning is only modified under the timekeeping lock */
132 static long timekeeping_last_warning;
133
134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135 {
136
137         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138         const char *name = tk->tkr_mono.clock->name;
139
140         if (offset > max_cycles) {
141                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142                                 offset, name, max_cycles);
143                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144         } else {
145                 if (offset > (max_cycles >> 1)) {
146                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147                                         offset, name, max_cycles >> 1);
148                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149                 }
150         }
151
152         if (timekeeping_underflow_seen) {
153                 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
156                         printk_deferred("         Your kernel is probably still fine.\n");
157                         timekeeping_last_warning = jiffies;
158                 }
159                 timekeeping_underflow_seen = 0;
160         }
161
162         if (timekeeping_overflow_seen) {
163                 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166                         printk_deferred("         Your kernel is probably still fine.\n");
167                         timekeeping_last_warning = jiffies;
168                 }
169                 timekeeping_overflow_seen = 0;
170         }
171 }
172
173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174 {
175         cycle_t now, last, mask, max, delta;
176         unsigned int seq;
177
178         /*
179          * Since we're called holding a seqlock, the data may shift
180          * under us while we're doing the calculation. This can cause
181          * false positives, since we'd note a problem but throw the
182          * results away. So nest another seqlock here to atomically
183          * grab the points we are checking with.
184          */
185         do {
186                 seq = read_seqcount_begin(&tk_core.seq);
187                 now = tkr->read(tkr->clock);
188                 last = tkr->cycle_last;
189                 mask = tkr->mask;
190                 max = tkr->clock->max_cycles;
191         } while (read_seqcount_retry(&tk_core.seq, seq));
192
193         delta = clocksource_delta(now, last, mask);
194
195         /*
196          * Try to catch underflows by checking if we are seeing small
197          * mask-relative negative values.
198          */
199         if (unlikely((~delta & mask) < (mask >> 3))) {
200                 timekeeping_underflow_seen = 1;
201                 delta = 0;
202         }
203
204         /* Cap delta value to the max_cycles values to avoid mult overflows */
205         if (unlikely(delta > max)) {
206                 timekeeping_overflow_seen = 1;
207                 delta = tkr->clock->max_cycles;
208         }
209
210         return delta;
211 }
212 #else
213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214 {
215 }
216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217 {
218         cycle_t cycle_now, delta;
219
220         /* read clocksource */
221         cycle_now = tkr->read(tkr->clock);
222
223         /* calculate the delta since the last update_wall_time */
224         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225
226         return delta;
227 }
228 #endif
229
230 /**
231  * tk_setup_internals - Set up internals to use clocksource clock.
232  *
233  * @tk:         The target timekeeper to setup.
234  * @clock:              Pointer to clocksource.
235  *
236  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237  * pair and interval request.
238  *
239  * Unless you're the timekeeping code, you should not be using this!
240  */
241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242 {
243         cycle_t interval;
244         u64 tmp, ntpinterval;
245         struct clocksource *old_clock;
246
247         old_clock = tk->tkr_mono.clock;
248         tk->tkr_mono.clock = clock;
249         tk->tkr_mono.read = clock->read;
250         tk->tkr_mono.mask = clock->mask;
251         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
252
253         tk->tkr_raw.clock = clock;
254         tk->tkr_raw.read = clock->read;
255         tk->tkr_raw.mask = clock->mask;
256         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257
258         /* Do the ns -> cycle conversion first, using original mult */
259         tmp = NTP_INTERVAL_LENGTH;
260         tmp <<= clock->shift;
261         ntpinterval = tmp;
262         tmp += clock->mult/2;
263         do_div(tmp, clock->mult);
264         if (tmp == 0)
265                 tmp = 1;
266
267         interval = (cycle_t) tmp;
268         tk->cycle_interval = interval;
269
270         /* Go back from cycles -> shifted ns */
271         tk->xtime_interval = (u64) interval * clock->mult;
272         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273         tk->raw_interval =
274                 ((u64) interval * clock->mult) >> clock->shift;
275
276          /* if changing clocks, convert xtime_nsec shift units */
277         if (old_clock) {
278                 int shift_change = clock->shift - old_clock->shift;
279                 if (shift_change < 0)
280                         tk->tkr_mono.xtime_nsec >>= -shift_change;
281                 else
282                         tk->tkr_mono.xtime_nsec <<= shift_change;
283         }
284         tk->tkr_raw.xtime_nsec = 0;
285
286         tk->tkr_mono.shift = clock->shift;
287         tk->tkr_raw.shift = clock->shift;
288
289         tk->ntp_error = 0;
290         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
292
293         /*
294          * The timekeeper keeps its own mult values for the currently
295          * active clocksource. These value will be adjusted via NTP
296          * to counteract clock drifting.
297          */
298         tk->tkr_mono.mult = clock->mult;
299         tk->tkr_raw.mult = clock->mult;
300         tk->ntp_err_mult = 0;
301 }
302
303 /* Timekeeper helper functions. */
304
305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306 static u32 default_arch_gettimeoffset(void) { return 0; }
307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308 #else
309 static inline u32 arch_gettimeoffset(void) { return 0; }
310 #endif
311
312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314         cycle_t delta;
315         s64 nsec;
316
317         delta = timekeeping_get_delta(tkr);
318
319         nsec = delta * tkr->mult + tkr->xtime_nsec;
320         nsec >>= tkr->shift;
321
322         /* If arch requires, add in get_arch_timeoffset() */
323         return nsec + arch_gettimeoffset();
324 }
325
326 /**
327  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
328  * @tkr: Timekeeping readout base from which we take the update
329  *
330  * We want to use this from any context including NMI and tracing /
331  * instrumenting the timekeeping code itself.
332  *
333  * So we handle this differently than the other timekeeping accessor
334  * functions which retry when the sequence count has changed. The
335  * update side does:
336  *
337  * smp_wmb();   <- Ensure that the last base[1] update is visible
338  * tkf->seq++;
339  * smp_wmb();   <- Ensure that the seqcount update is visible
340  * update(tkf->base[0], tkr);
341  * smp_wmb();   <- Ensure that the base[0] update is visible
342  * tkf->seq++;
343  * smp_wmb();   <- Ensure that the seqcount update is visible
344  * update(tkf->base[1], tkr);
345  *
346  * The reader side does:
347  *
348  * do {
349  *      seq = tkf->seq;
350  *      smp_rmb();
351  *      idx = seq & 0x01;
352  *      now = now(tkf->base[idx]);
353  *      smp_rmb();
354  * } while (seq != tkf->seq)
355  *
356  * As long as we update base[0] readers are forced off to
357  * base[1]. Once base[0] is updated readers are redirected to base[0]
358  * and the base[1] update takes place.
359  *
360  * So if a NMI hits the update of base[0] then it will use base[1]
361  * which is still consistent. In the worst case this can result is a
362  * slightly wrong timestamp (a few nanoseconds). See
363  * @ktime_get_mono_fast_ns.
364  */
365 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
366 {
367         struct tk_read_base *base = tkf->base;
368
369         /* Force readers off to base[1] */
370         raw_write_seqcount_latch(&tkf->seq);
371
372         /* Update base[0] */
373         memcpy(base, tkr, sizeof(*base));
374
375         /* Force readers back to base[0] */
376         raw_write_seqcount_latch(&tkf->seq);
377
378         /* Update base[1] */
379         memcpy(base + 1, base, sizeof(*base));
380 }
381
382 /**
383  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
384  *
385  * This timestamp is not guaranteed to be monotonic across an update.
386  * The timestamp is calculated by:
387  *
388  *      now = base_mono + clock_delta * slope
389  *
390  * So if the update lowers the slope, readers who are forced to the
391  * not yet updated second array are still using the old steeper slope.
392  *
393  * tmono
394  * ^
395  * |    o  n
396  * |   o n
397  * |  u
398  * | o
399  * |o
400  * |12345678---> reader order
401  *
402  * o = old slope
403  * u = update
404  * n = new slope
405  *
406  * So reader 6 will observe time going backwards versus reader 5.
407  *
408  * While other CPUs are likely to be able observe that, the only way
409  * for a CPU local observation is when an NMI hits in the middle of
410  * the update. Timestamps taken from that NMI context might be ahead
411  * of the following timestamps. Callers need to be aware of that and
412  * deal with it.
413  */
414 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
415 {
416         struct tk_read_base *tkr;
417         unsigned int seq;
418         u64 now;
419
420         do {
421                 seq = raw_read_seqcount(&tkf->seq);
422                 tkr = tkf->base + (seq & 0x01);
423                 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
424         } while (read_seqcount_retry(&tkf->seq, seq));
425
426         return now;
427 }
428
429 u64 ktime_get_mono_fast_ns(void)
430 {
431         return __ktime_get_fast_ns(&tk_fast_mono);
432 }
433 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
434
435 u64 ktime_get_raw_fast_ns(void)
436 {
437         return __ktime_get_fast_ns(&tk_fast_raw);
438 }
439 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
440
441 /* Suspend-time cycles value for halted fast timekeeper. */
442 static cycle_t cycles_at_suspend;
443
444 static cycle_t dummy_clock_read(struct clocksource *cs)
445 {
446         return cycles_at_suspend;
447 }
448
449 /**
450  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
451  * @tk: Timekeeper to snapshot.
452  *
453  * It generally is unsafe to access the clocksource after timekeeping has been
454  * suspended, so take a snapshot of the readout base of @tk and use it as the
455  * fast timekeeper's readout base while suspended.  It will return the same
456  * number of cycles every time until timekeeping is resumed at which time the
457  * proper readout base for the fast timekeeper will be restored automatically.
458  */
459 static void halt_fast_timekeeper(struct timekeeper *tk)
460 {
461         static struct tk_read_base tkr_dummy;
462         struct tk_read_base *tkr = &tk->tkr_mono;
463
464         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
465         cycles_at_suspend = tkr->read(tkr->clock);
466         tkr_dummy.read = dummy_clock_read;
467         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
468
469         tkr = &tk->tkr_raw;
470         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
471         tkr_dummy.read = dummy_clock_read;
472         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
473 }
474
475 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
476
477 static inline void update_vsyscall(struct timekeeper *tk)
478 {
479         struct timespec xt, wm;
480
481         xt = timespec64_to_timespec(tk_xtime(tk));
482         wm = timespec64_to_timespec(tk->wall_to_monotonic);
483         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
484                             tk->tkr_mono.cycle_last);
485 }
486
487 static inline void old_vsyscall_fixup(struct timekeeper *tk)
488 {
489         s64 remainder;
490
491         /*
492         * Store only full nanoseconds into xtime_nsec after rounding
493         * it up and add the remainder to the error difference.
494         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
495         * by truncating the remainder in vsyscalls. However, it causes
496         * additional work to be done in timekeeping_adjust(). Once
497         * the vsyscall implementations are converted to use xtime_nsec
498         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
499         * users are removed, this can be killed.
500         */
501         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
502         tk->tkr_mono.xtime_nsec -= remainder;
503         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
504         tk->ntp_error += remainder << tk->ntp_error_shift;
505         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
506 }
507 #else
508 #define old_vsyscall_fixup(tk)
509 #endif
510
511 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
512
513 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
514 {
515         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
516 }
517
518 /**
519  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
520  */
521 int pvclock_gtod_register_notifier(struct notifier_block *nb)
522 {
523         struct timekeeper *tk = &tk_core.timekeeper;
524         unsigned long flags;
525         int ret;
526
527         raw_spin_lock_irqsave(&timekeeper_lock, flags);
528         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
529         update_pvclock_gtod(tk, true);
530         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531
532         return ret;
533 }
534 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
535
536 /**
537  * pvclock_gtod_unregister_notifier - unregister a pvclock
538  * timedata update listener
539  */
540 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
541 {
542         unsigned long flags;
543         int ret;
544
545         raw_spin_lock_irqsave(&timekeeper_lock, flags);
546         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
547         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548
549         return ret;
550 }
551 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
552
553 /*
554  * Update the ktime_t based scalar nsec members of the timekeeper
555  */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558         u64 seconds;
559         u32 nsec;
560
561         /*
562          * The xtime based monotonic readout is:
563          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564          * The ktime based monotonic readout is:
565          *      nsec = base_mono + now();
566          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567          */
568         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571
572         /* Update the monotonic raw base */
573         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574
575         /*
576          * The sum of the nanoseconds portions of xtime and
577          * wall_to_monotonic can be greater/equal one second. Take
578          * this into account before updating tk->ktime_sec.
579          */
580         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581         if (nsec >= NSEC_PER_SEC)
582                 seconds++;
583         tk->ktime_sec = seconds;
584 }
585
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589         if (action & TK_CLEAR_NTP) {
590                 tk->ntp_error = 0;
591                 ntp_clear();
592         }
593
594         tk_update_ktime_data(tk);
595
596         update_vsyscall(tk);
597         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
598
599         if (action & TK_MIRROR)
600                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
601                        sizeof(tk_core.timekeeper));
602
603         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
604         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
605
606         if (action & TK_CLOCK_WAS_SET)
607                 tk->clock_was_set_seq++;
608 }
609
610 /**
611  * timekeeping_forward_now - update clock to the current time
612  *
613  * Forward the current clock to update its state since the last call to
614  * update_wall_time(). This is useful before significant clock changes,
615  * as it avoids having to deal with this time offset explicitly.
616  */
617 static void timekeeping_forward_now(struct timekeeper *tk)
618 {
619         struct clocksource *clock = tk->tkr_mono.clock;
620         cycle_t cycle_now, delta;
621         s64 nsec;
622
623         cycle_now = tk->tkr_mono.read(clock);
624         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
625         tk->tkr_mono.cycle_last = cycle_now;
626         tk->tkr_raw.cycle_last  = cycle_now;
627
628         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
629
630         /* If arch requires, add in get_arch_timeoffset() */
631         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
632
633         tk_normalize_xtime(tk);
634
635         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
636         timespec64_add_ns(&tk->raw_time, nsec);
637 }
638
639 /**
640  * __getnstimeofday64 - Returns the time of day in a timespec64.
641  * @ts:         pointer to the timespec to be set
642  *
643  * Updates the time of day in the timespec.
644  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
645  */
646 int __getnstimeofday64(struct timespec64 *ts)
647 {
648         struct timekeeper *tk = &tk_core.timekeeper;
649         unsigned long seq;
650         s64 nsecs = 0;
651
652         do {
653                 seq = read_seqcount_begin(&tk_core.seq);
654
655                 ts->tv_sec = tk->xtime_sec;
656                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
657
658         } while (read_seqcount_retry(&tk_core.seq, seq));
659
660         ts->tv_nsec = 0;
661         timespec64_add_ns(ts, nsecs);
662
663         /*
664          * Do not bail out early, in case there were callers still using
665          * the value, even in the face of the WARN_ON.
666          */
667         if (unlikely(timekeeping_suspended))
668                 return -EAGAIN;
669         return 0;
670 }
671 EXPORT_SYMBOL(__getnstimeofday64);
672
673 /**
674  * getnstimeofday64 - Returns the time of day in a timespec64.
675  * @ts:         pointer to the timespec64 to be set
676  *
677  * Returns the time of day in a timespec64 (WARN if suspended).
678  */
679 void getnstimeofday64(struct timespec64 *ts)
680 {
681         WARN_ON(__getnstimeofday64(ts));
682 }
683 EXPORT_SYMBOL(getnstimeofday64);
684
685 ktime_t ktime_get(void)
686 {
687         struct timekeeper *tk = &tk_core.timekeeper;
688         unsigned int seq;
689         ktime_t base;
690         s64 nsecs;
691
692         WARN_ON(timekeeping_suspended);
693
694         do {
695                 seq = read_seqcount_begin(&tk_core.seq);
696                 base = tk->tkr_mono.base;
697                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
698
699         } while (read_seqcount_retry(&tk_core.seq, seq));
700
701         return ktime_add_ns(base, nsecs);
702 }
703 EXPORT_SYMBOL_GPL(ktime_get);
704
705 static ktime_t *offsets[TK_OFFS_MAX] = {
706         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
707         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
708         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
709 };
710
711 ktime_t ktime_get_with_offset(enum tk_offsets offs)
712 {
713         struct timekeeper *tk = &tk_core.timekeeper;
714         unsigned int seq;
715         ktime_t base, *offset = offsets[offs];
716         s64 nsecs;
717
718         WARN_ON(timekeeping_suspended);
719
720         do {
721                 seq = read_seqcount_begin(&tk_core.seq);
722                 base = ktime_add(tk->tkr_mono.base, *offset);
723                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
724
725         } while (read_seqcount_retry(&tk_core.seq, seq));
726
727         return ktime_add_ns(base, nsecs);
728
729 }
730 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
731
732 /**
733  * ktime_mono_to_any() - convert mononotic time to any other time
734  * @tmono:      time to convert.
735  * @offs:       which offset to use
736  */
737 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
738 {
739         ktime_t *offset = offsets[offs];
740         unsigned long seq;
741         ktime_t tconv;
742
743         do {
744                 seq = read_seqcount_begin(&tk_core.seq);
745                 tconv = ktime_add(tmono, *offset);
746         } while (read_seqcount_retry(&tk_core.seq, seq));
747
748         return tconv;
749 }
750 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
751
752 /**
753  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
754  */
755 ktime_t ktime_get_raw(void)
756 {
757         struct timekeeper *tk = &tk_core.timekeeper;
758         unsigned int seq;
759         ktime_t base;
760         s64 nsecs;
761
762         do {
763                 seq = read_seqcount_begin(&tk_core.seq);
764                 base = tk->tkr_raw.base;
765                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
766
767         } while (read_seqcount_retry(&tk_core.seq, seq));
768
769         return ktime_add_ns(base, nsecs);
770 }
771 EXPORT_SYMBOL_GPL(ktime_get_raw);
772
773 /**
774  * ktime_get_ts64 - get the monotonic clock in timespec64 format
775  * @ts:         pointer to timespec variable
776  *
777  * The function calculates the monotonic clock from the realtime
778  * clock and the wall_to_monotonic offset and stores the result
779  * in normalized timespec64 format in the variable pointed to by @ts.
780  */
781 void ktime_get_ts64(struct timespec64 *ts)
782 {
783         struct timekeeper *tk = &tk_core.timekeeper;
784         struct timespec64 tomono;
785         s64 nsec;
786         unsigned int seq;
787
788         WARN_ON(timekeeping_suspended);
789
790         do {
791                 seq = read_seqcount_begin(&tk_core.seq);
792                 ts->tv_sec = tk->xtime_sec;
793                 nsec = timekeeping_get_ns(&tk->tkr_mono);
794                 tomono = tk->wall_to_monotonic;
795
796         } while (read_seqcount_retry(&tk_core.seq, seq));
797
798         ts->tv_sec += tomono.tv_sec;
799         ts->tv_nsec = 0;
800         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
801 }
802 EXPORT_SYMBOL_GPL(ktime_get_ts64);
803
804 /**
805  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
806  *
807  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
808  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
809  * works on both 32 and 64 bit systems. On 32 bit systems the readout
810  * covers ~136 years of uptime which should be enough to prevent
811  * premature wrap arounds.
812  */
813 time64_t ktime_get_seconds(void)
814 {
815         struct timekeeper *tk = &tk_core.timekeeper;
816
817         WARN_ON(timekeeping_suspended);
818         return tk->ktime_sec;
819 }
820 EXPORT_SYMBOL_GPL(ktime_get_seconds);
821
822 /**
823  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
824  *
825  * Returns the wall clock seconds since 1970. This replaces the
826  * get_seconds() interface which is not y2038 safe on 32bit systems.
827  *
828  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
829  * 32bit systems the access must be protected with the sequence
830  * counter to provide "atomic" access to the 64bit tk->xtime_sec
831  * value.
832  */
833 time64_t ktime_get_real_seconds(void)
834 {
835         struct timekeeper *tk = &tk_core.timekeeper;
836         time64_t seconds;
837         unsigned int seq;
838
839         if (IS_ENABLED(CONFIG_64BIT))
840                 return tk->xtime_sec;
841
842         do {
843                 seq = read_seqcount_begin(&tk_core.seq);
844                 seconds = tk->xtime_sec;
845
846         } while (read_seqcount_retry(&tk_core.seq, seq));
847
848         return seconds;
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
851
852 #ifdef CONFIG_NTP_PPS
853
854 /**
855  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
856  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
857  * @ts_real:    pointer to the timespec to be set to the time of day
858  *
859  * This function reads both the time of day and raw monotonic time at the
860  * same time atomically and stores the resulting timestamps in timespec
861  * format.
862  */
863 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
864 {
865         struct timekeeper *tk = &tk_core.timekeeper;
866         unsigned long seq;
867         s64 nsecs_raw, nsecs_real;
868
869         WARN_ON_ONCE(timekeeping_suspended);
870
871         do {
872                 seq = read_seqcount_begin(&tk_core.seq);
873
874                 *ts_raw = timespec64_to_timespec(tk->raw_time);
875                 ts_real->tv_sec = tk->xtime_sec;
876                 ts_real->tv_nsec = 0;
877
878                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
879                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
880
881         } while (read_seqcount_retry(&tk_core.seq, seq));
882
883         timespec_add_ns(ts_raw, nsecs_raw);
884         timespec_add_ns(ts_real, nsecs_real);
885 }
886 EXPORT_SYMBOL(getnstime_raw_and_real);
887
888 #endif /* CONFIG_NTP_PPS */
889
890 /**
891  * do_gettimeofday - Returns the time of day in a timeval
892  * @tv:         pointer to the timeval to be set
893  *
894  * NOTE: Users should be converted to using getnstimeofday()
895  */
896 void do_gettimeofday(struct timeval *tv)
897 {
898         struct timespec64 now;
899
900         getnstimeofday64(&now);
901         tv->tv_sec = now.tv_sec;
902         tv->tv_usec = now.tv_nsec/1000;
903 }
904 EXPORT_SYMBOL(do_gettimeofday);
905
906 /**
907  * do_settimeofday64 - Sets the time of day.
908  * @ts:     pointer to the timespec64 variable containing the new time
909  *
910  * Sets the time of day to the new time and update NTP and notify hrtimers
911  */
912 int do_settimeofday64(const struct timespec64 *ts)
913 {
914         struct timekeeper *tk = &tk_core.timekeeper;
915         struct timespec64 ts_delta, xt;
916         unsigned long flags;
917
918         if (!timespec64_valid_strict(ts))
919                 return -EINVAL;
920
921         raw_spin_lock_irqsave(&timekeeper_lock, flags);
922         write_seqcount_begin(&tk_core.seq);
923
924         timekeeping_forward_now(tk);
925
926         xt = tk_xtime(tk);
927         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
928         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
929
930         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
931
932         tk_set_xtime(tk, ts);
933
934         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
935
936         write_seqcount_end(&tk_core.seq);
937         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
938
939         /* signal hrtimers about time change */
940         clock_was_set();
941
942         return 0;
943 }
944 EXPORT_SYMBOL(do_settimeofday64);
945
946 /**
947  * timekeeping_inject_offset - Adds or subtracts from the current time.
948  * @tv:         pointer to the timespec variable containing the offset
949  *
950  * Adds or subtracts an offset value from the current time.
951  */
952 int timekeeping_inject_offset(struct timespec *ts)
953 {
954         struct timekeeper *tk = &tk_core.timekeeper;
955         unsigned long flags;
956         struct timespec64 ts64, tmp;
957         int ret = 0;
958
959         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
960                 return -EINVAL;
961
962         ts64 = timespec_to_timespec64(*ts);
963
964         raw_spin_lock_irqsave(&timekeeper_lock, flags);
965         write_seqcount_begin(&tk_core.seq);
966
967         timekeeping_forward_now(tk);
968
969         /* Make sure the proposed value is valid */
970         tmp = timespec64_add(tk_xtime(tk),  ts64);
971         if (!timespec64_valid_strict(&tmp)) {
972                 ret = -EINVAL;
973                 goto error;
974         }
975
976         tk_xtime_add(tk, &ts64);
977         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
978
979 error: /* even if we error out, we forwarded the time, so call update */
980         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
981
982         write_seqcount_end(&tk_core.seq);
983         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
984
985         /* signal hrtimers about time change */
986         clock_was_set();
987
988         return ret;
989 }
990 EXPORT_SYMBOL(timekeeping_inject_offset);
991
992
993 /**
994  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
995  *
996  */
997 s32 timekeeping_get_tai_offset(void)
998 {
999         struct timekeeper *tk = &tk_core.timekeeper;
1000         unsigned int seq;
1001         s32 ret;
1002
1003         do {
1004                 seq = read_seqcount_begin(&tk_core.seq);
1005                 ret = tk->tai_offset;
1006         } while (read_seqcount_retry(&tk_core.seq, seq));
1007
1008         return ret;
1009 }
1010
1011 /**
1012  * __timekeeping_set_tai_offset - Lock free worker function
1013  *
1014  */
1015 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1016 {
1017         tk->tai_offset = tai_offset;
1018         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1019 }
1020
1021 /**
1022  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1023  *
1024  */
1025 void timekeeping_set_tai_offset(s32 tai_offset)
1026 {
1027         struct timekeeper *tk = &tk_core.timekeeper;
1028         unsigned long flags;
1029
1030         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1031         write_seqcount_begin(&tk_core.seq);
1032         __timekeeping_set_tai_offset(tk, tai_offset);
1033         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1034         write_seqcount_end(&tk_core.seq);
1035         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1036         clock_was_set();
1037 }
1038
1039 /**
1040  * change_clocksource - Swaps clocksources if a new one is available
1041  *
1042  * Accumulates current time interval and initializes new clocksource
1043  */
1044 static int change_clocksource(void *data)
1045 {
1046         struct timekeeper *tk = &tk_core.timekeeper;
1047         struct clocksource *new, *old;
1048         unsigned long flags;
1049
1050         new = (struct clocksource *) data;
1051
1052         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053         write_seqcount_begin(&tk_core.seq);
1054
1055         timekeeping_forward_now(tk);
1056         /*
1057          * If the cs is in module, get a module reference. Succeeds
1058          * for built-in code (owner == NULL) as well.
1059          */
1060         if (try_module_get(new->owner)) {
1061                 if (!new->enable || new->enable(new) == 0) {
1062                         old = tk->tkr_mono.clock;
1063                         tk_setup_internals(tk, new);
1064                         if (old->disable)
1065                                 old->disable(old);
1066                         module_put(old->owner);
1067                 } else {
1068                         module_put(new->owner);
1069                 }
1070         }
1071         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1072
1073         write_seqcount_end(&tk_core.seq);
1074         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1075
1076         return 0;
1077 }
1078
1079 /**
1080  * timekeeping_notify - Install a new clock source
1081  * @clock:              pointer to the clock source
1082  *
1083  * This function is called from clocksource.c after a new, better clock
1084  * source has been registered. The caller holds the clocksource_mutex.
1085  */
1086 int timekeeping_notify(struct clocksource *clock)
1087 {
1088         struct timekeeper *tk = &tk_core.timekeeper;
1089
1090         if (tk->tkr_mono.clock == clock)
1091                 return 0;
1092         stop_machine(change_clocksource, clock, NULL);
1093         tick_clock_notify();
1094         return tk->tkr_mono.clock == clock ? 0 : -1;
1095 }
1096
1097 /**
1098  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1099  * @ts:         pointer to the timespec64 to be set
1100  *
1101  * Returns the raw monotonic time (completely un-modified by ntp)
1102  */
1103 void getrawmonotonic64(struct timespec64 *ts)
1104 {
1105         struct timekeeper *tk = &tk_core.timekeeper;
1106         struct timespec64 ts64;
1107         unsigned long seq;
1108         s64 nsecs;
1109
1110         do {
1111                 seq = read_seqcount_begin(&tk_core.seq);
1112                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1113                 ts64 = tk->raw_time;
1114
1115         } while (read_seqcount_retry(&tk_core.seq, seq));
1116
1117         timespec64_add_ns(&ts64, nsecs);
1118         *ts = ts64;
1119 }
1120 EXPORT_SYMBOL(getrawmonotonic64);
1121
1122
1123 /**
1124  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1125  */
1126 int timekeeping_valid_for_hres(void)
1127 {
1128         struct timekeeper *tk = &tk_core.timekeeper;
1129         unsigned long seq;
1130         int ret;
1131
1132         do {
1133                 seq = read_seqcount_begin(&tk_core.seq);
1134
1135                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1136
1137         } while (read_seqcount_retry(&tk_core.seq, seq));
1138
1139         return ret;
1140 }
1141
1142 /**
1143  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1144  */
1145 u64 timekeeping_max_deferment(void)
1146 {
1147         struct timekeeper *tk = &tk_core.timekeeper;
1148         unsigned long seq;
1149         u64 ret;
1150
1151         do {
1152                 seq = read_seqcount_begin(&tk_core.seq);
1153
1154                 ret = tk->tkr_mono.clock->max_idle_ns;
1155
1156         } while (read_seqcount_retry(&tk_core.seq, seq));
1157
1158         return ret;
1159 }
1160
1161 /**
1162  * read_persistent_clock -  Return time from the persistent clock.
1163  *
1164  * Weak dummy function for arches that do not yet support it.
1165  * Reads the time from the battery backed persistent clock.
1166  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1167  *
1168  *  XXX - Do be sure to remove it once all arches implement it.
1169  */
1170 void __weak read_persistent_clock(struct timespec *ts)
1171 {
1172         ts->tv_sec = 0;
1173         ts->tv_nsec = 0;
1174 }
1175
1176 void __weak read_persistent_clock64(struct timespec64 *ts64)
1177 {
1178         struct timespec ts;
1179
1180         read_persistent_clock(&ts);
1181         *ts64 = timespec_to_timespec64(ts);
1182 }
1183
1184 /**
1185  * read_boot_clock -  Return time of the system start.
1186  *
1187  * Weak dummy function for arches that do not yet support it.
1188  * Function to read the exact time the system has been started.
1189  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1190  *
1191  *  XXX - Do be sure to remove it once all arches implement it.
1192  */
1193 void __weak read_boot_clock(struct timespec *ts)
1194 {
1195         ts->tv_sec = 0;
1196         ts->tv_nsec = 0;
1197 }
1198
1199 void __weak read_boot_clock64(struct timespec64 *ts64)
1200 {
1201         struct timespec ts;
1202
1203         read_boot_clock(&ts);
1204         *ts64 = timespec_to_timespec64(ts);
1205 }
1206
1207 /* Flag for if timekeeping_resume() has injected sleeptime */
1208 static bool sleeptime_injected;
1209
1210 /* Flag for if there is a persistent clock on this platform */
1211 static bool persistent_clock_exists;
1212
1213 /*
1214  * timekeeping_init - Initializes the clocksource and common timekeeping values
1215  */
1216 void __init timekeeping_init(void)
1217 {
1218         struct timekeeper *tk = &tk_core.timekeeper;
1219         struct clocksource *clock;
1220         unsigned long flags;
1221         struct timespec64 now, boot, tmp;
1222
1223         read_persistent_clock64(&now);
1224         if (!timespec64_valid_strict(&now)) {
1225                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1226                         "         Check your CMOS/BIOS settings.\n");
1227                 now.tv_sec = 0;
1228                 now.tv_nsec = 0;
1229         } else if (now.tv_sec || now.tv_nsec)
1230                 persistent_clock_exists = true;
1231
1232         read_boot_clock64(&boot);
1233         if (!timespec64_valid_strict(&boot)) {
1234                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1235                         "         Check your CMOS/BIOS settings.\n");
1236                 boot.tv_sec = 0;
1237                 boot.tv_nsec = 0;
1238         }
1239
1240         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1241         write_seqcount_begin(&tk_core.seq);
1242         ntp_init();
1243
1244         clock = clocksource_default_clock();
1245         if (clock->enable)
1246                 clock->enable(clock);
1247         tk_setup_internals(tk, clock);
1248
1249         tk_set_xtime(tk, &now);
1250         tk->raw_time.tv_sec = 0;
1251         tk->raw_time.tv_nsec = 0;
1252         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1253                 boot = tk_xtime(tk);
1254
1255         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1256         tk_set_wall_to_mono(tk, tmp);
1257
1258         timekeeping_update(tk, TK_MIRROR);
1259
1260         write_seqcount_end(&tk_core.seq);
1261         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1262 }
1263
1264 /* time in seconds when suspend began for persistent clock */
1265 static struct timespec64 timekeeping_suspend_time;
1266
1267 /**
1268  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1269  * @delta: pointer to a timespec delta value
1270  *
1271  * Takes a timespec offset measuring a suspend interval and properly
1272  * adds the sleep offset to the timekeeping variables.
1273  */
1274 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1275                                            struct timespec64 *delta)
1276 {
1277         if (!timespec64_valid_strict(delta)) {
1278                 printk_deferred(KERN_WARNING
1279                                 "__timekeeping_inject_sleeptime: Invalid "
1280                                 "sleep delta value!\n");
1281                 return;
1282         }
1283         tk_xtime_add(tk, delta);
1284         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1285         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1286         tk_debug_account_sleep_time(delta);
1287 }
1288
1289 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1290 /**
1291  * We have three kinds of time sources to use for sleep time
1292  * injection, the preference order is:
1293  * 1) non-stop clocksource
1294  * 2) persistent clock (ie: RTC accessible when irqs are off)
1295  * 3) RTC
1296  *
1297  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1298  * If system has neither 1) nor 2), 3) will be used finally.
1299  *
1300  *
1301  * If timekeeping has injected sleeptime via either 1) or 2),
1302  * 3) becomes needless, so in this case we don't need to call
1303  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1304  * means.
1305  */
1306 bool timekeeping_rtc_skipresume(void)
1307 {
1308         return sleeptime_injected;
1309 }
1310
1311 /**
1312  * 1) can be determined whether to use or not only when doing
1313  * timekeeping_resume() which is invoked after rtc_suspend(),
1314  * so we can't skip rtc_suspend() surely if system has 1).
1315  *
1316  * But if system has 2), 2) will definitely be used, so in this
1317  * case we don't need to call rtc_suspend(), and this is what
1318  * timekeeping_rtc_skipsuspend() means.
1319  */
1320 bool timekeeping_rtc_skipsuspend(void)
1321 {
1322         return persistent_clock_exists;
1323 }
1324
1325 /**
1326  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1327  * @delta: pointer to a timespec64 delta value
1328  *
1329  * This hook is for architectures that cannot support read_persistent_clock64
1330  * because their RTC/persistent clock is only accessible when irqs are enabled.
1331  * and also don't have an effective nonstop clocksource.
1332  *
1333  * This function should only be called by rtc_resume(), and allows
1334  * a suspend offset to be injected into the timekeeping values.
1335  */
1336 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1337 {
1338         struct timekeeper *tk = &tk_core.timekeeper;
1339         unsigned long flags;
1340
1341         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1342         write_seqcount_begin(&tk_core.seq);
1343
1344         timekeeping_forward_now(tk);
1345
1346         __timekeeping_inject_sleeptime(tk, delta);
1347
1348         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1349
1350         write_seqcount_end(&tk_core.seq);
1351         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1352
1353         /* signal hrtimers about time change */
1354         clock_was_set();
1355 }
1356 #endif
1357
1358 /**
1359  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1360  */
1361 void timekeeping_resume(void)
1362 {
1363         struct timekeeper *tk = &tk_core.timekeeper;
1364         struct clocksource *clock = tk->tkr_mono.clock;
1365         unsigned long flags;
1366         struct timespec64 ts_new, ts_delta;
1367         cycle_t cycle_now, cycle_delta;
1368
1369         sleeptime_injected = false;
1370         read_persistent_clock64(&ts_new);
1371
1372         clockevents_resume();
1373         clocksource_resume();
1374
1375         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1376         write_seqcount_begin(&tk_core.seq);
1377
1378         /*
1379          * After system resumes, we need to calculate the suspended time and
1380          * compensate it for the OS time. There are 3 sources that could be
1381          * used: Nonstop clocksource during suspend, persistent clock and rtc
1382          * device.
1383          *
1384          * One specific platform may have 1 or 2 or all of them, and the
1385          * preference will be:
1386          *      suspend-nonstop clocksource -> persistent clock -> rtc
1387          * The less preferred source will only be tried if there is no better
1388          * usable source. The rtc part is handled separately in rtc core code.
1389          */
1390         cycle_now = tk->tkr_mono.read(clock);
1391         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1392                 cycle_now > tk->tkr_mono.cycle_last) {
1393                 u64 num, max = ULLONG_MAX;
1394                 u32 mult = clock->mult;
1395                 u32 shift = clock->shift;
1396                 s64 nsec = 0;
1397
1398                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1399                                                 tk->tkr_mono.mask);
1400
1401                 /*
1402                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1403                  * suspended time is too long. In that case we need do the
1404                  * 64 bits math carefully
1405                  */
1406                 do_div(max, mult);
1407                 if (cycle_delta > max) {
1408                         num = div64_u64(cycle_delta, max);
1409                         nsec = (((u64) max * mult) >> shift) * num;
1410                         cycle_delta -= num * max;
1411                 }
1412                 nsec += ((u64) cycle_delta * mult) >> shift;
1413
1414                 ts_delta = ns_to_timespec64(nsec);
1415                 sleeptime_injected = true;
1416         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1417                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1418                 sleeptime_injected = true;
1419         }
1420
1421         if (sleeptime_injected)
1422                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1423
1424         /* Re-base the last cycle value */
1425         tk->tkr_mono.cycle_last = cycle_now;
1426         tk->tkr_raw.cycle_last  = cycle_now;
1427
1428         tk->ntp_error = 0;
1429         timekeeping_suspended = 0;
1430         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1431         write_seqcount_end(&tk_core.seq);
1432         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1433
1434         touch_softlockup_watchdog();
1435
1436         tick_resume();
1437         hrtimers_resume();
1438 }
1439
1440 int timekeeping_suspend(void)
1441 {
1442         struct timekeeper *tk = &tk_core.timekeeper;
1443         unsigned long flags;
1444         struct timespec64               delta, delta_delta;
1445         static struct timespec64        old_delta;
1446
1447         read_persistent_clock64(&timekeeping_suspend_time);
1448
1449         /*
1450          * On some systems the persistent_clock can not be detected at
1451          * timekeeping_init by its return value, so if we see a valid
1452          * value returned, update the persistent_clock_exists flag.
1453          */
1454         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1455                 persistent_clock_exists = true;
1456
1457         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1458         write_seqcount_begin(&tk_core.seq);
1459         timekeeping_forward_now(tk);
1460         timekeeping_suspended = 1;
1461
1462         if (persistent_clock_exists) {
1463                 /*
1464                  * To avoid drift caused by repeated suspend/resumes,
1465                  * which each can add ~1 second drift error,
1466                  * try to compensate so the difference in system time
1467                  * and persistent_clock time stays close to constant.
1468                  */
1469                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1470                 delta_delta = timespec64_sub(delta, old_delta);
1471                 if (abs(delta_delta.tv_sec) >= 2) {
1472                         /*
1473                          * if delta_delta is too large, assume time correction
1474                          * has occurred and set old_delta to the current delta.
1475                          */
1476                         old_delta = delta;
1477                 } else {
1478                         /* Otherwise try to adjust old_system to compensate */
1479                         timekeeping_suspend_time =
1480                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1481                 }
1482         }
1483
1484         timekeeping_update(tk, TK_MIRROR);
1485         halt_fast_timekeeper(tk);
1486         write_seqcount_end(&tk_core.seq);
1487         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1488
1489         tick_suspend();
1490         clocksource_suspend();
1491         clockevents_suspend();
1492
1493         return 0;
1494 }
1495
1496 /* sysfs resume/suspend bits for timekeeping */
1497 static struct syscore_ops timekeeping_syscore_ops = {
1498         .resume         = timekeeping_resume,
1499         .suspend        = timekeeping_suspend,
1500 };
1501
1502 static int __init timekeeping_init_ops(void)
1503 {
1504         register_syscore_ops(&timekeeping_syscore_ops);
1505         return 0;
1506 }
1507 device_initcall(timekeeping_init_ops);
1508
1509 /*
1510  * Apply a multiplier adjustment to the timekeeper
1511  */
1512 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1513                                                          s64 offset,
1514                                                          bool negative,
1515                                                          int adj_scale)
1516 {
1517         s64 interval = tk->cycle_interval;
1518         s32 mult_adj = 1;
1519
1520         if (negative) {
1521                 mult_adj = -mult_adj;
1522                 interval = -interval;
1523                 offset  = -offset;
1524         }
1525         mult_adj <<= adj_scale;
1526         interval <<= adj_scale;
1527         offset <<= adj_scale;
1528
1529         /*
1530          * So the following can be confusing.
1531          *
1532          * To keep things simple, lets assume mult_adj == 1 for now.
1533          *
1534          * When mult_adj != 1, remember that the interval and offset values
1535          * have been appropriately scaled so the math is the same.
1536          *
1537          * The basic idea here is that we're increasing the multiplier
1538          * by one, this causes the xtime_interval to be incremented by
1539          * one cycle_interval. This is because:
1540          *      xtime_interval = cycle_interval * mult
1541          * So if mult is being incremented by one:
1542          *      xtime_interval = cycle_interval * (mult + 1)
1543          * Its the same as:
1544          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1545          * Which can be shortened to:
1546          *      xtime_interval += cycle_interval
1547          *
1548          * So offset stores the non-accumulated cycles. Thus the current
1549          * time (in shifted nanoseconds) is:
1550          *      now = (offset * adj) + xtime_nsec
1551          * Now, even though we're adjusting the clock frequency, we have
1552          * to keep time consistent. In other words, we can't jump back
1553          * in time, and we also want to avoid jumping forward in time.
1554          *
1555          * So given the same offset value, we need the time to be the same
1556          * both before and after the freq adjustment.
1557          *      now = (offset * adj_1) + xtime_nsec_1
1558          *      now = (offset * adj_2) + xtime_nsec_2
1559          * So:
1560          *      (offset * adj_1) + xtime_nsec_1 =
1561          *              (offset * adj_2) + xtime_nsec_2
1562          * And we know:
1563          *      adj_2 = adj_1 + 1
1564          * So:
1565          *      (offset * adj_1) + xtime_nsec_1 =
1566          *              (offset * (adj_1+1)) + xtime_nsec_2
1567          *      (offset * adj_1) + xtime_nsec_1 =
1568          *              (offset * adj_1) + offset + xtime_nsec_2
1569          * Canceling the sides:
1570          *      xtime_nsec_1 = offset + xtime_nsec_2
1571          * Which gives us:
1572          *      xtime_nsec_2 = xtime_nsec_1 - offset
1573          * Which simplfies to:
1574          *      xtime_nsec -= offset
1575          *
1576          * XXX - TODO: Doc ntp_error calculation.
1577          */
1578         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1579                 /* NTP adjustment caused clocksource mult overflow */
1580                 WARN_ON_ONCE(1);
1581                 return;
1582         }
1583
1584         tk->tkr_mono.mult += mult_adj;
1585         tk->xtime_interval += interval;
1586         tk->tkr_mono.xtime_nsec -= offset;
1587         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1588 }
1589
1590 /*
1591  * Calculate the multiplier adjustment needed to match the frequency
1592  * specified by NTP
1593  */
1594 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1595                                                         s64 offset)
1596 {
1597         s64 interval = tk->cycle_interval;
1598         s64 xinterval = tk->xtime_interval;
1599         s64 tick_error;
1600         bool negative;
1601         u32 adj;
1602
1603         /* Remove any current error adj from freq calculation */
1604         if (tk->ntp_err_mult)
1605                 xinterval -= tk->cycle_interval;
1606
1607         tk->ntp_tick = ntp_tick_length();
1608
1609         /* Calculate current error per tick */
1610         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1611         tick_error -= (xinterval + tk->xtime_remainder);
1612
1613         /* Don't worry about correcting it if its small */
1614         if (likely((tick_error >= 0) && (tick_error <= interval)))
1615                 return;
1616
1617         /* preserve the direction of correction */
1618         negative = (tick_error < 0);
1619
1620         /* Sort out the magnitude of the correction */
1621         tick_error = abs(tick_error);
1622         for (adj = 0; tick_error > interval; adj++)
1623                 tick_error >>= 1;
1624
1625         /* scale the corrections */
1626         timekeeping_apply_adjustment(tk, offset, negative, adj);
1627 }
1628
1629 /*
1630  * Adjust the timekeeper's multiplier to the correct frequency
1631  * and also to reduce the accumulated error value.
1632  */
1633 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1634 {
1635         /* Correct for the current frequency error */
1636         timekeeping_freqadjust(tk, offset);
1637
1638         /* Next make a small adjustment to fix any cumulative error */
1639         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1640                 tk->ntp_err_mult = 1;
1641                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1642         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1643                 /* Undo any existing error adjustment */
1644                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1645                 tk->ntp_err_mult = 0;
1646         }
1647
1648         if (unlikely(tk->tkr_mono.clock->maxadj &&
1649                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1650                         > tk->tkr_mono.clock->maxadj))) {
1651                 printk_once(KERN_WARNING
1652                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1653                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1654                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1655         }
1656
1657         /*
1658          * It may be possible that when we entered this function, xtime_nsec
1659          * was very small.  Further, if we're slightly speeding the clocksource
1660          * in the code above, its possible the required corrective factor to
1661          * xtime_nsec could cause it to underflow.
1662          *
1663          * Now, since we already accumulated the second, cannot simply roll
1664          * the accumulated second back, since the NTP subsystem has been
1665          * notified via second_overflow. So instead we push xtime_nsec forward
1666          * by the amount we underflowed, and add that amount into the error.
1667          *
1668          * We'll correct this error next time through this function, when
1669          * xtime_nsec is not as small.
1670          */
1671         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1672                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1673                 tk->tkr_mono.xtime_nsec = 0;
1674                 tk->ntp_error += neg << tk->ntp_error_shift;
1675         }
1676 }
1677
1678 /**
1679  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1680  *
1681  * Helper function that accumulates a the nsecs greater then a second
1682  * from the xtime_nsec field to the xtime_secs field.
1683  * It also calls into the NTP code to handle leapsecond processing.
1684  *
1685  */
1686 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1687 {
1688         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1689         unsigned int clock_set = 0;
1690
1691         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1692                 int leap;
1693
1694                 tk->tkr_mono.xtime_nsec -= nsecps;
1695                 tk->xtime_sec++;
1696
1697                 /* Figure out if its a leap sec and apply if needed */
1698                 leap = second_overflow(tk->xtime_sec);
1699                 if (unlikely(leap)) {
1700                         struct timespec64 ts;
1701
1702                         tk->xtime_sec += leap;
1703
1704                         ts.tv_sec = leap;
1705                         ts.tv_nsec = 0;
1706                         tk_set_wall_to_mono(tk,
1707                                 timespec64_sub(tk->wall_to_monotonic, ts));
1708
1709                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1710
1711                         clock_set = TK_CLOCK_WAS_SET;
1712                 }
1713         }
1714         return clock_set;
1715 }
1716
1717 /**
1718  * logarithmic_accumulation - shifted accumulation of cycles
1719  *
1720  * This functions accumulates a shifted interval of cycles into
1721  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1722  * loop.
1723  *
1724  * Returns the unconsumed cycles.
1725  */
1726 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1727                                                 u32 shift,
1728                                                 unsigned int *clock_set)
1729 {
1730         cycle_t interval = tk->cycle_interval << shift;
1731         u64 raw_nsecs;
1732
1733         /* If the offset is smaller then a shifted interval, do nothing */
1734         if (offset < interval)
1735                 return offset;
1736
1737         /* Accumulate one shifted interval */
1738         offset -= interval;
1739         tk->tkr_mono.cycle_last += interval;
1740         tk->tkr_raw.cycle_last  += interval;
1741
1742         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1743         *clock_set |= accumulate_nsecs_to_secs(tk);
1744
1745         /* Accumulate raw time */
1746         raw_nsecs = (u64)tk->raw_interval << shift;
1747         raw_nsecs += tk->raw_time.tv_nsec;
1748         if (raw_nsecs >= NSEC_PER_SEC) {
1749                 u64 raw_secs = raw_nsecs;
1750                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1751                 tk->raw_time.tv_sec += raw_secs;
1752         }
1753         tk->raw_time.tv_nsec = raw_nsecs;
1754
1755         /* Accumulate error between NTP and clock interval */
1756         tk->ntp_error += tk->ntp_tick << shift;
1757         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1758                                                 (tk->ntp_error_shift + shift);
1759
1760         return offset;
1761 }
1762
1763 /**
1764  * update_wall_time - Uses the current clocksource to increment the wall time
1765  *
1766  */
1767 void update_wall_time(void)
1768 {
1769         struct timekeeper *real_tk = &tk_core.timekeeper;
1770         struct timekeeper *tk = &shadow_timekeeper;
1771         cycle_t offset;
1772         int shift = 0, maxshift;
1773         unsigned int clock_set = 0;
1774         unsigned long flags;
1775
1776         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1777
1778         /* Make sure we're fully resumed: */
1779         if (unlikely(timekeeping_suspended))
1780                 goto out;
1781
1782 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1783         offset = real_tk->cycle_interval;
1784 #else
1785         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1786                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1787 #endif
1788
1789         /* Check if there's really nothing to do */
1790         if (offset < real_tk->cycle_interval)
1791                 goto out;
1792
1793         /* Do some additional sanity checking */
1794         timekeeping_check_update(real_tk, offset);
1795
1796         /*
1797          * With NO_HZ we may have to accumulate many cycle_intervals
1798          * (think "ticks") worth of time at once. To do this efficiently,
1799          * we calculate the largest doubling multiple of cycle_intervals
1800          * that is smaller than the offset.  We then accumulate that
1801          * chunk in one go, and then try to consume the next smaller
1802          * doubled multiple.
1803          */
1804         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1805         shift = max(0, shift);
1806         /* Bound shift to one less than what overflows tick_length */
1807         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1808         shift = min(shift, maxshift);
1809         while (offset >= tk->cycle_interval) {
1810                 offset = logarithmic_accumulation(tk, offset, shift,
1811                                                         &clock_set);
1812                 if (offset < tk->cycle_interval<<shift)
1813                         shift--;
1814         }
1815
1816         /* correct the clock when NTP error is too big */
1817         timekeeping_adjust(tk, offset);
1818
1819         /*
1820          * XXX This can be killed once everyone converts
1821          * to the new update_vsyscall.
1822          */
1823         old_vsyscall_fixup(tk);
1824
1825         /*
1826          * Finally, make sure that after the rounding
1827          * xtime_nsec isn't larger than NSEC_PER_SEC
1828          */
1829         clock_set |= accumulate_nsecs_to_secs(tk);
1830
1831         write_seqcount_begin(&tk_core.seq);
1832         /*
1833          * Update the real timekeeper.
1834          *
1835          * We could avoid this memcpy by switching pointers, but that
1836          * requires changes to all other timekeeper usage sites as
1837          * well, i.e. move the timekeeper pointer getter into the
1838          * spinlocked/seqcount protected sections. And we trade this
1839          * memcpy under the tk_core.seq against one before we start
1840          * updating.
1841          */
1842         memcpy(real_tk, tk, sizeof(*tk));
1843         timekeeping_update(real_tk, clock_set);
1844         write_seqcount_end(&tk_core.seq);
1845 out:
1846         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1847         if (clock_set)
1848                 /* Have to call _delayed version, since in irq context*/
1849                 clock_was_set_delayed();
1850 }
1851
1852 /**
1853  * getboottime64 - Return the real time of system boot.
1854  * @ts:         pointer to the timespec64 to be set
1855  *
1856  * Returns the wall-time of boot in a timespec64.
1857  *
1858  * This is based on the wall_to_monotonic offset and the total suspend
1859  * time. Calls to settimeofday will affect the value returned (which
1860  * basically means that however wrong your real time clock is at boot time,
1861  * you get the right time here).
1862  */
1863 void getboottime64(struct timespec64 *ts)
1864 {
1865         struct timekeeper *tk = &tk_core.timekeeper;
1866         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1867
1868         *ts = ktime_to_timespec64(t);
1869 }
1870 EXPORT_SYMBOL_GPL(getboottime64);
1871
1872 unsigned long get_seconds(void)
1873 {
1874         struct timekeeper *tk = &tk_core.timekeeper;
1875
1876         return tk->xtime_sec;
1877 }
1878 EXPORT_SYMBOL(get_seconds);
1879
1880 struct timespec __current_kernel_time(void)
1881 {
1882         struct timekeeper *tk = &tk_core.timekeeper;
1883
1884         return timespec64_to_timespec(tk_xtime(tk));
1885 }
1886
1887 struct timespec current_kernel_time(void)
1888 {
1889         struct timekeeper *tk = &tk_core.timekeeper;
1890         struct timespec64 now;
1891         unsigned long seq;
1892
1893         do {
1894                 seq = read_seqcount_begin(&tk_core.seq);
1895
1896                 now = tk_xtime(tk);
1897         } while (read_seqcount_retry(&tk_core.seq, seq));
1898
1899         return timespec64_to_timespec(now);
1900 }
1901 EXPORT_SYMBOL(current_kernel_time);
1902
1903 struct timespec64 get_monotonic_coarse64(void)
1904 {
1905         struct timekeeper *tk = &tk_core.timekeeper;
1906         struct timespec64 now, mono;
1907         unsigned long seq;
1908
1909         do {
1910                 seq = read_seqcount_begin(&tk_core.seq);
1911
1912                 now = tk_xtime(tk);
1913                 mono = tk->wall_to_monotonic;
1914         } while (read_seqcount_retry(&tk_core.seq, seq));
1915
1916         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1917                                 now.tv_nsec + mono.tv_nsec);
1918
1919         return now;
1920 }
1921
1922 /*
1923  * Must hold jiffies_lock
1924  */
1925 void do_timer(unsigned long ticks)
1926 {
1927         jiffies_64 += ticks;
1928         calc_global_load(ticks);
1929 }
1930
1931 /**
1932  * ktime_get_update_offsets_now - hrtimer helper
1933  * @cwsseq:     pointer to check and store the clock was set sequence number
1934  * @offs_real:  pointer to storage for monotonic -> realtime offset
1935  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1936  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1937  *
1938  * Returns current monotonic time and updates the offsets if the
1939  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1940  * different.
1941  *
1942  * Called from hrtimer_interrupt() or retrigger_next_event()
1943  */
1944 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1945                                      ktime_t *offs_boot, ktime_t *offs_tai)
1946 {
1947         struct timekeeper *tk = &tk_core.timekeeper;
1948         unsigned int seq;
1949         ktime_t base;
1950         u64 nsecs;
1951
1952         do {
1953                 seq = read_seqcount_begin(&tk_core.seq);
1954
1955                 base = tk->tkr_mono.base;
1956                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1957                 if (*cwsseq != tk->clock_was_set_seq) {
1958                         *cwsseq = tk->clock_was_set_seq;
1959                         *offs_real = tk->offs_real;
1960                         *offs_boot = tk->offs_boot;
1961                         *offs_tai = tk->offs_tai;
1962                 }
1963         } while (read_seqcount_retry(&tk_core.seq, seq));
1964
1965         return ktime_add_ns(base, nsecs);
1966 }
1967
1968 /**
1969  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1970  */
1971 int do_adjtimex(struct timex *txc)
1972 {
1973         struct timekeeper *tk = &tk_core.timekeeper;
1974         unsigned long flags;
1975         struct timespec64 ts;
1976         s32 orig_tai, tai;
1977         int ret;
1978
1979         /* Validate the data before disabling interrupts */
1980         ret = ntp_validate_timex(txc);
1981         if (ret)
1982                 return ret;
1983
1984         if (txc->modes & ADJ_SETOFFSET) {
1985                 struct timespec delta;
1986                 delta.tv_sec  = txc->time.tv_sec;
1987                 delta.tv_nsec = txc->time.tv_usec;
1988                 if (!(txc->modes & ADJ_NANO))
1989                         delta.tv_nsec *= 1000;
1990                 ret = timekeeping_inject_offset(&delta);
1991                 if (ret)
1992                         return ret;
1993         }
1994
1995         getnstimeofday64(&ts);
1996
1997         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1998         write_seqcount_begin(&tk_core.seq);
1999
2000         orig_tai = tai = tk->tai_offset;
2001         ret = __do_adjtimex(txc, &ts, &tai);
2002
2003         if (tai != orig_tai) {
2004                 __timekeeping_set_tai_offset(tk, tai);
2005                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2006         }
2007         write_seqcount_end(&tk_core.seq);
2008         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2009
2010         if (tai != orig_tai)
2011                 clock_was_set();
2012
2013         ntp_notify_cmos_timer();
2014
2015         return ret;
2016 }
2017
2018 #ifdef CONFIG_NTP_PPS
2019 /**
2020  * hardpps() - Accessor function to NTP __hardpps function
2021  */
2022 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2023 {
2024         unsigned long flags;
2025
2026         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2027         write_seqcount_begin(&tk_core.seq);
2028
2029         __hardpps(phase_ts, raw_ts);
2030
2031         write_seqcount_end(&tk_core.seq);
2032         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2033 }
2034 EXPORT_SYMBOL(hardpps);
2035 #endif
2036
2037 /**
2038  * xtime_update() - advances the timekeeping infrastructure
2039  * @ticks:      number of ticks, that have elapsed since the last call.
2040  *
2041  * Must be called with interrupts disabled.
2042  */
2043 void xtime_update(unsigned long ticks)
2044 {
2045         write_seqlock(&jiffies_lock);
2046         do_timer(ticks);
2047         write_sequnlock(&jiffies_lock);
2048         update_wall_time();
2049 }