OSDN Git Service

Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[uclinux-h8/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         old_clock = tk->tkr_mono.clock;
237         tk->tkr_mono.clock = clock;
238         tk->tkr_mono.read = clock->read;
239         tk->tkr_mono.mask = clock->mask;
240         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242         tk->tkr_raw.clock = clock;
243         tk->tkr_raw.read = clock->read;
244         tk->tkr_raw.mask = clock->mask;
245         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247         /* Do the ns -> cycle conversion first, using original mult */
248         tmp = NTP_INTERVAL_LENGTH;
249         tmp <<= clock->shift;
250         ntpinterval = tmp;
251         tmp += clock->mult/2;
252         do_div(tmp, clock->mult);
253         if (tmp == 0)
254                 tmp = 1;
255
256         interval = (cycle_t) tmp;
257         tk->cycle_interval = interval;
258
259         /* Go back from cycles -> shifted ns */
260         tk->xtime_interval = (u64) interval * clock->mult;
261         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262         tk->raw_interval =
263                 ((u64) interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303         cycle_t delta;
304         s64 nsec;
305
306         delta = timekeeping_get_delta(tkr);
307
308         nsec = delta * tkr->mult + tkr->xtime_nsec;
309         nsec >>= tkr->shift;
310
311         /* If arch requires, add in get_arch_timeoffset() */
312         return nsec + arch_gettimeoffset();
313 }
314
315 /**
316  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317  * @tkr: Timekeeping readout base from which we take the update
318  *
319  * We want to use this from any context including NMI and tracing /
320  * instrumenting the timekeeping code itself.
321  *
322  * Employ the latch technique; see @raw_write_seqcount_latch.
323  *
324  * So if a NMI hits the update of base[0] then it will use base[1]
325  * which is still consistent. In the worst case this can result is a
326  * slightly wrong timestamp (a few nanoseconds). See
327  * @ktime_get_mono_fast_ns.
328  */
329 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
330 {
331         struct tk_read_base *base = tkf->base;
332
333         /* Force readers off to base[1] */
334         raw_write_seqcount_latch(&tkf->seq);
335
336         /* Update base[0] */
337         memcpy(base, tkr, sizeof(*base));
338
339         /* Force readers back to base[0] */
340         raw_write_seqcount_latch(&tkf->seq);
341
342         /* Update base[1] */
343         memcpy(base + 1, base, sizeof(*base));
344 }
345
346 /**
347  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
348  *
349  * This timestamp is not guaranteed to be monotonic across an update.
350  * The timestamp is calculated by:
351  *
352  *      now = base_mono + clock_delta * slope
353  *
354  * So if the update lowers the slope, readers who are forced to the
355  * not yet updated second array are still using the old steeper slope.
356  *
357  * tmono
358  * ^
359  * |    o  n
360  * |   o n
361  * |  u
362  * | o
363  * |o
364  * |12345678---> reader order
365  *
366  * o = old slope
367  * u = update
368  * n = new slope
369  *
370  * So reader 6 will observe time going backwards versus reader 5.
371  *
372  * While other CPUs are likely to be able observe that, the only way
373  * for a CPU local observation is when an NMI hits in the middle of
374  * the update. Timestamps taken from that NMI context might be ahead
375  * of the following timestamps. Callers need to be aware of that and
376  * deal with it.
377  */
378 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
379 {
380         struct tk_read_base *tkr;
381         unsigned int seq;
382         u64 now;
383
384         do {
385                 seq = raw_read_seqcount_latch(&tkf->seq);
386                 tkr = tkf->base + (seq & 0x01);
387                 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
388         } while (read_seqcount_retry(&tkf->seq, seq));
389
390         return now;
391 }
392
393 u64 ktime_get_mono_fast_ns(void)
394 {
395         return __ktime_get_fast_ns(&tk_fast_mono);
396 }
397 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
398
399 u64 ktime_get_raw_fast_ns(void)
400 {
401         return __ktime_get_fast_ns(&tk_fast_raw);
402 }
403 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
404
405 /* Suspend-time cycles value for halted fast timekeeper. */
406 static cycle_t cycles_at_suspend;
407
408 static cycle_t dummy_clock_read(struct clocksource *cs)
409 {
410         return cycles_at_suspend;
411 }
412
413 /**
414  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
415  * @tk: Timekeeper to snapshot.
416  *
417  * It generally is unsafe to access the clocksource after timekeeping has been
418  * suspended, so take a snapshot of the readout base of @tk and use it as the
419  * fast timekeeper's readout base while suspended.  It will return the same
420  * number of cycles every time until timekeeping is resumed at which time the
421  * proper readout base for the fast timekeeper will be restored automatically.
422  */
423 static void halt_fast_timekeeper(struct timekeeper *tk)
424 {
425         static struct tk_read_base tkr_dummy;
426         struct tk_read_base *tkr = &tk->tkr_mono;
427
428         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
429         cycles_at_suspend = tkr->read(tkr->clock);
430         tkr_dummy.read = dummy_clock_read;
431         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
432
433         tkr = &tk->tkr_raw;
434         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
435         tkr_dummy.read = dummy_clock_read;
436         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
437 }
438
439 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
440
441 static inline void update_vsyscall(struct timekeeper *tk)
442 {
443         struct timespec xt, wm;
444
445         xt = timespec64_to_timespec(tk_xtime(tk));
446         wm = timespec64_to_timespec(tk->wall_to_monotonic);
447         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
448                             tk->tkr_mono.cycle_last);
449 }
450
451 static inline void old_vsyscall_fixup(struct timekeeper *tk)
452 {
453         s64 remainder;
454
455         /*
456         * Store only full nanoseconds into xtime_nsec after rounding
457         * it up and add the remainder to the error difference.
458         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
459         * by truncating the remainder in vsyscalls. However, it causes
460         * additional work to be done in timekeeping_adjust(). Once
461         * the vsyscall implementations are converted to use xtime_nsec
462         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
463         * users are removed, this can be killed.
464         */
465         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
466         tk->tkr_mono.xtime_nsec -= remainder;
467         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
468         tk->ntp_error += remainder << tk->ntp_error_shift;
469         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
470 }
471 #else
472 #define old_vsyscall_fixup(tk)
473 #endif
474
475 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
476
477 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
478 {
479         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
480 }
481
482 /**
483  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
484  */
485 int pvclock_gtod_register_notifier(struct notifier_block *nb)
486 {
487         struct timekeeper *tk = &tk_core.timekeeper;
488         unsigned long flags;
489         int ret;
490
491         raw_spin_lock_irqsave(&timekeeper_lock, flags);
492         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
493         update_pvclock_gtod(tk, true);
494         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
495
496         return ret;
497 }
498 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
499
500 /**
501  * pvclock_gtod_unregister_notifier - unregister a pvclock
502  * timedata update listener
503  */
504 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
505 {
506         unsigned long flags;
507         int ret;
508
509         raw_spin_lock_irqsave(&timekeeper_lock, flags);
510         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
511         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
512
513         return ret;
514 }
515 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
516
517 /*
518  * tk_update_leap_state - helper to update the next_leap_ktime
519  */
520 static inline void tk_update_leap_state(struct timekeeper *tk)
521 {
522         tk->next_leap_ktime = ntp_get_next_leap();
523         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
524                 /* Convert to monotonic time */
525                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
526 }
527
528 /*
529  * Update the ktime_t based scalar nsec members of the timekeeper
530  */
531 static inline void tk_update_ktime_data(struct timekeeper *tk)
532 {
533         u64 seconds;
534         u32 nsec;
535
536         /*
537          * The xtime based monotonic readout is:
538          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
539          * The ktime based monotonic readout is:
540          *      nsec = base_mono + now();
541          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
542          */
543         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
544         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
545         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
546
547         /* Update the monotonic raw base */
548         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
549
550         /*
551          * The sum of the nanoseconds portions of xtime and
552          * wall_to_monotonic can be greater/equal one second. Take
553          * this into account before updating tk->ktime_sec.
554          */
555         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
556         if (nsec >= NSEC_PER_SEC)
557                 seconds++;
558         tk->ktime_sec = seconds;
559 }
560
561 /* must hold timekeeper_lock */
562 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
563 {
564         if (action & TK_CLEAR_NTP) {
565                 tk->ntp_error = 0;
566                 ntp_clear();
567         }
568
569         tk_update_leap_state(tk);
570         tk_update_ktime_data(tk);
571
572         update_vsyscall(tk);
573         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
574
575         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
576         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
577
578         if (action & TK_CLOCK_WAS_SET)
579                 tk->clock_was_set_seq++;
580         /*
581          * The mirroring of the data to the shadow-timekeeper needs
582          * to happen last here to ensure we don't over-write the
583          * timekeeper structure on the next update with stale data
584          */
585         if (action & TK_MIRROR)
586                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
587                        sizeof(tk_core.timekeeper));
588 }
589
590 /**
591  * timekeeping_forward_now - update clock to the current time
592  *
593  * Forward the current clock to update its state since the last call to
594  * update_wall_time(). This is useful before significant clock changes,
595  * as it avoids having to deal with this time offset explicitly.
596  */
597 static void timekeeping_forward_now(struct timekeeper *tk)
598 {
599         struct clocksource *clock = tk->tkr_mono.clock;
600         cycle_t cycle_now, delta;
601         s64 nsec;
602
603         cycle_now = tk->tkr_mono.read(clock);
604         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
605         tk->tkr_mono.cycle_last = cycle_now;
606         tk->tkr_raw.cycle_last  = cycle_now;
607
608         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
609
610         /* If arch requires, add in get_arch_timeoffset() */
611         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
612
613         tk_normalize_xtime(tk);
614
615         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
616         timespec64_add_ns(&tk->raw_time, nsec);
617 }
618
619 /**
620  * __getnstimeofday64 - Returns the time of day in a timespec64.
621  * @ts:         pointer to the timespec to be set
622  *
623  * Updates the time of day in the timespec.
624  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
625  */
626 int __getnstimeofday64(struct timespec64 *ts)
627 {
628         struct timekeeper *tk = &tk_core.timekeeper;
629         unsigned long seq;
630         s64 nsecs = 0;
631
632         do {
633                 seq = read_seqcount_begin(&tk_core.seq);
634
635                 ts->tv_sec = tk->xtime_sec;
636                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
637
638         } while (read_seqcount_retry(&tk_core.seq, seq));
639
640         ts->tv_nsec = 0;
641         timespec64_add_ns(ts, nsecs);
642
643         /*
644          * Do not bail out early, in case there were callers still using
645          * the value, even in the face of the WARN_ON.
646          */
647         if (unlikely(timekeeping_suspended))
648                 return -EAGAIN;
649         return 0;
650 }
651 EXPORT_SYMBOL(__getnstimeofday64);
652
653 /**
654  * getnstimeofday64 - Returns the time of day in a timespec64.
655  * @ts:         pointer to the timespec64 to be set
656  *
657  * Returns the time of day in a timespec64 (WARN if suspended).
658  */
659 void getnstimeofday64(struct timespec64 *ts)
660 {
661         WARN_ON(__getnstimeofday64(ts));
662 }
663 EXPORT_SYMBOL(getnstimeofday64);
664
665 ktime_t ktime_get(void)
666 {
667         struct timekeeper *tk = &tk_core.timekeeper;
668         unsigned int seq;
669         ktime_t base;
670         s64 nsecs;
671
672         WARN_ON(timekeeping_suspended);
673
674         do {
675                 seq = read_seqcount_begin(&tk_core.seq);
676                 base = tk->tkr_mono.base;
677                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
678
679         } while (read_seqcount_retry(&tk_core.seq, seq));
680
681         return ktime_add_ns(base, nsecs);
682 }
683 EXPORT_SYMBOL_GPL(ktime_get);
684
685 u32 ktime_get_resolution_ns(void)
686 {
687         struct timekeeper *tk = &tk_core.timekeeper;
688         unsigned int seq;
689         u32 nsecs;
690
691         WARN_ON(timekeeping_suspended);
692
693         do {
694                 seq = read_seqcount_begin(&tk_core.seq);
695                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
696         } while (read_seqcount_retry(&tk_core.seq, seq));
697
698         return nsecs;
699 }
700 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
701
702 static ktime_t *offsets[TK_OFFS_MAX] = {
703         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
704         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
705         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
706 };
707
708 ktime_t ktime_get_with_offset(enum tk_offsets offs)
709 {
710         struct timekeeper *tk = &tk_core.timekeeper;
711         unsigned int seq;
712         ktime_t base, *offset = offsets[offs];
713         s64 nsecs;
714
715         WARN_ON(timekeeping_suspended);
716
717         do {
718                 seq = read_seqcount_begin(&tk_core.seq);
719                 base = ktime_add(tk->tkr_mono.base, *offset);
720                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
721
722         } while (read_seqcount_retry(&tk_core.seq, seq));
723
724         return ktime_add_ns(base, nsecs);
725
726 }
727 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
728
729 /**
730  * ktime_mono_to_any() - convert mononotic time to any other time
731  * @tmono:      time to convert.
732  * @offs:       which offset to use
733  */
734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
735 {
736         ktime_t *offset = offsets[offs];
737         unsigned long seq;
738         ktime_t tconv;
739
740         do {
741                 seq = read_seqcount_begin(&tk_core.seq);
742                 tconv = ktime_add(tmono, *offset);
743         } while (read_seqcount_retry(&tk_core.seq, seq));
744
745         return tconv;
746 }
747 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
748
749 /**
750  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751  */
752 ktime_t ktime_get_raw(void)
753 {
754         struct timekeeper *tk = &tk_core.timekeeper;
755         unsigned int seq;
756         ktime_t base;
757         s64 nsecs;
758
759         do {
760                 seq = read_seqcount_begin(&tk_core.seq);
761                 base = tk->tkr_raw.base;
762                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
763
764         } while (read_seqcount_retry(&tk_core.seq, seq));
765
766         return ktime_add_ns(base, nsecs);
767 }
768 EXPORT_SYMBOL_GPL(ktime_get_raw);
769
770 /**
771  * ktime_get_ts64 - get the monotonic clock in timespec64 format
772  * @ts:         pointer to timespec variable
773  *
774  * The function calculates the monotonic clock from the realtime
775  * clock and the wall_to_monotonic offset and stores the result
776  * in normalized timespec64 format in the variable pointed to by @ts.
777  */
778 void ktime_get_ts64(struct timespec64 *ts)
779 {
780         struct timekeeper *tk = &tk_core.timekeeper;
781         struct timespec64 tomono;
782         s64 nsec;
783         unsigned int seq;
784
785         WARN_ON(timekeeping_suspended);
786
787         do {
788                 seq = read_seqcount_begin(&tk_core.seq);
789                 ts->tv_sec = tk->xtime_sec;
790                 nsec = timekeeping_get_ns(&tk->tkr_mono);
791                 tomono = tk->wall_to_monotonic;
792
793         } while (read_seqcount_retry(&tk_core.seq, seq));
794
795         ts->tv_sec += tomono.tv_sec;
796         ts->tv_nsec = 0;
797         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
798 }
799 EXPORT_SYMBOL_GPL(ktime_get_ts64);
800
801 /**
802  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803  *
804  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806  * works on both 32 and 64 bit systems. On 32 bit systems the readout
807  * covers ~136 years of uptime which should be enough to prevent
808  * premature wrap arounds.
809  */
810 time64_t ktime_get_seconds(void)
811 {
812         struct timekeeper *tk = &tk_core.timekeeper;
813
814         WARN_ON(timekeeping_suspended);
815         return tk->ktime_sec;
816 }
817 EXPORT_SYMBOL_GPL(ktime_get_seconds);
818
819 /**
820  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821  *
822  * Returns the wall clock seconds since 1970. This replaces the
823  * get_seconds() interface which is not y2038 safe on 32bit systems.
824  *
825  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826  * 32bit systems the access must be protected with the sequence
827  * counter to provide "atomic" access to the 64bit tk->xtime_sec
828  * value.
829  */
830 time64_t ktime_get_real_seconds(void)
831 {
832         struct timekeeper *tk = &tk_core.timekeeper;
833         time64_t seconds;
834         unsigned int seq;
835
836         if (IS_ENABLED(CONFIG_64BIT))
837                 return tk->xtime_sec;
838
839         do {
840                 seq = read_seqcount_begin(&tk_core.seq);
841                 seconds = tk->xtime_sec;
842
843         } while (read_seqcount_retry(&tk_core.seq, seq));
844
845         return seconds;
846 }
847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
848
849 #ifdef CONFIG_NTP_PPS
850
851 /**
852  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
854  * @ts_real:    pointer to the timespec to be set to the time of day
855  *
856  * This function reads both the time of day and raw monotonic time at the
857  * same time atomically and stores the resulting timestamps in timespec
858  * format.
859  */
860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
861 {
862         struct timekeeper *tk = &tk_core.timekeeper;
863         unsigned long seq;
864         s64 nsecs_raw, nsecs_real;
865
866         WARN_ON_ONCE(timekeeping_suspended);
867
868         do {
869                 seq = read_seqcount_begin(&tk_core.seq);
870
871                 *ts_raw = timespec64_to_timespec(tk->raw_time);
872                 ts_real->tv_sec = tk->xtime_sec;
873                 ts_real->tv_nsec = 0;
874
875                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
876                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
877
878         } while (read_seqcount_retry(&tk_core.seq, seq));
879
880         timespec_add_ns(ts_raw, nsecs_raw);
881         timespec_add_ns(ts_real, nsecs_real);
882 }
883 EXPORT_SYMBOL(getnstime_raw_and_real);
884
885 #endif /* CONFIG_NTP_PPS */
886
887 /**
888  * do_gettimeofday - Returns the time of day in a timeval
889  * @tv:         pointer to the timeval to be set
890  *
891  * NOTE: Users should be converted to using getnstimeofday()
892  */
893 void do_gettimeofday(struct timeval *tv)
894 {
895         struct timespec64 now;
896
897         getnstimeofday64(&now);
898         tv->tv_sec = now.tv_sec;
899         tv->tv_usec = now.tv_nsec/1000;
900 }
901 EXPORT_SYMBOL(do_gettimeofday);
902
903 /**
904  * do_settimeofday64 - Sets the time of day.
905  * @ts:     pointer to the timespec64 variable containing the new time
906  *
907  * Sets the time of day to the new time and update NTP and notify hrtimers
908  */
909 int do_settimeofday64(const struct timespec64 *ts)
910 {
911         struct timekeeper *tk = &tk_core.timekeeper;
912         struct timespec64 ts_delta, xt;
913         unsigned long flags;
914
915         if (!timespec64_valid_strict(ts))
916                 return -EINVAL;
917
918         raw_spin_lock_irqsave(&timekeeper_lock, flags);
919         write_seqcount_begin(&tk_core.seq);
920
921         timekeeping_forward_now(tk);
922
923         xt = tk_xtime(tk);
924         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
925         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
926
927         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
928
929         tk_set_xtime(tk, ts);
930
931         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
932
933         write_seqcount_end(&tk_core.seq);
934         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
935
936         /* signal hrtimers about time change */
937         clock_was_set();
938
939         return 0;
940 }
941 EXPORT_SYMBOL(do_settimeofday64);
942
943 /**
944  * timekeeping_inject_offset - Adds or subtracts from the current time.
945  * @tv:         pointer to the timespec variable containing the offset
946  *
947  * Adds or subtracts an offset value from the current time.
948  */
949 int timekeeping_inject_offset(struct timespec *ts)
950 {
951         struct timekeeper *tk = &tk_core.timekeeper;
952         unsigned long flags;
953         struct timespec64 ts64, tmp;
954         int ret = 0;
955
956         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
957                 return -EINVAL;
958
959         ts64 = timespec_to_timespec64(*ts);
960
961         raw_spin_lock_irqsave(&timekeeper_lock, flags);
962         write_seqcount_begin(&tk_core.seq);
963
964         timekeeping_forward_now(tk);
965
966         /* Make sure the proposed value is valid */
967         tmp = timespec64_add(tk_xtime(tk),  ts64);
968         if (!timespec64_valid_strict(&tmp)) {
969                 ret = -EINVAL;
970                 goto error;
971         }
972
973         tk_xtime_add(tk, &ts64);
974         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
975
976 error: /* even if we error out, we forwarded the time, so call update */
977         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
978
979         write_seqcount_end(&tk_core.seq);
980         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
981
982         /* signal hrtimers about time change */
983         clock_was_set();
984
985         return ret;
986 }
987 EXPORT_SYMBOL(timekeeping_inject_offset);
988
989
990 /**
991  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
992  *
993  */
994 s32 timekeeping_get_tai_offset(void)
995 {
996         struct timekeeper *tk = &tk_core.timekeeper;
997         unsigned int seq;
998         s32 ret;
999
1000         do {
1001                 seq = read_seqcount_begin(&tk_core.seq);
1002                 ret = tk->tai_offset;
1003         } while (read_seqcount_retry(&tk_core.seq, seq));
1004
1005         return ret;
1006 }
1007
1008 /**
1009  * __timekeeping_set_tai_offset - Lock free worker function
1010  *
1011  */
1012 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1013 {
1014         tk->tai_offset = tai_offset;
1015         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1016 }
1017
1018 /**
1019  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1020  *
1021  */
1022 void timekeeping_set_tai_offset(s32 tai_offset)
1023 {
1024         struct timekeeper *tk = &tk_core.timekeeper;
1025         unsigned long flags;
1026
1027         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1028         write_seqcount_begin(&tk_core.seq);
1029         __timekeeping_set_tai_offset(tk, tai_offset);
1030         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1031         write_seqcount_end(&tk_core.seq);
1032         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1033         clock_was_set();
1034 }
1035
1036 /**
1037  * change_clocksource - Swaps clocksources if a new one is available
1038  *
1039  * Accumulates current time interval and initializes new clocksource
1040  */
1041 static int change_clocksource(void *data)
1042 {
1043         struct timekeeper *tk = &tk_core.timekeeper;
1044         struct clocksource *new, *old;
1045         unsigned long flags;
1046
1047         new = (struct clocksource *) data;
1048
1049         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1050         write_seqcount_begin(&tk_core.seq);
1051
1052         timekeeping_forward_now(tk);
1053         /*
1054          * If the cs is in module, get a module reference. Succeeds
1055          * for built-in code (owner == NULL) as well.
1056          */
1057         if (try_module_get(new->owner)) {
1058                 if (!new->enable || new->enable(new) == 0) {
1059                         old = tk->tkr_mono.clock;
1060                         tk_setup_internals(tk, new);
1061                         if (old->disable)
1062                                 old->disable(old);
1063                         module_put(old->owner);
1064                 } else {
1065                         module_put(new->owner);
1066                 }
1067         }
1068         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1069
1070         write_seqcount_end(&tk_core.seq);
1071         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1072
1073         return 0;
1074 }
1075
1076 /**
1077  * timekeeping_notify - Install a new clock source
1078  * @clock:              pointer to the clock source
1079  *
1080  * This function is called from clocksource.c after a new, better clock
1081  * source has been registered. The caller holds the clocksource_mutex.
1082  */
1083 int timekeeping_notify(struct clocksource *clock)
1084 {
1085         struct timekeeper *tk = &tk_core.timekeeper;
1086
1087         if (tk->tkr_mono.clock == clock)
1088                 return 0;
1089         stop_machine(change_clocksource, clock, NULL);
1090         tick_clock_notify();
1091         return tk->tkr_mono.clock == clock ? 0 : -1;
1092 }
1093
1094 /**
1095  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096  * @ts:         pointer to the timespec64 to be set
1097  *
1098  * Returns the raw monotonic time (completely un-modified by ntp)
1099  */
1100 void getrawmonotonic64(struct timespec64 *ts)
1101 {
1102         struct timekeeper *tk = &tk_core.timekeeper;
1103         struct timespec64 ts64;
1104         unsigned long seq;
1105         s64 nsecs;
1106
1107         do {
1108                 seq = read_seqcount_begin(&tk_core.seq);
1109                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1110                 ts64 = tk->raw_time;
1111
1112         } while (read_seqcount_retry(&tk_core.seq, seq));
1113
1114         timespec64_add_ns(&ts64, nsecs);
1115         *ts = ts64;
1116 }
1117 EXPORT_SYMBOL(getrawmonotonic64);
1118
1119
1120 /**
1121  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1122  */
1123 int timekeeping_valid_for_hres(void)
1124 {
1125         struct timekeeper *tk = &tk_core.timekeeper;
1126         unsigned long seq;
1127         int ret;
1128
1129         do {
1130                 seq = read_seqcount_begin(&tk_core.seq);
1131
1132                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1133
1134         } while (read_seqcount_retry(&tk_core.seq, seq));
1135
1136         return ret;
1137 }
1138
1139 /**
1140  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1141  */
1142 u64 timekeeping_max_deferment(void)
1143 {
1144         struct timekeeper *tk = &tk_core.timekeeper;
1145         unsigned long seq;
1146         u64 ret;
1147
1148         do {
1149                 seq = read_seqcount_begin(&tk_core.seq);
1150
1151                 ret = tk->tkr_mono.clock->max_idle_ns;
1152
1153         } while (read_seqcount_retry(&tk_core.seq, seq));
1154
1155         return ret;
1156 }
1157
1158 /**
1159  * read_persistent_clock -  Return time from the persistent clock.
1160  *
1161  * Weak dummy function for arches that do not yet support it.
1162  * Reads the time from the battery backed persistent clock.
1163  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1164  *
1165  *  XXX - Do be sure to remove it once all arches implement it.
1166  */
1167 void __weak read_persistent_clock(struct timespec *ts)
1168 {
1169         ts->tv_sec = 0;
1170         ts->tv_nsec = 0;
1171 }
1172
1173 void __weak read_persistent_clock64(struct timespec64 *ts64)
1174 {
1175         struct timespec ts;
1176
1177         read_persistent_clock(&ts);
1178         *ts64 = timespec_to_timespec64(ts);
1179 }
1180
1181 /**
1182  * read_boot_clock64 -  Return time of the system start.
1183  *
1184  * Weak dummy function for arches that do not yet support it.
1185  * Function to read the exact time the system has been started.
1186  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1187  *
1188  *  XXX - Do be sure to remove it once all arches implement it.
1189  */
1190 void __weak read_boot_clock64(struct timespec64 *ts)
1191 {
1192         ts->tv_sec = 0;
1193         ts->tv_nsec = 0;
1194 }
1195
1196 /* Flag for if timekeeping_resume() has injected sleeptime */
1197 static bool sleeptime_injected;
1198
1199 /* Flag for if there is a persistent clock on this platform */
1200 static bool persistent_clock_exists;
1201
1202 /*
1203  * timekeeping_init - Initializes the clocksource and common timekeeping values
1204  */
1205 void __init timekeeping_init(void)
1206 {
1207         struct timekeeper *tk = &tk_core.timekeeper;
1208         struct clocksource *clock;
1209         unsigned long flags;
1210         struct timespec64 now, boot, tmp;
1211
1212         read_persistent_clock64(&now);
1213         if (!timespec64_valid_strict(&now)) {
1214                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1215                         "         Check your CMOS/BIOS settings.\n");
1216                 now.tv_sec = 0;
1217                 now.tv_nsec = 0;
1218         } else if (now.tv_sec || now.tv_nsec)
1219                 persistent_clock_exists = true;
1220
1221         read_boot_clock64(&boot);
1222         if (!timespec64_valid_strict(&boot)) {
1223                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1224                         "         Check your CMOS/BIOS settings.\n");
1225                 boot.tv_sec = 0;
1226                 boot.tv_nsec = 0;
1227         }
1228
1229         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1230         write_seqcount_begin(&tk_core.seq);
1231         ntp_init();
1232
1233         clock = clocksource_default_clock();
1234         if (clock->enable)
1235                 clock->enable(clock);
1236         tk_setup_internals(tk, clock);
1237
1238         tk_set_xtime(tk, &now);
1239         tk->raw_time.tv_sec = 0;
1240         tk->raw_time.tv_nsec = 0;
1241         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1242                 boot = tk_xtime(tk);
1243
1244         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1245         tk_set_wall_to_mono(tk, tmp);
1246
1247         timekeeping_update(tk, TK_MIRROR);
1248
1249         write_seqcount_end(&tk_core.seq);
1250         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1251 }
1252
1253 /* time in seconds when suspend began for persistent clock */
1254 static struct timespec64 timekeeping_suspend_time;
1255
1256 /**
1257  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1258  * @delta: pointer to a timespec delta value
1259  *
1260  * Takes a timespec offset measuring a suspend interval and properly
1261  * adds the sleep offset to the timekeeping variables.
1262  */
1263 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1264                                            struct timespec64 *delta)
1265 {
1266         if (!timespec64_valid_strict(delta)) {
1267                 printk_deferred(KERN_WARNING
1268                                 "__timekeeping_inject_sleeptime: Invalid "
1269                                 "sleep delta value!\n");
1270                 return;
1271         }
1272         tk_xtime_add(tk, delta);
1273         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1274         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1275         tk_debug_account_sleep_time(delta);
1276 }
1277
1278 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1279 /**
1280  * We have three kinds of time sources to use for sleep time
1281  * injection, the preference order is:
1282  * 1) non-stop clocksource
1283  * 2) persistent clock (ie: RTC accessible when irqs are off)
1284  * 3) RTC
1285  *
1286  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1287  * If system has neither 1) nor 2), 3) will be used finally.
1288  *
1289  *
1290  * If timekeeping has injected sleeptime via either 1) or 2),
1291  * 3) becomes needless, so in this case we don't need to call
1292  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1293  * means.
1294  */
1295 bool timekeeping_rtc_skipresume(void)
1296 {
1297         return sleeptime_injected;
1298 }
1299
1300 /**
1301  * 1) can be determined whether to use or not only when doing
1302  * timekeeping_resume() which is invoked after rtc_suspend(),
1303  * so we can't skip rtc_suspend() surely if system has 1).
1304  *
1305  * But if system has 2), 2) will definitely be used, so in this
1306  * case we don't need to call rtc_suspend(), and this is what
1307  * timekeeping_rtc_skipsuspend() means.
1308  */
1309 bool timekeeping_rtc_skipsuspend(void)
1310 {
1311         return persistent_clock_exists;
1312 }
1313
1314 /**
1315  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1316  * @delta: pointer to a timespec64 delta value
1317  *
1318  * This hook is for architectures that cannot support read_persistent_clock64
1319  * because their RTC/persistent clock is only accessible when irqs are enabled.
1320  * and also don't have an effective nonstop clocksource.
1321  *
1322  * This function should only be called by rtc_resume(), and allows
1323  * a suspend offset to be injected into the timekeeping values.
1324  */
1325 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1326 {
1327         struct timekeeper *tk = &tk_core.timekeeper;
1328         unsigned long flags;
1329
1330         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1331         write_seqcount_begin(&tk_core.seq);
1332
1333         timekeeping_forward_now(tk);
1334
1335         __timekeeping_inject_sleeptime(tk, delta);
1336
1337         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1338
1339         write_seqcount_end(&tk_core.seq);
1340         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1341
1342         /* signal hrtimers about time change */
1343         clock_was_set();
1344 }
1345 #endif
1346
1347 /**
1348  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1349  */
1350 void timekeeping_resume(void)
1351 {
1352         struct timekeeper *tk = &tk_core.timekeeper;
1353         struct clocksource *clock = tk->tkr_mono.clock;
1354         unsigned long flags;
1355         struct timespec64 ts_new, ts_delta;
1356         cycle_t cycle_now, cycle_delta;
1357
1358         sleeptime_injected = false;
1359         read_persistent_clock64(&ts_new);
1360
1361         clockevents_resume();
1362         clocksource_resume();
1363
1364         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1365         write_seqcount_begin(&tk_core.seq);
1366
1367         /*
1368          * After system resumes, we need to calculate the suspended time and
1369          * compensate it for the OS time. There are 3 sources that could be
1370          * used: Nonstop clocksource during suspend, persistent clock and rtc
1371          * device.
1372          *
1373          * One specific platform may have 1 or 2 or all of them, and the
1374          * preference will be:
1375          *      suspend-nonstop clocksource -> persistent clock -> rtc
1376          * The less preferred source will only be tried if there is no better
1377          * usable source. The rtc part is handled separately in rtc core code.
1378          */
1379         cycle_now = tk->tkr_mono.read(clock);
1380         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1381                 cycle_now > tk->tkr_mono.cycle_last) {
1382                 u64 num, max = ULLONG_MAX;
1383                 u32 mult = clock->mult;
1384                 u32 shift = clock->shift;
1385                 s64 nsec = 0;
1386
1387                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1388                                                 tk->tkr_mono.mask);
1389
1390                 /*
1391                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1392                  * suspended time is too long. In that case we need do the
1393                  * 64 bits math carefully
1394                  */
1395                 do_div(max, mult);
1396                 if (cycle_delta > max) {
1397                         num = div64_u64(cycle_delta, max);
1398                         nsec = (((u64) max * mult) >> shift) * num;
1399                         cycle_delta -= num * max;
1400                 }
1401                 nsec += ((u64) cycle_delta * mult) >> shift;
1402
1403                 ts_delta = ns_to_timespec64(nsec);
1404                 sleeptime_injected = true;
1405         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1406                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1407                 sleeptime_injected = true;
1408         }
1409
1410         if (sleeptime_injected)
1411                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1412
1413         /* Re-base the last cycle value */
1414         tk->tkr_mono.cycle_last = cycle_now;
1415         tk->tkr_raw.cycle_last  = cycle_now;
1416
1417         tk->ntp_error = 0;
1418         timekeeping_suspended = 0;
1419         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1420         write_seqcount_end(&tk_core.seq);
1421         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1422
1423         touch_softlockup_watchdog();
1424
1425         tick_resume();
1426         hrtimers_resume();
1427 }
1428
1429 int timekeeping_suspend(void)
1430 {
1431         struct timekeeper *tk = &tk_core.timekeeper;
1432         unsigned long flags;
1433         struct timespec64               delta, delta_delta;
1434         static struct timespec64        old_delta;
1435
1436         read_persistent_clock64(&timekeeping_suspend_time);
1437
1438         /*
1439          * On some systems the persistent_clock can not be detected at
1440          * timekeeping_init by its return value, so if we see a valid
1441          * value returned, update the persistent_clock_exists flag.
1442          */
1443         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1444                 persistent_clock_exists = true;
1445
1446         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1447         write_seqcount_begin(&tk_core.seq);
1448         timekeeping_forward_now(tk);
1449         timekeeping_suspended = 1;
1450
1451         if (persistent_clock_exists) {
1452                 /*
1453                  * To avoid drift caused by repeated suspend/resumes,
1454                  * which each can add ~1 second drift error,
1455                  * try to compensate so the difference in system time
1456                  * and persistent_clock time stays close to constant.
1457                  */
1458                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1459                 delta_delta = timespec64_sub(delta, old_delta);
1460                 if (abs(delta_delta.tv_sec) >= 2) {
1461                         /*
1462                          * if delta_delta is too large, assume time correction
1463                          * has occurred and set old_delta to the current delta.
1464                          */
1465                         old_delta = delta;
1466                 } else {
1467                         /* Otherwise try to adjust old_system to compensate */
1468                         timekeeping_suspend_time =
1469                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1470                 }
1471         }
1472
1473         timekeeping_update(tk, TK_MIRROR);
1474         halt_fast_timekeeper(tk);
1475         write_seqcount_end(&tk_core.seq);
1476         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1477
1478         tick_suspend();
1479         clocksource_suspend();
1480         clockevents_suspend();
1481
1482         return 0;
1483 }
1484
1485 /* sysfs resume/suspend bits for timekeeping */
1486 static struct syscore_ops timekeeping_syscore_ops = {
1487         .resume         = timekeeping_resume,
1488         .suspend        = timekeeping_suspend,
1489 };
1490
1491 static int __init timekeeping_init_ops(void)
1492 {
1493         register_syscore_ops(&timekeeping_syscore_ops);
1494         return 0;
1495 }
1496 device_initcall(timekeeping_init_ops);
1497
1498 /*
1499  * Apply a multiplier adjustment to the timekeeper
1500  */
1501 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1502                                                          s64 offset,
1503                                                          bool negative,
1504                                                          int adj_scale)
1505 {
1506         s64 interval = tk->cycle_interval;
1507         s32 mult_adj = 1;
1508
1509         if (negative) {
1510                 mult_adj = -mult_adj;
1511                 interval = -interval;
1512                 offset  = -offset;
1513         }
1514         mult_adj <<= adj_scale;
1515         interval <<= adj_scale;
1516         offset <<= adj_scale;
1517
1518         /*
1519          * So the following can be confusing.
1520          *
1521          * To keep things simple, lets assume mult_adj == 1 for now.
1522          *
1523          * When mult_adj != 1, remember that the interval and offset values
1524          * have been appropriately scaled so the math is the same.
1525          *
1526          * The basic idea here is that we're increasing the multiplier
1527          * by one, this causes the xtime_interval to be incremented by
1528          * one cycle_interval. This is because:
1529          *      xtime_interval = cycle_interval * mult
1530          * So if mult is being incremented by one:
1531          *      xtime_interval = cycle_interval * (mult + 1)
1532          * Its the same as:
1533          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1534          * Which can be shortened to:
1535          *      xtime_interval += cycle_interval
1536          *
1537          * So offset stores the non-accumulated cycles. Thus the current
1538          * time (in shifted nanoseconds) is:
1539          *      now = (offset * adj) + xtime_nsec
1540          * Now, even though we're adjusting the clock frequency, we have
1541          * to keep time consistent. In other words, we can't jump back
1542          * in time, and we also want to avoid jumping forward in time.
1543          *
1544          * So given the same offset value, we need the time to be the same
1545          * both before and after the freq adjustment.
1546          *      now = (offset * adj_1) + xtime_nsec_1
1547          *      now = (offset * adj_2) + xtime_nsec_2
1548          * So:
1549          *      (offset * adj_1) + xtime_nsec_1 =
1550          *              (offset * adj_2) + xtime_nsec_2
1551          * And we know:
1552          *      adj_2 = adj_1 + 1
1553          * So:
1554          *      (offset * adj_1) + xtime_nsec_1 =
1555          *              (offset * (adj_1+1)) + xtime_nsec_2
1556          *      (offset * adj_1) + xtime_nsec_1 =
1557          *              (offset * adj_1) + offset + xtime_nsec_2
1558          * Canceling the sides:
1559          *      xtime_nsec_1 = offset + xtime_nsec_2
1560          * Which gives us:
1561          *      xtime_nsec_2 = xtime_nsec_1 - offset
1562          * Which simplfies to:
1563          *      xtime_nsec -= offset
1564          *
1565          * XXX - TODO: Doc ntp_error calculation.
1566          */
1567         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1568                 /* NTP adjustment caused clocksource mult overflow */
1569                 WARN_ON_ONCE(1);
1570                 return;
1571         }
1572
1573         tk->tkr_mono.mult += mult_adj;
1574         tk->xtime_interval += interval;
1575         tk->tkr_mono.xtime_nsec -= offset;
1576         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1577 }
1578
1579 /*
1580  * Calculate the multiplier adjustment needed to match the frequency
1581  * specified by NTP
1582  */
1583 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1584                                                         s64 offset)
1585 {
1586         s64 interval = tk->cycle_interval;
1587         s64 xinterval = tk->xtime_interval;
1588         s64 tick_error;
1589         bool negative;
1590         u32 adj;
1591
1592         /* Remove any current error adj from freq calculation */
1593         if (tk->ntp_err_mult)
1594                 xinterval -= tk->cycle_interval;
1595
1596         tk->ntp_tick = ntp_tick_length();
1597
1598         /* Calculate current error per tick */
1599         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1600         tick_error -= (xinterval + tk->xtime_remainder);
1601
1602         /* Don't worry about correcting it if its small */
1603         if (likely((tick_error >= 0) && (tick_error <= interval)))
1604                 return;
1605
1606         /* preserve the direction of correction */
1607         negative = (tick_error < 0);
1608
1609         /* Sort out the magnitude of the correction */
1610         tick_error = abs(tick_error);
1611         for (adj = 0; tick_error > interval; adj++)
1612                 tick_error >>= 1;
1613
1614         /* scale the corrections */
1615         timekeeping_apply_adjustment(tk, offset, negative, adj);
1616 }
1617
1618 /*
1619  * Adjust the timekeeper's multiplier to the correct frequency
1620  * and also to reduce the accumulated error value.
1621  */
1622 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1623 {
1624         /* Correct for the current frequency error */
1625         timekeeping_freqadjust(tk, offset);
1626
1627         /* Next make a small adjustment to fix any cumulative error */
1628         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1629                 tk->ntp_err_mult = 1;
1630                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1631         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1632                 /* Undo any existing error adjustment */
1633                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1634                 tk->ntp_err_mult = 0;
1635         }
1636
1637         if (unlikely(tk->tkr_mono.clock->maxadj &&
1638                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1639                         > tk->tkr_mono.clock->maxadj))) {
1640                 printk_once(KERN_WARNING
1641                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1642                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1643                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1644         }
1645
1646         /*
1647          * It may be possible that when we entered this function, xtime_nsec
1648          * was very small.  Further, if we're slightly speeding the clocksource
1649          * in the code above, its possible the required corrective factor to
1650          * xtime_nsec could cause it to underflow.
1651          *
1652          * Now, since we already accumulated the second, cannot simply roll
1653          * the accumulated second back, since the NTP subsystem has been
1654          * notified via second_overflow. So instead we push xtime_nsec forward
1655          * by the amount we underflowed, and add that amount into the error.
1656          *
1657          * We'll correct this error next time through this function, when
1658          * xtime_nsec is not as small.
1659          */
1660         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1661                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1662                 tk->tkr_mono.xtime_nsec = 0;
1663                 tk->ntp_error += neg << tk->ntp_error_shift;
1664         }
1665 }
1666
1667 /**
1668  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1669  *
1670  * Helper function that accumulates a the nsecs greater then a second
1671  * from the xtime_nsec field to the xtime_secs field.
1672  * It also calls into the NTP code to handle leapsecond processing.
1673  *
1674  */
1675 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1676 {
1677         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1678         unsigned int clock_set = 0;
1679
1680         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1681                 int leap;
1682
1683                 tk->tkr_mono.xtime_nsec -= nsecps;
1684                 tk->xtime_sec++;
1685
1686                 /* Figure out if its a leap sec and apply if needed */
1687                 leap = second_overflow(tk->xtime_sec);
1688                 if (unlikely(leap)) {
1689                         struct timespec64 ts;
1690
1691                         tk->xtime_sec += leap;
1692
1693                         ts.tv_sec = leap;
1694                         ts.tv_nsec = 0;
1695                         tk_set_wall_to_mono(tk,
1696                                 timespec64_sub(tk->wall_to_monotonic, ts));
1697
1698                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1699
1700                         clock_set = TK_CLOCK_WAS_SET;
1701                 }
1702         }
1703         return clock_set;
1704 }
1705
1706 /**
1707  * logarithmic_accumulation - shifted accumulation of cycles
1708  *
1709  * This functions accumulates a shifted interval of cycles into
1710  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1711  * loop.
1712  *
1713  * Returns the unconsumed cycles.
1714  */
1715 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1716                                                 u32 shift,
1717                                                 unsigned int *clock_set)
1718 {
1719         cycle_t interval = tk->cycle_interval << shift;
1720         u64 raw_nsecs;
1721
1722         /* If the offset is smaller then a shifted interval, do nothing */
1723         if (offset < interval)
1724                 return offset;
1725
1726         /* Accumulate one shifted interval */
1727         offset -= interval;
1728         tk->tkr_mono.cycle_last += interval;
1729         tk->tkr_raw.cycle_last  += interval;
1730
1731         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1732         *clock_set |= accumulate_nsecs_to_secs(tk);
1733
1734         /* Accumulate raw time */
1735         raw_nsecs = (u64)tk->raw_interval << shift;
1736         raw_nsecs += tk->raw_time.tv_nsec;
1737         if (raw_nsecs >= NSEC_PER_SEC) {
1738                 u64 raw_secs = raw_nsecs;
1739                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1740                 tk->raw_time.tv_sec += raw_secs;
1741         }
1742         tk->raw_time.tv_nsec = raw_nsecs;
1743
1744         /* Accumulate error between NTP and clock interval */
1745         tk->ntp_error += tk->ntp_tick << shift;
1746         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1747                                                 (tk->ntp_error_shift + shift);
1748
1749         return offset;
1750 }
1751
1752 /**
1753  * update_wall_time - Uses the current clocksource to increment the wall time
1754  *
1755  */
1756 void update_wall_time(void)
1757 {
1758         struct timekeeper *real_tk = &tk_core.timekeeper;
1759         struct timekeeper *tk = &shadow_timekeeper;
1760         cycle_t offset;
1761         int shift = 0, maxshift;
1762         unsigned int clock_set = 0;
1763         unsigned long flags;
1764
1765         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1766
1767         /* Make sure we're fully resumed: */
1768         if (unlikely(timekeeping_suspended))
1769                 goto out;
1770
1771 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1772         offset = real_tk->cycle_interval;
1773 #else
1774         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1775                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1776 #endif
1777
1778         /* Check if there's really nothing to do */
1779         if (offset < real_tk->cycle_interval)
1780                 goto out;
1781
1782         /* Do some additional sanity checking */
1783         timekeeping_check_update(real_tk, offset);
1784
1785         /*
1786          * With NO_HZ we may have to accumulate many cycle_intervals
1787          * (think "ticks") worth of time at once. To do this efficiently,
1788          * we calculate the largest doubling multiple of cycle_intervals
1789          * that is smaller than the offset.  We then accumulate that
1790          * chunk in one go, and then try to consume the next smaller
1791          * doubled multiple.
1792          */
1793         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1794         shift = max(0, shift);
1795         /* Bound shift to one less than what overflows tick_length */
1796         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1797         shift = min(shift, maxshift);
1798         while (offset >= tk->cycle_interval) {
1799                 offset = logarithmic_accumulation(tk, offset, shift,
1800                                                         &clock_set);
1801                 if (offset < tk->cycle_interval<<shift)
1802                         shift--;
1803         }
1804
1805         /* correct the clock when NTP error is too big */
1806         timekeeping_adjust(tk, offset);
1807
1808         /*
1809          * XXX This can be killed once everyone converts
1810          * to the new update_vsyscall.
1811          */
1812         old_vsyscall_fixup(tk);
1813
1814         /*
1815          * Finally, make sure that after the rounding
1816          * xtime_nsec isn't larger than NSEC_PER_SEC
1817          */
1818         clock_set |= accumulate_nsecs_to_secs(tk);
1819
1820         write_seqcount_begin(&tk_core.seq);
1821         /*
1822          * Update the real timekeeper.
1823          *
1824          * We could avoid this memcpy by switching pointers, but that
1825          * requires changes to all other timekeeper usage sites as
1826          * well, i.e. move the timekeeper pointer getter into the
1827          * spinlocked/seqcount protected sections. And we trade this
1828          * memcpy under the tk_core.seq against one before we start
1829          * updating.
1830          */
1831         timekeeping_update(tk, clock_set);
1832         memcpy(real_tk, tk, sizeof(*tk));
1833         /* The memcpy must come last. Do not put anything here! */
1834         write_seqcount_end(&tk_core.seq);
1835 out:
1836         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1837         if (clock_set)
1838                 /* Have to call _delayed version, since in irq context*/
1839                 clock_was_set_delayed();
1840 }
1841
1842 /**
1843  * getboottime64 - Return the real time of system boot.
1844  * @ts:         pointer to the timespec64 to be set
1845  *
1846  * Returns the wall-time of boot in a timespec64.
1847  *
1848  * This is based on the wall_to_monotonic offset and the total suspend
1849  * time. Calls to settimeofday will affect the value returned (which
1850  * basically means that however wrong your real time clock is at boot time,
1851  * you get the right time here).
1852  */
1853 void getboottime64(struct timespec64 *ts)
1854 {
1855         struct timekeeper *tk = &tk_core.timekeeper;
1856         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1857
1858         *ts = ktime_to_timespec64(t);
1859 }
1860 EXPORT_SYMBOL_GPL(getboottime64);
1861
1862 unsigned long get_seconds(void)
1863 {
1864         struct timekeeper *tk = &tk_core.timekeeper;
1865
1866         return tk->xtime_sec;
1867 }
1868 EXPORT_SYMBOL(get_seconds);
1869
1870 struct timespec __current_kernel_time(void)
1871 {
1872         struct timekeeper *tk = &tk_core.timekeeper;
1873
1874         return timespec64_to_timespec(tk_xtime(tk));
1875 }
1876
1877 struct timespec current_kernel_time(void)
1878 {
1879         struct timekeeper *tk = &tk_core.timekeeper;
1880         struct timespec64 now;
1881         unsigned long seq;
1882
1883         do {
1884                 seq = read_seqcount_begin(&tk_core.seq);
1885
1886                 now = tk_xtime(tk);
1887         } while (read_seqcount_retry(&tk_core.seq, seq));
1888
1889         return timespec64_to_timespec(now);
1890 }
1891 EXPORT_SYMBOL(current_kernel_time);
1892
1893 struct timespec64 get_monotonic_coarse64(void)
1894 {
1895         struct timekeeper *tk = &tk_core.timekeeper;
1896         struct timespec64 now, mono;
1897         unsigned long seq;
1898
1899         do {
1900                 seq = read_seqcount_begin(&tk_core.seq);
1901
1902                 now = tk_xtime(tk);
1903                 mono = tk->wall_to_monotonic;
1904         } while (read_seqcount_retry(&tk_core.seq, seq));
1905
1906         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1907                                 now.tv_nsec + mono.tv_nsec);
1908
1909         return now;
1910 }
1911
1912 /*
1913  * Must hold jiffies_lock
1914  */
1915 void do_timer(unsigned long ticks)
1916 {
1917         jiffies_64 += ticks;
1918         calc_global_load(ticks);
1919 }
1920
1921 /**
1922  * ktime_get_update_offsets_now - hrtimer helper
1923  * @cwsseq:     pointer to check and store the clock was set sequence number
1924  * @offs_real:  pointer to storage for monotonic -> realtime offset
1925  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1926  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1927  *
1928  * Returns current monotonic time and updates the offsets if the
1929  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1930  * different.
1931  *
1932  * Called from hrtimer_interrupt() or retrigger_next_event()
1933  */
1934 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1935                                      ktime_t *offs_boot, ktime_t *offs_tai)
1936 {
1937         struct timekeeper *tk = &tk_core.timekeeper;
1938         unsigned int seq;
1939         ktime_t base;
1940         u64 nsecs;
1941
1942         do {
1943                 seq = read_seqcount_begin(&tk_core.seq);
1944
1945                 base = tk->tkr_mono.base;
1946                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1947                 base = ktime_add_ns(base, nsecs);
1948
1949                 if (*cwsseq != tk->clock_was_set_seq) {
1950                         *cwsseq = tk->clock_was_set_seq;
1951                         *offs_real = tk->offs_real;
1952                         *offs_boot = tk->offs_boot;
1953                         *offs_tai = tk->offs_tai;
1954                 }
1955
1956                 /* Handle leapsecond insertion adjustments */
1957                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1958                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1959
1960         } while (read_seqcount_retry(&tk_core.seq, seq));
1961
1962         return base;
1963 }
1964
1965 /**
1966  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1967  */
1968 int do_adjtimex(struct timex *txc)
1969 {
1970         struct timekeeper *tk = &tk_core.timekeeper;
1971         unsigned long flags;
1972         struct timespec64 ts;
1973         s32 orig_tai, tai;
1974         int ret;
1975
1976         /* Validate the data before disabling interrupts */
1977         ret = ntp_validate_timex(txc);
1978         if (ret)
1979                 return ret;
1980
1981         if (txc->modes & ADJ_SETOFFSET) {
1982                 struct timespec delta;
1983                 delta.tv_sec  = txc->time.tv_sec;
1984                 delta.tv_nsec = txc->time.tv_usec;
1985                 if (!(txc->modes & ADJ_NANO))
1986                         delta.tv_nsec *= 1000;
1987                 ret = timekeeping_inject_offset(&delta);
1988                 if (ret)
1989                         return ret;
1990         }
1991
1992         getnstimeofday64(&ts);
1993
1994         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1995         write_seqcount_begin(&tk_core.seq);
1996
1997         orig_tai = tai = tk->tai_offset;
1998         ret = __do_adjtimex(txc, &ts, &tai);
1999
2000         if (tai != orig_tai) {
2001                 __timekeeping_set_tai_offset(tk, tai);
2002                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2003         }
2004         tk_update_leap_state(tk);
2005
2006         write_seqcount_end(&tk_core.seq);
2007         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2008
2009         if (tai != orig_tai)
2010                 clock_was_set();
2011
2012         ntp_notify_cmos_timer();
2013
2014         return ret;
2015 }
2016
2017 #ifdef CONFIG_NTP_PPS
2018 /**
2019  * hardpps() - Accessor function to NTP __hardpps function
2020  */
2021 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2022 {
2023         unsigned long flags;
2024
2025         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2026         write_seqcount_begin(&tk_core.seq);
2027
2028         __hardpps(phase_ts, raw_ts);
2029
2030         write_seqcount_end(&tk_core.seq);
2031         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2032 }
2033 EXPORT_SYMBOL(hardpps);
2034 #endif
2035
2036 /**
2037  * xtime_update() - advances the timekeeping infrastructure
2038  * @ticks:      number of ticks, that have elapsed since the last call.
2039  *
2040  * Must be called with interrupts disabled.
2041  */
2042 void xtime_update(unsigned long ticks)
2043 {
2044         write_seqlock(&jiffies_lock);
2045         do_timer(ticks);
2046         write_sequnlock(&jiffies_lock);
2047         update_wall_time();
2048 }