OSDN Git Service

Merge tag 'arm-soc-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[uclinux-h8/linux.git] / kernel / trace / pid_list.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2021 VMware Inc, Steven Rostedt <rostedt@goodmis.org>
4  */
5 #include <linux/spinlock.h>
6 #include <linux/irq_work.h>
7 #include <linux/slab.h>
8 #include "trace.h"
9
10 /* See pid_list.h for details */
11
12 static inline union lower_chunk *get_lower_chunk(struct trace_pid_list *pid_list)
13 {
14         union lower_chunk *chunk;
15
16         lockdep_assert_held(&pid_list->lock);
17
18         if (!pid_list->lower_list)
19                 return NULL;
20
21         chunk = pid_list->lower_list;
22         pid_list->lower_list = chunk->next;
23         pid_list->free_lower_chunks--;
24         WARN_ON_ONCE(pid_list->free_lower_chunks < 0);
25         chunk->next = NULL;
26         /*
27          * If a refill needs to happen, it can not happen here
28          * as the scheduler run queue locks are held.
29          */
30         if (pid_list->free_lower_chunks <= CHUNK_REALLOC)
31                 irq_work_queue(&pid_list->refill_irqwork);
32
33         return chunk;
34 }
35
36 static inline union upper_chunk *get_upper_chunk(struct trace_pid_list *pid_list)
37 {
38         union upper_chunk *chunk;
39
40         lockdep_assert_held(&pid_list->lock);
41
42         if (!pid_list->upper_list)
43                 return NULL;
44
45         chunk = pid_list->upper_list;
46         pid_list->upper_list = chunk->next;
47         pid_list->free_upper_chunks--;
48         WARN_ON_ONCE(pid_list->free_upper_chunks < 0);
49         chunk->next = NULL;
50         /*
51          * If a refill needs to happen, it can not happen here
52          * as the scheduler run queue locks are held.
53          */
54         if (pid_list->free_upper_chunks <= CHUNK_REALLOC)
55                 irq_work_queue(&pid_list->refill_irqwork);
56
57         return chunk;
58 }
59
60 static inline void put_lower_chunk(struct trace_pid_list *pid_list,
61                                    union lower_chunk *chunk)
62 {
63         lockdep_assert_held(&pid_list->lock);
64
65         chunk->next = pid_list->lower_list;
66         pid_list->lower_list = chunk;
67         pid_list->free_lower_chunks++;
68 }
69
70 static inline void put_upper_chunk(struct trace_pid_list *pid_list,
71                                    union upper_chunk *chunk)
72 {
73         lockdep_assert_held(&pid_list->lock);
74
75         chunk->next = pid_list->upper_list;
76         pid_list->upper_list = chunk;
77         pid_list->free_upper_chunks++;
78 }
79
80 static inline bool upper_empty(union upper_chunk *chunk)
81 {
82         /*
83          * If chunk->data has no lower chunks, it will be the same
84          * as a zeroed bitmask. Use find_first_bit() to test it
85          * and if it doesn't find any bits set, then the array
86          * is empty.
87          */
88         int bit = find_first_bit((unsigned long *)chunk->data,
89                                  sizeof(chunk->data) * 8);
90         return bit >= sizeof(chunk->data) * 8;
91 }
92
93 static inline int pid_split(unsigned int pid, unsigned int *upper1,
94                              unsigned int *upper2, unsigned int *lower)
95 {
96         /* MAX_PID should cover all pids */
97         BUILD_BUG_ON(MAX_PID < PID_MAX_LIMIT);
98
99         /* In case a bad pid is passed in, then fail */
100         if (unlikely(pid >= MAX_PID))
101                 return -1;
102
103         *upper1 = (pid >> UPPER1_SHIFT) & UPPER_MASK;
104         *upper2 = (pid >> UPPER2_SHIFT) & UPPER_MASK;
105         *lower = pid & LOWER_MASK;
106
107         return 0;
108 }
109
110 static inline unsigned int pid_join(unsigned int upper1,
111                                     unsigned int upper2, unsigned int lower)
112 {
113         return ((upper1 & UPPER_MASK) << UPPER1_SHIFT) |
114                 ((upper2 & UPPER_MASK) << UPPER2_SHIFT) |
115                 (lower & LOWER_MASK);
116 }
117
118 /**
119  * trace_pid_list_is_set - test if the pid is set in the list
120  * @pid_list: The pid list to test
121  * @pid: The pid to to see if set in the list.
122  *
123  * Tests if @pid is is set in the @pid_list. This is usually called
124  * from the scheduler when a task is scheduled. Its pid is checked
125  * if it should be traced or not.
126  *
127  * Return true if the pid is in the list, false otherwise.
128  */
129 bool trace_pid_list_is_set(struct trace_pid_list *pid_list, unsigned int pid)
130 {
131         union upper_chunk *upper_chunk;
132         union lower_chunk *lower_chunk;
133         unsigned long flags;
134         unsigned int upper1;
135         unsigned int upper2;
136         unsigned int lower;
137         bool ret = false;
138
139         if (!pid_list)
140                 return false;
141
142         if (pid_split(pid, &upper1, &upper2, &lower) < 0)
143                 return false;
144
145         raw_spin_lock_irqsave(&pid_list->lock, flags);
146         upper_chunk = pid_list->upper[upper1];
147         if (upper_chunk) {
148                 lower_chunk = upper_chunk->data[upper2];
149                 if (lower_chunk)
150                         ret = test_bit(lower, lower_chunk->data);
151         }
152         raw_spin_unlock_irqrestore(&pid_list->lock, flags);
153
154         return ret;
155 }
156
157 /**
158  * trace_pid_list_set - add a pid to the list
159  * @pid_list: The pid list to add the @pid to.
160  * @pid: The pid to add.
161  *
162  * Adds @pid to @pid_list. This is usually done explicitly by a user
163  * adding a task to be traced, or indirectly by the fork function
164  * when children should be traced and a task's pid is in the list.
165  *
166  * Return 0 on success, negative otherwise.
167  */
168 int trace_pid_list_set(struct trace_pid_list *pid_list, unsigned int pid)
169 {
170         union upper_chunk *upper_chunk;
171         union lower_chunk *lower_chunk;
172         unsigned long flags;
173         unsigned int upper1;
174         unsigned int upper2;
175         unsigned int lower;
176         int ret;
177
178         if (!pid_list)
179                 return -ENODEV;
180
181         if (pid_split(pid, &upper1, &upper2, &lower) < 0)
182                 return -EINVAL;
183
184         raw_spin_lock_irqsave(&pid_list->lock, flags);
185         upper_chunk = pid_list->upper[upper1];
186         if (!upper_chunk) {
187                 upper_chunk = get_upper_chunk(pid_list);
188                 if (!upper_chunk) {
189                         ret = -ENOMEM;
190                         goto out;
191                 }
192                 pid_list->upper[upper1] = upper_chunk;
193         }
194         lower_chunk = upper_chunk->data[upper2];
195         if (!lower_chunk) {
196                 lower_chunk = get_lower_chunk(pid_list);
197                 if (!lower_chunk) {
198                         ret = -ENOMEM;
199                         goto out;
200                 }
201                 upper_chunk->data[upper2] = lower_chunk;
202         }
203         set_bit(lower, lower_chunk->data);
204         ret = 0;
205  out:
206         raw_spin_unlock_irqrestore(&pid_list->lock, flags);
207         return ret;
208 }
209
210 /**
211  * trace_pid_list_clear - remove a pid from the list
212  * @pid_list: The pid list to remove the @pid from.
213  * @pid: The pid to remove.
214  *
215  * Removes @pid from @pid_list. This is usually done explicitly by a user
216  * removing tasks from tracing, or indirectly by the exit function
217  * when a task that is set to be traced exits.
218  *
219  * Return 0 on success, negative otherwise.
220  */
221 int trace_pid_list_clear(struct trace_pid_list *pid_list, unsigned int pid)
222 {
223         union upper_chunk *upper_chunk;
224         union lower_chunk *lower_chunk;
225         unsigned long flags;
226         unsigned int upper1;
227         unsigned int upper2;
228         unsigned int lower;
229
230         if (!pid_list)
231                 return -ENODEV;
232
233         if (pid_split(pid, &upper1, &upper2, &lower) < 0)
234                 return -EINVAL;
235
236         raw_spin_lock_irqsave(&pid_list->lock, flags);
237         upper_chunk = pid_list->upper[upper1];
238         if (!upper_chunk)
239                 goto out;
240
241         lower_chunk = upper_chunk->data[upper2];
242         if (!lower_chunk)
243                 goto out;
244
245         clear_bit(lower, lower_chunk->data);
246
247         /* if there's no more bits set, add it to the free list */
248         if (find_first_bit(lower_chunk->data, LOWER_MAX) >= LOWER_MAX) {
249                 put_lower_chunk(pid_list, lower_chunk);
250                 upper_chunk->data[upper2] = NULL;
251                 if (upper_empty(upper_chunk)) {
252                         put_upper_chunk(pid_list, upper_chunk);
253                         pid_list->upper[upper1] = NULL;
254                 }
255         }
256  out:
257         raw_spin_unlock_irqrestore(&pid_list->lock, flags);
258         return 0;
259 }
260
261 /**
262  * trace_pid_list_next - return the next pid in the list
263  * @pid_list: The pid list to examine.
264  * @pid: The pid to start from
265  * @next: The pointer to place the pid that is set starting from @pid.
266  *
267  * Looks for the next consecutive pid that is in @pid_list starting
268  * at the pid specified by @pid. If one is set (including @pid), then
269  * that pid is placed into @next.
270  *
271  * Return 0 when a pid is found, -1 if there are no more pids included.
272  */
273 int trace_pid_list_next(struct trace_pid_list *pid_list, unsigned int pid,
274                         unsigned int *next)
275 {
276         union upper_chunk *upper_chunk;
277         union lower_chunk *lower_chunk;
278         unsigned long flags;
279         unsigned int upper1;
280         unsigned int upper2;
281         unsigned int lower;
282
283         if (!pid_list)
284                 return -ENODEV;
285
286         if (pid_split(pid, &upper1, &upper2, &lower) < 0)
287                 return -EINVAL;
288
289         raw_spin_lock_irqsave(&pid_list->lock, flags);
290         for (; upper1 <= UPPER_MASK; upper1++, upper2 = 0) {
291                 upper_chunk = pid_list->upper[upper1];
292
293                 if (!upper_chunk)
294                         continue;
295
296                 for (; upper2 <= UPPER_MASK; upper2++, lower = 0) {
297                         lower_chunk = upper_chunk->data[upper2];
298                         if (!lower_chunk)
299                                 continue;
300
301                         lower = find_next_bit(lower_chunk->data, LOWER_MAX,
302                                             lower);
303                         if (lower < LOWER_MAX)
304                                 goto found;
305                 }
306         }
307
308  found:
309         raw_spin_unlock_irqrestore(&pid_list->lock, flags);
310         if (upper1 > UPPER_MASK)
311                 return -1;
312
313         *next = pid_join(upper1, upper2, lower);
314         return 0;
315 }
316
317 /**
318  * trace_pid_list_first - return the first pid in the list
319  * @pid_list: The pid list to examine.
320  * @pid: The pointer to place the pid first found pid that is set.
321  *
322  * Looks for the first pid that is set in @pid_list, and places it
323  * into @pid if found.
324  *
325  * Return 0 when a pid is found, -1 if there are no pids set.
326  */
327 int trace_pid_list_first(struct trace_pid_list *pid_list, unsigned int *pid)
328 {
329         return trace_pid_list_next(pid_list, 0, pid);
330 }
331
332 static void pid_list_refill_irq(struct irq_work *iwork)
333 {
334         struct trace_pid_list *pid_list = container_of(iwork, struct trace_pid_list,
335                                                        refill_irqwork);
336         union upper_chunk *upper = NULL;
337         union lower_chunk *lower = NULL;
338         union upper_chunk **upper_next = &upper;
339         union lower_chunk **lower_next = &lower;
340         int upper_count;
341         int lower_count;
342         int ucnt = 0;
343         int lcnt = 0;
344
345  again:
346         raw_spin_lock(&pid_list->lock);
347         upper_count = CHUNK_ALLOC - pid_list->free_upper_chunks;
348         lower_count = CHUNK_ALLOC - pid_list->free_lower_chunks;
349         raw_spin_unlock(&pid_list->lock);
350
351         if (upper_count <= 0 && lower_count <= 0)
352                 return;
353
354         while (upper_count-- > 0) {
355                 union upper_chunk *chunk;
356
357                 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
358                 if (!chunk)
359                         break;
360                 *upper_next = chunk;
361                 upper_next = &chunk->next;
362                 ucnt++;
363         }
364
365         while (lower_count-- > 0) {
366                 union lower_chunk *chunk;
367
368                 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
369                 if (!chunk)
370                         break;
371                 *lower_next = chunk;
372                 lower_next = &chunk->next;
373                 lcnt++;
374         }
375
376         raw_spin_lock(&pid_list->lock);
377         if (upper) {
378                 *upper_next = pid_list->upper_list;
379                 pid_list->upper_list = upper;
380                 pid_list->free_upper_chunks += ucnt;
381         }
382         if (lower) {
383                 *lower_next = pid_list->lower_list;
384                 pid_list->lower_list = lower;
385                 pid_list->free_lower_chunks += lcnt;
386         }
387         raw_spin_unlock(&pid_list->lock);
388
389         /*
390          * On success of allocating all the chunks, both counters
391          * will be less than zero. If they are not, then an allocation
392          * failed, and we should not try again.
393          */
394         if (upper_count >= 0 || lower_count >= 0)
395                 return;
396         /*
397          * When the locks were released, free chunks could have
398          * been used and allocation needs to be done again. Might as
399          * well allocate it now.
400          */
401         goto again;
402 }
403
404 /**
405  * trace_pid_list_alloc - create a new pid_list
406  *
407  * Allocates a new pid_list to store pids into.
408  *
409  * Returns the pid_list on success, NULL otherwise.
410  */
411 struct trace_pid_list *trace_pid_list_alloc(void)
412 {
413         struct trace_pid_list *pid_list;
414         int i;
415
416         /* According to linux/thread.h, pids can be no bigger that 30 bits */
417         WARN_ON_ONCE(pid_max > (1 << 30));
418
419         pid_list = kzalloc(sizeof(*pid_list), GFP_KERNEL);
420         if (!pid_list)
421                 return NULL;
422
423         init_irq_work(&pid_list->refill_irqwork, pid_list_refill_irq);
424
425         raw_spin_lock_init(&pid_list->lock);
426
427         for (i = 0; i < CHUNK_ALLOC; i++) {
428                 union upper_chunk *chunk;
429
430                 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
431                 if (!chunk)
432                         break;
433                 chunk->next = pid_list->upper_list;
434                 pid_list->upper_list = chunk;
435                 pid_list->free_upper_chunks++;
436         }
437
438         for (i = 0; i < CHUNK_ALLOC; i++) {
439                 union lower_chunk *chunk;
440
441                 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
442                 if (!chunk)
443                         break;
444                 chunk->next = pid_list->lower_list;
445                 pid_list->lower_list = chunk;
446                 pid_list->free_lower_chunks++;
447         }
448
449         return pid_list;
450 }
451
452 /**
453  * trace_pid_list_free - Frees an allocated pid_list.
454  *
455  * Frees the memory for a pid_list that was allocated.
456  */
457 void trace_pid_list_free(struct trace_pid_list *pid_list)
458 {
459         union upper_chunk *upper;
460         union lower_chunk *lower;
461         int i, j;
462
463         if (!pid_list)
464                 return;
465
466         irq_work_sync(&pid_list->refill_irqwork);
467
468         while (pid_list->lower_list) {
469                 union lower_chunk *chunk;
470
471                 chunk = pid_list->lower_list;
472                 pid_list->lower_list = pid_list->lower_list->next;
473                 kfree(chunk);
474         }
475
476         while (pid_list->upper_list) {
477                 union upper_chunk *chunk;
478
479                 chunk = pid_list->upper_list;
480                 pid_list->upper_list = pid_list->upper_list->next;
481                 kfree(chunk);
482         }
483
484         for (i = 0; i < UPPER1_SIZE; i++) {
485                 upper = pid_list->upper[i];
486                 if (upper) {
487                         for (j = 0; j < UPPER2_SIZE; j++) {
488                                 lower = upper->data[j];
489                                 kfree(lower);
490                         }
491                         kfree(upper);
492                 }
493         }
494         kfree(pid_list);
495 }