OSDN Git Service

Merge 4.4.147 into android-4.4
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286         u64              time_stamp;    /* page time stamp */
287         local_t          commit;        /* write committed index */
288         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
289 };
290
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300         struct list_head list;          /* list of buffer pages */
301         local_t          write;         /* index for next write */
302         unsigned         read;          /* index for next read */
303         local_t          entries;       /* entries on this page */
304         unsigned long    real_end;      /* real end of data */
305         struct buffer_data_page *page;  /* Actual data page */
306 };
307
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK           0xfffff
321 #define RB_WRITE_INTCNT         (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325         local_set(&bpage->commit, 0);
326 }
327
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336         struct buffer_data_page *bpage = page;
337
338         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339                 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348         free_page((unsigned long)bpage->page);
349         kfree(bpage);
350 }
351
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357         if (delta & TS_DELTA_TEST)
358                 return 1;
359         return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369         struct buffer_data_page field;
370
371         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372                          "offset:0;\tsize:%u;\tsigned:%u;\n",
373                          (unsigned int)sizeof(field.time_stamp),
374                          (unsigned int)is_signed_type(u64));
375
376         trace_seq_printf(s, "\tfield: local_t commit;\t"
377                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)offsetof(typeof(field), commit),
379                          (unsigned int)sizeof(field.commit),
380                          (unsigned int)is_signed_type(long));
381
382         trace_seq_printf(s, "\tfield: int overwrite;\t"
383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)offsetof(typeof(field), commit),
385                          1,
386                          (unsigned int)is_signed_type(long));
387
388         trace_seq_printf(s, "\tfield: char data;\t"
389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)offsetof(typeof(field), data),
391                          (unsigned int)BUF_PAGE_SIZE,
392                          (unsigned int)is_signed_type(char));
393
394         return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398         struct irq_work                 work;
399         wait_queue_head_t               waiters;
400         wait_queue_head_t               full_waiters;
401         bool                            waiters_pending;
402         bool                            full_waiters_pending;
403         bool                            wakeup_full;
404 };
405
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410         u64                     ts;
411         u64                     delta;
412         unsigned long           length;
413         struct buffer_page      *tail_page;
414         int                     add_timestamp;
415 };
416
417 /*
418  * Used for which event context the event is in.
419  *  NMI     = 0
420  *  IRQ     = 1
421  *  SOFTIRQ = 2
422  *  NORMAL  = 3
423  *
424  * See trace_recursive_lock() comment below for more details.
425  */
426 enum {
427         RB_CTX_NMI,
428         RB_CTX_IRQ,
429         RB_CTX_SOFTIRQ,
430         RB_CTX_NORMAL,
431         RB_CTX_MAX
432 };
433
434 /*
435  * head_page == tail_page && head == tail then buffer is empty.
436  */
437 struct ring_buffer_per_cpu {
438         int                             cpu;
439         atomic_t                        record_disabled;
440         struct ring_buffer              *buffer;
441         raw_spinlock_t                  reader_lock;    /* serialize readers */
442         arch_spinlock_t                 lock;
443         struct lock_class_key           lock_key;
444         unsigned long                   nr_pages;
445         unsigned int                    current_context;
446         struct list_head                *pages;
447         struct buffer_page              *head_page;     /* read from head */
448         struct buffer_page              *tail_page;     /* write to tail */
449         struct buffer_page              *commit_page;   /* committed pages */
450         struct buffer_page              *reader_page;
451         unsigned long                   lost_events;
452         unsigned long                   last_overrun;
453         local_t                         entries_bytes;
454         local_t                         entries;
455         local_t                         overrun;
456         local_t                         commit_overrun;
457         local_t                         dropped_events;
458         local_t                         committing;
459         local_t                         commits;
460         unsigned long                   read;
461         unsigned long                   read_bytes;
462         u64                             write_stamp;
463         u64                             read_stamp;
464         /* ring buffer pages to update, > 0 to add, < 0 to remove */
465         long                            nr_pages_to_update;
466         struct list_head                new_pages; /* new pages to add */
467         struct work_struct              update_pages_work;
468         struct completion               update_done;
469
470         struct rb_irq_work              irq_work;
471 };
472
473 struct ring_buffer {
474         unsigned                        flags;
475         int                             cpus;
476         atomic_t                        record_disabled;
477         atomic_t                        resize_disabled;
478         cpumask_var_t                   cpumask;
479
480         struct lock_class_key           *reader_lock_key;
481
482         struct mutex                    mutex;
483
484         struct ring_buffer_per_cpu      **buffers;
485
486 #ifdef CONFIG_HOTPLUG_CPU
487         struct notifier_block           cpu_notify;
488 #endif
489         u64                             (*clock)(void);
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer_iter {
495         struct ring_buffer_per_cpu      *cpu_buffer;
496         unsigned long                   head;
497         struct buffer_page              *head_page;
498         struct buffer_page              *cache_reader_page;
499         unsigned long                   cache_read;
500         u64                             read_stamp;
501 };
502
503 /*
504  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
505  *
506  * Schedules a delayed work to wake up any task that is blocked on the
507  * ring buffer waiters queue.
508  */
509 static void rb_wake_up_waiters(struct irq_work *work)
510 {
511         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
512
513         wake_up_all(&rbwork->waiters);
514         if (rbwork->wakeup_full) {
515                 rbwork->wakeup_full = false;
516                 wake_up_all(&rbwork->full_waiters);
517         }
518 }
519
520 /**
521  * ring_buffer_wait - wait for input to the ring buffer
522  * @buffer: buffer to wait on
523  * @cpu: the cpu buffer to wait on
524  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
525  *
526  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
527  * as data is added to any of the @buffer's cpu buffers. Otherwise
528  * it will wait for data to be added to a specific cpu buffer.
529  */
530 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
531 {
532         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
533         DEFINE_WAIT(wait);
534         struct rb_irq_work *work;
535         int ret = 0;
536
537         /*
538          * Depending on what the caller is waiting for, either any
539          * data in any cpu buffer, or a specific buffer, put the
540          * caller on the appropriate wait queue.
541          */
542         if (cpu == RING_BUFFER_ALL_CPUS) {
543                 work = &buffer->irq_work;
544                 /* Full only makes sense on per cpu reads */
545                 full = false;
546         } else {
547                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
548                         return -ENODEV;
549                 cpu_buffer = buffer->buffers[cpu];
550                 work = &cpu_buffer->irq_work;
551         }
552
553
554         while (true) {
555                 if (full)
556                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
557                 else
558                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
559
560                 /*
561                  * The events can happen in critical sections where
562                  * checking a work queue can cause deadlocks.
563                  * After adding a task to the queue, this flag is set
564                  * only to notify events to try to wake up the queue
565                  * using irq_work.
566                  *
567                  * We don't clear it even if the buffer is no longer
568                  * empty. The flag only causes the next event to run
569                  * irq_work to do the work queue wake up. The worse
570                  * that can happen if we race with !trace_empty() is that
571                  * an event will cause an irq_work to try to wake up
572                  * an empty queue.
573                  *
574                  * There's no reason to protect this flag either, as
575                  * the work queue and irq_work logic will do the necessary
576                  * synchronization for the wake ups. The only thing
577                  * that is necessary is that the wake up happens after
578                  * a task has been queued. It's OK for spurious wake ups.
579                  */
580                 if (full)
581                         work->full_waiters_pending = true;
582                 else
583                         work->waiters_pending = true;
584
585                 if (signal_pending(current)) {
586                         ret = -EINTR;
587                         break;
588                 }
589
590                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
591                         break;
592
593                 if (cpu != RING_BUFFER_ALL_CPUS &&
594                     !ring_buffer_empty_cpu(buffer, cpu)) {
595                         unsigned long flags;
596                         bool pagebusy;
597
598                         if (!full)
599                                 break;
600
601                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
602                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
603                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
604
605                         if (!pagebusy)
606                                 break;
607                 }
608
609                 schedule();
610         }
611
612         if (full)
613                 finish_wait(&work->full_waiters, &wait);
614         else
615                 finish_wait(&work->waiters, &wait);
616
617         return ret;
618 }
619
620 /**
621  * ring_buffer_poll_wait - poll on buffer input
622  * @buffer: buffer to wait on
623  * @cpu: the cpu buffer to wait on
624  * @filp: the file descriptor
625  * @poll_table: The poll descriptor
626  *
627  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
628  * as data is added to any of the @buffer's cpu buffers. Otherwise
629  * it will wait for data to be added to a specific cpu buffer.
630  *
631  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
632  * zero otherwise.
633  */
634 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
635                           struct file *filp, poll_table *poll_table)
636 {
637         struct ring_buffer_per_cpu *cpu_buffer;
638         struct rb_irq_work *work;
639
640         if (cpu == RING_BUFFER_ALL_CPUS)
641                 work = &buffer->irq_work;
642         else {
643                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
644                         return -EINVAL;
645
646                 cpu_buffer = buffer->buffers[cpu];
647                 work = &cpu_buffer->irq_work;
648         }
649
650         poll_wait(filp, &work->waiters, poll_table);
651         work->waiters_pending = true;
652         /*
653          * There's a tight race between setting the waiters_pending and
654          * checking if the ring buffer is empty.  Once the waiters_pending bit
655          * is set, the next event will wake the task up, but we can get stuck
656          * if there's only a single event in.
657          *
658          * FIXME: Ideally, we need a memory barrier on the writer side as well,
659          * but adding a memory barrier to all events will cause too much of a
660          * performance hit in the fast path.  We only need a memory barrier when
661          * the buffer goes from empty to having content.  But as this race is
662          * extremely small, and it's not a problem if another event comes in, we
663          * will fix it later.
664          */
665         smp_mb();
666
667         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
668             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
669                 return POLLIN | POLLRDNORM;
670         return 0;
671 }
672
673 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
674 #define RB_WARN_ON(b, cond)                                             \
675         ({                                                              \
676                 int _____ret = unlikely(cond);                          \
677                 if (_____ret) {                                         \
678                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
679                                 struct ring_buffer_per_cpu *__b =       \
680                                         (void *)b;                      \
681                                 atomic_inc(&__b->buffer->record_disabled); \
682                         } else                                          \
683                                 atomic_inc(&b->record_disabled);        \
684                         WARN_ON(1);                                     \
685                 }                                                       \
686                 _____ret;                                               \
687         })
688
689 /* Up this if you want to test the TIME_EXTENTS and normalization */
690 #define DEBUG_SHIFT 0
691
692 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
693 {
694         /* shift to debug/test normalization and TIME_EXTENTS */
695         return buffer->clock() << DEBUG_SHIFT;
696 }
697
698 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
699 {
700         u64 time;
701
702         preempt_disable_notrace();
703         time = rb_time_stamp(buffer);
704         preempt_enable_no_resched_notrace();
705
706         return time;
707 }
708 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
709
710 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
711                                       int cpu, u64 *ts)
712 {
713         /* Just stupid testing the normalize function and deltas */
714         *ts >>= DEBUG_SHIFT;
715 }
716 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
717
718 /*
719  * Making the ring buffer lockless makes things tricky.
720  * Although writes only happen on the CPU that they are on,
721  * and they only need to worry about interrupts. Reads can
722  * happen on any CPU.
723  *
724  * The reader page is always off the ring buffer, but when the
725  * reader finishes with a page, it needs to swap its page with
726  * a new one from the buffer. The reader needs to take from
727  * the head (writes go to the tail). But if a writer is in overwrite
728  * mode and wraps, it must push the head page forward.
729  *
730  * Here lies the problem.
731  *
732  * The reader must be careful to replace only the head page, and
733  * not another one. As described at the top of the file in the
734  * ASCII art, the reader sets its old page to point to the next
735  * page after head. It then sets the page after head to point to
736  * the old reader page. But if the writer moves the head page
737  * during this operation, the reader could end up with the tail.
738  *
739  * We use cmpxchg to help prevent this race. We also do something
740  * special with the page before head. We set the LSB to 1.
741  *
742  * When the writer must push the page forward, it will clear the
743  * bit that points to the head page, move the head, and then set
744  * the bit that points to the new head page.
745  *
746  * We also don't want an interrupt coming in and moving the head
747  * page on another writer. Thus we use the second LSB to catch
748  * that too. Thus:
749  *
750  * head->list->prev->next        bit 1          bit 0
751  *                              -------        -------
752  * Normal page                     0              0
753  * Points to head page             0              1
754  * New head page                   1              0
755  *
756  * Note we can not trust the prev pointer of the head page, because:
757  *
758  * +----+       +-----+        +-----+
759  * |    |------>|  T  |---X--->|  N  |
760  * |    |<------|     |        |     |
761  * +----+       +-----+        +-----+
762  *   ^                           ^ |
763  *   |          +-----+          | |
764  *   +----------|  R  |----------+ |
765  *              |     |<-----------+
766  *              +-----+
767  *
768  * Key:  ---X-->  HEAD flag set in pointer
769  *         T      Tail page
770  *         R      Reader page
771  *         N      Next page
772  *
773  * (see __rb_reserve_next() to see where this happens)
774  *
775  *  What the above shows is that the reader just swapped out
776  *  the reader page with a page in the buffer, but before it
777  *  could make the new header point back to the new page added
778  *  it was preempted by a writer. The writer moved forward onto
779  *  the new page added by the reader and is about to move forward
780  *  again.
781  *
782  *  You can see, it is legitimate for the previous pointer of
783  *  the head (or any page) not to point back to itself. But only
784  *  temporarially.
785  */
786
787 #define RB_PAGE_NORMAL          0UL
788 #define RB_PAGE_HEAD            1UL
789 #define RB_PAGE_UPDATE          2UL
790
791
792 #define RB_FLAG_MASK            3UL
793
794 /* PAGE_MOVED is not part of the mask */
795 #define RB_PAGE_MOVED           4UL
796
797 /*
798  * rb_list_head - remove any bit
799  */
800 static struct list_head *rb_list_head(struct list_head *list)
801 {
802         unsigned long val = (unsigned long)list;
803
804         return (struct list_head *)(val & ~RB_FLAG_MASK);
805 }
806
807 /*
808  * rb_is_head_page - test if the given page is the head page
809  *
810  * Because the reader may move the head_page pointer, we can
811  * not trust what the head page is (it may be pointing to
812  * the reader page). But if the next page is a header page,
813  * its flags will be non zero.
814  */
815 static inline int
816 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
817                 struct buffer_page *page, struct list_head *list)
818 {
819         unsigned long val;
820
821         val = (unsigned long)list->next;
822
823         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
824                 return RB_PAGE_MOVED;
825
826         return val & RB_FLAG_MASK;
827 }
828
829 /*
830  * rb_is_reader_page
831  *
832  * The unique thing about the reader page, is that, if the
833  * writer is ever on it, the previous pointer never points
834  * back to the reader page.
835  */
836 static bool rb_is_reader_page(struct buffer_page *page)
837 {
838         struct list_head *list = page->list.prev;
839
840         return rb_list_head(list->next) != &page->list;
841 }
842
843 /*
844  * rb_set_list_to_head - set a list_head to be pointing to head.
845  */
846 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
847                                 struct list_head *list)
848 {
849         unsigned long *ptr;
850
851         ptr = (unsigned long *)&list->next;
852         *ptr |= RB_PAGE_HEAD;
853         *ptr &= ~RB_PAGE_UPDATE;
854 }
855
856 /*
857  * rb_head_page_activate - sets up head page
858  */
859 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
860 {
861         struct buffer_page *head;
862
863         head = cpu_buffer->head_page;
864         if (!head)
865                 return;
866
867         /*
868          * Set the previous list pointer to have the HEAD flag.
869          */
870         rb_set_list_to_head(cpu_buffer, head->list.prev);
871 }
872
873 static void rb_list_head_clear(struct list_head *list)
874 {
875         unsigned long *ptr = (unsigned long *)&list->next;
876
877         *ptr &= ~RB_FLAG_MASK;
878 }
879
880 /*
881  * rb_head_page_dactivate - clears head page ptr (for free list)
882  */
883 static void
884 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
885 {
886         struct list_head *hd;
887
888         /* Go through the whole list and clear any pointers found. */
889         rb_list_head_clear(cpu_buffer->pages);
890
891         list_for_each(hd, cpu_buffer->pages)
892                 rb_list_head_clear(hd);
893 }
894
895 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
896                             struct buffer_page *head,
897                             struct buffer_page *prev,
898                             int old_flag, int new_flag)
899 {
900         struct list_head *list;
901         unsigned long val = (unsigned long)&head->list;
902         unsigned long ret;
903
904         list = &prev->list;
905
906         val &= ~RB_FLAG_MASK;
907
908         ret = cmpxchg((unsigned long *)&list->next,
909                       val | old_flag, val | new_flag);
910
911         /* check if the reader took the page */
912         if ((ret & ~RB_FLAG_MASK) != val)
913                 return RB_PAGE_MOVED;
914
915         return ret & RB_FLAG_MASK;
916 }
917
918 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
919                                    struct buffer_page *head,
920                                    struct buffer_page *prev,
921                                    int old_flag)
922 {
923         return rb_head_page_set(cpu_buffer, head, prev,
924                                 old_flag, RB_PAGE_UPDATE);
925 }
926
927 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
928                                  struct buffer_page *head,
929                                  struct buffer_page *prev,
930                                  int old_flag)
931 {
932         return rb_head_page_set(cpu_buffer, head, prev,
933                                 old_flag, RB_PAGE_HEAD);
934 }
935
936 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
937                                    struct buffer_page *head,
938                                    struct buffer_page *prev,
939                                    int old_flag)
940 {
941         return rb_head_page_set(cpu_buffer, head, prev,
942                                 old_flag, RB_PAGE_NORMAL);
943 }
944
945 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
946                                struct buffer_page **bpage)
947 {
948         struct list_head *p = rb_list_head((*bpage)->list.next);
949
950         *bpage = list_entry(p, struct buffer_page, list);
951 }
952
953 static struct buffer_page *
954 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
955 {
956         struct buffer_page *head;
957         struct buffer_page *page;
958         struct list_head *list;
959         int i;
960
961         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
962                 return NULL;
963
964         /* sanity check */
965         list = cpu_buffer->pages;
966         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
967                 return NULL;
968
969         page = head = cpu_buffer->head_page;
970         /*
971          * It is possible that the writer moves the header behind
972          * where we started, and we miss in one loop.
973          * A second loop should grab the header, but we'll do
974          * three loops just because I'm paranoid.
975          */
976         for (i = 0; i < 3; i++) {
977                 do {
978                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
979                                 cpu_buffer->head_page = page;
980                                 return page;
981                         }
982                         rb_inc_page(cpu_buffer, &page);
983                 } while (page != head);
984         }
985
986         RB_WARN_ON(cpu_buffer, 1);
987
988         return NULL;
989 }
990
991 static int rb_head_page_replace(struct buffer_page *old,
992                                 struct buffer_page *new)
993 {
994         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
995         unsigned long val;
996         unsigned long ret;
997
998         val = *ptr & ~RB_FLAG_MASK;
999         val |= RB_PAGE_HEAD;
1000
1001         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1002
1003         return ret == val;
1004 }
1005
1006 /*
1007  * rb_tail_page_update - move the tail page forward
1008  *
1009  * Returns 1 if moved tail page, 0 if someone else did.
1010  */
1011 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1012                                struct buffer_page *tail_page,
1013                                struct buffer_page *next_page)
1014 {
1015         struct buffer_page *old_tail;
1016         unsigned long old_entries;
1017         unsigned long old_write;
1018         int ret = 0;
1019
1020         /*
1021          * The tail page now needs to be moved forward.
1022          *
1023          * We need to reset the tail page, but without messing
1024          * with possible erasing of data brought in by interrupts
1025          * that have moved the tail page and are currently on it.
1026          *
1027          * We add a counter to the write field to denote this.
1028          */
1029         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1030         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1031
1032         /*
1033          * Just make sure we have seen our old_write and synchronize
1034          * with any interrupts that come in.
1035          */
1036         barrier();
1037
1038         /*
1039          * If the tail page is still the same as what we think
1040          * it is, then it is up to us to update the tail
1041          * pointer.
1042          */
1043         if (tail_page == cpu_buffer->tail_page) {
1044                 /* Zero the write counter */
1045                 unsigned long val = old_write & ~RB_WRITE_MASK;
1046                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1047
1048                 /*
1049                  * This will only succeed if an interrupt did
1050                  * not come in and change it. In which case, we
1051                  * do not want to modify it.
1052                  *
1053                  * We add (void) to let the compiler know that we do not care
1054                  * about the return value of these functions. We use the
1055                  * cmpxchg to only update if an interrupt did not already
1056                  * do it for us. If the cmpxchg fails, we don't care.
1057                  */
1058                 (void)local_cmpxchg(&next_page->write, old_write, val);
1059                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1060
1061                 /*
1062                  * No need to worry about races with clearing out the commit.
1063                  * it only can increment when a commit takes place. But that
1064                  * only happens in the outer most nested commit.
1065                  */
1066                 local_set(&next_page->page->commit, 0);
1067
1068                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1069                                    tail_page, next_page);
1070
1071                 if (old_tail == tail_page)
1072                         ret = 1;
1073         }
1074
1075         return ret;
1076 }
1077
1078 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1079                           struct buffer_page *bpage)
1080 {
1081         unsigned long val = (unsigned long)bpage;
1082
1083         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1084                 return 1;
1085
1086         return 0;
1087 }
1088
1089 /**
1090  * rb_check_list - make sure a pointer to a list has the last bits zero
1091  */
1092 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1093                          struct list_head *list)
1094 {
1095         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1096                 return 1;
1097         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1098                 return 1;
1099         return 0;
1100 }
1101
1102 /**
1103  * rb_check_pages - integrity check of buffer pages
1104  * @cpu_buffer: CPU buffer with pages to test
1105  *
1106  * As a safety measure we check to make sure the data pages have not
1107  * been corrupted.
1108  */
1109 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1110 {
1111         struct list_head *head = cpu_buffer->pages;
1112         struct buffer_page *bpage, *tmp;
1113
1114         /* Reset the head page if it exists */
1115         if (cpu_buffer->head_page)
1116                 rb_set_head_page(cpu_buffer);
1117
1118         rb_head_page_deactivate(cpu_buffer);
1119
1120         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1121                 return -1;
1122         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1123                 return -1;
1124
1125         if (rb_check_list(cpu_buffer, head))
1126                 return -1;
1127
1128         list_for_each_entry_safe(bpage, tmp, head, list) {
1129                 if (RB_WARN_ON(cpu_buffer,
1130                                bpage->list.next->prev != &bpage->list))
1131                         return -1;
1132                 if (RB_WARN_ON(cpu_buffer,
1133                                bpage->list.prev->next != &bpage->list))
1134                         return -1;
1135                 if (rb_check_list(cpu_buffer, &bpage->list))
1136                         return -1;
1137         }
1138
1139         rb_head_page_activate(cpu_buffer);
1140
1141         return 0;
1142 }
1143
1144 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1145 {
1146         struct buffer_page *bpage, *tmp;
1147         long i;
1148
1149         for (i = 0; i < nr_pages; i++) {
1150                 struct page *page;
1151                 /*
1152                  * __GFP_NORETRY flag makes sure that the allocation fails
1153                  * gracefully without invoking oom-killer and the system is
1154                  * not destabilized.
1155                  */
1156                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1157                                     GFP_KERNEL | __GFP_NORETRY,
1158                                     cpu_to_node(cpu));
1159                 if (!bpage)
1160                         goto free_pages;
1161
1162                 list_add(&bpage->list, pages);
1163
1164                 page = alloc_pages_node(cpu_to_node(cpu),
1165                                         GFP_KERNEL | __GFP_NORETRY, 0);
1166                 if (!page)
1167                         goto free_pages;
1168                 bpage->page = page_address(page);
1169                 rb_init_page(bpage->page);
1170         }
1171
1172         return 0;
1173
1174 free_pages:
1175         list_for_each_entry_safe(bpage, tmp, pages, list) {
1176                 list_del_init(&bpage->list);
1177                 free_buffer_page(bpage);
1178         }
1179
1180         return -ENOMEM;
1181 }
1182
1183 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1184                              unsigned long nr_pages)
1185 {
1186         LIST_HEAD(pages);
1187
1188         WARN_ON(!nr_pages);
1189
1190         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1191                 return -ENOMEM;
1192
1193         /*
1194          * The ring buffer page list is a circular list that does not
1195          * start and end with a list head. All page list items point to
1196          * other pages.
1197          */
1198         cpu_buffer->pages = pages.next;
1199         list_del(&pages);
1200
1201         cpu_buffer->nr_pages = nr_pages;
1202
1203         rb_check_pages(cpu_buffer);
1204
1205         return 0;
1206 }
1207
1208 static struct ring_buffer_per_cpu *
1209 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1210 {
1211         struct ring_buffer_per_cpu *cpu_buffer;
1212         struct buffer_page *bpage;
1213         struct page *page;
1214         int ret;
1215
1216         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1217                                   GFP_KERNEL, cpu_to_node(cpu));
1218         if (!cpu_buffer)
1219                 return NULL;
1220
1221         cpu_buffer->cpu = cpu;
1222         cpu_buffer->buffer = buffer;
1223         raw_spin_lock_init(&cpu_buffer->reader_lock);
1224         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1225         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1226         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1227         init_completion(&cpu_buffer->update_done);
1228         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1229         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1230         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1231
1232         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1233                             GFP_KERNEL, cpu_to_node(cpu));
1234         if (!bpage)
1235                 goto fail_free_buffer;
1236
1237         rb_check_bpage(cpu_buffer, bpage);
1238
1239         cpu_buffer->reader_page = bpage;
1240         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1241         if (!page)
1242                 goto fail_free_reader;
1243         bpage->page = page_address(page);
1244         rb_init_page(bpage->page);
1245
1246         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1247         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1248
1249         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1250         if (ret < 0)
1251                 goto fail_free_reader;
1252
1253         cpu_buffer->head_page
1254                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1255         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1256
1257         rb_head_page_activate(cpu_buffer);
1258
1259         return cpu_buffer;
1260
1261  fail_free_reader:
1262         free_buffer_page(cpu_buffer->reader_page);
1263
1264  fail_free_buffer:
1265         kfree(cpu_buffer);
1266         return NULL;
1267 }
1268
1269 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1270 {
1271         struct list_head *head = cpu_buffer->pages;
1272         struct buffer_page *bpage, *tmp;
1273
1274         free_buffer_page(cpu_buffer->reader_page);
1275
1276         rb_head_page_deactivate(cpu_buffer);
1277
1278         if (head) {
1279                 list_for_each_entry_safe(bpage, tmp, head, list) {
1280                         list_del_init(&bpage->list);
1281                         free_buffer_page(bpage);
1282                 }
1283                 bpage = list_entry(head, struct buffer_page, list);
1284                 free_buffer_page(bpage);
1285         }
1286
1287         kfree(cpu_buffer);
1288 }
1289
1290 #ifdef CONFIG_HOTPLUG_CPU
1291 static int rb_cpu_notify(struct notifier_block *self,
1292                          unsigned long action, void *hcpu);
1293 #endif
1294
1295 /**
1296  * __ring_buffer_alloc - allocate a new ring_buffer
1297  * @size: the size in bytes per cpu that is needed.
1298  * @flags: attributes to set for the ring buffer.
1299  *
1300  * Currently the only flag that is available is the RB_FL_OVERWRITE
1301  * flag. This flag means that the buffer will overwrite old data
1302  * when the buffer wraps. If this flag is not set, the buffer will
1303  * drop data when the tail hits the head.
1304  */
1305 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1306                                         struct lock_class_key *key)
1307 {
1308         struct ring_buffer *buffer;
1309         long nr_pages;
1310         int bsize;
1311         int cpu;
1312
1313         /* keep it in its own cache line */
1314         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1315                          GFP_KERNEL);
1316         if (!buffer)
1317                 return NULL;
1318
1319         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1320                 goto fail_free_buffer;
1321
1322         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1323         buffer->flags = flags;
1324         buffer->clock = trace_clock_local;
1325         buffer->reader_lock_key = key;
1326
1327         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1328         init_waitqueue_head(&buffer->irq_work.waiters);
1329
1330         /* need at least two pages */
1331         if (nr_pages < 2)
1332                 nr_pages = 2;
1333
1334         /*
1335          * In case of non-hotplug cpu, if the ring-buffer is allocated
1336          * in early initcall, it will not be notified of secondary cpus.
1337          * In that off case, we need to allocate for all possible cpus.
1338          */
1339 #ifdef CONFIG_HOTPLUG_CPU
1340         cpu_notifier_register_begin();
1341         cpumask_copy(buffer->cpumask, cpu_online_mask);
1342 #else
1343         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1344 #endif
1345         buffer->cpus = nr_cpu_ids;
1346
1347         bsize = sizeof(void *) * nr_cpu_ids;
1348         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1349                                   GFP_KERNEL);
1350         if (!buffer->buffers)
1351                 goto fail_free_cpumask;
1352
1353         for_each_buffer_cpu(buffer, cpu) {
1354                 buffer->buffers[cpu] =
1355                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1356                 if (!buffer->buffers[cpu])
1357                         goto fail_free_buffers;
1358         }
1359
1360 #ifdef CONFIG_HOTPLUG_CPU
1361         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1362         buffer->cpu_notify.priority = 0;
1363         __register_cpu_notifier(&buffer->cpu_notify);
1364         cpu_notifier_register_done();
1365 #endif
1366
1367         mutex_init(&buffer->mutex);
1368
1369         return buffer;
1370
1371  fail_free_buffers:
1372         for_each_buffer_cpu(buffer, cpu) {
1373                 if (buffer->buffers[cpu])
1374                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1375         }
1376         kfree(buffer->buffers);
1377
1378  fail_free_cpumask:
1379         free_cpumask_var(buffer->cpumask);
1380 #ifdef CONFIG_HOTPLUG_CPU
1381         cpu_notifier_register_done();
1382 #endif
1383
1384  fail_free_buffer:
1385         kfree(buffer);
1386         return NULL;
1387 }
1388 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1389
1390 /**
1391  * ring_buffer_free - free a ring buffer.
1392  * @buffer: the buffer to free.
1393  */
1394 void
1395 ring_buffer_free(struct ring_buffer *buffer)
1396 {
1397         int cpu;
1398
1399 #ifdef CONFIG_HOTPLUG_CPU
1400         cpu_notifier_register_begin();
1401         __unregister_cpu_notifier(&buffer->cpu_notify);
1402 #endif
1403
1404         for_each_buffer_cpu(buffer, cpu)
1405                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1406
1407 #ifdef CONFIG_HOTPLUG_CPU
1408         cpu_notifier_register_done();
1409 #endif
1410
1411         kfree(buffer->buffers);
1412         free_cpumask_var(buffer->cpumask);
1413
1414         kfree(buffer);
1415 }
1416 EXPORT_SYMBOL_GPL(ring_buffer_free);
1417
1418 void ring_buffer_set_clock(struct ring_buffer *buffer,
1419                            u64 (*clock)(void))
1420 {
1421         buffer->clock = clock;
1422 }
1423
1424 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1425
1426 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1427 {
1428         return local_read(&bpage->entries) & RB_WRITE_MASK;
1429 }
1430
1431 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1432 {
1433         return local_read(&bpage->write) & RB_WRITE_MASK;
1434 }
1435
1436 static int
1437 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1438 {
1439         struct list_head *tail_page, *to_remove, *next_page;
1440         struct buffer_page *to_remove_page, *tmp_iter_page;
1441         struct buffer_page *last_page, *first_page;
1442         unsigned long nr_removed;
1443         unsigned long head_bit;
1444         int page_entries;
1445
1446         head_bit = 0;
1447
1448         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1449         atomic_inc(&cpu_buffer->record_disabled);
1450         /*
1451          * We don't race with the readers since we have acquired the reader
1452          * lock. We also don't race with writers after disabling recording.
1453          * This makes it easy to figure out the first and the last page to be
1454          * removed from the list. We unlink all the pages in between including
1455          * the first and last pages. This is done in a busy loop so that we
1456          * lose the least number of traces.
1457          * The pages are freed after we restart recording and unlock readers.
1458          */
1459         tail_page = &cpu_buffer->tail_page->list;
1460
1461         /*
1462          * tail page might be on reader page, we remove the next page
1463          * from the ring buffer
1464          */
1465         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1466                 tail_page = rb_list_head(tail_page->next);
1467         to_remove = tail_page;
1468
1469         /* start of pages to remove */
1470         first_page = list_entry(rb_list_head(to_remove->next),
1471                                 struct buffer_page, list);
1472
1473         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1474                 to_remove = rb_list_head(to_remove)->next;
1475                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1476         }
1477
1478         next_page = rb_list_head(to_remove)->next;
1479
1480         /*
1481          * Now we remove all pages between tail_page and next_page.
1482          * Make sure that we have head_bit value preserved for the
1483          * next page
1484          */
1485         tail_page->next = (struct list_head *)((unsigned long)next_page |
1486                                                 head_bit);
1487         next_page = rb_list_head(next_page);
1488         next_page->prev = tail_page;
1489
1490         /* make sure pages points to a valid page in the ring buffer */
1491         cpu_buffer->pages = next_page;
1492
1493         /* update head page */
1494         if (head_bit)
1495                 cpu_buffer->head_page = list_entry(next_page,
1496                                                 struct buffer_page, list);
1497
1498         /*
1499          * change read pointer to make sure any read iterators reset
1500          * themselves
1501          */
1502         cpu_buffer->read = 0;
1503
1504         /* pages are removed, resume tracing and then free the pages */
1505         atomic_dec(&cpu_buffer->record_disabled);
1506         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1507
1508         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1509
1510         /* last buffer page to remove */
1511         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1512                                 list);
1513         tmp_iter_page = first_page;
1514
1515         do {
1516                 to_remove_page = tmp_iter_page;
1517                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1518
1519                 /* update the counters */
1520                 page_entries = rb_page_entries(to_remove_page);
1521                 if (page_entries) {
1522                         /*
1523                          * If something was added to this page, it was full
1524                          * since it is not the tail page. So we deduct the
1525                          * bytes consumed in ring buffer from here.
1526                          * Increment overrun to account for the lost events.
1527                          */
1528                         local_add(page_entries, &cpu_buffer->overrun);
1529                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1530                 }
1531
1532                 /*
1533                  * We have already removed references to this list item, just
1534                  * free up the buffer_page and its page
1535                  */
1536                 free_buffer_page(to_remove_page);
1537                 nr_removed--;
1538
1539         } while (to_remove_page != last_page);
1540
1541         RB_WARN_ON(cpu_buffer, nr_removed);
1542
1543         return nr_removed == 0;
1544 }
1545
1546 static int
1547 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1548 {
1549         struct list_head *pages = &cpu_buffer->new_pages;
1550         int retries, success;
1551
1552         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1553         /*
1554          * We are holding the reader lock, so the reader page won't be swapped
1555          * in the ring buffer. Now we are racing with the writer trying to
1556          * move head page and the tail page.
1557          * We are going to adapt the reader page update process where:
1558          * 1. We first splice the start and end of list of new pages between
1559          *    the head page and its previous page.
1560          * 2. We cmpxchg the prev_page->next to point from head page to the
1561          *    start of new pages list.
1562          * 3. Finally, we update the head->prev to the end of new list.
1563          *
1564          * We will try this process 10 times, to make sure that we don't keep
1565          * spinning.
1566          */
1567         retries = 10;
1568         success = 0;
1569         while (retries--) {
1570                 struct list_head *head_page, *prev_page, *r;
1571                 struct list_head *last_page, *first_page;
1572                 struct list_head *head_page_with_bit;
1573
1574                 head_page = &rb_set_head_page(cpu_buffer)->list;
1575                 if (!head_page)
1576                         break;
1577                 prev_page = head_page->prev;
1578
1579                 first_page = pages->next;
1580                 last_page  = pages->prev;
1581
1582                 head_page_with_bit = (struct list_head *)
1583                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1584
1585                 last_page->next = head_page_with_bit;
1586                 first_page->prev = prev_page;
1587
1588                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1589
1590                 if (r == head_page_with_bit) {
1591                         /*
1592                          * yay, we replaced the page pointer to our new list,
1593                          * now, we just have to update to head page's prev
1594                          * pointer to point to end of list
1595                          */
1596                         head_page->prev = last_page;
1597                         success = 1;
1598                         break;
1599                 }
1600         }
1601
1602         if (success)
1603                 INIT_LIST_HEAD(pages);
1604         /*
1605          * If we weren't successful in adding in new pages, warn and stop
1606          * tracing
1607          */
1608         RB_WARN_ON(cpu_buffer, !success);
1609         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1610
1611         /* free pages if they weren't inserted */
1612         if (!success) {
1613                 struct buffer_page *bpage, *tmp;
1614                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1615                                          list) {
1616                         list_del_init(&bpage->list);
1617                         free_buffer_page(bpage);
1618                 }
1619         }
1620         return success;
1621 }
1622
1623 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1624 {
1625         int success;
1626
1627         if (cpu_buffer->nr_pages_to_update > 0)
1628                 success = rb_insert_pages(cpu_buffer);
1629         else
1630                 success = rb_remove_pages(cpu_buffer,
1631                                         -cpu_buffer->nr_pages_to_update);
1632
1633         if (success)
1634                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1635 }
1636
1637 static void update_pages_handler(struct work_struct *work)
1638 {
1639         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1640                         struct ring_buffer_per_cpu, update_pages_work);
1641         rb_update_pages(cpu_buffer);
1642         complete(&cpu_buffer->update_done);
1643 }
1644
1645 /**
1646  * ring_buffer_resize - resize the ring buffer
1647  * @buffer: the buffer to resize.
1648  * @size: the new size.
1649  * @cpu_id: the cpu buffer to resize
1650  *
1651  * Minimum size is 2 * BUF_PAGE_SIZE.
1652  *
1653  * Returns 0 on success and < 0 on failure.
1654  */
1655 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1656                         int cpu_id)
1657 {
1658         struct ring_buffer_per_cpu *cpu_buffer;
1659         unsigned long nr_pages;
1660         int cpu, err = 0;
1661
1662         /*
1663          * Always succeed at resizing a non-existent buffer:
1664          */
1665         if (!buffer)
1666                 return size;
1667
1668         /* Make sure the requested buffer exists */
1669         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1670             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1671                 return size;
1672
1673         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1674
1675         /* we need a minimum of two pages */
1676         if (nr_pages < 2)
1677                 nr_pages = 2;
1678
1679         size = nr_pages * BUF_PAGE_SIZE;
1680
1681         /*
1682          * Don't succeed if resizing is disabled, as a reader might be
1683          * manipulating the ring buffer and is expecting a sane state while
1684          * this is true.
1685          */
1686         if (atomic_read(&buffer->resize_disabled))
1687                 return -EBUSY;
1688
1689         /* prevent another thread from changing buffer sizes */
1690         mutex_lock(&buffer->mutex);
1691
1692         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1693                 /* calculate the pages to update */
1694                 for_each_buffer_cpu(buffer, cpu) {
1695                         cpu_buffer = buffer->buffers[cpu];
1696
1697                         cpu_buffer->nr_pages_to_update = nr_pages -
1698                                                         cpu_buffer->nr_pages;
1699                         /*
1700                          * nothing more to do for removing pages or no update
1701                          */
1702                         if (cpu_buffer->nr_pages_to_update <= 0)
1703                                 continue;
1704                         /*
1705                          * to add pages, make sure all new pages can be
1706                          * allocated without receiving ENOMEM
1707                          */
1708                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1709                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1710                                                 &cpu_buffer->new_pages, cpu)) {
1711                                 /* not enough memory for new pages */
1712                                 err = -ENOMEM;
1713                                 goto out_err;
1714                         }
1715                 }
1716
1717                 get_online_cpus();
1718                 /*
1719                  * Fire off all the required work handlers
1720                  * We can't schedule on offline CPUs, but it's not necessary
1721                  * since we can change their buffer sizes without any race.
1722                  */
1723                 for_each_buffer_cpu(buffer, cpu) {
1724                         cpu_buffer = buffer->buffers[cpu];
1725                         if (!cpu_buffer->nr_pages_to_update)
1726                                 continue;
1727
1728                         /* Can't run something on an offline CPU. */
1729                         if (!cpu_online(cpu)) {
1730                                 rb_update_pages(cpu_buffer);
1731                                 cpu_buffer->nr_pages_to_update = 0;
1732                         } else {
1733                                 schedule_work_on(cpu,
1734                                                 &cpu_buffer->update_pages_work);
1735                         }
1736                 }
1737
1738                 /* wait for all the updates to complete */
1739                 for_each_buffer_cpu(buffer, cpu) {
1740                         cpu_buffer = buffer->buffers[cpu];
1741                         if (!cpu_buffer->nr_pages_to_update)
1742                                 continue;
1743
1744                         if (cpu_online(cpu))
1745                                 wait_for_completion(&cpu_buffer->update_done);
1746                         cpu_buffer->nr_pages_to_update = 0;
1747                 }
1748
1749                 put_online_cpus();
1750         } else {
1751                 /* Make sure this CPU has been intitialized */
1752                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1753                         goto out;
1754
1755                 cpu_buffer = buffer->buffers[cpu_id];
1756
1757                 if (nr_pages == cpu_buffer->nr_pages)
1758                         goto out;
1759
1760                 cpu_buffer->nr_pages_to_update = nr_pages -
1761                                                 cpu_buffer->nr_pages;
1762
1763                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1764                 if (cpu_buffer->nr_pages_to_update > 0 &&
1765                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1766                                             &cpu_buffer->new_pages, cpu_id)) {
1767                         err = -ENOMEM;
1768                         goto out_err;
1769                 }
1770
1771                 get_online_cpus();
1772
1773                 /* Can't run something on an offline CPU. */
1774                 if (!cpu_online(cpu_id))
1775                         rb_update_pages(cpu_buffer);
1776                 else {
1777                         schedule_work_on(cpu_id,
1778                                          &cpu_buffer->update_pages_work);
1779                         wait_for_completion(&cpu_buffer->update_done);
1780                 }
1781
1782                 cpu_buffer->nr_pages_to_update = 0;
1783                 put_online_cpus();
1784         }
1785
1786  out:
1787         /*
1788          * The ring buffer resize can happen with the ring buffer
1789          * enabled, so that the update disturbs the tracing as little
1790          * as possible. But if the buffer is disabled, we do not need
1791          * to worry about that, and we can take the time to verify
1792          * that the buffer is not corrupt.
1793          */
1794         if (atomic_read(&buffer->record_disabled)) {
1795                 atomic_inc(&buffer->record_disabled);
1796                 /*
1797                  * Even though the buffer was disabled, we must make sure
1798                  * that it is truly disabled before calling rb_check_pages.
1799                  * There could have been a race between checking
1800                  * record_disable and incrementing it.
1801                  */
1802                 synchronize_sched();
1803                 for_each_buffer_cpu(buffer, cpu) {
1804                         cpu_buffer = buffer->buffers[cpu];
1805                         rb_check_pages(cpu_buffer);
1806                 }
1807                 atomic_dec(&buffer->record_disabled);
1808         }
1809
1810         mutex_unlock(&buffer->mutex);
1811         return size;
1812
1813  out_err:
1814         for_each_buffer_cpu(buffer, cpu) {
1815                 struct buffer_page *bpage, *tmp;
1816
1817                 cpu_buffer = buffer->buffers[cpu];
1818                 cpu_buffer->nr_pages_to_update = 0;
1819
1820                 if (list_empty(&cpu_buffer->new_pages))
1821                         continue;
1822
1823                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1824                                         list) {
1825                         list_del_init(&bpage->list);
1826                         free_buffer_page(bpage);
1827                 }
1828         }
1829         mutex_unlock(&buffer->mutex);
1830         return err;
1831 }
1832 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1833
1834 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1835 {
1836         mutex_lock(&buffer->mutex);
1837         if (val)
1838                 buffer->flags |= RB_FL_OVERWRITE;
1839         else
1840                 buffer->flags &= ~RB_FL_OVERWRITE;
1841         mutex_unlock(&buffer->mutex);
1842 }
1843 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1844
1845 static inline void *
1846 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1847 {
1848         return bpage->data + index;
1849 }
1850
1851 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1852 {
1853         return bpage->page->data + index;
1854 }
1855
1856 static inline struct ring_buffer_event *
1857 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859         return __rb_page_index(cpu_buffer->reader_page,
1860                                cpu_buffer->reader_page->read);
1861 }
1862
1863 static inline struct ring_buffer_event *
1864 rb_iter_head_event(struct ring_buffer_iter *iter)
1865 {
1866         return __rb_page_index(iter->head_page, iter->head);
1867 }
1868
1869 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1870 {
1871         return local_read(&bpage->page->commit);
1872 }
1873
1874 /* Size is determined by what has been committed */
1875 static inline unsigned rb_page_size(struct buffer_page *bpage)
1876 {
1877         return rb_page_commit(bpage);
1878 }
1879
1880 static inline unsigned
1881 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1882 {
1883         return rb_page_commit(cpu_buffer->commit_page);
1884 }
1885
1886 static inline unsigned
1887 rb_event_index(struct ring_buffer_event *event)
1888 {
1889         unsigned long addr = (unsigned long)event;
1890
1891         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1892 }
1893
1894 static void rb_inc_iter(struct ring_buffer_iter *iter)
1895 {
1896         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1897
1898         /*
1899          * The iterator could be on the reader page (it starts there).
1900          * But the head could have moved, since the reader was
1901          * found. Check for this case and assign the iterator
1902          * to the head page instead of next.
1903          */
1904         if (iter->head_page == cpu_buffer->reader_page)
1905                 iter->head_page = rb_set_head_page(cpu_buffer);
1906         else
1907                 rb_inc_page(cpu_buffer, &iter->head_page);
1908
1909         iter->read_stamp = iter->head_page->page->time_stamp;
1910         iter->head = 0;
1911 }
1912
1913 /*
1914  * rb_handle_head_page - writer hit the head page
1915  *
1916  * Returns: +1 to retry page
1917  *           0 to continue
1918  *          -1 on error
1919  */
1920 static int
1921 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1922                     struct buffer_page *tail_page,
1923                     struct buffer_page *next_page)
1924 {
1925         struct buffer_page *new_head;
1926         int entries;
1927         int type;
1928         int ret;
1929
1930         entries = rb_page_entries(next_page);
1931
1932         /*
1933          * The hard part is here. We need to move the head
1934          * forward, and protect against both readers on
1935          * other CPUs and writers coming in via interrupts.
1936          */
1937         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1938                                        RB_PAGE_HEAD);
1939
1940         /*
1941          * type can be one of four:
1942          *  NORMAL - an interrupt already moved it for us
1943          *  HEAD   - we are the first to get here.
1944          *  UPDATE - we are the interrupt interrupting
1945          *           a current move.
1946          *  MOVED  - a reader on another CPU moved the next
1947          *           pointer to its reader page. Give up
1948          *           and try again.
1949          */
1950
1951         switch (type) {
1952         case RB_PAGE_HEAD:
1953                 /*
1954                  * We changed the head to UPDATE, thus
1955                  * it is our responsibility to update
1956                  * the counters.
1957                  */
1958                 local_add(entries, &cpu_buffer->overrun);
1959                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1960
1961                 /*
1962                  * The entries will be zeroed out when we move the
1963                  * tail page.
1964                  */
1965
1966                 /* still more to do */
1967                 break;
1968
1969         case RB_PAGE_UPDATE:
1970                 /*
1971                  * This is an interrupt that interrupt the
1972                  * previous update. Still more to do.
1973                  */
1974                 break;
1975         case RB_PAGE_NORMAL:
1976                 /*
1977                  * An interrupt came in before the update
1978                  * and processed this for us.
1979                  * Nothing left to do.
1980                  */
1981                 return 1;
1982         case RB_PAGE_MOVED:
1983                 /*
1984                  * The reader is on another CPU and just did
1985                  * a swap with our next_page.
1986                  * Try again.
1987                  */
1988                 return 1;
1989         default:
1990                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1991                 return -1;
1992         }
1993
1994         /*
1995          * Now that we are here, the old head pointer is
1996          * set to UPDATE. This will keep the reader from
1997          * swapping the head page with the reader page.
1998          * The reader (on another CPU) will spin till
1999          * we are finished.
2000          *
2001          * We just need to protect against interrupts
2002          * doing the job. We will set the next pointer
2003          * to HEAD. After that, we set the old pointer
2004          * to NORMAL, but only if it was HEAD before.
2005          * otherwise we are an interrupt, and only
2006          * want the outer most commit to reset it.
2007          */
2008         new_head = next_page;
2009         rb_inc_page(cpu_buffer, &new_head);
2010
2011         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2012                                     RB_PAGE_NORMAL);
2013
2014         /*
2015          * Valid returns are:
2016          *  HEAD   - an interrupt came in and already set it.
2017          *  NORMAL - One of two things:
2018          *            1) We really set it.
2019          *            2) A bunch of interrupts came in and moved
2020          *               the page forward again.
2021          */
2022         switch (ret) {
2023         case RB_PAGE_HEAD:
2024         case RB_PAGE_NORMAL:
2025                 /* OK */
2026                 break;
2027         default:
2028                 RB_WARN_ON(cpu_buffer, 1);
2029                 return -1;
2030         }
2031
2032         /*
2033          * It is possible that an interrupt came in,
2034          * set the head up, then more interrupts came in
2035          * and moved it again. When we get back here,
2036          * the page would have been set to NORMAL but we
2037          * just set it back to HEAD.
2038          *
2039          * How do you detect this? Well, if that happened
2040          * the tail page would have moved.
2041          */
2042         if (ret == RB_PAGE_NORMAL) {
2043                 /*
2044                  * If the tail had moved passed next, then we need
2045                  * to reset the pointer.
2046                  */
2047                 if (cpu_buffer->tail_page != tail_page &&
2048                     cpu_buffer->tail_page != next_page)
2049                         rb_head_page_set_normal(cpu_buffer, new_head,
2050                                                 next_page,
2051                                                 RB_PAGE_HEAD);
2052         }
2053
2054         /*
2055          * If this was the outer most commit (the one that
2056          * changed the original pointer from HEAD to UPDATE),
2057          * then it is up to us to reset it to NORMAL.
2058          */
2059         if (type == RB_PAGE_HEAD) {
2060                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2061                                               tail_page,
2062                                               RB_PAGE_UPDATE);
2063                 if (RB_WARN_ON(cpu_buffer,
2064                                ret != RB_PAGE_UPDATE))
2065                         return -1;
2066         }
2067
2068         return 0;
2069 }
2070
2071 static inline void
2072 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2073               unsigned long tail, struct rb_event_info *info)
2074 {
2075         struct buffer_page *tail_page = info->tail_page;
2076         struct ring_buffer_event *event;
2077         unsigned long length = info->length;
2078
2079         /*
2080          * Only the event that crossed the page boundary
2081          * must fill the old tail_page with padding.
2082          */
2083         if (tail >= BUF_PAGE_SIZE) {
2084                 /*
2085                  * If the page was filled, then we still need
2086                  * to update the real_end. Reset it to zero
2087                  * and the reader will ignore it.
2088                  */
2089                 if (tail == BUF_PAGE_SIZE)
2090                         tail_page->real_end = 0;
2091
2092                 local_sub(length, &tail_page->write);
2093                 return;
2094         }
2095
2096         event = __rb_page_index(tail_page, tail);
2097         kmemcheck_annotate_bitfield(event, bitfield);
2098
2099         /* account for padding bytes */
2100         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2101
2102         /*
2103          * Save the original length to the meta data.
2104          * This will be used by the reader to add lost event
2105          * counter.
2106          */
2107         tail_page->real_end = tail;
2108
2109         /*
2110          * If this event is bigger than the minimum size, then
2111          * we need to be careful that we don't subtract the
2112          * write counter enough to allow another writer to slip
2113          * in on this page.
2114          * We put in a discarded commit instead, to make sure
2115          * that this space is not used again.
2116          *
2117          * If we are less than the minimum size, we don't need to
2118          * worry about it.
2119          */
2120         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2121                 /* No room for any events */
2122
2123                 /* Mark the rest of the page with padding */
2124                 rb_event_set_padding(event);
2125
2126                 /* Set the write back to the previous setting */
2127                 local_sub(length, &tail_page->write);
2128                 return;
2129         }
2130
2131         /* Put in a discarded event */
2132         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2133         event->type_len = RINGBUF_TYPE_PADDING;
2134         /* time delta must be non zero */
2135         event->time_delta = 1;
2136
2137         /* Set write to end of buffer */
2138         length = (tail + length) - BUF_PAGE_SIZE;
2139         local_sub(length, &tail_page->write);
2140 }
2141
2142 /*
2143  * This is the slow path, force gcc not to inline it.
2144  */
2145 static noinline struct ring_buffer_event *
2146 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2147              unsigned long tail, struct rb_event_info *info)
2148 {
2149         struct buffer_page *tail_page = info->tail_page;
2150         struct buffer_page *commit_page = cpu_buffer->commit_page;
2151         struct ring_buffer *buffer = cpu_buffer->buffer;
2152         struct buffer_page *next_page;
2153         int ret;
2154         u64 ts;
2155
2156         next_page = tail_page;
2157
2158         rb_inc_page(cpu_buffer, &next_page);
2159
2160         /*
2161          * If for some reason, we had an interrupt storm that made
2162          * it all the way around the buffer, bail, and warn
2163          * about it.
2164          */
2165         if (unlikely(next_page == commit_page)) {
2166                 local_inc(&cpu_buffer->commit_overrun);
2167                 goto out_reset;
2168         }
2169
2170         /*
2171          * This is where the fun begins!
2172          *
2173          * We are fighting against races between a reader that
2174          * could be on another CPU trying to swap its reader
2175          * page with the buffer head.
2176          *
2177          * We are also fighting against interrupts coming in and
2178          * moving the head or tail on us as well.
2179          *
2180          * If the next page is the head page then we have filled
2181          * the buffer, unless the commit page is still on the
2182          * reader page.
2183          */
2184         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2185
2186                 /*
2187                  * If the commit is not on the reader page, then
2188                  * move the header page.
2189                  */
2190                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2191                         /*
2192                          * If we are not in overwrite mode,
2193                          * this is easy, just stop here.
2194                          */
2195                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2196                                 local_inc(&cpu_buffer->dropped_events);
2197                                 goto out_reset;
2198                         }
2199
2200                         ret = rb_handle_head_page(cpu_buffer,
2201                                                   tail_page,
2202                                                   next_page);
2203                         if (ret < 0)
2204                                 goto out_reset;
2205                         if (ret)
2206                                 goto out_again;
2207                 } else {
2208                         /*
2209                          * We need to be careful here too. The
2210                          * commit page could still be on the reader
2211                          * page. We could have a small buffer, and
2212                          * have filled up the buffer with events
2213                          * from interrupts and such, and wrapped.
2214                          *
2215                          * Note, if the tail page is also the on the
2216                          * reader_page, we let it move out.
2217                          */
2218                         if (unlikely((cpu_buffer->commit_page !=
2219                                       cpu_buffer->tail_page) &&
2220                                      (cpu_buffer->commit_page ==
2221                                       cpu_buffer->reader_page))) {
2222                                 local_inc(&cpu_buffer->commit_overrun);
2223                                 goto out_reset;
2224                         }
2225                 }
2226         }
2227
2228         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2229         if (ret) {
2230                 /*
2231                  * Nested commits always have zero deltas, so
2232                  * just reread the time stamp
2233                  */
2234                 ts = rb_time_stamp(buffer);
2235                 next_page->page->time_stamp = ts;
2236         }
2237
2238  out_again:
2239
2240         rb_reset_tail(cpu_buffer, tail, info);
2241
2242         /* fail and let the caller try again */
2243         return ERR_PTR(-EAGAIN);
2244
2245  out_reset:
2246         /* reset write */
2247         rb_reset_tail(cpu_buffer, tail, info);
2248
2249         return NULL;
2250 }
2251
2252 /* Slow path, do not inline */
2253 static noinline struct ring_buffer_event *
2254 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2255 {
2256         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2257
2258         /* Not the first event on the page? */
2259         if (rb_event_index(event)) {
2260                 event->time_delta = delta & TS_MASK;
2261                 event->array[0] = delta >> TS_SHIFT;
2262         } else {
2263                 /* nope, just zero it */
2264                 event->time_delta = 0;
2265                 event->array[0] = 0;
2266         }
2267
2268         return skip_time_extend(event);
2269 }
2270
2271 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2272                                      struct ring_buffer_event *event);
2273
2274 /**
2275  * rb_update_event - update event type and data
2276  * @event: the event to update
2277  * @type: the type of event
2278  * @length: the size of the event field in the ring buffer
2279  *
2280  * Update the type and data fields of the event. The length
2281  * is the actual size that is written to the ring buffer,
2282  * and with this, we can determine what to place into the
2283  * data field.
2284  */
2285 static void
2286 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2287                 struct ring_buffer_event *event,
2288                 struct rb_event_info *info)
2289 {
2290         unsigned length = info->length;
2291         u64 delta = info->delta;
2292
2293         /* Only a commit updates the timestamp */
2294         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2295                 delta = 0;
2296
2297         /*
2298          * If we need to add a timestamp, then we
2299          * add it to the start of the resevered space.
2300          */
2301         if (unlikely(info->add_timestamp)) {
2302                 event = rb_add_time_stamp(event, delta);
2303                 length -= RB_LEN_TIME_EXTEND;
2304                 delta = 0;
2305         }
2306
2307         event->time_delta = delta;
2308         length -= RB_EVNT_HDR_SIZE;
2309         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2310                 event->type_len = 0;
2311                 event->array[0] = length;
2312         } else
2313                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2314 }
2315
2316 static unsigned rb_calculate_event_length(unsigned length)
2317 {
2318         struct ring_buffer_event event; /* Used only for sizeof array */
2319
2320         /* zero length can cause confusions */
2321         if (!length)
2322                 length++;
2323
2324         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2325                 length += sizeof(event.array[0]);
2326
2327         length += RB_EVNT_HDR_SIZE;
2328         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2329
2330         /*
2331          * In case the time delta is larger than the 27 bits for it
2332          * in the header, we need to add a timestamp. If another
2333          * event comes in when trying to discard this one to increase
2334          * the length, then the timestamp will be added in the allocated
2335          * space of this event. If length is bigger than the size needed
2336          * for the TIME_EXTEND, then padding has to be used. The events
2337          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2338          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2339          * As length is a multiple of 4, we only need to worry if it
2340          * is 12 (RB_LEN_TIME_EXTEND + 4).
2341          */
2342         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2343                 length += RB_ALIGNMENT;
2344
2345         return length;
2346 }
2347
2348 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2349 static inline bool sched_clock_stable(void)
2350 {
2351         return true;
2352 }
2353 #endif
2354
2355 static inline int
2356 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2357                   struct ring_buffer_event *event)
2358 {
2359         unsigned long new_index, old_index;
2360         struct buffer_page *bpage;
2361         unsigned long index;
2362         unsigned long addr;
2363
2364         new_index = rb_event_index(event);
2365         old_index = new_index + rb_event_ts_length(event);
2366         addr = (unsigned long)event;
2367         addr &= PAGE_MASK;
2368
2369         bpage = cpu_buffer->tail_page;
2370
2371         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2372                 unsigned long write_mask =
2373                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2374                 unsigned long event_length = rb_event_length(event);
2375                 /*
2376                  * This is on the tail page. It is possible that
2377                  * a write could come in and move the tail page
2378                  * and write to the next page. That is fine
2379                  * because we just shorten what is on this page.
2380                  */
2381                 old_index += write_mask;
2382                 new_index += write_mask;
2383                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2384                 if (index == old_index) {
2385                         /* update counters */
2386                         local_sub(event_length, &cpu_buffer->entries_bytes);
2387                         return 1;
2388                 }
2389         }
2390
2391         /* could not discard */
2392         return 0;
2393 }
2394
2395 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2396 {
2397         local_inc(&cpu_buffer->committing);
2398         local_inc(&cpu_buffer->commits);
2399 }
2400
2401 static void
2402 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2403 {
2404         unsigned long max_count;
2405
2406         /*
2407          * We only race with interrupts and NMIs on this CPU.
2408          * If we own the commit event, then we can commit
2409          * all others that interrupted us, since the interruptions
2410          * are in stack format (they finish before they come
2411          * back to us). This allows us to do a simple loop to
2412          * assign the commit to the tail.
2413          */
2414  again:
2415         max_count = cpu_buffer->nr_pages * 100;
2416
2417         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2418                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2419                         return;
2420                 if (RB_WARN_ON(cpu_buffer,
2421                                rb_is_reader_page(cpu_buffer->tail_page)))
2422                         return;
2423                 local_set(&cpu_buffer->commit_page->page->commit,
2424                           rb_page_write(cpu_buffer->commit_page));
2425                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2426                 cpu_buffer->write_stamp =
2427                         cpu_buffer->commit_page->page->time_stamp;
2428                 /* add barrier to keep gcc from optimizing too much */
2429                 barrier();
2430         }
2431         while (rb_commit_index(cpu_buffer) !=
2432                rb_page_write(cpu_buffer->commit_page)) {
2433
2434                 local_set(&cpu_buffer->commit_page->page->commit,
2435                           rb_page_write(cpu_buffer->commit_page));
2436                 RB_WARN_ON(cpu_buffer,
2437                            local_read(&cpu_buffer->commit_page->page->commit) &
2438                            ~RB_WRITE_MASK);
2439                 barrier();
2440         }
2441
2442         /* again, keep gcc from optimizing */
2443         barrier();
2444
2445         /*
2446          * If an interrupt came in just after the first while loop
2447          * and pushed the tail page forward, we will be left with
2448          * a dangling commit that will never go forward.
2449          */
2450         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2451                 goto again;
2452 }
2453
2454 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2455 {
2456         unsigned long commits;
2457
2458         if (RB_WARN_ON(cpu_buffer,
2459                        !local_read(&cpu_buffer->committing)))
2460                 return;
2461
2462  again:
2463         commits = local_read(&cpu_buffer->commits);
2464         /* synchronize with interrupts */
2465         barrier();
2466         if (local_read(&cpu_buffer->committing) == 1)
2467                 rb_set_commit_to_write(cpu_buffer);
2468
2469         local_dec(&cpu_buffer->committing);
2470
2471         /* synchronize with interrupts */
2472         barrier();
2473
2474         /*
2475          * Need to account for interrupts coming in between the
2476          * updating of the commit page and the clearing of the
2477          * committing counter.
2478          */
2479         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2480             !local_read(&cpu_buffer->committing)) {
2481                 local_inc(&cpu_buffer->committing);
2482                 goto again;
2483         }
2484 }
2485
2486 static inline void rb_event_discard(struct ring_buffer_event *event)
2487 {
2488         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2489                 event = skip_time_extend(event);
2490
2491         /* array[0] holds the actual length for the discarded event */
2492         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2493         event->type_len = RINGBUF_TYPE_PADDING;
2494         /* time delta must be non zero */
2495         if (!event->time_delta)
2496                 event->time_delta = 1;
2497 }
2498
2499 static inline bool
2500 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2501                    struct ring_buffer_event *event)
2502 {
2503         unsigned long addr = (unsigned long)event;
2504         unsigned long index;
2505
2506         index = rb_event_index(event);
2507         addr &= PAGE_MASK;
2508
2509         return cpu_buffer->commit_page->page == (void *)addr &&
2510                 rb_commit_index(cpu_buffer) == index;
2511 }
2512
2513 static void
2514 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2515                       struct ring_buffer_event *event)
2516 {
2517         u64 delta;
2518
2519         /*
2520          * The event first in the commit queue updates the
2521          * time stamp.
2522          */
2523         if (rb_event_is_commit(cpu_buffer, event)) {
2524                 /*
2525                  * A commit event that is first on a page
2526                  * updates the write timestamp with the page stamp
2527                  */
2528                 if (!rb_event_index(event))
2529                         cpu_buffer->write_stamp =
2530                                 cpu_buffer->commit_page->page->time_stamp;
2531                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2532                         delta = event->array[0];
2533                         delta <<= TS_SHIFT;
2534                         delta += event->time_delta;
2535                         cpu_buffer->write_stamp += delta;
2536                 } else
2537                         cpu_buffer->write_stamp += event->time_delta;
2538         }
2539 }
2540
2541 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2542                       struct ring_buffer_event *event)
2543 {
2544         local_inc(&cpu_buffer->entries);
2545         rb_update_write_stamp(cpu_buffer, event);
2546         rb_end_commit(cpu_buffer);
2547 }
2548
2549 static __always_inline void
2550 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2551 {
2552         bool pagebusy;
2553
2554         if (buffer->irq_work.waiters_pending) {
2555                 buffer->irq_work.waiters_pending = false;
2556                 /* irq_work_queue() supplies it's own memory barriers */
2557                 irq_work_queue(&buffer->irq_work.work);
2558         }
2559
2560         if (cpu_buffer->irq_work.waiters_pending) {
2561                 cpu_buffer->irq_work.waiters_pending = false;
2562                 /* irq_work_queue() supplies it's own memory barriers */
2563                 irq_work_queue(&cpu_buffer->irq_work.work);
2564         }
2565
2566         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2567
2568         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2569                 cpu_buffer->irq_work.wakeup_full = true;
2570                 cpu_buffer->irq_work.full_waiters_pending = false;
2571                 /* irq_work_queue() supplies it's own memory barriers */
2572                 irq_work_queue(&cpu_buffer->irq_work.work);
2573         }
2574 }
2575
2576 /*
2577  * The lock and unlock are done within a preempt disable section.
2578  * The current_context per_cpu variable can only be modified
2579  * by the current task between lock and unlock. But it can
2580  * be modified more than once via an interrupt. To pass this
2581  * information from the lock to the unlock without having to
2582  * access the 'in_interrupt()' functions again (which do show
2583  * a bit of overhead in something as critical as function tracing,
2584  * we use a bitmask trick.
2585  *
2586  *  bit 0 =  NMI context
2587  *  bit 1 =  IRQ context
2588  *  bit 2 =  SoftIRQ context
2589  *  bit 3 =  normal context.
2590  *
2591  * This works because this is the order of contexts that can
2592  * preempt other contexts. A SoftIRQ never preempts an IRQ
2593  * context.
2594  *
2595  * When the context is determined, the corresponding bit is
2596  * checked and set (if it was set, then a recursion of that context
2597  * happened).
2598  *
2599  * On unlock, we need to clear this bit. To do so, just subtract
2600  * 1 from the current_context and AND it to itself.
2601  *
2602  * (binary)
2603  *  101 - 1 = 100
2604  *  101 & 100 = 100 (clearing bit zero)
2605  *
2606  *  1010 - 1 = 1001
2607  *  1010 & 1001 = 1000 (clearing bit 1)
2608  *
2609  * The least significant bit can be cleared this way, and it
2610  * just so happens that it is the same bit corresponding to
2611  * the current context.
2612  */
2613
2614 static __always_inline int
2615 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2616 {
2617         unsigned int val = cpu_buffer->current_context;
2618         int bit;
2619
2620         if (in_interrupt()) {
2621                 if (in_nmi())
2622                         bit = RB_CTX_NMI;
2623                 else if (in_irq())
2624                         bit = RB_CTX_IRQ;
2625                 else
2626                         bit = RB_CTX_SOFTIRQ;
2627         } else
2628                 bit = RB_CTX_NORMAL;
2629
2630         if (unlikely(val & (1 << bit)))
2631                 return 1;
2632
2633         val |= (1 << bit);
2634         cpu_buffer->current_context = val;
2635
2636         return 0;
2637 }
2638
2639 static __always_inline void
2640 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2641 {
2642         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2643 }
2644
2645 /**
2646  * ring_buffer_unlock_commit - commit a reserved
2647  * @buffer: The buffer to commit to
2648  * @event: The event pointer to commit.
2649  *
2650  * This commits the data to the ring buffer, and releases any locks held.
2651  *
2652  * Must be paired with ring_buffer_lock_reserve.
2653  */
2654 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2655                               struct ring_buffer_event *event)
2656 {
2657         struct ring_buffer_per_cpu *cpu_buffer;
2658         int cpu = raw_smp_processor_id();
2659
2660         cpu_buffer = buffer->buffers[cpu];
2661
2662         rb_commit(cpu_buffer, event);
2663
2664         rb_wakeups(buffer, cpu_buffer);
2665
2666         trace_recursive_unlock(cpu_buffer);
2667
2668         preempt_enable_notrace();
2669
2670         return 0;
2671 }
2672 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2673
2674 static noinline void
2675 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2676                     struct rb_event_info *info)
2677 {
2678         WARN_ONCE(info->delta > (1ULL << 59),
2679                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2680                   (unsigned long long)info->delta,
2681                   (unsigned long long)info->ts,
2682                   (unsigned long long)cpu_buffer->write_stamp,
2683                   sched_clock_stable() ? "" :
2684                   "If you just came from a suspend/resume,\n"
2685                   "please switch to the trace global clock:\n"
2686                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2687         info->add_timestamp = 1;
2688 }
2689
2690 static struct ring_buffer_event *
2691 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2692                   struct rb_event_info *info)
2693 {
2694         struct ring_buffer_event *event;
2695         struct buffer_page *tail_page;
2696         unsigned long tail, write;
2697
2698         /*
2699          * If the time delta since the last event is too big to
2700          * hold in the time field of the event, then we append a
2701          * TIME EXTEND event ahead of the data event.
2702          */
2703         if (unlikely(info->add_timestamp))
2704                 info->length += RB_LEN_TIME_EXTEND;
2705
2706         tail_page = info->tail_page = cpu_buffer->tail_page;
2707         write = local_add_return(info->length, &tail_page->write);
2708
2709         /* set write to only the index of the write */
2710         write &= RB_WRITE_MASK;
2711         tail = write - info->length;
2712
2713         /*
2714          * If this is the first commit on the page, then it has the same
2715          * timestamp as the page itself.
2716          */
2717         if (!tail)
2718                 info->delta = 0;
2719
2720         /* See if we shot pass the end of this buffer page */
2721         if (unlikely(write > BUF_PAGE_SIZE))
2722                 return rb_move_tail(cpu_buffer, tail, info);
2723
2724         /* We reserved something on the buffer */
2725
2726         event = __rb_page_index(tail_page, tail);
2727         kmemcheck_annotate_bitfield(event, bitfield);
2728         rb_update_event(cpu_buffer, event, info);
2729
2730         local_inc(&tail_page->entries);
2731
2732         /*
2733          * If this is the first commit on the page, then update
2734          * its timestamp.
2735          */
2736         if (!tail)
2737                 tail_page->page->time_stamp = info->ts;
2738
2739         /* account for these added bytes */
2740         local_add(info->length, &cpu_buffer->entries_bytes);
2741
2742         return event;
2743 }
2744
2745 static struct ring_buffer_event *
2746 rb_reserve_next_event(struct ring_buffer *buffer,
2747                       struct ring_buffer_per_cpu *cpu_buffer,
2748                       unsigned long length)
2749 {
2750         struct ring_buffer_event *event;
2751         struct rb_event_info info;
2752         int nr_loops = 0;
2753         u64 diff;
2754
2755         rb_start_commit(cpu_buffer);
2756
2757 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2758         /*
2759          * Due to the ability to swap a cpu buffer from a buffer
2760          * it is possible it was swapped before we committed.
2761          * (committing stops a swap). We check for it here and
2762          * if it happened, we have to fail the write.
2763          */
2764         barrier();
2765         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2766                 local_dec(&cpu_buffer->committing);
2767                 local_dec(&cpu_buffer->commits);
2768                 return NULL;
2769         }
2770 #endif
2771
2772         info.length = rb_calculate_event_length(length);
2773  again:
2774         info.add_timestamp = 0;
2775         info.delta = 0;
2776
2777         /*
2778          * We allow for interrupts to reenter here and do a trace.
2779          * If one does, it will cause this original code to loop
2780          * back here. Even with heavy interrupts happening, this
2781          * should only happen a few times in a row. If this happens
2782          * 1000 times in a row, there must be either an interrupt
2783          * storm or we have something buggy.
2784          * Bail!
2785          */
2786         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2787                 goto out_fail;
2788
2789         info.ts = rb_time_stamp(cpu_buffer->buffer);
2790         diff = info.ts - cpu_buffer->write_stamp;
2791
2792         /* make sure this diff is calculated here */
2793         barrier();
2794
2795         /* Did the write stamp get updated already? */
2796         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2797                 info.delta = diff;
2798                 if (unlikely(test_time_stamp(info.delta)))
2799                         rb_handle_timestamp(cpu_buffer, &info);
2800         }
2801
2802         event = __rb_reserve_next(cpu_buffer, &info);
2803
2804         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2805                 if (info.add_timestamp)
2806                         info.length -= RB_LEN_TIME_EXTEND;
2807                 goto again;
2808         }
2809
2810         if (!event)
2811                 goto out_fail;
2812
2813         return event;
2814
2815  out_fail:
2816         rb_end_commit(cpu_buffer);
2817         return NULL;
2818 }
2819
2820 /**
2821  * ring_buffer_lock_reserve - reserve a part of the buffer
2822  * @buffer: the ring buffer to reserve from
2823  * @length: the length of the data to reserve (excluding event header)
2824  *
2825  * Returns a reseverd event on the ring buffer to copy directly to.
2826  * The user of this interface will need to get the body to write into
2827  * and can use the ring_buffer_event_data() interface.
2828  *
2829  * The length is the length of the data needed, not the event length
2830  * which also includes the event header.
2831  *
2832  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2833  * If NULL is returned, then nothing has been allocated or locked.
2834  */
2835 struct ring_buffer_event *
2836 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2837 {
2838         struct ring_buffer_per_cpu *cpu_buffer;
2839         struct ring_buffer_event *event;
2840         int cpu;
2841
2842         /* If we are tracing schedule, we don't want to recurse */
2843         preempt_disable_notrace();
2844
2845         if (unlikely(atomic_read(&buffer->record_disabled)))
2846                 goto out;
2847
2848         cpu = raw_smp_processor_id();
2849
2850         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2851                 goto out;
2852
2853         cpu_buffer = buffer->buffers[cpu];
2854
2855         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2856                 goto out;
2857
2858         if (unlikely(length > BUF_MAX_DATA_SIZE))
2859                 goto out;
2860
2861         if (unlikely(trace_recursive_lock(cpu_buffer)))
2862                 goto out;
2863
2864         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2865         if (!event)
2866                 goto out_unlock;
2867
2868         return event;
2869
2870  out_unlock:
2871         trace_recursive_unlock(cpu_buffer);
2872  out:
2873         preempt_enable_notrace();
2874         return NULL;
2875 }
2876 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2877
2878 /*
2879  * Decrement the entries to the page that an event is on.
2880  * The event does not even need to exist, only the pointer
2881  * to the page it is on. This may only be called before the commit
2882  * takes place.
2883  */
2884 static inline void
2885 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2886                    struct ring_buffer_event *event)
2887 {
2888         unsigned long addr = (unsigned long)event;
2889         struct buffer_page *bpage = cpu_buffer->commit_page;
2890         struct buffer_page *start;
2891
2892         addr &= PAGE_MASK;
2893
2894         /* Do the likely case first */
2895         if (likely(bpage->page == (void *)addr)) {
2896                 local_dec(&bpage->entries);
2897                 return;
2898         }
2899
2900         /*
2901          * Because the commit page may be on the reader page we
2902          * start with the next page and check the end loop there.
2903          */
2904         rb_inc_page(cpu_buffer, &bpage);
2905         start = bpage;
2906         do {
2907                 if (bpage->page == (void *)addr) {
2908                         local_dec(&bpage->entries);
2909                         return;
2910                 }
2911                 rb_inc_page(cpu_buffer, &bpage);
2912         } while (bpage != start);
2913
2914         /* commit not part of this buffer?? */
2915         RB_WARN_ON(cpu_buffer, 1);
2916 }
2917
2918 /**
2919  * ring_buffer_commit_discard - discard an event that has not been committed
2920  * @buffer: the ring buffer
2921  * @event: non committed event to discard
2922  *
2923  * Sometimes an event that is in the ring buffer needs to be ignored.
2924  * This function lets the user discard an event in the ring buffer
2925  * and then that event will not be read later.
2926  *
2927  * This function only works if it is called before the the item has been
2928  * committed. It will try to free the event from the ring buffer
2929  * if another event has not been added behind it.
2930  *
2931  * If another event has been added behind it, it will set the event
2932  * up as discarded, and perform the commit.
2933  *
2934  * If this function is called, do not call ring_buffer_unlock_commit on
2935  * the event.
2936  */
2937 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2938                                 struct ring_buffer_event *event)
2939 {
2940         struct ring_buffer_per_cpu *cpu_buffer;
2941         int cpu;
2942
2943         /* The event is discarded regardless */
2944         rb_event_discard(event);
2945
2946         cpu = smp_processor_id();
2947         cpu_buffer = buffer->buffers[cpu];
2948
2949         /*
2950          * This must only be called if the event has not been
2951          * committed yet. Thus we can assume that preemption
2952          * is still disabled.
2953          */
2954         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2955
2956         rb_decrement_entry(cpu_buffer, event);
2957         if (rb_try_to_discard(cpu_buffer, event))
2958                 goto out;
2959
2960         /*
2961          * The commit is still visible by the reader, so we
2962          * must still update the timestamp.
2963          */
2964         rb_update_write_stamp(cpu_buffer, event);
2965  out:
2966         rb_end_commit(cpu_buffer);
2967
2968         trace_recursive_unlock(cpu_buffer);
2969
2970         preempt_enable_notrace();
2971
2972 }
2973 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2974
2975 /**
2976  * ring_buffer_write - write data to the buffer without reserving
2977  * @buffer: The ring buffer to write to.
2978  * @length: The length of the data being written (excluding the event header)
2979  * @data: The data to write to the buffer.
2980  *
2981  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2982  * one function. If you already have the data to write to the buffer, it
2983  * may be easier to simply call this function.
2984  *
2985  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2986  * and not the length of the event which would hold the header.
2987  */
2988 int ring_buffer_write(struct ring_buffer *buffer,
2989                       unsigned long length,
2990                       void *data)
2991 {
2992         struct ring_buffer_per_cpu *cpu_buffer;
2993         struct ring_buffer_event *event;
2994         void *body;
2995         int ret = -EBUSY;
2996         int cpu;
2997
2998         preempt_disable_notrace();
2999
3000         if (atomic_read(&buffer->record_disabled))
3001                 goto out;
3002
3003         cpu = raw_smp_processor_id();
3004
3005         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3006                 goto out;
3007
3008         cpu_buffer = buffer->buffers[cpu];
3009
3010         if (atomic_read(&cpu_buffer->record_disabled))
3011                 goto out;
3012
3013         if (length > BUF_MAX_DATA_SIZE)
3014                 goto out;
3015
3016         if (unlikely(trace_recursive_lock(cpu_buffer)))
3017                 goto out;
3018
3019         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3020         if (!event)
3021                 goto out_unlock;
3022
3023         body = rb_event_data(event);
3024
3025         memcpy(body, data, length);
3026
3027         rb_commit(cpu_buffer, event);
3028
3029         rb_wakeups(buffer, cpu_buffer);
3030
3031         ret = 0;
3032
3033  out_unlock:
3034         trace_recursive_unlock(cpu_buffer);
3035
3036  out:
3037         preempt_enable_notrace();
3038
3039         return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(ring_buffer_write);
3042
3043 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3044 {
3045         struct buffer_page *reader = cpu_buffer->reader_page;
3046         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3047         struct buffer_page *commit = cpu_buffer->commit_page;
3048
3049         /* In case of error, head will be NULL */
3050         if (unlikely(!head))
3051                 return true;
3052
3053         return reader->read == rb_page_commit(reader) &&
3054                 (commit == reader ||
3055                  (commit == head &&
3056                   head->read == rb_page_commit(commit)));
3057 }
3058
3059 /**
3060  * ring_buffer_record_disable - stop all writes into the buffer
3061  * @buffer: The ring buffer to stop writes to.
3062  *
3063  * This prevents all writes to the buffer. Any attempt to write
3064  * to the buffer after this will fail and return NULL.
3065  *
3066  * The caller should call synchronize_sched() after this.
3067  */
3068 void ring_buffer_record_disable(struct ring_buffer *buffer)
3069 {
3070         atomic_inc(&buffer->record_disabled);
3071 }
3072 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3073
3074 /**
3075  * ring_buffer_record_enable - enable writes to the buffer
3076  * @buffer: The ring buffer to enable writes
3077  *
3078  * Note, multiple disables will need the same number of enables
3079  * to truly enable the writing (much like preempt_disable).
3080  */
3081 void ring_buffer_record_enable(struct ring_buffer *buffer)
3082 {
3083         atomic_dec(&buffer->record_disabled);
3084 }
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3086
3087 /**
3088  * ring_buffer_record_off - stop all writes into the buffer
3089  * @buffer: The ring buffer to stop writes to.
3090  *
3091  * This prevents all writes to the buffer. Any attempt to write
3092  * to the buffer after this will fail and return NULL.
3093  *
3094  * This is different than ring_buffer_record_disable() as
3095  * it works like an on/off switch, where as the disable() version
3096  * must be paired with a enable().
3097  */
3098 void ring_buffer_record_off(struct ring_buffer *buffer)
3099 {
3100         unsigned int rd;
3101         unsigned int new_rd;
3102
3103         do {
3104                 rd = atomic_read(&buffer->record_disabled);
3105                 new_rd = rd | RB_BUFFER_OFF;
3106         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3107 }
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3109
3110 /**
3111  * ring_buffer_record_on - restart writes into the buffer
3112  * @buffer: The ring buffer to start writes to.
3113  *
3114  * This enables all writes to the buffer that was disabled by
3115  * ring_buffer_record_off().
3116  *
3117  * This is different than ring_buffer_record_enable() as
3118  * it works like an on/off switch, where as the enable() version
3119  * must be paired with a disable().
3120  */
3121 void ring_buffer_record_on(struct ring_buffer *buffer)
3122 {
3123         unsigned int rd;
3124         unsigned int new_rd;
3125
3126         do {
3127                 rd = atomic_read(&buffer->record_disabled);
3128                 new_rd = rd & ~RB_BUFFER_OFF;
3129         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3130 }
3131 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3132
3133 /**
3134  * ring_buffer_record_is_on - return true if the ring buffer can write
3135  * @buffer: The ring buffer to see if write is enabled
3136  *
3137  * Returns true if the ring buffer is in a state that it accepts writes.
3138  */
3139 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3140 {
3141         return !atomic_read(&buffer->record_disabled);
3142 }
3143
3144 /**
3145  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3146  * @buffer: The ring buffer to see if write is set enabled
3147  *
3148  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3149  * Note that this does NOT mean it is in a writable state.
3150  *
3151  * It may return true when the ring buffer has been disabled by
3152  * ring_buffer_record_disable(), as that is a temporary disabling of
3153  * the ring buffer.
3154  */
3155 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3156 {
3157         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3158 }
3159
3160 /**
3161  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3162  * @buffer: The ring buffer to stop writes to.
3163  * @cpu: The CPU buffer to stop
3164  *
3165  * This prevents all writes to the buffer. Any attempt to write
3166  * to the buffer after this will fail and return NULL.
3167  *
3168  * The caller should call synchronize_sched() after this.
3169  */
3170 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3171 {
3172         struct ring_buffer_per_cpu *cpu_buffer;
3173
3174         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3175                 return;
3176
3177         cpu_buffer = buffer->buffers[cpu];
3178         atomic_inc(&cpu_buffer->record_disabled);
3179 }
3180 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3181
3182 /**
3183  * ring_buffer_record_enable_cpu - enable writes to the buffer
3184  * @buffer: The ring buffer to enable writes
3185  * @cpu: The CPU to enable.
3186  *
3187  * Note, multiple disables will need the same number of enables
3188  * to truly enable the writing (much like preempt_disable).
3189  */
3190 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3191 {
3192         struct ring_buffer_per_cpu *cpu_buffer;
3193
3194         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3195                 return;
3196
3197         cpu_buffer = buffer->buffers[cpu];
3198         atomic_dec(&cpu_buffer->record_disabled);
3199 }
3200 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3201
3202 /*
3203  * The total entries in the ring buffer is the running counter
3204  * of entries entered into the ring buffer, minus the sum of
3205  * the entries read from the ring buffer and the number of
3206  * entries that were overwritten.
3207  */
3208 static inline unsigned long
3209 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3210 {
3211         return local_read(&cpu_buffer->entries) -
3212                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3213 }
3214
3215 /**
3216  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3217  * @buffer: The ring buffer
3218  * @cpu: The per CPU buffer to read from.
3219  */
3220 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3221 {
3222         unsigned long flags;
3223         struct ring_buffer_per_cpu *cpu_buffer;
3224         struct buffer_page *bpage;
3225         u64 ret = 0;
3226
3227         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228                 return 0;
3229
3230         cpu_buffer = buffer->buffers[cpu];
3231         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3232         /*
3233          * if the tail is on reader_page, oldest time stamp is on the reader
3234          * page
3235          */
3236         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3237                 bpage = cpu_buffer->reader_page;
3238         else
3239                 bpage = rb_set_head_page(cpu_buffer);
3240         if (bpage)
3241                 ret = bpage->page->time_stamp;
3242         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3243
3244         return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3247
3248 /**
3249  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3250  * @buffer: The ring buffer
3251  * @cpu: The per CPU buffer to read from.
3252  */
3253 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255         struct ring_buffer_per_cpu *cpu_buffer;
3256         unsigned long ret;
3257
3258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259                 return 0;
3260
3261         cpu_buffer = buffer->buffers[cpu];
3262         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3263
3264         return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3267
3268 /**
3269  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3270  * @buffer: The ring buffer
3271  * @cpu: The per CPU buffer to get the entries from.
3272  */
3273 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3274 {
3275         struct ring_buffer_per_cpu *cpu_buffer;
3276
3277         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3278                 return 0;
3279
3280         cpu_buffer = buffer->buffers[cpu];
3281
3282         return rb_num_of_entries(cpu_buffer);
3283 }
3284 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3285
3286 /**
3287  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3288  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3289  * @buffer: The ring buffer
3290  * @cpu: The per CPU buffer to get the number of overruns from
3291  */
3292 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3293 {
3294         struct ring_buffer_per_cpu *cpu_buffer;
3295         unsigned long ret;
3296
3297         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298                 return 0;
3299
3300         cpu_buffer = buffer->buffers[cpu];
3301         ret = local_read(&cpu_buffer->overrun);
3302
3303         return ret;
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3306
3307 /**
3308  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3309  * commits failing due to the buffer wrapping around while there are uncommitted
3310  * events, such as during an interrupt storm.
3311  * @buffer: The ring buffer
3312  * @cpu: The per CPU buffer to get the number of overruns from
3313  */
3314 unsigned long
3315 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3316 {
3317         struct ring_buffer_per_cpu *cpu_buffer;
3318         unsigned long ret;
3319
3320         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3321                 return 0;
3322
3323         cpu_buffer = buffer->buffers[cpu];
3324         ret = local_read(&cpu_buffer->commit_overrun);
3325
3326         return ret;
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3329
3330 /**
3331  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3332  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3333  * @buffer: The ring buffer
3334  * @cpu: The per CPU buffer to get the number of overruns from
3335  */
3336 unsigned long
3337 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3338 {
3339         struct ring_buffer_per_cpu *cpu_buffer;
3340         unsigned long ret;
3341
3342         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3343                 return 0;
3344
3345         cpu_buffer = buffer->buffers[cpu];
3346         ret = local_read(&cpu_buffer->dropped_events);
3347
3348         return ret;
3349 }
3350 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3351
3352 /**
3353  * ring_buffer_read_events_cpu - get the number of events successfully read
3354  * @buffer: The ring buffer
3355  * @cpu: The per CPU buffer to get the number of events read
3356  */
3357 unsigned long
3358 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3359 {
3360         struct ring_buffer_per_cpu *cpu_buffer;
3361
3362         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3363                 return 0;
3364
3365         cpu_buffer = buffer->buffers[cpu];
3366         return cpu_buffer->read;
3367 }
3368 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3369
3370 /**
3371  * ring_buffer_entries - get the number of entries in a buffer
3372  * @buffer: The ring buffer
3373  *
3374  * Returns the total number of entries in the ring buffer
3375  * (all CPU entries)
3376  */
3377 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3378 {
3379         struct ring_buffer_per_cpu *cpu_buffer;
3380         unsigned long entries = 0;
3381         int cpu;
3382
3383         /* if you care about this being correct, lock the buffer */
3384         for_each_buffer_cpu(buffer, cpu) {
3385                 cpu_buffer = buffer->buffers[cpu];
3386                 entries += rb_num_of_entries(cpu_buffer);
3387         }
3388
3389         return entries;
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3392
3393 /**
3394  * ring_buffer_overruns - get the number of overruns in buffer
3395  * @buffer: The ring buffer
3396  *
3397  * Returns the total number of overruns in the ring buffer
3398  * (all CPU entries)
3399  */
3400 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3401 {
3402         struct ring_buffer_per_cpu *cpu_buffer;
3403         unsigned long overruns = 0;
3404         int cpu;
3405
3406         /* if you care about this being correct, lock the buffer */
3407         for_each_buffer_cpu(buffer, cpu) {
3408                 cpu_buffer = buffer->buffers[cpu];
3409                 overruns += local_read(&cpu_buffer->overrun);
3410         }
3411
3412         return overruns;
3413 }
3414 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3415
3416 static void rb_iter_reset(struct ring_buffer_iter *iter)
3417 {
3418         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3419
3420         /* Iterator usage is expected to have record disabled */
3421         iter->head_page = cpu_buffer->reader_page;
3422         iter->head = cpu_buffer->reader_page->read;
3423
3424         iter->cache_reader_page = iter->head_page;
3425         iter->cache_read = cpu_buffer->read;
3426
3427         if (iter->head)
3428                 iter->read_stamp = cpu_buffer->read_stamp;
3429         else
3430                 iter->read_stamp = iter->head_page->page->time_stamp;
3431 }
3432
3433 /**
3434  * ring_buffer_iter_reset - reset an iterator
3435  * @iter: The iterator to reset
3436  *
3437  * Resets the iterator, so that it will start from the beginning
3438  * again.
3439  */
3440 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3441 {
3442         struct ring_buffer_per_cpu *cpu_buffer;
3443         unsigned long flags;
3444
3445         if (!iter)
3446                 return;
3447
3448         cpu_buffer = iter->cpu_buffer;
3449
3450         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3451         rb_iter_reset(iter);
3452         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3453 }
3454 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3455
3456 /**
3457  * ring_buffer_iter_empty - check if an iterator has no more to read
3458  * @iter: The iterator to check
3459  */
3460 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3461 {
3462         struct ring_buffer_per_cpu *cpu_buffer;
3463         struct buffer_page *reader;
3464         struct buffer_page *head_page;
3465         struct buffer_page *commit_page;
3466         unsigned commit;
3467
3468         cpu_buffer = iter->cpu_buffer;
3469
3470         /* Remember, trace recording is off when iterator is in use */
3471         reader = cpu_buffer->reader_page;
3472         head_page = cpu_buffer->head_page;
3473         commit_page = cpu_buffer->commit_page;
3474         commit = rb_page_commit(commit_page);
3475
3476         return ((iter->head_page == commit_page && iter->head == commit) ||
3477                 (iter->head_page == reader && commit_page == head_page &&
3478                  head_page->read == commit &&
3479                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3482
3483 static void
3484 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3485                      struct ring_buffer_event *event)
3486 {
3487         u64 delta;
3488
3489         switch (event->type_len) {
3490         case RINGBUF_TYPE_PADDING:
3491                 return;
3492
3493         case RINGBUF_TYPE_TIME_EXTEND:
3494                 delta = event->array[0];
3495                 delta <<= TS_SHIFT;
3496                 delta += event->time_delta;
3497                 cpu_buffer->read_stamp += delta;
3498                 return;
3499
3500         case RINGBUF_TYPE_TIME_STAMP:
3501                 /* FIXME: not implemented */
3502                 return;
3503
3504         case RINGBUF_TYPE_DATA:
3505                 cpu_buffer->read_stamp += event->time_delta;
3506                 return;
3507
3508         default:
3509                 BUG();
3510         }
3511         return;
3512 }
3513
3514 static void
3515 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3516                           struct ring_buffer_event *event)
3517 {
3518         u64 delta;
3519
3520         switch (event->type_len) {
3521         case RINGBUF_TYPE_PADDING:
3522                 return;
3523
3524         case RINGBUF_TYPE_TIME_EXTEND:
3525                 delta = event->array[0];
3526                 delta <<= TS_SHIFT;
3527                 delta += event->time_delta;
3528                 iter->read_stamp += delta;
3529                 return;
3530
3531         case RINGBUF_TYPE_TIME_STAMP:
3532                 /* FIXME: not implemented */
3533                 return;
3534
3535         case RINGBUF_TYPE_DATA:
3536                 iter->read_stamp += event->time_delta;
3537                 return;
3538
3539         default:
3540                 BUG();
3541         }
3542         return;
3543 }
3544
3545 static struct buffer_page *
3546 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3547 {
3548         struct buffer_page *reader = NULL;
3549         unsigned long overwrite;
3550         unsigned long flags;
3551         int nr_loops = 0;
3552         int ret;
3553
3554         local_irq_save(flags);
3555         arch_spin_lock(&cpu_buffer->lock);
3556
3557  again:
3558         /*
3559          * This should normally only loop twice. But because the
3560          * start of the reader inserts an empty page, it causes
3561          * a case where we will loop three times. There should be no
3562          * reason to loop four times (that I know of).
3563          */
3564         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3565                 reader = NULL;
3566                 goto out;
3567         }
3568
3569         reader = cpu_buffer->reader_page;
3570
3571         /* If there's more to read, return this page */
3572         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3573                 goto out;
3574
3575         /* Never should we have an index greater than the size */
3576         if (RB_WARN_ON(cpu_buffer,
3577                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3578                 goto out;
3579
3580         /* check if we caught up to the tail */
3581         reader = NULL;
3582         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3583                 goto out;
3584
3585         /* Don't bother swapping if the ring buffer is empty */
3586         if (rb_num_of_entries(cpu_buffer) == 0)
3587                 goto out;
3588
3589         /*
3590          * Reset the reader page to size zero.
3591          */
3592         local_set(&cpu_buffer->reader_page->write, 0);
3593         local_set(&cpu_buffer->reader_page->entries, 0);
3594         local_set(&cpu_buffer->reader_page->page->commit, 0);
3595         cpu_buffer->reader_page->real_end = 0;
3596
3597  spin:
3598         /*
3599          * Splice the empty reader page into the list around the head.
3600          */
3601         reader = rb_set_head_page(cpu_buffer);
3602         if (!reader)
3603                 goto out;
3604         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3605         cpu_buffer->reader_page->list.prev = reader->list.prev;
3606
3607         /*
3608          * cpu_buffer->pages just needs to point to the buffer, it
3609          *  has no specific buffer page to point to. Lets move it out
3610          *  of our way so we don't accidentally swap it.
3611          */
3612         cpu_buffer->pages = reader->list.prev;
3613
3614         /* The reader page will be pointing to the new head */
3615         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3616
3617         /*
3618          * We want to make sure we read the overruns after we set up our
3619          * pointers to the next object. The writer side does a
3620          * cmpxchg to cross pages which acts as the mb on the writer
3621          * side. Note, the reader will constantly fail the swap
3622          * while the writer is updating the pointers, so this
3623          * guarantees that the overwrite recorded here is the one we
3624          * want to compare with the last_overrun.
3625          */
3626         smp_mb();
3627         overwrite = local_read(&(cpu_buffer->overrun));
3628
3629         /*
3630          * Here's the tricky part.
3631          *
3632          * We need to move the pointer past the header page.
3633          * But we can only do that if a writer is not currently
3634          * moving it. The page before the header page has the
3635          * flag bit '1' set if it is pointing to the page we want.
3636          * but if the writer is in the process of moving it
3637          * than it will be '2' or already moved '0'.
3638          */
3639
3640         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3641
3642         /*
3643          * If we did not convert it, then we must try again.
3644          */
3645         if (!ret)
3646                 goto spin;
3647
3648         /*
3649          * Yeah! We succeeded in replacing the page.
3650          *
3651          * Now make the new head point back to the reader page.
3652          */
3653         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3654         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3655
3656         /* Finally update the reader page to the new head */
3657         cpu_buffer->reader_page = reader;
3658         cpu_buffer->reader_page->read = 0;
3659
3660         if (overwrite != cpu_buffer->last_overrun) {
3661                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3662                 cpu_buffer->last_overrun = overwrite;
3663         }
3664
3665         goto again;
3666
3667  out:
3668         /* Update the read_stamp on the first event */
3669         if (reader && reader->read == 0)
3670                 cpu_buffer->read_stamp = reader->page->time_stamp;
3671
3672         arch_spin_unlock(&cpu_buffer->lock);
3673         local_irq_restore(flags);
3674
3675         return reader;
3676 }
3677
3678 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3679 {
3680         struct ring_buffer_event *event;
3681         struct buffer_page *reader;
3682         unsigned length;
3683
3684         reader = rb_get_reader_page(cpu_buffer);
3685
3686         /* This function should not be called when buffer is empty */
3687         if (RB_WARN_ON(cpu_buffer, !reader))
3688                 return;
3689
3690         event = rb_reader_event(cpu_buffer);
3691
3692         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3693                 cpu_buffer->read++;
3694
3695         rb_update_read_stamp(cpu_buffer, event);
3696
3697         length = rb_event_length(event);
3698         cpu_buffer->reader_page->read += length;
3699 }
3700
3701 static void rb_advance_iter(struct ring_buffer_iter *iter)
3702 {
3703         struct ring_buffer_per_cpu *cpu_buffer;
3704         struct ring_buffer_event *event;
3705         unsigned length;
3706
3707         cpu_buffer = iter->cpu_buffer;
3708
3709         /*
3710          * Check if we are at the end of the buffer.
3711          */
3712         if (iter->head >= rb_page_size(iter->head_page)) {
3713                 /* discarded commits can make the page empty */
3714                 if (iter->head_page == cpu_buffer->commit_page)
3715                         return;
3716                 rb_inc_iter(iter);
3717                 return;
3718         }
3719
3720         event = rb_iter_head_event(iter);
3721
3722         length = rb_event_length(event);
3723
3724         /*
3725          * This should not be called to advance the header if we are
3726          * at the tail of the buffer.
3727          */
3728         if (RB_WARN_ON(cpu_buffer,
3729                        (iter->head_page == cpu_buffer->commit_page) &&
3730                        (iter->head + length > rb_commit_index(cpu_buffer))))
3731                 return;
3732
3733         rb_update_iter_read_stamp(iter, event);
3734
3735         iter->head += length;
3736
3737         /* check for end of page padding */
3738         if ((iter->head >= rb_page_size(iter->head_page)) &&
3739             (iter->head_page != cpu_buffer->commit_page))
3740                 rb_inc_iter(iter);
3741 }
3742
3743 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3744 {
3745         return cpu_buffer->lost_events;
3746 }
3747
3748 static struct ring_buffer_event *
3749 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3750                unsigned long *lost_events)
3751 {
3752         struct ring_buffer_event *event;
3753         struct buffer_page *reader;
3754         int nr_loops = 0;
3755
3756  again:
3757         /*
3758          * We repeat when a time extend is encountered.
3759          * Since the time extend is always attached to a data event,
3760          * we should never loop more than once.
3761          * (We never hit the following condition more than twice).
3762          */
3763         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3764                 return NULL;
3765
3766         reader = rb_get_reader_page(cpu_buffer);
3767         if (!reader)
3768                 return NULL;
3769
3770         event = rb_reader_event(cpu_buffer);
3771
3772         switch (event->type_len) {
3773         case RINGBUF_TYPE_PADDING:
3774                 if (rb_null_event(event))
3775                         RB_WARN_ON(cpu_buffer, 1);
3776                 /*
3777                  * Because the writer could be discarding every
3778                  * event it creates (which would probably be bad)
3779                  * if we were to go back to "again" then we may never
3780                  * catch up, and will trigger the warn on, or lock
3781                  * the box. Return the padding, and we will release
3782                  * the current locks, and try again.
3783                  */
3784                 return event;
3785
3786         case RINGBUF_TYPE_TIME_EXTEND:
3787                 /* Internal data, OK to advance */
3788                 rb_advance_reader(cpu_buffer);
3789                 goto again;
3790
3791         case RINGBUF_TYPE_TIME_STAMP:
3792                 /* FIXME: not implemented */
3793                 rb_advance_reader(cpu_buffer);
3794                 goto again;
3795
3796         case RINGBUF_TYPE_DATA:
3797                 if (ts) {
3798                         *ts = cpu_buffer->read_stamp + event->time_delta;
3799                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3800                                                          cpu_buffer->cpu, ts);
3801                 }
3802                 if (lost_events)
3803                         *lost_events = rb_lost_events(cpu_buffer);
3804                 return event;
3805
3806         default:
3807                 BUG();
3808         }
3809
3810         return NULL;
3811 }
3812 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3813
3814 static struct ring_buffer_event *
3815 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3816 {
3817         struct ring_buffer *buffer;
3818         struct ring_buffer_per_cpu *cpu_buffer;
3819         struct ring_buffer_event *event;
3820         int nr_loops = 0;
3821
3822         cpu_buffer = iter->cpu_buffer;
3823         buffer = cpu_buffer->buffer;
3824
3825         /*
3826          * Check if someone performed a consuming read to
3827          * the buffer. A consuming read invalidates the iterator
3828          * and we need to reset the iterator in this case.
3829          */
3830         if (unlikely(iter->cache_read != cpu_buffer->read ||
3831                      iter->cache_reader_page != cpu_buffer->reader_page))
3832                 rb_iter_reset(iter);
3833
3834  again:
3835         if (ring_buffer_iter_empty(iter))
3836                 return NULL;
3837
3838         /*
3839          * We repeat when a time extend is encountered or we hit
3840          * the end of the page. Since the time extend is always attached
3841          * to a data event, we should never loop more than three times.
3842          * Once for going to next page, once on time extend, and
3843          * finally once to get the event.
3844          * (We never hit the following condition more than thrice).
3845          */
3846         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3847                 return NULL;
3848
3849         if (rb_per_cpu_empty(cpu_buffer))
3850                 return NULL;
3851
3852         if (iter->head >= rb_page_size(iter->head_page)) {
3853                 rb_inc_iter(iter);
3854                 goto again;
3855         }
3856
3857         event = rb_iter_head_event(iter);
3858
3859         switch (event->type_len) {
3860         case RINGBUF_TYPE_PADDING:
3861                 if (rb_null_event(event)) {
3862                         rb_inc_iter(iter);
3863                         goto again;
3864                 }
3865                 rb_advance_iter(iter);
3866                 return event;
3867
3868         case RINGBUF_TYPE_TIME_EXTEND:
3869                 /* Internal data, OK to advance */
3870                 rb_advance_iter(iter);
3871                 goto again;
3872
3873         case RINGBUF_TYPE_TIME_STAMP:
3874                 /* FIXME: not implemented */
3875                 rb_advance_iter(iter);
3876                 goto again;
3877
3878         case RINGBUF_TYPE_DATA:
3879                 if (ts) {
3880                         *ts = iter->read_stamp + event->time_delta;
3881                         ring_buffer_normalize_time_stamp(buffer,
3882                                                          cpu_buffer->cpu, ts);
3883                 }
3884                 return event;
3885
3886         default:
3887                 BUG();
3888         }
3889
3890         return NULL;
3891 }
3892 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3893
3894 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3895 {
3896         if (likely(!in_nmi())) {
3897                 raw_spin_lock(&cpu_buffer->reader_lock);
3898                 return true;
3899         }
3900
3901         /*
3902          * If an NMI die dumps out the content of the ring buffer
3903          * trylock must be used to prevent a deadlock if the NMI
3904          * preempted a task that holds the ring buffer locks. If
3905          * we get the lock then all is fine, if not, then continue
3906          * to do the read, but this can corrupt the ring buffer,
3907          * so it must be permanently disabled from future writes.
3908          * Reading from NMI is a oneshot deal.
3909          */
3910         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3911                 return true;
3912
3913         /* Continue without locking, but disable the ring buffer */
3914         atomic_inc(&cpu_buffer->record_disabled);
3915         return false;
3916 }
3917
3918 static inline void
3919 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3920 {
3921         if (likely(locked))
3922                 raw_spin_unlock(&cpu_buffer->reader_lock);
3923         return;
3924 }
3925
3926 /**
3927  * ring_buffer_peek - peek at the next event to be read
3928  * @buffer: The ring buffer to read
3929  * @cpu: The cpu to peak at
3930  * @ts: The timestamp counter of this event.
3931  * @lost_events: a variable to store if events were lost (may be NULL)
3932  *
3933  * This will return the event that will be read next, but does
3934  * not consume the data.
3935  */
3936 struct ring_buffer_event *
3937 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3938                  unsigned long *lost_events)
3939 {
3940         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3941         struct ring_buffer_event *event;
3942         unsigned long flags;
3943         bool dolock;
3944
3945         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3946                 return NULL;
3947
3948  again:
3949         local_irq_save(flags);
3950         dolock = rb_reader_lock(cpu_buffer);
3951         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3952         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3953                 rb_advance_reader(cpu_buffer);
3954         rb_reader_unlock(cpu_buffer, dolock);
3955         local_irq_restore(flags);
3956
3957         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3958                 goto again;
3959
3960         return event;
3961 }
3962
3963 /**
3964  * ring_buffer_iter_peek - peek at the next event to be read
3965  * @iter: The ring buffer iterator
3966  * @ts: The timestamp counter of this event.
3967  *
3968  * This will return the event that will be read next, but does
3969  * not increment the iterator.
3970  */
3971 struct ring_buffer_event *
3972 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3973 {
3974         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3975         struct ring_buffer_event *event;
3976         unsigned long flags;
3977
3978  again:
3979         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3980         event = rb_iter_peek(iter, ts);
3981         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3982
3983         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3984                 goto again;
3985
3986         return event;
3987 }
3988
3989 /**
3990  * ring_buffer_consume - return an event and consume it
3991  * @buffer: The ring buffer to get the next event from
3992  * @cpu: the cpu to read the buffer from
3993  * @ts: a variable to store the timestamp (may be NULL)
3994  * @lost_events: a variable to store if events were lost (may be NULL)
3995  *
3996  * Returns the next event in the ring buffer, and that event is consumed.
3997  * Meaning, that sequential reads will keep returning a different event,
3998  * and eventually empty the ring buffer if the producer is slower.
3999  */
4000 struct ring_buffer_event *
4001 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4002                     unsigned long *lost_events)
4003 {
4004         struct ring_buffer_per_cpu *cpu_buffer;
4005         struct ring_buffer_event *event = NULL;
4006         unsigned long flags;
4007         bool dolock;
4008
4009  again:
4010         /* might be called in atomic */
4011         preempt_disable();
4012
4013         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4014                 goto out;
4015
4016         cpu_buffer = buffer->buffers[cpu];
4017         local_irq_save(flags);
4018         dolock = rb_reader_lock(cpu_buffer);
4019
4020         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4021         if (event) {
4022                 cpu_buffer->lost_events = 0;
4023                 rb_advance_reader(cpu_buffer);
4024         }
4025
4026         rb_reader_unlock(cpu_buffer, dolock);
4027         local_irq_restore(flags);
4028
4029  out:
4030         preempt_enable();
4031
4032         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4033                 goto again;
4034
4035         return event;
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4038
4039 /**
4040  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4041  * @buffer: The ring buffer to read from
4042  * @cpu: The cpu buffer to iterate over
4043  *
4044  * This performs the initial preparations necessary to iterate
4045  * through the buffer.  Memory is allocated, buffer recording
4046  * is disabled, and the iterator pointer is returned to the caller.
4047  *
4048  * Disabling buffer recordng prevents the reading from being
4049  * corrupted. This is not a consuming read, so a producer is not
4050  * expected.
4051  *
4052  * After a sequence of ring_buffer_read_prepare calls, the user is
4053  * expected to make at least one call to ring_buffer_read_prepare_sync.
4054  * Afterwards, ring_buffer_read_start is invoked to get things going
4055  * for real.
4056  *
4057  * This overall must be paired with ring_buffer_read_finish.
4058  */
4059 struct ring_buffer_iter *
4060 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4061 {
4062         struct ring_buffer_per_cpu *cpu_buffer;
4063         struct ring_buffer_iter *iter;
4064
4065         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4066                 return NULL;
4067
4068         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4069         if (!iter)
4070                 return NULL;
4071
4072         cpu_buffer = buffer->buffers[cpu];
4073
4074         iter->cpu_buffer = cpu_buffer;
4075
4076         atomic_inc(&buffer->resize_disabled);
4077         atomic_inc(&cpu_buffer->record_disabled);
4078
4079         return iter;
4080 }
4081 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4082
4083 /**
4084  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4085  *
4086  * All previously invoked ring_buffer_read_prepare calls to prepare
4087  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4088  * calls on those iterators are allowed.
4089  */
4090 void
4091 ring_buffer_read_prepare_sync(void)
4092 {
4093         synchronize_sched();
4094 }
4095 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4096
4097 /**
4098  * ring_buffer_read_start - start a non consuming read of the buffer
4099  * @iter: The iterator returned by ring_buffer_read_prepare
4100  *
4101  * This finalizes the startup of an iteration through the buffer.
4102  * The iterator comes from a call to ring_buffer_read_prepare and
4103  * an intervening ring_buffer_read_prepare_sync must have been
4104  * performed.
4105  *
4106  * Must be paired with ring_buffer_read_finish.
4107  */
4108 void
4109 ring_buffer_read_start(struct ring_buffer_iter *iter)
4110 {
4111         struct ring_buffer_per_cpu *cpu_buffer;
4112         unsigned long flags;
4113
4114         if (!iter)
4115                 return;
4116
4117         cpu_buffer = iter->cpu_buffer;
4118
4119         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4120         arch_spin_lock(&cpu_buffer->lock);
4121         rb_iter_reset(iter);
4122         arch_spin_unlock(&cpu_buffer->lock);
4123         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4124 }
4125 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4126
4127 /**
4128  * ring_buffer_read_finish - finish reading the iterator of the buffer
4129  * @iter: The iterator retrieved by ring_buffer_start
4130  *
4131  * This re-enables the recording to the buffer, and frees the
4132  * iterator.
4133  */
4134 void
4135 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4136 {
4137         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4138         unsigned long flags;
4139
4140         /*
4141          * Ring buffer is disabled from recording, here's a good place
4142          * to check the integrity of the ring buffer.
4143          * Must prevent readers from trying to read, as the check
4144          * clears the HEAD page and readers require it.
4145          */
4146         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4147         rb_check_pages(cpu_buffer);
4148         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4149
4150         atomic_dec(&cpu_buffer->record_disabled);
4151         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4152         kfree(iter);
4153 }
4154 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4155
4156 /**
4157  * ring_buffer_read - read the next item in the ring buffer by the iterator
4158  * @iter: The ring buffer iterator
4159  * @ts: The time stamp of the event read.
4160  *
4161  * This reads the next event in the ring buffer and increments the iterator.
4162  */
4163 struct ring_buffer_event *
4164 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4165 {
4166         struct ring_buffer_event *event;
4167         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4168         unsigned long flags;
4169
4170         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4171  again:
4172         event = rb_iter_peek(iter, ts);
4173         if (!event)
4174                 goto out;
4175
4176         if (event->type_len == RINGBUF_TYPE_PADDING)
4177                 goto again;
4178
4179         rb_advance_iter(iter);
4180  out:
4181         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4182
4183         return event;
4184 }
4185 EXPORT_SYMBOL_GPL(ring_buffer_read);
4186
4187 /**
4188  * ring_buffer_size - return the size of the ring buffer (in bytes)
4189  * @buffer: The ring buffer.
4190  */
4191 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4192 {
4193         /*
4194          * Earlier, this method returned
4195          *      BUF_PAGE_SIZE * buffer->nr_pages
4196          * Since the nr_pages field is now removed, we have converted this to
4197          * return the per cpu buffer value.
4198          */
4199         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4200                 return 0;
4201
4202         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4203 }
4204 EXPORT_SYMBOL_GPL(ring_buffer_size);
4205
4206 static void
4207 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4208 {
4209         rb_head_page_deactivate(cpu_buffer);
4210
4211         cpu_buffer->head_page
4212                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4213         local_set(&cpu_buffer->head_page->write, 0);
4214         local_set(&cpu_buffer->head_page->entries, 0);
4215         local_set(&cpu_buffer->head_page->page->commit, 0);
4216
4217         cpu_buffer->head_page->read = 0;
4218
4219         cpu_buffer->tail_page = cpu_buffer->head_page;
4220         cpu_buffer->commit_page = cpu_buffer->head_page;
4221
4222         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4223         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4224         local_set(&cpu_buffer->reader_page->write, 0);
4225         local_set(&cpu_buffer->reader_page->entries, 0);
4226         local_set(&cpu_buffer->reader_page->page->commit, 0);
4227         cpu_buffer->reader_page->read = 0;
4228
4229         local_set(&cpu_buffer->entries_bytes, 0);
4230         local_set(&cpu_buffer->overrun, 0);
4231         local_set(&cpu_buffer->commit_overrun, 0);
4232         local_set(&cpu_buffer->dropped_events, 0);
4233         local_set(&cpu_buffer->entries, 0);
4234         local_set(&cpu_buffer->committing, 0);
4235         local_set(&cpu_buffer->commits, 0);
4236         cpu_buffer->read = 0;
4237         cpu_buffer->read_bytes = 0;
4238
4239         cpu_buffer->write_stamp = 0;
4240         cpu_buffer->read_stamp = 0;
4241
4242         cpu_buffer->lost_events = 0;
4243         cpu_buffer->last_overrun = 0;
4244
4245         rb_head_page_activate(cpu_buffer);
4246 }
4247
4248 /**
4249  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4250  * @buffer: The ring buffer to reset a per cpu buffer of
4251  * @cpu: The CPU buffer to be reset
4252  */
4253 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4254 {
4255         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4256         unsigned long flags;
4257
4258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4259                 return;
4260
4261         atomic_inc(&buffer->resize_disabled);
4262         atomic_inc(&cpu_buffer->record_disabled);
4263
4264         /* Make sure all commits have finished */
4265         synchronize_sched();
4266
4267         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4268
4269         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4270                 goto out;
4271
4272         arch_spin_lock(&cpu_buffer->lock);
4273
4274         rb_reset_cpu(cpu_buffer);
4275
4276         arch_spin_unlock(&cpu_buffer->lock);
4277
4278  out:
4279         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4280
4281         atomic_dec(&cpu_buffer->record_disabled);
4282         atomic_dec(&buffer->resize_disabled);
4283 }
4284 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4285
4286 /**
4287  * ring_buffer_reset - reset a ring buffer
4288  * @buffer: The ring buffer to reset all cpu buffers
4289  */
4290 void ring_buffer_reset(struct ring_buffer *buffer)
4291 {
4292         int cpu;
4293
4294         for_each_buffer_cpu(buffer, cpu)
4295                 ring_buffer_reset_cpu(buffer, cpu);
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4298
4299 /**
4300  * rind_buffer_empty - is the ring buffer empty?
4301  * @buffer: The ring buffer to test
4302  */
4303 bool ring_buffer_empty(struct ring_buffer *buffer)
4304 {
4305         struct ring_buffer_per_cpu *cpu_buffer;
4306         unsigned long flags;
4307         bool dolock;
4308         int cpu;
4309         int ret;
4310
4311         /* yes this is racy, but if you don't like the race, lock the buffer */
4312         for_each_buffer_cpu(buffer, cpu) {
4313                 cpu_buffer = buffer->buffers[cpu];
4314                 local_irq_save(flags);
4315                 dolock = rb_reader_lock(cpu_buffer);
4316                 ret = rb_per_cpu_empty(cpu_buffer);
4317                 rb_reader_unlock(cpu_buffer, dolock);
4318                 local_irq_restore(flags);
4319
4320                 if (!ret)
4321                         return false;
4322         }
4323
4324         return true;
4325 }
4326 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4327
4328 /**
4329  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4330  * @buffer: The ring buffer
4331  * @cpu: The CPU buffer to test
4332  */
4333 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4334 {
4335         struct ring_buffer_per_cpu *cpu_buffer;
4336         unsigned long flags;
4337         bool dolock;
4338         int ret;
4339
4340         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4341                 return true;
4342
4343         cpu_buffer = buffer->buffers[cpu];
4344         local_irq_save(flags);
4345         dolock = rb_reader_lock(cpu_buffer);
4346         ret = rb_per_cpu_empty(cpu_buffer);
4347         rb_reader_unlock(cpu_buffer, dolock);
4348         local_irq_restore(flags);
4349
4350         return ret;
4351 }
4352 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4353
4354 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4355 /**
4356  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4357  * @buffer_a: One buffer to swap with
4358  * @buffer_b: The other buffer to swap with
4359  *
4360  * This function is useful for tracers that want to take a "snapshot"
4361  * of a CPU buffer and has another back up buffer lying around.
4362  * it is expected that the tracer handles the cpu buffer not being
4363  * used at the moment.
4364  */
4365 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4366                          struct ring_buffer *buffer_b, int cpu)
4367 {
4368         struct ring_buffer_per_cpu *cpu_buffer_a;
4369         struct ring_buffer_per_cpu *cpu_buffer_b;
4370         int ret = -EINVAL;
4371
4372         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4373             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4374                 goto out;
4375
4376         cpu_buffer_a = buffer_a->buffers[cpu];
4377         cpu_buffer_b = buffer_b->buffers[cpu];
4378
4379         /* At least make sure the two buffers are somewhat the same */
4380         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4381                 goto out;
4382
4383         ret = -EAGAIN;
4384
4385         if (atomic_read(&buffer_a->record_disabled))
4386                 goto out;
4387
4388         if (atomic_read(&buffer_b->record_disabled))
4389                 goto out;
4390
4391         if (atomic_read(&cpu_buffer_a->record_disabled))
4392                 goto out;
4393
4394         if (atomic_read(&cpu_buffer_b->record_disabled))
4395                 goto out;
4396
4397         /*
4398          * We can't do a synchronize_sched here because this
4399          * function can be called in atomic context.
4400          * Normally this will be called from the same CPU as cpu.
4401          * If not it's up to the caller to protect this.
4402          */
4403         atomic_inc(&cpu_buffer_a->record_disabled);
4404         atomic_inc(&cpu_buffer_b->record_disabled);
4405
4406         ret = -EBUSY;
4407         if (local_read(&cpu_buffer_a->committing))
4408                 goto out_dec;
4409         if (local_read(&cpu_buffer_b->committing))
4410                 goto out_dec;
4411
4412         buffer_a->buffers[cpu] = cpu_buffer_b;
4413         buffer_b->buffers[cpu] = cpu_buffer_a;
4414
4415         cpu_buffer_b->buffer = buffer_a;
4416         cpu_buffer_a->buffer = buffer_b;
4417
4418         ret = 0;
4419
4420 out_dec:
4421         atomic_dec(&cpu_buffer_a->record_disabled);
4422         atomic_dec(&cpu_buffer_b->record_disabled);
4423 out:
4424         return ret;
4425 }
4426 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4427 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4428
4429 /**
4430  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4431  * @buffer: the buffer to allocate for.
4432  * @cpu: the cpu buffer to allocate.
4433  *
4434  * This function is used in conjunction with ring_buffer_read_page.
4435  * When reading a full page from the ring buffer, these functions
4436  * can be used to speed up the process. The calling function should
4437  * allocate a few pages first with this function. Then when it
4438  * needs to get pages from the ring buffer, it passes the result
4439  * of this function into ring_buffer_read_page, which will swap
4440  * the page that was allocated, with the read page of the buffer.
4441  *
4442  * Returns:
4443  *  The page allocated, or NULL on error.
4444  */
4445 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4446 {
4447         struct buffer_data_page *bpage;
4448         struct page *page;
4449
4450         page = alloc_pages_node(cpu_to_node(cpu),
4451                                 GFP_KERNEL | __GFP_NORETRY, 0);
4452         if (!page)
4453                 return NULL;
4454
4455         bpage = page_address(page);
4456
4457         rb_init_page(bpage);
4458
4459         return bpage;
4460 }
4461 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4462
4463 /**
4464  * ring_buffer_free_read_page - free an allocated read page
4465  * @buffer: the buffer the page was allocate for
4466  * @data: the page to free
4467  *
4468  * Free a page allocated from ring_buffer_alloc_read_page.
4469  */
4470 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4471 {
4472         free_page((unsigned long)data);
4473 }
4474 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4475
4476 /**
4477  * ring_buffer_read_page - extract a page from the ring buffer
4478  * @buffer: buffer to extract from
4479  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4480  * @len: amount to extract
4481  * @cpu: the cpu of the buffer to extract
4482  * @full: should the extraction only happen when the page is full.
4483  *
4484  * This function will pull out a page from the ring buffer and consume it.
4485  * @data_page must be the address of the variable that was returned
4486  * from ring_buffer_alloc_read_page. This is because the page might be used
4487  * to swap with a page in the ring buffer.
4488  *
4489  * for example:
4490  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4491  *      if (!rpage)
4492  *              return error;
4493  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4494  *      if (ret >= 0)
4495  *              process_page(rpage, ret);
4496  *
4497  * When @full is set, the function will not return true unless
4498  * the writer is off the reader page.
4499  *
4500  * Note: it is up to the calling functions to handle sleeps and wakeups.
4501  *  The ring buffer can be used anywhere in the kernel and can not
4502  *  blindly call wake_up. The layer that uses the ring buffer must be
4503  *  responsible for that.
4504  *
4505  * Returns:
4506  *  >=0 if data has been transferred, returns the offset of consumed data.
4507  *  <0 if no data has been transferred.
4508  */
4509 int ring_buffer_read_page(struct ring_buffer *buffer,
4510                           void **data_page, size_t len, int cpu, int full)
4511 {
4512         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4513         struct ring_buffer_event *event;
4514         struct buffer_data_page *bpage;
4515         struct buffer_page *reader;
4516         unsigned long missed_events;
4517         unsigned long flags;
4518         unsigned int commit;
4519         unsigned int read;
4520         u64 save_timestamp;
4521         int ret = -1;
4522
4523         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4524                 goto out;
4525
4526         /*
4527          * If len is not big enough to hold the page header, then
4528          * we can not copy anything.
4529          */
4530         if (len <= BUF_PAGE_HDR_SIZE)
4531                 goto out;
4532
4533         len -= BUF_PAGE_HDR_SIZE;
4534
4535         if (!data_page)
4536                 goto out;
4537
4538         bpage = *data_page;
4539         if (!bpage)
4540                 goto out;
4541
4542         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4543
4544         reader = rb_get_reader_page(cpu_buffer);
4545         if (!reader)
4546                 goto out_unlock;
4547
4548         event = rb_reader_event(cpu_buffer);
4549
4550         read = reader->read;
4551         commit = rb_page_commit(reader);
4552
4553         /* Check if any events were dropped */
4554         missed_events = cpu_buffer->lost_events;
4555
4556         /*
4557          * If this page has been partially read or
4558          * if len is not big enough to read the rest of the page or
4559          * a writer is still on the page, then
4560          * we must copy the data from the page to the buffer.
4561          * Otherwise, we can simply swap the page with the one passed in.
4562          */
4563         if (read || (len < (commit - read)) ||
4564             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4565                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4566                 unsigned int rpos = read;
4567                 unsigned int pos = 0;
4568                 unsigned int size;
4569
4570                 if (full)
4571                         goto out_unlock;
4572
4573                 if (len > (commit - read))
4574                         len = (commit - read);
4575
4576                 /* Always keep the time extend and data together */
4577                 size = rb_event_ts_length(event);
4578
4579                 if (len < size)
4580                         goto out_unlock;
4581
4582                 /* save the current timestamp, since the user will need it */
4583                 save_timestamp = cpu_buffer->read_stamp;
4584
4585                 /* Need to copy one event at a time */
4586                 do {
4587                         /* We need the size of one event, because
4588                          * rb_advance_reader only advances by one event,
4589                          * whereas rb_event_ts_length may include the size of
4590                          * one or two events.
4591                          * We have already ensured there's enough space if this
4592                          * is a time extend. */
4593                         size = rb_event_length(event);
4594                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4595
4596                         len -= size;
4597
4598                         rb_advance_reader(cpu_buffer);
4599                         rpos = reader->read;
4600                         pos += size;
4601
4602                         if (rpos >= commit)
4603                                 break;
4604
4605                         event = rb_reader_event(cpu_buffer);
4606                         /* Always keep the time extend and data together */
4607                         size = rb_event_ts_length(event);
4608                 } while (len >= size);
4609
4610                 /* update bpage */
4611                 local_set(&bpage->commit, pos);
4612                 bpage->time_stamp = save_timestamp;
4613
4614                 /* we copied everything to the beginning */
4615                 read = 0;
4616         } else {
4617                 /* update the entry counter */
4618                 cpu_buffer->read += rb_page_entries(reader);
4619                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4620
4621                 /* swap the pages */
4622                 rb_init_page(bpage);
4623                 bpage = reader->page;
4624                 reader->page = *data_page;
4625                 local_set(&reader->write, 0);
4626                 local_set(&reader->entries, 0);
4627                 reader->read = 0;
4628                 *data_page = bpage;
4629
4630                 /*
4631                  * Use the real_end for the data size,
4632                  * This gives us a chance to store the lost events
4633                  * on the page.
4634                  */
4635                 if (reader->real_end)
4636                         local_set(&bpage->commit, reader->real_end);
4637         }
4638         ret = read;
4639
4640         cpu_buffer->lost_events = 0;
4641
4642         commit = local_read(&bpage->commit);
4643         /*
4644          * Set a flag in the commit field if we lost events
4645          */
4646         if (missed_events) {
4647                 /* If there is room at the end of the page to save the
4648                  * missed events, then record it there.
4649                  */
4650                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4651                         memcpy(&bpage->data[commit], &missed_events,
4652                                sizeof(missed_events));
4653                         local_add(RB_MISSED_STORED, &bpage->commit);
4654                         commit += sizeof(missed_events);
4655                 }
4656                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4657         }
4658
4659         /*
4660          * This page may be off to user land. Zero it out here.
4661          */
4662         if (commit < BUF_PAGE_SIZE)
4663                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4664
4665  out_unlock:
4666         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4667
4668  out:
4669         return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4672
4673 #ifdef CONFIG_HOTPLUG_CPU
4674 static int rb_cpu_notify(struct notifier_block *self,
4675                          unsigned long action, void *hcpu)
4676 {
4677         struct ring_buffer *buffer =
4678                 container_of(self, struct ring_buffer, cpu_notify);
4679         long cpu = (long)hcpu;
4680         long nr_pages_same;
4681         int cpu_i;
4682         unsigned long nr_pages;
4683
4684         switch (action) {
4685         case CPU_UP_PREPARE:
4686         case CPU_UP_PREPARE_FROZEN:
4687                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4688                         return NOTIFY_OK;
4689
4690                 nr_pages = 0;
4691                 nr_pages_same = 1;
4692                 /* check if all cpu sizes are same */
4693                 for_each_buffer_cpu(buffer, cpu_i) {
4694                         /* fill in the size from first enabled cpu */
4695                         if (nr_pages == 0)
4696                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4697                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4698                                 nr_pages_same = 0;
4699                                 break;
4700                         }
4701                 }
4702                 /* allocate minimum pages, user can later expand it */
4703                 if (!nr_pages_same)
4704                         nr_pages = 2;
4705                 buffer->buffers[cpu] =
4706                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4707                 if (!buffer->buffers[cpu]) {
4708                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4709                              cpu);
4710                         return NOTIFY_OK;
4711                 }
4712                 smp_wmb();
4713                 cpumask_set_cpu(cpu, buffer->cpumask);
4714                 break;
4715         case CPU_DOWN_PREPARE:
4716         case CPU_DOWN_PREPARE_FROZEN:
4717                 /*
4718                  * Do nothing.
4719                  *  If we were to free the buffer, then the user would
4720                  *  lose any trace that was in the buffer.
4721                  */
4722                 break;
4723         default:
4724                 break;
4725         }
4726         return NOTIFY_OK;
4727 }
4728 #endif
4729
4730 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4731 /*
4732  * This is a basic integrity check of the ring buffer.
4733  * Late in the boot cycle this test will run when configured in.
4734  * It will kick off a thread per CPU that will go into a loop
4735  * writing to the per cpu ring buffer various sizes of data.
4736  * Some of the data will be large items, some small.
4737  *
4738  * Another thread is created that goes into a spin, sending out
4739  * IPIs to the other CPUs to also write into the ring buffer.
4740  * this is to test the nesting ability of the buffer.
4741  *
4742  * Basic stats are recorded and reported. If something in the
4743  * ring buffer should happen that's not expected, a big warning
4744  * is displayed and all ring buffers are disabled.
4745  */
4746 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4747
4748 struct rb_test_data {
4749         struct ring_buffer      *buffer;
4750         unsigned long           events;
4751         unsigned long           bytes_written;
4752         unsigned long           bytes_alloc;
4753         unsigned long           bytes_dropped;
4754         unsigned long           events_nested;
4755         unsigned long           bytes_written_nested;
4756         unsigned long           bytes_alloc_nested;
4757         unsigned long           bytes_dropped_nested;
4758         int                     min_size_nested;
4759         int                     max_size_nested;
4760         int                     max_size;
4761         int                     min_size;
4762         int                     cpu;
4763         int                     cnt;
4764 };
4765
4766 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4767
4768 /* 1 meg per cpu */
4769 #define RB_TEST_BUFFER_SIZE     1048576
4770
4771 static char rb_string[] __initdata =
4772         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4773         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4774         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4775
4776 static bool rb_test_started __initdata;
4777
4778 struct rb_item {
4779         int size;
4780         char str[];
4781 };
4782
4783 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4784 {
4785         struct ring_buffer_event *event;
4786         struct rb_item *item;
4787         bool started;
4788         int event_len;
4789         int size;
4790         int len;
4791         int cnt;
4792
4793         /* Have nested writes different that what is written */
4794         cnt = data->cnt + (nested ? 27 : 0);
4795
4796         /* Multiply cnt by ~e, to make some unique increment */
4797         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4798
4799         len = size + sizeof(struct rb_item);
4800
4801         started = rb_test_started;
4802         /* read rb_test_started before checking buffer enabled */
4803         smp_rmb();
4804
4805         event = ring_buffer_lock_reserve(data->buffer, len);
4806         if (!event) {
4807                 /* Ignore dropped events before test starts. */
4808                 if (started) {
4809                         if (nested)
4810                                 data->bytes_dropped += len;
4811                         else
4812                                 data->bytes_dropped_nested += len;
4813                 }
4814                 return len;
4815         }
4816
4817         event_len = ring_buffer_event_length(event);
4818
4819         if (RB_WARN_ON(data->buffer, event_len < len))
4820                 goto out;
4821
4822         item = ring_buffer_event_data(event);
4823         item->size = size;
4824         memcpy(item->str, rb_string, size);
4825
4826         if (nested) {
4827                 data->bytes_alloc_nested += event_len;
4828                 data->bytes_written_nested += len;
4829                 data->events_nested++;
4830                 if (!data->min_size_nested || len < data->min_size_nested)
4831                         data->min_size_nested = len;
4832                 if (len > data->max_size_nested)
4833                         data->max_size_nested = len;
4834         } else {
4835                 data->bytes_alloc += event_len;
4836                 data->bytes_written += len;
4837                 data->events++;
4838                 if (!data->min_size || len < data->min_size)
4839                         data->max_size = len;
4840                 if (len > data->max_size)
4841                         data->max_size = len;
4842         }
4843
4844  out:
4845         ring_buffer_unlock_commit(data->buffer, event);
4846
4847         return 0;
4848 }
4849
4850 static __init int rb_test(void *arg)
4851 {
4852         struct rb_test_data *data = arg;
4853
4854         while (!kthread_should_stop()) {
4855                 rb_write_something(data, false);
4856                 data->cnt++;
4857
4858                 set_current_state(TASK_INTERRUPTIBLE);
4859                 /* Now sleep between a min of 100-300us and a max of 1ms */
4860                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4861         }
4862
4863         return 0;
4864 }
4865
4866 static __init void rb_ipi(void *ignore)
4867 {
4868         struct rb_test_data *data;
4869         int cpu = smp_processor_id();
4870
4871         data = &rb_data[cpu];
4872         rb_write_something(data, true);
4873 }
4874
4875 static __init int rb_hammer_test(void *arg)
4876 {
4877         while (!kthread_should_stop()) {
4878
4879                 /* Send an IPI to all cpus to write data! */
4880                 smp_call_function(rb_ipi, NULL, 1);
4881                 /* No sleep, but for non preempt, let others run */
4882                 schedule();
4883         }
4884
4885         return 0;
4886 }
4887
4888 static __init int test_ringbuffer(void)
4889 {
4890         struct task_struct *rb_hammer;
4891         struct ring_buffer *buffer;
4892         int cpu;
4893         int ret = 0;
4894
4895         pr_info("Running ring buffer tests...\n");
4896
4897         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4898         if (WARN_ON(!buffer))
4899                 return 0;
4900
4901         /* Disable buffer so that threads can't write to it yet */
4902         ring_buffer_record_off(buffer);
4903
4904         for_each_online_cpu(cpu) {
4905                 rb_data[cpu].buffer = buffer;
4906                 rb_data[cpu].cpu = cpu;
4907                 rb_data[cpu].cnt = cpu;
4908                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4909                                                  "rbtester/%d", cpu);
4910                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4911                         pr_cont("FAILED\n");
4912                         ret = PTR_ERR(rb_threads[cpu]);
4913                         goto out_free;
4914                 }
4915
4916                 kthread_bind(rb_threads[cpu], cpu);
4917                 wake_up_process(rb_threads[cpu]);
4918         }
4919
4920         /* Now create the rb hammer! */
4921         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4922         if (WARN_ON(IS_ERR(rb_hammer))) {
4923                 pr_cont("FAILED\n");
4924                 ret = PTR_ERR(rb_hammer);
4925                 goto out_free;
4926         }
4927
4928         ring_buffer_record_on(buffer);
4929         /*
4930          * Show buffer is enabled before setting rb_test_started.
4931          * Yes there's a small race window where events could be
4932          * dropped and the thread wont catch it. But when a ring
4933          * buffer gets enabled, there will always be some kind of
4934          * delay before other CPUs see it. Thus, we don't care about
4935          * those dropped events. We care about events dropped after
4936          * the threads see that the buffer is active.
4937          */
4938         smp_wmb();
4939         rb_test_started = true;
4940
4941         set_current_state(TASK_INTERRUPTIBLE);
4942         /* Just run for 10 seconds */;
4943         schedule_timeout(10 * HZ);
4944
4945         kthread_stop(rb_hammer);
4946
4947  out_free:
4948         for_each_online_cpu(cpu) {
4949                 if (!rb_threads[cpu])
4950                         break;
4951                 kthread_stop(rb_threads[cpu]);
4952         }
4953         if (ret) {
4954                 ring_buffer_free(buffer);
4955                 return ret;
4956         }
4957
4958         /* Report! */
4959         pr_info("finished\n");
4960         for_each_online_cpu(cpu) {
4961                 struct ring_buffer_event *event;
4962                 struct rb_test_data *data = &rb_data[cpu];
4963                 struct rb_item *item;
4964                 unsigned long total_events;
4965                 unsigned long total_dropped;
4966                 unsigned long total_written;
4967                 unsigned long total_alloc;
4968                 unsigned long total_read = 0;
4969                 unsigned long total_size = 0;
4970                 unsigned long total_len = 0;
4971                 unsigned long total_lost = 0;
4972                 unsigned long lost;
4973                 int big_event_size;
4974                 int small_event_size;
4975
4976                 ret = -1;
4977
4978                 total_events = data->events + data->events_nested;
4979                 total_written = data->bytes_written + data->bytes_written_nested;
4980                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4981                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4982
4983                 big_event_size = data->max_size + data->max_size_nested;
4984                 small_event_size = data->min_size + data->min_size_nested;
4985
4986                 pr_info("CPU %d:\n", cpu);
4987                 pr_info("              events:    %ld\n", total_events);
4988                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4989                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4990                 pr_info("       written bytes:    %ld\n", total_written);
4991                 pr_info("       biggest event:    %d\n", big_event_size);
4992                 pr_info("      smallest event:    %d\n", small_event_size);
4993
4994                 if (RB_WARN_ON(buffer, total_dropped))
4995                         break;
4996
4997                 ret = 0;
4998
4999                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5000                         total_lost += lost;
5001                         item = ring_buffer_event_data(event);
5002                         total_len += ring_buffer_event_length(event);
5003                         total_size += item->size + sizeof(struct rb_item);
5004                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5005                                 pr_info("FAILED!\n");
5006                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5007                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5008                                 RB_WARN_ON(buffer, 1);
5009                                 ret = -1;
5010                                 break;
5011                         }
5012                         total_read++;
5013                 }
5014                 if (ret)
5015                         break;
5016
5017                 ret = -1;
5018
5019                 pr_info("         read events:   %ld\n", total_read);
5020                 pr_info("         lost events:   %ld\n", total_lost);
5021                 pr_info("        total events:   %ld\n", total_lost + total_read);
5022                 pr_info("  recorded len bytes:   %ld\n", total_len);
5023                 pr_info(" recorded size bytes:   %ld\n", total_size);
5024                 if (total_lost)
5025                         pr_info(" With dropped events, record len and size may not match\n"
5026                                 " alloced and written from above\n");
5027                 if (!total_lost) {
5028                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5029                                        total_size != total_written))
5030                                 break;
5031                 }
5032                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5033                         break;
5034
5035                 ret = 0;
5036         }
5037         if (!ret)
5038                 pr_info("Ring buffer PASSED!\n");
5039
5040         ring_buffer_free(buffer);
5041         return 0;
5042 }
5043
5044 late_initcall(test_ringbuffer);
5045 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */