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4.2 Different cost functions (7/7)

Sampson error :

o first-order approximation to the point X

e solvable without iteration

error function : l6x|| =dx "ox.
condition : Cg(X + dx) :CH(X)—i-aaC—féX.
bx =(X - X7 Cr(X)= Ah

14



4.2 Different cost functions (7/7)

Sampson error :

The standard way to this solve problem is to use Lagrange multipliers.

fF(X) = lox|
9(X)=Jéx +¢

finally,

x| = 0x20x = 2(JJT ) Le.



4.2 Different cost functions (7/7)

Sampson approximation for a conic : TODO




4.2 Different cost functions (7/7)

Linear cost function : the Sampson error is identical to geometric

error
the variety Vy defined by C(X) = 0 is a hyperplane
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4.2.7 Another geometric interpretation

(7/7)

defferent interpretation in which the set of all measurements is
represented by a single point int a measurement space R

Now, given a measurement vector « in RY the estimation problem is to
find the vector &, closest to x, that satisfies the model.
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4.2.7 Another geometric interpretation
(7/7)

Error in both images :

the set of matched points represents a point in RY, where N = 4n

The vector made up of the coodinates of all the matched points in both
images will be denoted x.

a feasible choice of points is determinated by a set of 2n + 8 parameters:
the 2n coordinates of the points &;, plus the 8 independent parameters
of the H. = sub manifold S € R"™ has dimension 2n + 8 and hence
codimension 2n — 8.

finding the point & on S lying closest to x in RY is equivalent to
minimizing the cost function given by (4.8 reprojection error)

Once & is knowns H may be computed.

~
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4.2.7 Another geometric interpretation

(7/7)

Error in one images : the measurement space has dimension

N = 2n.
finding the closest point on S to the measurement vector X is
equivalent to minimizing the cost function (4.6 transfer error).
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4.3 Statistical cost functions and
Maximum Likelihood estimation(7/7)

In order to obtain a best(optimal) estimate of H it is necessary to have
a model for the measurement error(the noise).
we assume that image measurement errors obey a zero-mean istropic
Gaussian distribution(no outlier).
we assume that hte noise is Gaussian on each image coordinate with zero
mean and uniform standard deviation o.
PDF: 5
—d(z,2)% /(202
Pr(xz) = Fm52® (@,2)°/(20%)
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4.3 Statistical cost functions and
Maximum Likelihood estimation(7/7)

Error in one image :

Then the PDF of the noise-perturbed data is B
The Maximum Likelihood estimate (MLE) of the homography, H,
maximizes this log-likelihood,

1
log Pr({z;}|H) = ~ 552 Z d(z;, HZ;)* + constant.

we note that ML estimation is equivalement to minimizing the geometric
error functions.
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4.3 Statistical cost functions and
Maximum Likelihood estimation(7/7)

Error in both images :

1
log Pr({z;, =} }| H,{Z;}) = ) Z(d(mi, z;)?+d(x;, HZ;)*)+constant.



4.3 Statistical cost functions and
Maximum Likelihood estimation(7/7)

Mahalanobis distance :

Miximizing the log-likelihood is then equivalent to minimizing the
Mahalanobis distance.

IX - X% = (X - X)X - X).

where ¥ and Y’ are the covariance matrices of the measurements in the
two images. Finally, if we assume that the errors for all the points ;
and :c; are independent,

— =
SIX - X5+ 1X - X'|I%
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4.4.1 Invariance to image coordinate
transformations(7/7)

Does the result of estimation depend on the choice of coordinates in the
image?
DLT: at least similarity transformations with scale s = invariance

Exception:

there is no one-to-one correspondence between H and H giving rise to
the same error ¢, subject to the constraint || H|| = | H| = 1.

the method of transformation leads to a different solution for the
computed transformation matrix.
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4.4.3 Invariance of geometric error(7/7)

Suppose that euclidean transformation : invariant
minimizing geometric error is invariant to similarity transformations.
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