Multiple View Geometry

Chapter 2 Projective Geometry and Transformation of 2D

Tomohiro Yasuda

2010/4/23

2.2.1 Points and lines ($1 / 1$)

Homogeneous representations of lines

Homogeneous vector:

An equivalence class of vectors under this equivalence relationship.

Property:

- The point x lies on the line $l . \Leftrightarrow(x, l)=0$.
- The intersection of two lines l and l^{\prime} is the point $x=l \times l^{\prime}$.
- The line through two points x and x^{\prime} is $l=x \times x^{\prime}$.

2.2.2 Ideal points and the line at infinity (1/2)

Ideal points (points at infinity):

Homogeneous vectors $x=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ such that $x_{3}=0$ correspond to infinite points in \mathcal{R}^{2}.

The line at infinity:
Ideal points lies on a single line $l_{\infty}=(0,0,1)^{\top}$.

2.2.2 Ideal points and the line at infinity

 (2/2)$$
l_{2^{\prime}}=\left(a, b, c^{\prime}\right)^{\top}
$$

The same intersection point.
$(b,-a, 0)^{\top}$

- $(b,-a)^{\top}$ is a vector tangent to the line.
- $(a, b)^{\top}$ is a line's direction.

2.2.3 Conics and dual conics (1/2)

3 types of conics: ellipse,parabola and hyperbola Homogeneous representations of a conic

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

Homogenizing \Rightarrow

$$
(\boldsymbol{x}, \boldsymbol{C} \boldsymbol{x})=0, \quad \boldsymbol{C}=\left(\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right)
$$

2.2.3 Conics and dual conics (2/2)

Tangent lines to conics:
lt's given by $\boldsymbol{l}=\boldsymbol{C} \boldsymbol{x}$.

Dual conic:

Dual conic C^{*} is the adjoint matrix of C.

- $(x, C x)=0$.
- $\left(l, C^{*} l\right)=0$.

Degenerate conics:

If the matrix C is not of full rank, then the conic is termed degenerate.

- Degenerate point conics: $C=l m^{\top}+m l^{\top}$
- Degenerate line conics: $C^{*}=\boldsymbol{x} \boldsymbol{y}^{\top}+\boldsymbol{x} \boldsymbol{y}^{\top}$

2.3 Projective transformation (1/3)

A planar Projective transformation is a linear transformation on homogeneous 3 -vectors represented by a non-singular 3×3 matrix:

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

or more briefly, $\boldsymbol{x}^{\prime}=\boldsymbol{H} \boldsymbol{x}$.

Applications:

- Mapping between planes.
- Removing the projective distortion.

2.3 Projective transformation $(2 / 3)$

Calculation Homography

$$
\begin{aligned}
x^{\prime} & =\frac{x_{1}^{\prime}}{x_{2}^{\prime}}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}} \\
y^{\prime}= & \frac{x_{2}^{\prime}}{x_{2}^{\prime}}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}}
\end{aligned}
$$

- These equations are linear in the elements of \boldsymbol{H}.
- Four point correspondences lead to eight elements.

2.3 Projective transformation (3/3)

Transformation of lines

- $\boldsymbol{l}^{\prime}=\boldsymbol{H}^{-\top} \boldsymbol{l}$

Transformation of conics

- $\boldsymbol{C}^{\prime}=\boldsymbol{H}^{-\top} \boldsymbol{C} \boldsymbol{H}^{-1}$.
- $\boldsymbol{C}^{* \prime \prime}=\boldsymbol{H} C^{*} \boldsymbol{H}^{\top}$.

