Multiple View Geometry

Chapter 4 Estimation - 2D Projective Transformations

Tomohiro Yasuda

May 21, 2010

4.1 The Direct Linear Transformation (DLT) (1/6)

Minimum solution:

$$
\boldsymbol{x}_{i}^{\prime}=\boldsymbol{H} \boldsymbol{x}_{i}
$$

The equation can be expressed as follows.

$$
\boldsymbol{x}_{i}^{\prime} \times \boldsymbol{H} \boldsymbol{x}_{i}=\mathbf{0}
$$

This form will enable a following simple linear solution for \boldsymbol{H},

$$
\left(\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} x_{i}^{\top} & y_{i}^{\prime} \boldsymbol{x}_{i}^{\top} \\
w_{i}^{\prime} x_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} x_{i}^{\top} \\
-y_{i}^{\prime} \boldsymbol{x}_{i}^{\top} & x_{i}^{\prime} \boldsymbol{x}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{h}^{1} \\
\boldsymbol{h}^{2} \\
\boldsymbol{h}^{3}
\end{array}\right)=\mathbf{0}
$$

where $\boldsymbol{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}, \boldsymbol{H}=\left(\boldsymbol{h}^{1}, \boldsymbol{h}^{2}, \boldsymbol{h}^{3}\right)^{\top}$.

- One point correspondence gives two equations.
- Given a set of four point correspondence, we can solve for \boldsymbol{H}.

4.1 The Direct Linear Transformation (DLT) (2/6)

Over-determined solution:

It is a given by the following algorithm (DLT).

Objective

Given $n \geq 4$ 2D to 2D point correspondence $x_{i} \leftrightarrow x_{i}^{\prime}$, determine the 2D homography matrix \boldsymbol{H} such that $\boldsymbol{x}_{i}^{\prime}=\boldsymbol{H} \boldsymbol{x}_{i}$.
Algorithm

1. For each correspondence $x_{i} \leftrightarrow x_{i}^{\prime}$ compute the coefficient matrix. Only the first two rows need be used in general.
2. Assemble the $n 2 \times 9$ matrices into a single $2 n \times 9$ matrix \boldsymbol{A}.
3. Obtain the SVD of \boldsymbol{A}. The unit singular vector corresponding to the smallest singular value is the solution h. Specifically, if $A=U D V^{\top}$ with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then h is the last column of V.
4. The matrix H is determined from h.

4.1 The Direct Linear Transformation (DLT) (3/6)

Inhomogeneous solution :

By imposing a condition $h_{j}=1$ for some entry of the vector \boldsymbol{h}, we introduce an alternative Inhomogeneous solution as follows.

$$
\left(\begin{array}{cccccccc}
0 & 0 & 0 & -x_{i} w_{i}^{\prime} & -y_{i} w_{i}^{\prime} & -w_{i} w_{i}^{\prime} & x_{i} y_{i}^{\prime} & y_{i} y_{i}^{\prime} \\
x_{i} w_{i}^{\prime} & y_{i} w_{i}^{\prime} & w_{i} w_{i}^{\prime} & 0 & 0 & 0 & -x_{i} x_{i}^{\prime} & -y_{i} x_{i}^{\prime}
\end{array}\right) \boldsymbol{h}=
$$

However, this method can be expected lead to unstable results in the case where the chosen h_{j} is close to zero. Consequently, this method is not recommended in general.

4.1 The Direct Linear Transformation (DLT) (4/6)

Degenerate configurations :

Consider a minimal solution,
Three of the points x_{1}, x_{2}, x_{3} are collinear.

There can be no projection transform (because a projection transform must preserve collinearity).

4.1 The Direct Linear Transformation (DLT) (5/6)

Degenerate configurations :

In this situation, $H^{*}=x_{4}^{\prime} l^{\top}$ is a solution, and..

- H^{*} is the unique solution \Rightarrow The solution is a singular matrix.
- There is a further solution $H \Rightarrow 2$ dimensional family of transformations $\alpha \boldsymbol{H}^{*}+\beta \boldsymbol{H}$ exists.

The degeneracy problem is not limited to a minimal solution.

- If additional correspondences are supplied which are also collinear, then the degeneracy is not resolved.

4.1 The Direct Linear Transformation (DLT) (6/6)

Solutions from lines and other entities:

It is important how many constraints these entities generate.

entity type	number of constraints
point	2
line	2
conic	5

Mixed entity type:
Correspondences of 2 points and 2 lines can NOT determined homography (because of degenerate).

