OSDN Git Service

gn build: Merge r364387
[android-x86/external-llvm.git] / lib / CodeGen / ExpandMemCmp.cpp
1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/IR/IRBuilder.h"
23
24 using namespace llvm;
25
26 #define DEBUG_TYPE "expandmemcmp"
27
28 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
29 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
30 STATISTIC(NumMemCmpGreaterThanMax,
31           "Number of memcmp calls with size greater than max size");
32 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
33
34 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
35     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
36     cl::desc("The number of loads per basic block for inline expansion of "
37              "memcmp that is only being compared against zero."));
38
39 static cl::opt<unsigned> MaxLoadsPerMemcmp(
40     "max-loads-per-memcmp", cl::Hidden,
41     cl::desc("Set maximum number of loads used in expanded memcmp"));
42
43 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
44     "max-loads-per-memcmp-opt-size", cl::Hidden,
45     cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
46
47 namespace {
48
49
50 // This class provides helper functions to expand a memcmp library call into an
51 // inline expansion.
52 class MemCmpExpansion {
53   struct ResultBlock {
54     BasicBlock *BB = nullptr;
55     PHINode *PhiSrc1 = nullptr;
56     PHINode *PhiSrc2 = nullptr;
57
58     ResultBlock() = default;
59   };
60
61   CallInst *const CI;
62   ResultBlock ResBlock;
63   const uint64_t Size;
64   unsigned MaxLoadSize;
65   uint64_t NumLoadsNonOneByte;
66   const uint64_t NumLoadsPerBlockForZeroCmp;
67   std::vector<BasicBlock *> LoadCmpBlocks;
68   BasicBlock *EndBlock;
69   PHINode *PhiRes;
70   const bool IsUsedForZeroCmp;
71   const DataLayout &DL;
72   IRBuilder<> Builder;
73   // Represents the decomposition in blocks of the expansion. For example,
74   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
75   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
76   struct LoadEntry {
77     LoadEntry(unsigned LoadSize, uint64_t Offset)
78         : LoadSize(LoadSize), Offset(Offset) {
79     }
80
81     // The size of the load for this block, in bytes.
82     unsigned LoadSize;
83     // The offset of this load from the base pointer, in bytes.
84     uint64_t Offset;
85   };
86   using LoadEntryVector = SmallVector<LoadEntry, 8>;
87   LoadEntryVector LoadSequence;
88
89   void createLoadCmpBlocks();
90   void createResultBlock();
91   void setupResultBlockPHINodes();
92   void setupEndBlockPHINodes();
93   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
94   void emitLoadCompareBlock(unsigned BlockIndex);
95   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
96                                          unsigned &LoadIndex);
97   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
98   void emitMemCmpResultBlock();
99   Value *getMemCmpExpansionZeroCase();
100   Value *getMemCmpEqZeroOneBlock();
101   Value *getMemCmpOneBlock();
102   Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType,
103                                  uint64_t OffsetBytes);
104
105   static LoadEntryVector
106   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
107                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
108   static LoadEntryVector
109   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
110                                  unsigned MaxNumLoads,
111                                  unsigned &NumLoadsNonOneByte);
112
113 public:
114   MemCmpExpansion(CallInst *CI, uint64_t Size,
115                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
116                   const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);
117
118   unsigned getNumBlocks();
119   uint64_t getNumLoads() const { return LoadSequence.size(); }
120
121   Value *getMemCmpExpansion();
122 };
123
124 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
125     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
126     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
127   NumLoadsNonOneByte = 0;
128   LoadEntryVector LoadSequence;
129   uint64_t Offset = 0;
130   while (Size && !LoadSizes.empty()) {
131     const unsigned LoadSize = LoadSizes.front();
132     const uint64_t NumLoadsForThisSize = Size / LoadSize;
133     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
134       // Do not expand if the total number of loads is larger than what the
135       // target allows. Note that it's important that we exit before completing
136       // the expansion to avoid using a ton of memory to store the expansion for
137       // large sizes.
138       return {};
139     }
140     if (NumLoadsForThisSize > 0) {
141       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
142         LoadSequence.push_back({LoadSize, Offset});
143         Offset += LoadSize;
144       }
145       if (LoadSize > 1)
146         ++NumLoadsNonOneByte;
147       Size = Size % LoadSize;
148     }
149     LoadSizes = LoadSizes.drop_front();
150   }
151   return LoadSequence;
152 }
153
154 MemCmpExpansion::LoadEntryVector
155 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
156                                                 const unsigned MaxLoadSize,
157                                                 const unsigned MaxNumLoads,
158                                                 unsigned &NumLoadsNonOneByte) {
159   // These are already handled by the greedy approach.
160   if (Size < 2 || MaxLoadSize < 2)
161     return {};
162
163   // We try to do as many non-overlapping loads as possible starting from the
164   // beginning.
165   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
166   assert(NumNonOverlappingLoads && "there must be at least one load");
167   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
168   // an overlapping load.
169   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
170   // Bail if we do not need an overloapping store, this is already handled by
171   // the greedy approach.
172   if (Size == 0)
173     return {};
174   // Bail if the number of loads (non-overlapping + potential overlapping one)
175   // is larger than the max allowed.
176   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
177     return {};
178
179   // Add non-overlapping loads.
180   LoadEntryVector LoadSequence;
181   uint64_t Offset = 0;
182   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
183     LoadSequence.push_back({MaxLoadSize, Offset});
184     Offset += MaxLoadSize;
185   }
186
187   // Add the last overlapping load.
188   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
189   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
190   NumLoadsNonOneByte = 1;
191   return LoadSequence;
192 }
193
194 // Initialize the basic block structure required for expansion of memcmp call
195 // with given maximum load size and memcmp size parameter.
196 // This structure includes:
197 // 1. A list of load compare blocks - LoadCmpBlocks.
198 // 2. An EndBlock, split from original instruction point, which is the block to
199 // return from.
200 // 3. ResultBlock, block to branch to for early exit when a
201 // LoadCmpBlock finds a difference.
202 MemCmpExpansion::MemCmpExpansion(
203     CallInst *const CI, uint64_t Size,
204     const TargetTransformInfo::MemCmpExpansionOptions &Options,
205     const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
206     : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
207       NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
208       IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
209   assert(Size > 0 && "zero blocks");
210   // Scale the max size down if the target can load more bytes than we need.
211   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
212   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
213     LoadSizes = LoadSizes.drop_front();
214   }
215   assert(!LoadSizes.empty() && "cannot load Size bytes");
216   MaxLoadSize = LoadSizes.front();
217   // Compute the decomposition.
218   unsigned GreedyNumLoadsNonOneByte = 0;
219   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
220                                            GreedyNumLoadsNonOneByte);
221   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
222   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
223   // If we allow overlapping loads and the load sequence is not already optimal,
224   // use overlapping loads.
225   if (Options.AllowOverlappingLoads &&
226       (LoadSequence.empty() || LoadSequence.size() > 2)) {
227     unsigned OverlappingNumLoadsNonOneByte = 0;
228     auto OverlappingLoads = computeOverlappingLoadSequence(
229         Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
230     if (!OverlappingLoads.empty() &&
231         (LoadSequence.empty() ||
232          OverlappingLoads.size() < LoadSequence.size())) {
233       LoadSequence = OverlappingLoads;
234       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
235     }
236   }
237   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
238 }
239
240 unsigned MemCmpExpansion::getNumBlocks() {
241   if (IsUsedForZeroCmp)
242     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
243            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
244   return getNumLoads();
245 }
246
247 void MemCmpExpansion::createLoadCmpBlocks() {
248   for (unsigned i = 0; i < getNumBlocks(); i++) {
249     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
250                                         EndBlock->getParent(), EndBlock);
251     LoadCmpBlocks.push_back(BB);
252   }
253 }
254
255 void MemCmpExpansion::createResultBlock() {
256   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
257                                    EndBlock->getParent(), EndBlock);
258 }
259
260 /// Return a pointer to an element of type `LoadSizeType` at offset
261 /// `OffsetBytes`.
262 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source,
263                                                 Type *LoadSizeType,
264                                                 uint64_t OffsetBytes) {
265   if (OffsetBytes > 0) {
266     auto *ByteType = Type::getInt8Ty(CI->getContext());
267     Source = Builder.CreateGEP(
268         ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()),
269         ConstantInt::get(ByteType, OffsetBytes));
270   }
271   return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo());
272 }
273
274 // This function creates the IR instructions for loading and comparing 1 byte.
275 // It loads 1 byte from each source of the memcmp parameters with the given
276 // GEPIndex. It then subtracts the two loaded values and adds this result to the
277 // final phi node for selecting the memcmp result.
278 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
279                                                unsigned OffsetBytes) {
280   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
281   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
282   Value *Source1 =
283       getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes);
284   Value *Source2 =
285       getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes);
286
287   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
288   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
289
290   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
291   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
292   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
293
294   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
295
296   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
297     // Early exit branch if difference found to EndBlock. Otherwise, continue to
298     // next LoadCmpBlock,
299     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
300                                     ConstantInt::get(Diff->getType(), 0));
301     BranchInst *CmpBr =
302         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
303     Builder.Insert(CmpBr);
304   } else {
305     // The last block has an unconditional branch to EndBlock.
306     BranchInst *CmpBr = BranchInst::Create(EndBlock);
307     Builder.Insert(CmpBr);
308   }
309 }
310
311 /// Generate an equality comparison for one or more pairs of loaded values.
312 /// This is used in the case where the memcmp() call is compared equal or not
313 /// equal to zero.
314 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
315                                             unsigned &LoadIndex) {
316   assert(LoadIndex < getNumLoads() &&
317          "getCompareLoadPairs() called with no remaining loads");
318   std::vector<Value *> XorList, OrList;
319   Value *Diff = nullptr;
320
321   const unsigned NumLoads =
322       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
323
324   // For a single-block expansion, start inserting before the memcmp call.
325   if (LoadCmpBlocks.empty())
326     Builder.SetInsertPoint(CI);
327   else
328     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
329
330   Value *Cmp = nullptr;
331   // If we have multiple loads per block, we need to generate a composite
332   // comparison using xor+or. The type for the combinations is the largest load
333   // type.
334   IntegerType *const MaxLoadType =
335       NumLoads == 1 ? nullptr
336                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
337   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
338     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
339
340     IntegerType *LoadSizeType =
341         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
342
343     Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
344                                              CurLoadEntry.Offset);
345     Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
346                                              CurLoadEntry.Offset);
347
348     // Get a constant or load a value for each source address.
349     Value *LoadSrc1 = nullptr;
350     if (auto *Source1C = dyn_cast<Constant>(Source1))
351       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
352     if (!LoadSrc1)
353       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
354
355     Value *LoadSrc2 = nullptr;
356     if (auto *Source2C = dyn_cast<Constant>(Source2))
357       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
358     if (!LoadSrc2)
359       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
360
361     if (NumLoads != 1) {
362       if (LoadSizeType != MaxLoadType) {
363         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
364         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
365       }
366       // If we have multiple loads per block, we need to generate a composite
367       // comparison using xor+or.
368       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
369       Diff = Builder.CreateZExt(Diff, MaxLoadType);
370       XorList.push_back(Diff);
371     } else {
372       // If there's only one load per block, we just compare the loaded values.
373       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
374     }
375   }
376
377   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
378     std::vector<Value *> OutList;
379     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
380       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
381       OutList.push_back(Or);
382     }
383     if (InList.size() % 2 != 0)
384       OutList.push_back(InList.back());
385     return OutList;
386   };
387
388   if (!Cmp) {
389     // Pairwise OR the XOR results.
390     OrList = pairWiseOr(XorList);
391
392     // Pairwise OR the OR results until one result left.
393     while (OrList.size() != 1) {
394       OrList = pairWiseOr(OrList);
395     }
396
397     assert(Diff && "Failed to find comparison diff");
398     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
399   }
400
401   return Cmp;
402 }
403
404 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
405                                                         unsigned &LoadIndex) {
406   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
407
408   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
409                            ? EndBlock
410                            : LoadCmpBlocks[BlockIndex + 1];
411   // Early exit branch if difference found to ResultBlock. Otherwise,
412   // continue to next LoadCmpBlock or EndBlock.
413   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
414   Builder.Insert(CmpBr);
415
416   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
417   // since early exit to ResultBlock was not taken (no difference was found in
418   // any of the bytes).
419   if (BlockIndex == LoadCmpBlocks.size() - 1) {
420     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
421     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
422   }
423 }
424
425 // This function creates the IR intructions for loading and comparing using the
426 // given LoadSize. It loads the number of bytes specified by LoadSize from each
427 // source of the memcmp parameters. It then does a subtract to see if there was
428 // a difference in the loaded values. If a difference is found, it branches
429 // with an early exit to the ResultBlock for calculating which source was
430 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
431 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
432 // a special case through emitLoadCompareByteBlock. The special handling can
433 // simply subtract the loaded values and add it to the result phi node.
434 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
435   // There is one load per block in this case, BlockIndex == LoadIndex.
436   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
437
438   if (CurLoadEntry.LoadSize == 1) {
439     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
440     return;
441   }
442
443   Type *LoadSizeType =
444       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
445   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
446   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
447
448   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
449
450   Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
451                                            CurLoadEntry.Offset);
452   Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
453                                            CurLoadEntry.Offset);
454
455   // Load LoadSizeType from the base address.
456   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
457   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
458
459   if (DL.isLittleEndian()) {
460     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
461                                                 Intrinsic::bswap, LoadSizeType);
462     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
463     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
464   }
465
466   if (LoadSizeType != MaxLoadType) {
467     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
468     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
469   }
470
471   // Add the loaded values to the phi nodes for calculating memcmp result only
472   // if result is not used in a zero equality.
473   if (!IsUsedForZeroCmp) {
474     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
475     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
476   }
477
478   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
479   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
480                            ? EndBlock
481                            : LoadCmpBlocks[BlockIndex + 1];
482   // Early exit branch if difference found to ResultBlock. Otherwise, continue
483   // to next LoadCmpBlock or EndBlock.
484   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
485   Builder.Insert(CmpBr);
486
487   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
488   // since early exit to ResultBlock was not taken (no difference was found in
489   // any of the bytes).
490   if (BlockIndex == LoadCmpBlocks.size() - 1) {
491     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
492     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
493   }
494 }
495
496 // This function populates the ResultBlock with a sequence to calculate the
497 // memcmp result. It compares the two loaded source values and returns -1 if
498 // src1 < src2 and 1 if src1 > src2.
499 void MemCmpExpansion::emitMemCmpResultBlock() {
500   // Special case: if memcmp result is used in a zero equality, result does not
501   // need to be calculated and can simply return 1.
502   if (IsUsedForZeroCmp) {
503     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
504     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
505     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
506     PhiRes->addIncoming(Res, ResBlock.BB);
507     BranchInst *NewBr = BranchInst::Create(EndBlock);
508     Builder.Insert(NewBr);
509     return;
510   }
511   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
512   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
513
514   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
515                                   ResBlock.PhiSrc2);
516
517   Value *Res =
518       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
519                            ConstantInt::get(Builder.getInt32Ty(), 1));
520
521   BranchInst *NewBr = BranchInst::Create(EndBlock);
522   Builder.Insert(NewBr);
523   PhiRes->addIncoming(Res, ResBlock.BB);
524 }
525
526 void MemCmpExpansion::setupResultBlockPHINodes() {
527   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
528   Builder.SetInsertPoint(ResBlock.BB);
529   // Note: this assumes one load per block.
530   ResBlock.PhiSrc1 =
531       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
532   ResBlock.PhiSrc2 =
533       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
534 }
535
536 void MemCmpExpansion::setupEndBlockPHINodes() {
537   Builder.SetInsertPoint(&EndBlock->front());
538   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
539 }
540
541 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
542   unsigned LoadIndex = 0;
543   // This loop populates each of the LoadCmpBlocks with the IR sequence to
544   // handle multiple loads per block.
545   for (unsigned I = 0; I < getNumBlocks(); ++I) {
546     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
547   }
548
549   emitMemCmpResultBlock();
550   return PhiRes;
551 }
552
553 /// A memcmp expansion that compares equality with 0 and only has one block of
554 /// load and compare can bypass the compare, branch, and phi IR that is required
555 /// in the general case.
556 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
557   unsigned LoadIndex = 0;
558   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
559   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
560   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
561 }
562
563 /// A memcmp expansion that only has one block of load and compare can bypass
564 /// the compare, branch, and phi IR that is required in the general case.
565 Value *MemCmpExpansion::getMemCmpOneBlock() {
566   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
567   Value *Source1 = CI->getArgOperand(0);
568   Value *Source2 = CI->getArgOperand(1);
569
570   // Cast source to LoadSizeType*.
571   if (Source1->getType() != LoadSizeType)
572     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
573   if (Source2->getType() != LoadSizeType)
574     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
575
576   // Load LoadSizeType from the base address.
577   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
578   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
579
580   if (DL.isLittleEndian() && Size != 1) {
581     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
582                                                 Intrinsic::bswap, LoadSizeType);
583     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
584     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
585   }
586
587   if (Size < 4) {
588     // The i8 and i16 cases don't need compares. We zext the loaded values and
589     // subtract them to get the suitable negative, zero, or positive i32 result.
590     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
591     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
592     return Builder.CreateSub(LoadSrc1, LoadSrc2);
593   }
594
595   // The result of memcmp is negative, zero, or positive, so produce that by
596   // subtracting 2 extended compare bits: sub (ugt, ult).
597   // If a target prefers to use selects to get -1/0/1, they should be able
598   // to transform this later. The inverse transform (going from selects to math)
599   // may not be possible in the DAG because the selects got converted into
600   // branches before we got there.
601   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
602   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
603   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
604   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
605   return Builder.CreateSub(ZextUGT, ZextULT);
606 }
607
608 // This function expands the memcmp call into an inline expansion and returns
609 // the memcmp result.
610 Value *MemCmpExpansion::getMemCmpExpansion() {
611   // Create the basic block framework for a multi-block expansion.
612   if (getNumBlocks() != 1) {
613     BasicBlock *StartBlock = CI->getParent();
614     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
615     setupEndBlockPHINodes();
616     createResultBlock();
617
618     // If return value of memcmp is not used in a zero equality, we need to
619     // calculate which source was larger. The calculation requires the
620     // two loaded source values of each load compare block.
621     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
622     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
623
624     // Create the number of required load compare basic blocks.
625     createLoadCmpBlocks();
626
627     // Update the terminator added by splitBasicBlock to branch to the first
628     // LoadCmpBlock.
629     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
630   }
631
632   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
633
634   if (IsUsedForZeroCmp)
635     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
636                                : getMemCmpExpansionZeroCase();
637
638   if (getNumBlocks() == 1)
639     return getMemCmpOneBlock();
640
641   for (unsigned I = 0; I < getNumBlocks(); ++I) {
642     emitLoadCompareBlock(I);
643   }
644
645   emitMemCmpResultBlock();
646   return PhiRes;
647 }
648
649 // This function checks to see if an expansion of memcmp can be generated.
650 // It checks for constant compare size that is less than the max inline size.
651 // If an expansion cannot occur, returns false to leave as a library call.
652 // Otherwise, the library call is replaced with a new IR instruction sequence.
653 /// We want to transform:
654 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
655 /// To:
656 /// loadbb:
657 ///  %0 = bitcast i32* %buffer2 to i8*
658 ///  %1 = bitcast i32* %buffer1 to i8*
659 ///  %2 = bitcast i8* %1 to i64*
660 ///  %3 = bitcast i8* %0 to i64*
661 ///  %4 = load i64, i64* %2
662 ///  %5 = load i64, i64* %3
663 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
664 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
665 ///  %8 = sub i64 %6, %7
666 ///  %9 = icmp ne i64 %8, 0
667 ///  br i1 %9, label %res_block, label %loadbb1
668 /// res_block:                                        ; preds = %loadbb2,
669 /// %loadbb1, %loadbb
670 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
671 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
672 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
673 ///  %11 = select i1 %10, i32 -1, i32 1
674 ///  br label %endblock
675 /// loadbb1:                                          ; preds = %loadbb
676 ///  %12 = bitcast i32* %buffer2 to i8*
677 ///  %13 = bitcast i32* %buffer1 to i8*
678 ///  %14 = bitcast i8* %13 to i32*
679 ///  %15 = bitcast i8* %12 to i32*
680 ///  %16 = getelementptr i32, i32* %14, i32 2
681 ///  %17 = getelementptr i32, i32* %15, i32 2
682 ///  %18 = load i32, i32* %16
683 ///  %19 = load i32, i32* %17
684 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
685 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
686 ///  %22 = zext i32 %20 to i64
687 ///  %23 = zext i32 %21 to i64
688 ///  %24 = sub i64 %22, %23
689 ///  %25 = icmp ne i64 %24, 0
690 ///  br i1 %25, label %res_block, label %loadbb2
691 /// loadbb2:                                          ; preds = %loadbb1
692 ///  %26 = bitcast i32* %buffer2 to i8*
693 ///  %27 = bitcast i32* %buffer1 to i8*
694 ///  %28 = bitcast i8* %27 to i16*
695 ///  %29 = bitcast i8* %26 to i16*
696 ///  %30 = getelementptr i16, i16* %28, i16 6
697 ///  %31 = getelementptr i16, i16* %29, i16 6
698 ///  %32 = load i16, i16* %30
699 ///  %33 = load i16, i16* %31
700 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
701 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
702 ///  %36 = zext i16 %34 to i64
703 ///  %37 = zext i16 %35 to i64
704 ///  %38 = sub i64 %36, %37
705 ///  %39 = icmp ne i64 %38, 0
706 ///  br i1 %39, label %res_block, label %loadbb3
707 /// loadbb3:                                          ; preds = %loadbb2
708 ///  %40 = bitcast i32* %buffer2 to i8*
709 ///  %41 = bitcast i32* %buffer1 to i8*
710 ///  %42 = getelementptr i8, i8* %41, i8 14
711 ///  %43 = getelementptr i8, i8* %40, i8 14
712 ///  %44 = load i8, i8* %42
713 ///  %45 = load i8, i8* %43
714 ///  %46 = zext i8 %44 to i32
715 ///  %47 = zext i8 %45 to i32
716 ///  %48 = sub i32 %46, %47
717 ///  br label %endblock
718 /// endblock:                                         ; preds = %res_block,
719 /// %loadbb3
720 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
721 ///  ret i32 %phi.res
722 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
723                          const TargetLowering *TLI, const DataLayout *DL) {
724   NumMemCmpCalls++;
725
726   // Early exit from expansion if -Oz.
727   if (CI->getFunction()->hasMinSize())
728     return false;
729
730   // Early exit from expansion if size is not a constant.
731   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
732   if (!SizeCast) {
733     NumMemCmpNotConstant++;
734     return false;
735   }
736   const uint64_t SizeVal = SizeCast->getZExtValue();
737
738   if (SizeVal == 0) {
739     return false;
740   }
741   // TTI call to check if target would like to expand memcmp. Also, get the
742   // available load sizes.
743   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
744   auto Options = TTI->enableMemCmpExpansion(CI->getFunction()->hasOptSize(),
745                                             IsUsedForZeroCmp);
746   if (!Options) return false;
747
748   if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
749     Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
750
751   if (CI->getFunction()->hasOptSize() &&
752       MaxLoadsPerMemcmpOptSize.getNumOccurrences())
753     Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
754
755   if (!CI->getFunction()->hasOptSize() && MaxLoadsPerMemcmp.getNumOccurrences())
756     Options.MaxNumLoads = MaxLoadsPerMemcmp;
757
758   MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);
759
760   // Don't expand if this will require more loads than desired by the target.
761   if (Expansion.getNumLoads() == 0) {
762     NumMemCmpGreaterThanMax++;
763     return false;
764   }
765
766   NumMemCmpInlined++;
767
768   Value *Res = Expansion.getMemCmpExpansion();
769
770   // Replace call with result of expansion and erase call.
771   CI->replaceAllUsesWith(Res);
772   CI->eraseFromParent();
773
774   return true;
775 }
776
777
778
779 class ExpandMemCmpPass : public FunctionPass {
780 public:
781   static char ID;
782
783   ExpandMemCmpPass() : FunctionPass(ID) {
784     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
785   }
786
787   bool runOnFunction(Function &F) override {
788     if (skipFunction(F)) return false;
789
790     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
791     if (!TPC) {
792       return false;
793     }
794     const TargetLowering* TL =
795         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
796
797     const TargetLibraryInfo *TLI =
798         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
799     const TargetTransformInfo *TTI =
800         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
801     auto PA = runImpl(F, TLI, TTI, TL);
802     return !PA.areAllPreserved();
803   }
804
805 private:
806   void getAnalysisUsage(AnalysisUsage &AU) const override {
807     AU.addRequired<TargetLibraryInfoWrapperPass>();
808     AU.addRequired<TargetTransformInfoWrapperPass>();
809     FunctionPass::getAnalysisUsage(AU);
810   }
811
812   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
813                             const TargetTransformInfo *TTI,
814                             const TargetLowering* TL);
815   // Returns true if a change was made.
816   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
817                   const TargetTransformInfo *TTI, const TargetLowering* TL,
818                   const DataLayout& DL);
819 };
820
821 bool ExpandMemCmpPass::runOnBlock(
822     BasicBlock &BB, const TargetLibraryInfo *TLI,
823     const TargetTransformInfo *TTI, const TargetLowering* TL,
824     const DataLayout& DL) {
825   for (Instruction& I : BB) {
826     CallInst *CI = dyn_cast<CallInst>(&I);
827     if (!CI) {
828       continue;
829     }
830     LibFunc Func;
831     if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
832         (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
833         expandMemCmp(CI, TTI, TL, &DL)) {
834       return true;
835     }
836   }
837   return false;
838 }
839
840
841 PreservedAnalyses ExpandMemCmpPass::runImpl(
842     Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
843     const TargetLowering* TL) {
844   const DataLayout& DL = F.getParent()->getDataLayout();
845   bool MadeChanges = false;
846   for (auto BBIt = F.begin(); BBIt != F.end();) {
847     if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
848       MadeChanges = true;
849       // If changes were made, restart the function from the beginning, since
850       // the structure of the function was changed.
851       BBIt = F.begin();
852     } else {
853       ++BBIt;
854     }
855   }
856   return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
857 }
858
859 } // namespace
860
861 char ExpandMemCmpPass::ID = 0;
862 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
863                       "Expand memcmp() to load/stores", false, false)
864 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
865 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
866 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
867                     "Expand memcmp() to load/stores", false, false)
868
869 FunctionPass *llvm::createExpandMemCmpPass() {
870   return new ExpandMemCmpPass();
871 }