OSDN Git Service

am 1a961143: (-s ours) Reconcile with jb-mr2-release - do not merge
[android-x86/external-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "llvm/ExecutionEngine/RuntimeDyld.h"
16 #include "ObjectImageCommon.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/Path.h"
22
23 using namespace llvm;
24 using namespace llvm::object;
25
26 // Empty out-of-line virtual destructor as the key function.
27 RTDyldMemoryManager::~RTDyldMemoryManager() {}
28 RuntimeDyldImpl::~RuntimeDyldImpl() {}
29
30 namespace llvm {
31
32 // Resolve the relocations for all symbols we currently know about.
33 void RuntimeDyldImpl::resolveRelocations() {
34   // First, resolve relocations associated with external symbols.
35   resolveExternalSymbols();
36
37   // Just iterate over the sections we have and resolve all the relocations
38   // in them. Gross overkill, but it gets the job done.
39   for (int i = 0, e = Sections.size(); i != e; ++i) {
40     uint64_t Addr = Sections[i].LoadAddress;
41     DEBUG(dbgs() << "Resolving relocations Section #" << i
42             << "\t" << format("%p", (uint8_t *)Addr)
43             << "\n");
44     resolveRelocationList(Relocations[i], Addr);
45   }
46 }
47
48 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
49                                         uint64_t TargetAddress) {
50   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
51     if (Sections[i].Address == LocalAddress) {
52       reassignSectionAddress(i, TargetAddress);
53       return;
54     }
55   }
56   llvm_unreachable("Attempting to remap address of unknown section!");
57 }
58
59 // Subclasses can implement this method to create specialized image instances.
60 // The caller owns the pointer that is returned.
61 ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
62   return new ObjectImageCommon(InputBuffer);
63 }
64
65 ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
66   OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
67   if (!obj)
68     report_fatal_error("Unable to create object image from memory buffer!");
69
70   Arch = (Triple::ArchType)obj->getArch();
71
72   // Symbols found in this object
73   StringMap<SymbolLoc> LocalSymbols;
74   // Used sections from the object file
75   ObjSectionToIDMap LocalSections;
76
77   // Common symbols requiring allocation, with their sizes and alignments
78   CommonSymbolMap CommonSymbols;
79   // Maximum required total memory to allocate all common symbols
80   uint64_t CommonSize = 0;
81
82   error_code err;
83   // Parse symbols
84   DEBUG(dbgs() << "Parse symbols:\n");
85   for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
86        i != e; i.increment(err)) {
87     Check(err);
88     object::SymbolRef::Type SymType;
89     StringRef Name;
90     Check(i->getType(SymType));
91     Check(i->getName(Name));
92
93     uint32_t flags;
94     Check(i->getFlags(flags));
95
96     bool isCommon = flags & SymbolRef::SF_Common;
97     if (isCommon) {
98       // Add the common symbols to a list.  We'll allocate them all below.
99       uint32_t Align;
100       Check(i->getAlignment(Align));
101       uint64_t Size = 0;
102       Check(i->getSize(Size));
103       CommonSize += Size + Align;
104       CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
105     } else {
106       if (SymType == object::SymbolRef::ST_Function ||
107           SymType == object::SymbolRef::ST_Data ||
108           SymType == object::SymbolRef::ST_Unknown) {
109         uint64_t FileOffset;
110         StringRef SectionData;
111         bool IsCode;
112         section_iterator si = obj->end_sections();
113         Check(i->getFileOffset(FileOffset));
114         Check(i->getSection(si));
115         if (si == obj->end_sections()) continue;
116         Check(si->getContents(SectionData));
117         Check(si->isText(IsCode));
118         const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
119                                 (uintptr_t)FileOffset;
120         uintptr_t SectOffset = (uintptr_t)(SymPtr -
121                                            (const uint8_t*)SectionData.begin());
122         unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
123         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
124         DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
125                      << " flags: " << flags
126                      << " SID: " << SectionID
127                      << " Offset: " << format("%p", SectOffset));
128         GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
129       }
130     }
131     DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
132   }
133
134   // Allocate common symbols
135   if (CommonSize != 0)
136     emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
137
138   // Parse and process relocations
139   DEBUG(dbgs() << "Parse relocations:\n");
140   for (section_iterator si = obj->begin_sections(),
141        se = obj->end_sections(); si != se; si.increment(err)) {
142     Check(err);
143     bool isFirstRelocation = true;
144     unsigned SectionID = 0;
145     StubMap Stubs;
146
147     for (relocation_iterator i = si->begin_relocations(),
148          e = si->end_relocations(); i != e; i.increment(err)) {
149       Check(err);
150
151       // If it's the first relocation in this section, find its SectionID
152       if (isFirstRelocation) {
153         SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
154         DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
155         isFirstRelocation = false;
156       }
157
158       processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
159                            Stubs);
160     }
161   }
162
163   return obj.take();
164 }
165
166 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
167                                         const CommonSymbolMap &CommonSymbols,
168                                         uint64_t TotalSize,
169                                         SymbolTableMap &SymbolTable) {
170   // Allocate memory for the section
171   unsigned SectionID = Sections.size();
172   uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
173                                               SectionID, false);
174   if (!Addr)
175     report_fatal_error("Unable to allocate memory for common symbols!");
176   uint64_t Offset = 0;
177   Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
178   memset(Addr, 0, TotalSize);
179
180   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
181                << " new addr: " << format("%p", Addr)
182                << " DataSize: " << TotalSize
183                << "\n");
184
185   // Assign the address of each symbol
186   for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
187        itEnd = CommonSymbols.end(); it != itEnd; it++) {
188     uint64_t Size = it->second.first;
189     uint64_t Align = it->second.second;
190     StringRef Name;
191     it->first.getName(Name);
192     if (Align) {
193       // This symbol has an alignment requirement.
194       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
195       Addr += AlignOffset;
196       Offset += AlignOffset;
197       DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
198                       format("%p\n", Addr));
199     }
200     Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
201     SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
202     Offset += Size;
203     Addr += Size;
204   }
205 }
206
207 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
208                                       const SectionRef &Section,
209                                       bool IsCode) {
210
211   unsigned StubBufSize = 0,
212            StubSize = getMaxStubSize();
213   error_code err;
214   if (StubSize > 0) {
215     for (relocation_iterator i = Section.begin_relocations(),
216          e = Section.end_relocations(); i != e; i.increment(err), Check(err))
217       StubBufSize += StubSize;
218   }
219   StringRef data;
220   uint64_t Alignment64;
221   Check(Section.getContents(data));
222   Check(Section.getAlignment(Alignment64));
223
224   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
225   bool IsRequired;
226   bool IsVirtual;
227   bool IsZeroInit;
228   bool IsReadOnly;
229   uint64_t DataSize;
230   StringRef Name;
231   Check(Section.isRequiredForExecution(IsRequired));
232   Check(Section.isVirtual(IsVirtual));
233   Check(Section.isZeroInit(IsZeroInit));
234   Check(Section.isReadOnlyData(IsReadOnly));
235   Check(Section.getSize(DataSize));
236   Check(Section.getName(Name));
237
238   unsigned Allocate;
239   unsigned SectionID = Sections.size();
240   uint8_t *Addr;
241   const char *pData = 0;
242
243   // Some sections, such as debug info, don't need to be loaded for execution.
244   // Leave those where they are.
245   if (IsRequired) {
246     Allocate = DataSize + StubBufSize;
247     Addr = IsCode
248       ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
249       : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
250     if (!Addr)
251       report_fatal_error("Unable to allocate section memory!");
252
253     // Virtual sections have no data in the object image, so leave pData = 0
254     if (!IsVirtual)
255       pData = data.data();
256
257     // Zero-initialize or copy the data from the image
258     if (IsZeroInit || IsVirtual)
259       memset(Addr, 0, DataSize);
260     else
261       memcpy(Addr, pData, DataSize);
262
263     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
264                  << " Name: " << Name
265                  << " obj addr: " << format("%p", pData)
266                  << " new addr: " << format("%p", Addr)
267                  << " DataSize: " << DataSize
268                  << " StubBufSize: " << StubBufSize
269                  << " Allocate: " << Allocate
270                  << "\n");
271     Obj.updateSectionAddress(Section, (uint64_t)Addr);
272   }
273   else {
274     // Even if we didn't load the section, we need to record an entry for it
275     // to handle later processing (and by 'handle' I mean don't do anything
276     // with these sections).
277     Allocate = 0;
278     Addr = 0;
279     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
280                  << " Name: " << Name
281                  << " obj addr: " << format("%p", data.data())
282                  << " new addr: 0"
283                  << " DataSize: " << DataSize
284                  << " StubBufSize: " << StubBufSize
285                  << " Allocate: " << Allocate
286                  << "\n");
287   }
288
289   Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
290                                   (uintptr_t)pData));
291   return SectionID;
292 }
293
294 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
295                                             const SectionRef &Section,
296                                             bool IsCode,
297                                             ObjSectionToIDMap &LocalSections) {
298
299   unsigned SectionID = 0;
300   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
301   if (i != LocalSections.end())
302     SectionID = i->second;
303   else {
304     SectionID = emitSection(Obj, Section, IsCode);
305     LocalSections[Section] = SectionID;
306   }
307   return SectionID;
308 }
309
310 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
311                                               unsigned SectionID) {
312   Relocations[SectionID].push_back(RE);
313 }
314
315 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
316                                              StringRef SymbolName) {
317   // Relocation by symbol.  If the symbol is found in the global symbol table,
318   // create an appropriate section relocation.  Otherwise, add it to
319   // ExternalSymbolRelocations.
320   SymbolTableMap::const_iterator Loc =
321       GlobalSymbolTable.find(SymbolName);
322   if (Loc == GlobalSymbolTable.end()) {
323     ExternalSymbolRelocations[SymbolName].push_back(RE);
324   } else {
325     // Copy the RE since we want to modify its addend.
326     RelocationEntry RECopy = RE;
327     RECopy.Addend += Loc->second.second;
328     Relocations[Loc->second.first].push_back(RECopy);
329   }
330 }
331
332 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
333   if (Arch == Triple::arm) {
334     // TODO: There is only ARM far stub now. We should add the Thumb stub,
335     // and stubs for branches Thumb - ARM and ARM - Thumb.
336     uint32_t *StubAddr = (uint32_t*)Addr;
337     *StubAddr = 0xe51ff004; // ldr pc,<label>
338     return (uint8_t*)++StubAddr;
339   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
340     uint32_t *StubAddr = (uint32_t*)Addr;
341     // 0:   3c190000        lui     t9,%hi(addr).
342     // 4:   27390000        addiu   t9,t9,%lo(addr).
343     // 8:   03200008        jr      t9.
344     // c:   00000000        nop.
345     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
346     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
347
348     *StubAddr = LuiT9Instr;
349     StubAddr++;
350     *StubAddr = AdduiT9Instr;
351     StubAddr++;
352     *StubAddr = JrT9Instr;
353     StubAddr++;
354     *StubAddr = NopInstr;
355     return Addr;
356   } else if (Arch == Triple::ppc64) {
357     // PowerPC64 stub: the address points to a function descriptor
358     // instead of the function itself. Load the function address
359     // on r11 and sets it to control register. Also loads the function
360     // TOC in r2 and environment pointer to r11.
361     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
362     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
363     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
364     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
365     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
366     writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
367     writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
368     writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
369     writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
370     writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
371     writeInt32BE(Addr+40, 0x4E800420); // bctr
372
373     return Addr;
374   }
375   return Addr;
376 }
377
378 // Assign an address to a symbol name and resolve all the relocations
379 // associated with it.
380 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
381                                              uint64_t Addr) {
382   // The address to use for relocation resolution is not
383   // the address of the local section buffer. We must be doing
384   // a remote execution environment of some sort. Relocations can't
385   // be applied until all the sections have been moved.  The client must
386   // trigger this with a call to MCJIT::finalize() or
387   // RuntimeDyld::resolveRelocations().
388   //
389   // Addr is a uint64_t because we can't assume the pointer width
390   // of the target is the same as that of the host. Just use a generic
391   // "big enough" type.
392   Sections[SectionID].LoadAddress = Addr;
393 }
394
395 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
396                                             uint64_t Value) {
397   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
398     const RelocationEntry &RE = Relocs[i];
399     // Ignore relocations for sections that were not loaded
400     if (Sections[RE.SectionID].Address == 0)
401       continue;
402     resolveRelocation(RE, Value);
403   }
404 }
405
406 void RuntimeDyldImpl::resolveExternalSymbols() {
407   StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
408                                       e = ExternalSymbolRelocations.end();
409   for (; i != e; i++) {
410     StringRef Name = i->first();
411     RelocationList &Relocs = i->second;
412     SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
413     if (Loc == GlobalSymbolTable.end()) {
414       if (Name.size() == 0) {
415         // This is an absolute symbol, use an address of zero.
416         DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
417         resolveRelocationList(Relocs, 0);
418       } else {
419         // This is an external symbol, try to get its address from
420         // MemoryManager.
421         uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
422                                                                    true);
423         DEBUG(dbgs() << "Resolving relocations Name: " << Name
424                 << "\t" << format("%p", Addr)
425                 << "\n");
426         resolveRelocationList(Relocs, (uintptr_t)Addr);
427       }
428     } else {
429       report_fatal_error("Expected external symbol");
430     }
431   }
432 }
433
434
435 //===----------------------------------------------------------------------===//
436 // RuntimeDyld class implementation
437 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
438   // FIXME: There's a potential issue lurking here if a single instance of
439   // RuntimeDyld is used to load multiple objects.  The current implementation
440   // associates a single memory manager with a RuntimeDyld instance.  Even
441   // though the public class spawns a new 'impl' instance for each load,
442   // they share a single memory manager.  This can become a problem when page
443   // permissions are applied.
444   Dyld = 0;
445   MM = mm;
446 }
447
448 RuntimeDyld::~RuntimeDyld() {
449   delete Dyld;
450 }
451
452 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
453   if (!Dyld) {
454     sys::LLVMFileType type = sys::IdentifyFileType(
455             InputBuffer->getBufferStart(),
456             static_cast<unsigned>(InputBuffer->getBufferSize()));
457     switch (type) {
458       case sys::ELF_Relocatable_FileType:
459       case sys::ELF_Executable_FileType:
460       case sys::ELF_SharedObject_FileType:
461       case sys::ELF_Core_FileType:
462         Dyld = new RuntimeDyldELF(MM);
463         break;
464       case sys::Mach_O_Object_FileType:
465       case sys::Mach_O_Executable_FileType:
466       case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
467       case sys::Mach_O_Core_FileType:
468       case sys::Mach_O_PreloadExecutable_FileType:
469       case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
470       case sys::Mach_O_DynamicLinker_FileType:
471       case sys::Mach_O_Bundle_FileType:
472       case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
473       case sys::Mach_O_DSYMCompanion_FileType:
474         Dyld = new RuntimeDyldMachO(MM);
475         break;
476       case sys::Unknown_FileType:
477       case sys::Bitcode_FileType:
478       case sys::Archive_FileType:
479       case sys::COFF_FileType:
480         report_fatal_error("Incompatible object format!");
481     }
482   } else {
483     if (!Dyld->isCompatibleFormat(InputBuffer))
484       report_fatal_error("Incompatible object format!");
485   }
486
487   return Dyld->loadObject(InputBuffer);
488 }
489
490 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
491   return Dyld->getSymbolAddress(Name);
492 }
493
494 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
495   return Dyld->getSymbolLoadAddress(Name);
496 }
497
498 void RuntimeDyld::resolveRelocations() {
499   Dyld->resolveRelocations();
500 }
501
502 void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
503                                          uint64_t Addr) {
504   Dyld->reassignSectionAddress(SectionID, Addr);
505 }
506
507 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
508                                     uint64_t TargetAddress) {
509   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
510 }
511
512 StringRef RuntimeDyld::getErrorString() {
513   return Dyld->getErrorString();
514 }
515
516 } // end namespace llvm