OSDN Git Service

[DebugInfo] Generate fixups as emitting DWARF .debug_line.
[android-x86/external-llvm.git] / lib / MC / MCAssembler.cpp
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/MC/MCAssembler.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/MC/MCAsmBackend.h"
18 #include "llvm/MC/MCAsmInfo.h"
19 #include "llvm/MC/MCAsmLayout.h"
20 #include "llvm/MC/MCCodeEmitter.h"
21 #include "llvm/MC/MCCodeView.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDwarf.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixup.h"
26 #include "llvm/MC/MCFixupKindInfo.h"
27 #include "llvm/MC/MCFragment.h"
28 #include "llvm/MC/MCInst.h"
29 #include "llvm/MC/MCObjectWriter.h"
30 #include "llvm/MC/MCSection.h"
31 #include "llvm/MC/MCSectionELF.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/MC/MCValue.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "assembler"
49
50 namespace {
51 namespace stats {
52
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55           "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57           "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59           "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61           "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63           "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65           "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 STATISTIC(PaddingFragmentsRelaxations,
72           "Number of Padding Fragments relaxations");
73 STATISTIC(PaddingFragmentsBytes,
74           "Total size of all padding from adding Fragments");
75
76 } // end namespace stats
77 } // end anonymous namespace
78
79 // FIXME FIXME FIXME: There are number of places in this file where we convert
80 // what is a 64-bit assembler value used for computation into a value in the
81 // object file, which may truncate it. We should detect that truncation where
82 // invalid and report errors back.
83
84 /* *** */
85
86 MCAssembler::MCAssembler(MCContext &Context,
87                          std::unique_ptr<MCAsmBackend> Backend,
88                          std::unique_ptr<MCCodeEmitter> Emitter,
89                          std::unique_ptr<MCObjectWriter> Writer)
90     : Context(Context), Backend(std::move(Backend)),
91       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
92       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
93       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
94   VersionInfo.Major = 0; // Major version == 0 for "none specified"
95 }
96
97 MCAssembler::~MCAssembler() = default;
98
99 void MCAssembler::reset() {
100   Sections.clear();
101   Symbols.clear();
102   IndirectSymbols.clear();
103   DataRegions.clear();
104   LinkerOptions.clear();
105   FileNames.clear();
106   ThumbFuncs.clear();
107   BundleAlignSize = 0;
108   RelaxAll = false;
109   SubsectionsViaSymbols = false;
110   IncrementalLinkerCompatible = false;
111   ELFHeaderEFlags = 0;
112   LOHContainer.reset();
113   VersionInfo.Major = 0;
114
115   // reset objects owned by us
116   if (getBackendPtr())
117     getBackendPtr()->reset();
118   if (getEmitterPtr())
119     getEmitterPtr()->reset();
120   if (getWriterPtr())
121     getWriterPtr()->reset();
122   getLOHContainer().reset();
123 }
124
125 bool MCAssembler::registerSection(MCSection &Section) {
126   if (Section.isRegistered())
127     return false;
128   Sections.push_back(&Section);
129   Section.setIsRegistered(true);
130   return true;
131 }
132
133 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
134   if (ThumbFuncs.count(Symbol))
135     return true;
136
137   if (!Symbol->isVariable())
138     return false;
139
140   const MCExpr *Expr = Symbol->getVariableValue();
141
142   MCValue V;
143   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
144     return false;
145
146   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
147     return false;
148
149   const MCSymbolRefExpr *Ref = V.getSymA();
150   if (!Ref)
151     return false;
152
153   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
154     return false;
155
156   const MCSymbol &Sym = Ref->getSymbol();
157   if (!isThumbFunc(&Sym))
158     return false;
159
160   ThumbFuncs.insert(Symbol); // Cache it.
161   return true;
162 }
163
164 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
165   // Non-temporary labels should always be visible to the linker.
166   if (!Symbol.isTemporary())
167     return true;
168
169   // Absolute temporary labels are never visible.
170   if (!Symbol.isInSection())
171     return false;
172
173   if (Symbol.isUsedInReloc())
174     return true;
175
176   return false;
177 }
178
179 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
180   // Linker visible symbols define atoms.
181   if (isSymbolLinkerVisible(S))
182     return &S;
183
184   // Absolute and undefined symbols have no defining atom.
185   if (!S.isInSection())
186     return nullptr;
187
188   // Non-linker visible symbols in sections which can't be atomized have no
189   // defining atom.
190   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
191           *S.getFragment()->getParent()))
192     return nullptr;
193
194   // Otherwise, return the atom for the containing fragment.
195   return S.getFragment()->getAtom();
196 }
197
198 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
199                                 const MCFixup &Fixup, const MCFragment *DF,
200                                 MCValue &Target, uint64_t &Value,
201                                 bool &WasForced) const {
202   ++stats::evaluateFixup;
203
204   // FIXME: This code has some duplication with recordRelocation. We should
205   // probably merge the two into a single callback that tries to evaluate a
206   // fixup and records a relocation if one is needed.
207
208   // On error claim to have completely evaluated the fixup, to prevent any
209   // further processing from being done.
210   const MCExpr *Expr = Fixup.getValue();
211   MCContext &Ctx = getContext();
212   Value = 0;
213   WasForced = false;
214   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
215     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
216     return true;
217   }
218   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
219     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
220       Ctx.reportError(Fixup.getLoc(),
221                       "unsupported subtraction of qualified symbol");
222       return true;
223     }
224   }
225
226   assert(getBackendPtr() && "Expected assembler backend");
227   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
228                  MCFixupKindInfo::FKF_IsPCRel;
229
230   bool IsResolved = false;
231   if (IsPCRel) {
232     if (Target.getSymB()) {
233       IsResolved = false;
234     } else if (!Target.getSymA()) {
235       IsResolved = false;
236     } else {
237       const MCSymbolRefExpr *A = Target.getSymA();
238       const MCSymbol &SA = A->getSymbol();
239       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
240         IsResolved = false;
241       } else if (auto *Writer = getWriterPtr()) {
242         IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
243             *this, SA, *DF, false, true);
244       }
245     }
246   } else {
247     IsResolved = Target.isAbsolute();
248   }
249
250   Value = Target.getConstant();
251
252   if (const MCSymbolRefExpr *A = Target.getSymA()) {
253     const MCSymbol &Sym = A->getSymbol();
254     if (Sym.isDefined())
255       Value += Layout.getSymbolOffset(Sym);
256   }
257   if (const MCSymbolRefExpr *B = Target.getSymB()) {
258     const MCSymbol &Sym = B->getSymbol();
259     if (Sym.isDefined())
260       Value -= Layout.getSymbolOffset(Sym);
261   }
262
263   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
264                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
265   assert((ShouldAlignPC ? IsPCRel : true) &&
266     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
267
268   if (IsPCRel) {
269     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
270
271     // A number of ARM fixups in Thumb mode require that the effective PC
272     // address be determined as the 32-bit aligned version of the actual offset.
273     if (ShouldAlignPC) Offset &= ~0x3;
274     Value -= Offset;
275   }
276
277   // Let the backend force a relocation if needed.
278   if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
279     IsResolved = false;
280     WasForced = true;
281   }
282
283   return IsResolved;
284 }
285
286 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
287                                           const MCFragment &F) const {
288   assert(getBackendPtr() && "Requires assembler backend");
289   switch (F.getKind()) {
290   case MCFragment::FT_Data:
291     return cast<MCDataFragment>(F).getContents().size();
292   case MCFragment::FT_Relaxable:
293     return cast<MCRelaxableFragment>(F).getContents().size();
294   case MCFragment::FT_CompactEncodedInst:
295     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
296   case MCFragment::FT_Fill: {
297     auto &FF = cast<MCFillFragment>(F);
298     int64_t NumValues = 0;
299     if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
300       getContext().reportError(FF.getLoc(),
301                                "expected assembly-time absolute expression");
302       return 0;
303     }
304     int64_t Size = NumValues * FF.getValueSize();
305     if (Size < 0) {
306       getContext().reportError(FF.getLoc(), "invalid number of bytes");
307       return 0;
308     }
309     return Size;
310   }
311
312   case MCFragment::FT_LEB:
313     return cast<MCLEBFragment>(F).getContents().size();
314
315   case MCFragment::FT_Padding:
316     return cast<MCPaddingFragment>(F).getSize();
317
318   case MCFragment::FT_SymbolId:
319     return 4;
320
321   case MCFragment::FT_Align: {
322     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
323     unsigned Offset = Layout.getFragmentOffset(&AF);
324     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
325     // If we are padding with nops, force the padding to be larger than the
326     // minimum nop size.
327     if (Size > 0 && AF.hasEmitNops()) {
328       while (Size % getBackend().getMinimumNopSize())
329         Size += AF.getAlignment();
330     }
331     if (Size > AF.getMaxBytesToEmit())
332       return 0;
333     return Size;
334   }
335
336   case MCFragment::FT_Org: {
337     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
338     MCValue Value;
339     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
340       getContext().reportError(OF.getLoc(),
341                                "expected assembly-time absolute expression");
342         return 0;
343     }
344
345     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
346     int64_t TargetLocation = Value.getConstant();
347     if (const MCSymbolRefExpr *A = Value.getSymA()) {
348       uint64_t Val;
349       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
350         getContext().reportError(OF.getLoc(), "expected absolute expression");
351         return 0;
352       }
353       TargetLocation += Val;
354     }
355     int64_t Size = TargetLocation - FragmentOffset;
356     if (Size < 0 || Size >= 0x40000000) {
357       getContext().reportError(
358           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
359                            "' (at offset '" + Twine(FragmentOffset) + "')");
360       return 0;
361     }
362     return Size;
363   }
364
365   case MCFragment::FT_Dwarf:
366     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
367   case MCFragment::FT_DwarfFrame:
368     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
369   case MCFragment::FT_CVInlineLines:
370     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
371   case MCFragment::FT_CVDefRange:
372     return cast<MCCVDefRangeFragment>(F).getContents().size();
373   case MCFragment::FT_Dummy:
374     llvm_unreachable("Should not have been added");
375   }
376
377   llvm_unreachable("invalid fragment kind");
378 }
379
380 void MCAsmLayout::layoutFragment(MCFragment *F) {
381   MCFragment *Prev = F->getPrevNode();
382
383   // We should never try to recompute something which is valid.
384   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
385   // We should never try to compute the fragment layout if its predecessor
386   // isn't valid.
387   assert((!Prev || isFragmentValid(Prev)) &&
388          "Attempt to compute fragment before its predecessor!");
389
390   ++stats::FragmentLayouts;
391
392   // Compute fragment offset and size.
393   if (Prev)
394     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
395   else
396     F->Offset = 0;
397   LastValidFragment[F->getParent()] = F;
398
399   // If bundling is enabled and this fragment has instructions in it, it has to
400   // obey the bundling restrictions. With padding, we'll have:
401   //
402   //
403   //        BundlePadding
404   //             |||
405   // -------------------------------------
406   //   Prev  |##########|       F        |
407   // -------------------------------------
408   //                    ^
409   //                    |
410   //                    F->Offset
411   //
412   // The fragment's offset will point to after the padding, and its computed
413   // size won't include the padding.
414   //
415   // When the -mc-relax-all flag is used, we optimize bundling by writting the
416   // padding directly into fragments when the instructions are emitted inside
417   // the streamer. When the fragment is larger than the bundle size, we need to
418   // ensure that it's bundle aligned. This means that if we end up with
419   // multiple fragments, we must emit bundle padding between fragments.
420   //
421   // ".align N" is an example of a directive that introduces multiple
422   // fragments. We could add a special case to handle ".align N" by emitting
423   // within-fragment padding (which would produce less padding when N is less
424   // than the bundle size), but for now we don't.
425   //
426   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
427     assert(isa<MCEncodedFragment>(F) &&
428            "Only MCEncodedFragment implementations have instructions");
429     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
430     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
431
432     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
433       report_fatal_error("Fragment can't be larger than a bundle size");
434
435     uint64_t RequiredBundlePadding =
436         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
437     if (RequiredBundlePadding > UINT8_MAX)
438       report_fatal_error("Padding cannot exceed 255 bytes");
439     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
440     EF->Offset += RequiredBundlePadding;
441   }
442 }
443
444 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
445   bool New = !Symbol.isRegistered();
446   if (Created)
447     *Created = New;
448   if (New) {
449     Symbol.setIsRegistered(true);
450     Symbols.push_back(&Symbol);
451   }
452 }
453
454 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
455                                        const MCEncodedFragment &EF,
456                                        uint64_t FSize) const {
457   assert(getBackendPtr() && "Expected assembler backend");
458   // Should NOP padding be written out before this fragment?
459   unsigned BundlePadding = EF.getBundlePadding();
460   if (BundlePadding > 0) {
461     assert(isBundlingEnabled() &&
462            "Writing bundle padding with disabled bundling");
463     assert(EF.hasInstructions() &&
464            "Writing bundle padding for a fragment without instructions");
465
466     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
467     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
468       // If the padding itself crosses a bundle boundary, it must be emitted
469       // in 2 pieces, since even nop instructions must not cross boundaries.
470       //             v--------------v   <- BundleAlignSize
471       //        v---------v             <- BundlePadding
472       // ----------------------------
473       // | Prev |####|####|    F    |
474       // ----------------------------
475       //        ^-------------------^   <- TotalLength
476       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
477       if (!getBackend().writeNopData(OS, DistanceToBoundary))
478         report_fatal_error("unable to write NOP sequence of " +
479                            Twine(DistanceToBoundary) + " bytes");
480       BundlePadding -= DistanceToBoundary;
481     }
482     if (!getBackend().writeNopData(OS, BundlePadding))
483       report_fatal_error("unable to write NOP sequence of " +
484                          Twine(BundlePadding) + " bytes");
485   }
486 }
487
488 /// Write the fragment \p F to the output file.
489 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
490                           const MCAsmLayout &Layout, const MCFragment &F) {
491   // FIXME: Embed in fragments instead?
492   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
493
494   support::endianness Endian = Asm.getBackend().Endian;
495
496   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
497     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
498
499   // This variable (and its dummy usage) is to participate in the assert at
500   // the end of the function.
501   uint64_t Start = OS.tell();
502   (void) Start;
503
504   ++stats::EmittedFragments;
505
506   switch (F.getKind()) {
507   case MCFragment::FT_Align: {
508     ++stats::EmittedAlignFragments;
509     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
510     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
511
512     uint64_t Count = FragmentSize / AF.getValueSize();
513
514     // FIXME: This error shouldn't actually occur (the front end should emit
515     // multiple .align directives to enforce the semantics it wants), but is
516     // severe enough that we want to report it. How to handle this?
517     if (Count * AF.getValueSize() != FragmentSize)
518       report_fatal_error("undefined .align directive, value size '" +
519                         Twine(AF.getValueSize()) +
520                         "' is not a divisor of padding size '" +
521                         Twine(FragmentSize) + "'");
522
523     // See if we are aligning with nops, and if so do that first to try to fill
524     // the Count bytes.  Then if that did not fill any bytes or there are any
525     // bytes left to fill use the Value and ValueSize to fill the rest.
526     // If we are aligning with nops, ask that target to emit the right data.
527     if (AF.hasEmitNops()) {
528       if (!Asm.getBackend().writeNopData(OS, Count))
529         report_fatal_error("unable to write nop sequence of " +
530                           Twine(Count) + " bytes");
531       break;
532     }
533
534     // Otherwise, write out in multiples of the value size.
535     for (uint64_t i = 0; i != Count; ++i) {
536       switch (AF.getValueSize()) {
537       default: llvm_unreachable("Invalid size!");
538       case 1: OS << char(AF.getValue()); break;
539       case 2:
540         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
541         break;
542       case 4:
543         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
544         break;
545       case 8:
546         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
547         break;
548       }
549     }
550     break;
551   }
552
553   case MCFragment::FT_Data:
554     ++stats::EmittedDataFragments;
555     OS << cast<MCDataFragment>(F).getContents();
556     break;
557
558   case MCFragment::FT_Relaxable:
559     ++stats::EmittedRelaxableFragments;
560     OS << cast<MCRelaxableFragment>(F).getContents();
561     break;
562
563   case MCFragment::FT_CompactEncodedInst:
564     ++stats::EmittedCompactEncodedInstFragments;
565     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
566     break;
567
568   case MCFragment::FT_Fill: {
569     ++stats::EmittedFillFragments;
570     const MCFillFragment &FF = cast<MCFillFragment>(F);
571     uint64_t V = FF.getValue();
572     unsigned VSize = FF.getValueSize();
573     const unsigned MaxChunkSize = 16;
574     char Data[MaxChunkSize];
575     // Duplicate V into Data as byte vector to reduce number of
576     // writes done. As such, do endian conversion here.
577     for (unsigned I = 0; I != VSize; ++I) {
578       unsigned index = Endian == support::little ? I : (VSize - I - 1);
579       Data[I] = uint8_t(V >> (index * 8));
580     }
581     for (unsigned I = VSize; I < MaxChunkSize; ++I)
582       Data[I] = Data[I - VSize];
583
584     // Set to largest multiple of VSize in Data.
585     const unsigned NumPerChunk = MaxChunkSize / VSize;
586     // Set ChunkSize to largest multiple of VSize in Data
587     const unsigned ChunkSize = VSize * NumPerChunk;
588
589     // Do copies by chunk.
590     StringRef Ref(Data, ChunkSize);
591     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
592       OS << Ref;
593
594     // do remainder if needed.
595     unsigned TrailingCount = FragmentSize % ChunkSize;
596     if (TrailingCount)
597       OS.write(Data, TrailingCount);
598     break;
599   }
600
601   case MCFragment::FT_LEB: {
602     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
603     OS << LF.getContents();
604     break;
605   }
606
607   case MCFragment::FT_Padding: {
608     if (!Asm.getBackend().writeNopData(OS, FragmentSize))
609       report_fatal_error("unable to write nop sequence of " +
610                          Twine(FragmentSize) + " bytes");
611     break;
612   }
613
614   case MCFragment::FT_SymbolId: {
615     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
616     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
617     break;
618   }
619
620   case MCFragment::FT_Org: {
621     ++stats::EmittedOrgFragments;
622     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
623
624     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
625       OS << char(OF.getValue());
626
627     break;
628   }
629
630   case MCFragment::FT_Dwarf: {
631     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
632     OS << OF.getContents();
633     break;
634   }
635   case MCFragment::FT_DwarfFrame: {
636     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
637     OS << CF.getContents();
638     break;
639   }
640   case MCFragment::FT_CVInlineLines: {
641     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
642     OS << OF.getContents();
643     break;
644   }
645   case MCFragment::FT_CVDefRange: {
646     const auto &DRF = cast<MCCVDefRangeFragment>(F);
647     OS << DRF.getContents();
648     break;
649   }
650   case MCFragment::FT_Dummy:
651     llvm_unreachable("Should not have been added");
652   }
653
654   assert(OS.tell() - Start == FragmentSize &&
655          "The stream should advance by fragment size");
656 }
657
658 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
659                                    const MCAsmLayout &Layout) const {
660   assert(getBackendPtr() && "Expected assembler backend");
661
662   // Ignore virtual sections.
663   if (Sec->isVirtualSection()) {
664     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
665
666     // Check that contents are only things legal inside a virtual section.
667     for (const MCFragment &F : *Sec) {
668       switch (F.getKind()) {
669       default: llvm_unreachable("Invalid fragment in virtual section!");
670       case MCFragment::FT_Data: {
671         // Check that we aren't trying to write a non-zero contents (or fixups)
672         // into a virtual section. This is to support clients which use standard
673         // directives to fill the contents of virtual sections.
674         const MCDataFragment &DF = cast<MCDataFragment>(F);
675         if (DF.fixup_begin() != DF.fixup_end())
676           report_fatal_error("cannot have fixups in virtual section!");
677         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
678           if (DF.getContents()[i]) {
679             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
680               report_fatal_error("non-zero initializer found in section '" +
681                   ELFSec->getSectionName() + "'");
682             else
683               report_fatal_error("non-zero initializer found in virtual section");
684           }
685         break;
686       }
687       case MCFragment::FT_Align:
688         // Check that we aren't trying to write a non-zero value into a virtual
689         // section.
690         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
691                 cast<MCAlignFragment>(F).getValue() == 0) &&
692                "Invalid align in virtual section!");
693         break;
694       case MCFragment::FT_Fill:
695         assert((cast<MCFillFragment>(F).getValue() == 0) &&
696                "Invalid fill in virtual section!");
697         break;
698       }
699     }
700
701     return;
702   }
703
704   uint64_t Start = OS.tell();
705   (void)Start;
706
707   for (const MCFragment &F : *Sec)
708     writeFragment(OS, *this, Layout, F);
709
710   assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
711 }
712
713 std::tuple<MCValue, uint64_t, bool>
714 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
715                          const MCFixup &Fixup) {
716   // Evaluate the fixup.
717   MCValue Target;
718   uint64_t FixedValue;
719   bool WasForced;
720   bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
721                                   WasForced);
722   if (!IsResolved) {
723     // The fixup was unresolved, we need a relocation. Inform the object
724     // writer of the relocation, and give it an opportunity to adjust the
725     // fixup value if need be.
726     if (Target.getSymA() && Target.getSymB() &&
727         getBackend().requiresDiffExpressionRelocations()) {
728       // The fixup represents the difference between two symbols, which the
729       // backend has indicated must be resolved at link time. Split up the fixup
730       // into two relocations, one for the add, and one for the sub, and emit
731       // both of these. The constant will be associated with the add half of the
732       // expression.
733       MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
734       MCValue TargetAdd =
735           MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
736       getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
737                                    FixedValue);
738       MCFixup FixupSub = MCFixup::createSubFor(Fixup);
739       MCValue TargetSub = MCValue::get(Target.getSymB());
740       getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
741                                    FixedValue);
742     } else {
743       getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
744                                    FixedValue);
745     }
746   }
747   return std::make_tuple(Target, FixedValue, IsResolved);
748 }
749
750 void MCAssembler::layout(MCAsmLayout &Layout) {
751   assert(getBackendPtr() && "Expected assembler backend");
752   DEBUG_WITH_TYPE("mc-dump", {
753       errs() << "assembler backend - pre-layout\n--\n";
754       dump(); });
755
756   // Create dummy fragments and assign section ordinals.
757   unsigned SectionIndex = 0;
758   for (MCSection &Sec : *this) {
759     // Create dummy fragments to eliminate any empty sections, this simplifies
760     // layout.
761     if (Sec.getFragmentList().empty())
762       new MCDataFragment(&Sec);
763
764     Sec.setOrdinal(SectionIndex++);
765   }
766
767   // Assign layout order indices to sections and fragments.
768   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
769     MCSection *Sec = Layout.getSectionOrder()[i];
770     Sec->setLayoutOrder(i);
771
772     unsigned FragmentIndex = 0;
773     for (MCFragment &Frag : *Sec)
774       Frag.setLayoutOrder(FragmentIndex++);
775   }
776
777   // Layout until everything fits.
778   while (layoutOnce(Layout))
779     if (getContext().hadError())
780       return;
781
782   DEBUG_WITH_TYPE("mc-dump", {
783       errs() << "assembler backend - post-relaxation\n--\n";
784       dump(); });
785
786   // Finalize the layout, including fragment lowering.
787   finishLayout(Layout);
788
789   DEBUG_WITH_TYPE("mc-dump", {
790       errs() << "assembler backend - final-layout\n--\n";
791       dump(); });
792
793   // Allow the object writer a chance to perform post-layout binding (for
794   // example, to set the index fields in the symbol data).
795   getWriter().executePostLayoutBinding(*this, Layout);
796
797   // Evaluate and apply the fixups, generating relocation entries as necessary.
798   for (MCSection &Sec : *this) {
799     for (MCFragment &Frag : Sec) {
800       // Data and relaxable fragments both have fixups.  So only process
801       // those here.
802       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
803       // being templated makes this tricky.
804       if (isa<MCEncodedFragment>(&Frag) &&
805           isa<MCCompactEncodedInstFragment>(&Frag))
806         continue;
807       if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag))
808         continue;
809       ArrayRef<MCFixup> Fixups;
810       MutableArrayRef<char> Contents;
811       const MCSubtargetInfo *STI = nullptr;
812       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
813         Fixups = FragWithFixups->getFixups();
814         Contents = FragWithFixups->getContents();
815         STI = FragWithFixups->getSubtargetInfo();
816         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
817       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
818         Fixups = FragWithFixups->getFixups();
819         Contents = FragWithFixups->getContents();
820         STI = FragWithFixups->getSubtargetInfo();
821         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
822       } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
823         Fixups = FragWithFixups->getFixups();
824         Contents = FragWithFixups->getContents();
825       } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
826         Fixups = FragWithFixups->getFixups();
827         Contents = FragWithFixups->getContents();
828       } else
829         llvm_unreachable("Unknown fragment with fixups!");
830       for (const MCFixup &Fixup : Fixups) {
831         uint64_t FixedValue;
832         bool IsResolved;
833         MCValue Target;
834         std::tie(Target, FixedValue, IsResolved) =
835             handleFixup(Layout, Frag, Fixup);
836         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
837                                 IsResolved, STI);
838       }
839     }
840   }
841 }
842
843 void MCAssembler::Finish() {
844   // Create the layout object.
845   MCAsmLayout Layout(*this);
846   layout(Layout);
847
848   // Write the object file.
849   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
850 }
851
852 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
853                                        const MCRelaxableFragment *DF,
854                                        const MCAsmLayout &Layout) const {
855   assert(getBackendPtr() && "Expected assembler backend");
856   MCValue Target;
857   uint64_t Value;
858   bool WasForced;
859   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
860   if (Target.getSymA() &&
861       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
862       Fixup.getKind() == FK_Data_1)
863     return false;
864   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
865                                                    Layout, WasForced);
866 }
867
868 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
869                                           const MCAsmLayout &Layout) const {
870   assert(getBackendPtr() && "Expected assembler backend");
871   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
872   // are intentionally pushing out inst fragments, or because we relaxed a
873   // previous instruction to one that doesn't need relaxation.
874   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
875     return false;
876
877   for (const MCFixup &Fixup : F->getFixups())
878     if (fixupNeedsRelaxation(Fixup, F, Layout))
879       return true;
880
881   return false;
882 }
883
884 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
885                                    MCRelaxableFragment &F) {
886   assert(getEmitterPtr() &&
887          "Expected CodeEmitter defined for relaxInstruction");
888   if (!fragmentNeedsRelaxation(&F, Layout))
889     return false;
890
891   ++stats::RelaxedInstructions;
892
893   // FIXME-PERF: We could immediately lower out instructions if we can tell
894   // they are fully resolved, to avoid retesting on later passes.
895
896   // Relax the fragment.
897
898   MCInst Relaxed;
899   getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
900
901   // Encode the new instruction.
902   //
903   // FIXME-PERF: If it matters, we could let the target do this. It can
904   // probably do so more efficiently in many cases.
905   SmallVector<MCFixup, 4> Fixups;
906   SmallString<256> Code;
907   raw_svector_ostream VecOS(Code);
908   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
909
910   // Update the fragment.
911   F.setInst(Relaxed);
912   F.getContents() = Code;
913   F.getFixups() = Fixups;
914
915   return true;
916 }
917
918 bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
919                                        MCPaddingFragment &PF) {
920   assert(getBackendPtr() && "Expected assembler backend");
921   uint64_t OldSize = PF.getSize();
922   if (!getBackend().relaxFragment(&PF, Layout))
923     return false;
924   uint64_t NewSize = PF.getSize();
925
926   ++stats::PaddingFragmentsRelaxations;
927   stats::PaddingFragmentsBytes += NewSize;
928   stats::PaddingFragmentsBytes -= OldSize;
929   return true;
930 }
931
932 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
933   uint64_t OldSize = LF.getContents().size();
934   int64_t Value;
935   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
936   if (!Abs)
937     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
938   SmallString<8> &Data = LF.getContents();
939   Data.clear();
940   raw_svector_ostream OSE(Data);
941   // The compiler can generate EH table assembly that is impossible to assemble
942   // without either adding padding to an LEB fragment or adding extra padding
943   // to a later alignment fragment. To accommodate such tables, relaxation can
944   // only increase an LEB fragment size here, not decrease it. See PR35809.
945   if (LF.isSigned())
946     encodeSLEB128(Value, OSE, OldSize);
947   else
948     encodeULEB128(Value, OSE, OldSize);
949   return OldSize != LF.getContents().size();
950 }
951
952 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
953                                      MCDwarfLineAddrFragment &DF) {
954   MCContext &Context = Layout.getAssembler().getContext();
955   uint64_t OldSize = DF.getContents().size();
956   int64_t AddrDelta;
957   bool Abs = DF.getAddrDelta().evaluateAsAbsolute(AddrDelta, Layout);
958   int64_t LineDelta;
959   LineDelta = DF.getLineDelta();
960   SmallVectorImpl<char> &Data = DF.getContents();
961   Data.clear();
962   raw_svector_ostream OSE(Data);
963   DF.getFixups().clear();
964
965   if (Abs) {
966     MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
967                             AddrDelta, OSE);
968   } else {
969     uint32_t Offset;
970     uint32_t Size;
971     bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
972                                                  getDWARFLinetableParams(),
973                                                  LineDelta, AddrDelta,
974                                                  OSE, &Offset, &Size);
975     // Add Fixups for address delta or new address.
976     const MCExpr *FixupExpr;
977     if (SetDelta) {
978       FixupExpr = &DF.getAddrDelta();
979     } else {
980       const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
981       FixupExpr = ABE->getLHS();
982     }
983     DF.getFixups().push_back(
984         MCFixup::create(Offset, FixupExpr,
985                         MCFixup::getKindForSize(Size, false /*isPCRel*/)));
986   }
987
988   return OldSize != Data.size();
989 }
990
991 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
992                                               MCDwarfCallFrameFragment &DF) {
993   MCContext &Context = Layout.getAssembler().getContext();
994   uint64_t OldSize = DF.getContents().size();
995   int64_t AddrDelta;
996   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
997   assert(Abs && "We created call frame with an invalid expression");
998   (void) Abs;
999   SmallString<8> &Data = DF.getContents();
1000   Data.clear();
1001   raw_svector_ostream OSE(Data);
1002   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1003   return OldSize != Data.size();
1004 }
1005
1006 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1007                                          MCCVInlineLineTableFragment &F) {
1008   unsigned OldSize = F.getContents().size();
1009   getContext().getCVContext().encodeInlineLineTable(Layout, F);
1010   return OldSize != F.getContents().size();
1011 }
1012
1013 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1014                                   MCCVDefRangeFragment &F) {
1015   unsigned OldSize = F.getContents().size();
1016   getContext().getCVContext().encodeDefRange(Layout, F);
1017   return OldSize != F.getContents().size();
1018 }
1019
1020 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1021   // Holds the first fragment which needed relaxing during this layout. It will
1022   // remain NULL if none were relaxed.
1023   // When a fragment is relaxed, all the fragments following it should get
1024   // invalidated because their offset is going to change.
1025   MCFragment *FirstRelaxedFragment = nullptr;
1026
1027   // Attempt to relax all the fragments in the section.
1028   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1029     // Check if this is a fragment that needs relaxation.
1030     bool RelaxedFrag = false;
1031     switch(I->getKind()) {
1032     default:
1033       break;
1034     case MCFragment::FT_Relaxable:
1035       assert(!getRelaxAll() &&
1036              "Did not expect a MCRelaxableFragment in RelaxAll mode");
1037       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1038       break;
1039     case MCFragment::FT_Dwarf:
1040       RelaxedFrag = relaxDwarfLineAddr(Layout,
1041                                        *cast<MCDwarfLineAddrFragment>(I));
1042       break;
1043     case MCFragment::FT_DwarfFrame:
1044       RelaxedFrag =
1045         relaxDwarfCallFrameFragment(Layout,
1046                                     *cast<MCDwarfCallFrameFragment>(I));
1047       break;
1048     case MCFragment::FT_LEB:
1049       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1050       break;
1051     case MCFragment::FT_Padding:
1052       RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
1053       break;
1054     case MCFragment::FT_CVInlineLines:
1055       RelaxedFrag =
1056           relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1057       break;
1058     case MCFragment::FT_CVDefRange:
1059       RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1060       break;
1061     }
1062     if (RelaxedFrag && !FirstRelaxedFragment)
1063       FirstRelaxedFragment = &*I;
1064   }
1065   if (FirstRelaxedFragment) {
1066     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1067     return true;
1068   }
1069   return false;
1070 }
1071
1072 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1073   ++stats::RelaxationSteps;
1074
1075   bool WasRelaxed = false;
1076   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1077     MCSection &Sec = *it;
1078     while (layoutSectionOnce(Layout, Sec))
1079       WasRelaxed = true;
1080   }
1081
1082   return WasRelaxed;
1083 }
1084
1085 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1086   assert(getBackendPtr() && "Expected assembler backend");
1087   // The layout is done. Mark every fragment as valid.
1088   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1089     MCSection &Section = *Layout.getSectionOrder()[i];
1090     Layout.getFragmentOffset(&*Section.rbegin());
1091     computeFragmentSize(Layout, *Section.rbegin());
1092   }
1093   getBackend().finishLayout(*this, Layout);
1094 }
1095
1096 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1097 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1098   raw_ostream &OS = errs();
1099
1100   OS << "<MCAssembler\n";
1101   OS << "  Sections:[\n    ";
1102   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1103     if (it != begin()) OS << ",\n    ";
1104     it->dump();
1105   }
1106   OS << "],\n";
1107   OS << "  Symbols:[";
1108
1109   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1110     if (it != symbol_begin()) OS << ",\n           ";
1111     OS << "(";
1112     it->dump();
1113     OS << ", Index:" << it->getIndex() << ", ";
1114     OS << ")";
1115   }
1116   OS << "]>\n";
1117 }
1118 #endif