OSDN Git Service

MC] Provide an MCTargetOptions to implementors of MCAsmBackendCtorTy, NFC
[android-x86/external-llvm.git] / lib / Target / ARM / MCTargetDesc / ARMAsmBackend.cpp
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCTargetDesc/ARMMCTargetDesc.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMAsmBackend.h"
13 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
14 #include "MCTargetDesc/ARMAsmBackendELF.h"
15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
16 #include "MCTargetDesc/ARMBaseInfo.h"
17 #include "MCTargetDesc/ARMFixupKinds.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCMachObjectWriter.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ELF.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/MachO.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
41
42 namespace {
43 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
44 public:
45   ARMELFObjectWriter(uint8_t OSABI)
46       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
47                                 /*HasRelocationAddend*/ false) {}
48 };
49 } // end anonymous namespace
50
51 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
52   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
53       // This table *must* be in the order that the fixup_* kinds are defined in
54       // ARMFixupKinds.h.
55       //
56       // Name                      Offset (bits) Size (bits)     Flags
57       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
58       {"fixup_t2_ldst_pcrel_12", 0, 32,
59        MCFixupKindInfo::FKF_IsPCRel |
60            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
61       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
62       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
63       {"fixup_t2_pcrel_10", 0, 32,
64        MCFixupKindInfo::FKF_IsPCRel |
65            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
66       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
67       {"fixup_t2_pcrel_9", 0, 32,
68        MCFixupKindInfo::FKF_IsPCRel |
69            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
70       {"fixup_thumb_adr_pcrel_10", 0, 8,
71        MCFixupKindInfo::FKF_IsPCRel |
72            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
73       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
74       {"fixup_t2_adr_pcrel_12", 0, 32,
75        MCFixupKindInfo::FKF_IsPCRel |
76            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
77       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
78       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
81       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_arm_thumb_blx", 0, 32,
87        MCFixupKindInfo::FKF_IsPCRel |
88            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
89       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
90       {"fixup_arm_thumb_cp", 0, 8,
91        MCFixupKindInfo::FKF_IsPCRel |
92            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
93       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
94       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
95       // - 19.
96       {"fixup_arm_movt_hi16", 0, 20, 0},
97       {"fixup_arm_movw_lo16", 0, 20, 0},
98       {"fixup_t2_movt_hi16", 0, 20, 0},
99       {"fixup_t2_movw_lo16", 0, 20, 0},
100       {"fixup_arm_mod_imm", 0, 12, 0},
101   };
102   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
103       // This table *must* be in the order that the fixup_* kinds are defined in
104       // ARMFixupKinds.h.
105       //
106       // Name                      Offset (bits) Size (bits)     Flags
107       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108       {"fixup_t2_ldst_pcrel_12", 0, 32,
109        MCFixupKindInfo::FKF_IsPCRel |
110            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
111       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
113       {"fixup_t2_pcrel_10", 0, 32,
114        MCFixupKindInfo::FKF_IsPCRel |
115            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
116       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
117       {"fixup_t2_pcrel_9", 0, 32,
118        MCFixupKindInfo::FKF_IsPCRel |
119            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
120       {"fixup_thumb_adr_pcrel_10", 8, 8,
121        MCFixupKindInfo::FKF_IsPCRel |
122            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
123       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124       {"fixup_t2_adr_pcrel_12", 0, 32,
125        MCFixupKindInfo::FKF_IsPCRel |
126            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
127       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
128       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
129       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
130       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
131       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
132       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
133       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
134       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
135       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
136       {"fixup_arm_thumb_blx", 0, 32,
137        MCFixupKindInfo::FKF_IsPCRel |
138            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
139       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
140       {"fixup_arm_thumb_cp", 8, 8,
141        MCFixupKindInfo::FKF_IsPCRel |
142            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
143       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
144       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
145       // - 19.
146       {"fixup_arm_movt_hi16", 12, 20, 0},
147       {"fixup_arm_movw_lo16", 12, 20, 0},
148       {"fixup_t2_movt_hi16", 12, 20, 0},
149       {"fixup_t2_movw_lo16", 12, 20, 0},
150       {"fixup_arm_mod_imm", 20, 12, 0},
151   };
152
153   if (Kind < FirstTargetFixupKind)
154     return MCAsmBackend::getFixupKindInfo(Kind);
155
156   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
157          "Invalid kind!");
158   return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
159 }
160
161 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
162   switch (Flag) {
163   default:
164     break;
165   case MCAF_Code16:
166     setIsThumb(true);
167     break;
168   case MCAF_Code32:
169     setIsThumb(false);
170     break;
171   }
172 }
173
174 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
175   bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2];
176   bool HasV8MBaselineOps = STI->getFeatureBits()[ARM::HasV8MBaselineOps];
177
178   switch (Op) {
179   default:
180     return Op;
181   case ARM::tBcc:
182     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
183   case ARM::tLDRpci:
184     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
185   case ARM::tADR:
186     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
187   case ARM::tB:
188     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
189   case ARM::tCBZ:
190     return ARM::tHINT;
191   case ARM::tCBNZ:
192     return ARM::tHINT;
193   }
194 }
195
196 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
197   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
198     return true;
199   return false;
200 }
201
202 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
203                                                     uint64_t Value) const {
204   switch ((unsigned)Fixup.getKind()) {
205   case ARM::fixup_arm_thumb_br: {
206     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
207     // low bit being an implied zero. There's an implied +4 offset for the
208     // branch, so we adjust the other way here to determine what's
209     // encodable.
210     //
211     // Relax if the value is too big for a (signed) i8.
212     int64_t Offset = int64_t(Value) - 4;
213     if (Offset > 2046 || Offset < -2048)
214       return "out of range pc-relative fixup value";
215     break;
216   }
217   case ARM::fixup_arm_thumb_bcc: {
218     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
219     // low bit being an implied zero. There's an implied +4 offset for the
220     // branch, so we adjust the other way here to determine what's
221     // encodable.
222     //
223     // Relax if the value is too big for a (signed) i8.
224     int64_t Offset = int64_t(Value) - 4;
225     if (Offset > 254 || Offset < -256)
226       return "out of range pc-relative fixup value";
227     break;
228   }
229   case ARM::fixup_thumb_adr_pcrel_10:
230   case ARM::fixup_arm_thumb_cp: {
231     // If the immediate is negative, greater than 1020, or not a multiple
232     // of four, the wide version of the instruction must be used.
233     int64_t Offset = int64_t(Value) - 4;
234     if (Offset & 3)
235       return "misaligned pc-relative fixup value";
236     else if (Offset > 1020 || Offset < 0)
237       return "out of range pc-relative fixup value";
238     break;
239   }
240   case ARM::fixup_arm_thumb_cb: {
241     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
242     // instruction it is is actually out of range for the instruction.
243     // It will be changed to a NOP.
244     int64_t Offset = (Value & ~1);
245     if (Offset == 2)
246       return "will be converted to nop";
247     break;
248   }
249   default:
250     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
251   }
252   return nullptr;
253 }
254
255 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
256                                          const MCRelaxableFragment *DF,
257                                          const MCAsmLayout &Layout) const {
258   return reasonForFixupRelaxation(Fixup, Value);
259 }
260
261 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
262                                      const MCSubtargetInfo &STI,
263                                      MCInst &Res) const {
264   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
265
266   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
267   if (RelaxedOp == Inst.getOpcode()) {
268     SmallString<256> Tmp;
269     raw_svector_ostream OS(Tmp);
270     Inst.dump_pretty(OS);
271     OS << "\n";
272     report_fatal_error("unexpected instruction to relax: " + OS.str());
273   }
274
275   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
276   // have to change the operands too.
277   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
278       RelaxedOp == ARM::tHINT) {
279     Res.setOpcode(RelaxedOp);
280     Res.addOperand(MCOperand::createImm(0));
281     Res.addOperand(MCOperand::createImm(14));
282     Res.addOperand(MCOperand::createReg(0));
283     return;
284   }
285
286   // The rest of instructions we're relaxing have the same operands.
287   // We just need to update to the proper opcode.
288   Res = Inst;
289   Res.setOpcode(RelaxedOp);
290 }
291
292 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
293   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
294   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
295   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
296   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
297   if (isThumb()) {
298     const uint16_t nopEncoding =
299         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
300     uint64_t NumNops = Count / 2;
301     for (uint64_t i = 0; i != NumNops; ++i)
302       OW->write16(nopEncoding);
303     if (Count & 1)
304       OW->write8(0);
305     return true;
306   }
307   // ARM mode
308   const uint32_t nopEncoding =
309       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
310   uint64_t NumNops = Count / 4;
311   for (uint64_t i = 0; i != NumNops; ++i)
312     OW->write32(nopEncoding);
313   // FIXME: should this function return false when unable to write exactly
314   // 'Count' bytes with NOP encodings?
315   switch (Count % 4) {
316   default:
317     break; // No leftover bytes to write
318   case 1:
319     OW->write8(0);
320     break;
321   case 2:
322     OW->write16(0);
323     break;
324   case 3:
325     OW->write16(0);
326     OW->write8(0xa0);
327     break;
328   }
329
330   return true;
331 }
332
333 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
334   if (IsLittleEndian) {
335     // Note that the halfwords are stored high first and low second in thumb;
336     // so we need to swap the fixup value here to map properly.
337     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
338     Swapped |= (Value & 0x0000FFFF) << 16;
339     return Swapped;
340   } else
341     return Value;
342 }
343
344 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
345                               bool IsLittleEndian) {
346   uint32_t Value;
347
348   if (IsLittleEndian) {
349     Value = (SecondHalf & 0xFFFF) << 16;
350     Value |= (FirstHalf & 0xFFFF);
351   } else {
352     Value = (SecondHalf & 0xFFFF);
353     Value |= (FirstHalf & 0xFFFF) << 16;
354   }
355
356   return Value;
357 }
358
359 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
360                                          bool IsPCRel, MCContext *Ctx,
361                                          bool IsLittleEndian,
362                                          bool IsResolved) const {
363   unsigned Kind = Fixup.getKind();
364   switch (Kind) {
365   default:
366     llvm_unreachable("Unknown fixup kind!");
367   case FK_Data_1:
368   case FK_Data_2:
369   case FK_Data_4:
370     return Value;
371   case FK_SecRel_2:
372     return Value;
373   case FK_SecRel_4:
374     return Value;
375   case ARM::fixup_arm_movt_hi16:
376     if (!IsPCRel)
377       Value >>= 16;
378   // Fallthrough
379   case ARM::fixup_arm_movw_lo16: {
380     unsigned Hi4 = (Value & 0xF000) >> 12;
381     unsigned Lo12 = Value & 0x0FFF;
382     // inst{19-16} = Hi4;
383     // inst{11-0} = Lo12;
384     Value = (Hi4 << 16) | (Lo12);
385     return Value;
386   }
387   case ARM::fixup_t2_movt_hi16:
388     if (!IsPCRel)
389       Value >>= 16;
390   // Fallthrough
391   case ARM::fixup_t2_movw_lo16: {
392     unsigned Hi4 = (Value & 0xF000) >> 12;
393     unsigned i = (Value & 0x800) >> 11;
394     unsigned Mid3 = (Value & 0x700) >> 8;
395     unsigned Lo8 = Value & 0x0FF;
396     // inst{19-16} = Hi4;
397     // inst{26} = i;
398     // inst{14-12} = Mid3;
399     // inst{7-0} = Lo8;
400     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
401     return swapHalfWords(Value, IsLittleEndian);
402   }
403   case ARM::fixup_arm_ldst_pcrel_12:
404     // ARM PC-relative values are offset by 8.
405     Value -= 4;
406   // FALLTHROUGH
407   case ARM::fixup_t2_ldst_pcrel_12: {
408     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
409     Value -= 4;
410     bool isAdd = true;
411     if ((int64_t)Value < 0) {
412       Value = -Value;
413       isAdd = false;
414     }
415     if (Ctx && Value >= 4096) {
416       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
417       return 0;
418     }
419     Value |= isAdd << 23;
420
421     // Same addressing mode as fixup_arm_pcrel_10,
422     // but with 16-bit halfwords swapped.
423     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
424       return swapHalfWords(Value, IsLittleEndian);
425
426     return Value;
427   }
428   case ARM::fixup_arm_adr_pcrel_12: {
429     // ARM PC-relative values are offset by 8.
430     Value -= 8;
431     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
432     if ((int64_t)Value < 0) {
433       Value = -Value;
434       opc = 2; // 0b0010
435     }
436     if (Ctx && ARM_AM::getSOImmVal(Value) == -1) {
437       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
438       return 0;
439     }
440     // Encode the immediate and shift the opcode into place.
441     return ARM_AM::getSOImmVal(Value) | (opc << 21);
442   }
443
444   case ARM::fixup_t2_adr_pcrel_12: {
445     Value -= 4;
446     unsigned opc = 0;
447     if ((int64_t)Value < 0) {
448       Value = -Value;
449       opc = 5;
450     }
451
452     uint32_t out = (opc << 21);
453     out |= (Value & 0x800) << 15;
454     out |= (Value & 0x700) << 4;
455     out |= (Value & 0x0FF);
456
457     return swapHalfWords(out, IsLittleEndian);
458   }
459
460   case ARM::fixup_arm_condbranch:
461   case ARM::fixup_arm_uncondbranch:
462   case ARM::fixup_arm_uncondbl:
463   case ARM::fixup_arm_condbl:
464   case ARM::fixup_arm_blx:
465     // These values don't encode the low two bits since they're always zero.
466     // Offset by 8 just as above.
467     if (const MCSymbolRefExpr *SRE =
468             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
469       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
470         return 0;
471     return 0xffffff & ((Value - 8) >> 2);
472   case ARM::fixup_t2_uncondbranch: {
473     Value = Value - 4;
474     Value >>= 1; // Low bit is not encoded.
475
476     uint32_t out = 0;
477     bool I = Value & 0x800000;
478     bool J1 = Value & 0x400000;
479     bool J2 = Value & 0x200000;
480     J1 ^= I;
481     J2 ^= I;
482
483     out |= I << 26;                 // S bit
484     out |= !J1 << 13;               // J1 bit
485     out |= !J2 << 11;               // J2 bit
486     out |= (Value & 0x1FF800) << 5; // imm6 field
487     out |= (Value & 0x0007FF);      // imm11 field
488
489     return swapHalfWords(out, IsLittleEndian);
490   }
491   case ARM::fixup_t2_condbranch: {
492     Value = Value - 4;
493     Value >>= 1; // Low bit is not encoded.
494
495     uint64_t out = 0;
496     out |= (Value & 0x80000) << 7; // S bit
497     out |= (Value & 0x40000) >> 7; // J2 bit
498     out |= (Value & 0x20000) >> 4; // J1 bit
499     out |= (Value & 0x1F800) << 5; // imm6 field
500     out |= (Value & 0x007FF);      // imm11 field
501
502     return swapHalfWords(out, IsLittleEndian);
503   }
504   case ARM::fixup_arm_thumb_bl: {
505     // The value doesn't encode the low bit (always zero) and is offset by
506     // four. The 32-bit immediate value is encoded as
507     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
508     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
509     // The value is encoded into disjoint bit positions in the destination
510     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
511     // J = either J1 or J2 bit
512     //
513     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
514     //
515     // Note that the halfwords are stored high first, low second; so we need
516     // to transpose the fixup value here to map properly.
517     uint32_t offset = (Value - 4) >> 1;
518     uint32_t signBit = (offset & 0x800000) >> 23;
519     uint32_t I1Bit = (offset & 0x400000) >> 22;
520     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
521     uint32_t I2Bit = (offset & 0x200000) >> 21;
522     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
523     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
524     uint32_t imm11Bits = (offset & 0x000007FF);
525
526     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
527     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
528                            (uint16_t)imm11Bits);
529     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
530   }
531   case ARM::fixup_arm_thumb_blx: {
532     // The value doesn't encode the low two bits (always zero) and is offset by
533     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
534     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
535     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
536     // The value is encoded into disjoint bit positions in the destination
537     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
538     // J = either J1 or J2 bit, 0 = zero.
539     //
540     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
541     //
542     // Note that the halfwords are stored high first, low second; so we need
543     // to transpose the fixup value here to map properly.
544     if (Ctx && Value  % 4 != 0) {
545       Ctx->reportError(Fixup.getLoc(), "misaligned ARM call destination");
546       return 0;
547     }
548
549     uint32_t offset = (Value - 4) >> 2;
550     if (const MCSymbolRefExpr *SRE =
551             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
552       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
553         offset = 0;
554     uint32_t signBit = (offset & 0x400000) >> 22;
555     uint32_t I1Bit = (offset & 0x200000) >> 21;
556     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
557     uint32_t I2Bit = (offset & 0x100000) >> 20;
558     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
559     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
560     uint32_t imm10LBits = (offset & 0x3FF);
561
562     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
563     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
564                            ((uint16_t)imm10LBits) << 1);
565     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
566   }
567   case ARM::fixup_thumb_adr_pcrel_10:
568   case ARM::fixup_arm_thumb_cp:
569     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
570     // could have an error on our hands.
571     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
572       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
573       if (FixupDiagnostic) {
574         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
575         return 0;
576       }
577     }
578     // Offset by 4, and don't encode the low two bits.
579     return ((Value - 4) >> 2) & 0xff;
580   case ARM::fixup_arm_thumb_cb: {
581     // Offset by 4 and don't encode the lower bit, which is always 0.
582     // FIXME: diagnose if no Thumb2
583     uint32_t Binary = (Value - 4) >> 1;
584     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
585   }
586   case ARM::fixup_arm_thumb_br:
587     // Offset by 4 and don't encode the lower bit, which is always 0.
588     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] &&
589                !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
590       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
591       if (FixupDiagnostic) {
592         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
593         return 0;
594       }
595     }
596     return ((Value - 4) >> 1) & 0x7ff;
597   case ARM::fixup_arm_thumb_bcc:
598     // Offset by 4 and don't encode the lower bit, which is always 0.
599     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) {
600       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
601       if (FixupDiagnostic) {
602         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
603         return 0;
604       }
605     }
606     return ((Value - 4) >> 1) & 0xff;
607   case ARM::fixup_arm_pcrel_10_unscaled: {
608     Value = Value - 8; // ARM fixups offset by an additional word and don't
609                        // need to adjust for the half-word ordering.
610     bool isAdd = true;
611     if ((int64_t)Value < 0) {
612       Value = -Value;
613       isAdd = false;
614     }
615     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
616     if (Ctx && Value >= 256) {
617       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
618       return 0;
619     }
620     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
621     return Value | (isAdd << 23);
622   }
623   case ARM::fixup_arm_pcrel_10:
624     Value = Value - 4; // ARM fixups offset by an additional word and don't
625                        // need to adjust for the half-word ordering.
626                        // Fall through.
627   case ARM::fixup_t2_pcrel_10: {
628     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
629     Value = Value - 4;
630     bool isAdd = true;
631     if ((int64_t)Value < 0) {
632       Value = -Value;
633       isAdd = false;
634     }
635     // These values don't encode the low two bits since they're always zero.
636     Value >>= 2;
637     if (Ctx && Value >= 256) {
638       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
639       return 0;
640     }
641     Value |= isAdd << 23;
642
643     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
644     // swapped.
645     if (Kind == ARM::fixup_t2_pcrel_10)
646       return swapHalfWords(Value, IsLittleEndian);
647
648     return Value;
649   }
650   case ARM::fixup_arm_pcrel_9:
651     Value = Value - 4; // ARM fixups offset by an additional word and don't
652                        // need to adjust for the half-word ordering.
653                        // Fall through.
654   case ARM::fixup_t2_pcrel_9: {
655     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
656     Value = Value - 4;
657     bool isAdd = true;
658     if ((int64_t)Value < 0) {
659       Value = -Value;
660       isAdd = false;
661     }
662     // These values don't encode the low bit since it's always zero.
663     if (Ctx && (Value & 1)) {
664       Ctx->reportError(Fixup.getLoc(), "invalid value for this fixup");
665       return 0;
666     }
667     Value >>= 1;
668     if (Ctx && Value >= 256) {
669       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
670       return 0;
671     }
672     Value |= isAdd << 23;
673
674     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
675     // swapped.
676     if (Kind == ARM::fixup_t2_pcrel_9)
677       return swapHalfWords(Value, IsLittleEndian);
678
679     return Value;
680   }
681   case ARM::fixup_arm_mod_imm:
682     Value = ARM_AM::getSOImmVal(Value);
683     if (Ctx && Value >> 12) {
684       Ctx->reportError(Fixup.getLoc(), "out of range immediate fixup value");
685       return 0;
686     }
687     return Value;
688   }
689 }
690
691 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
692                                       const MCAsmLayout &Layout,
693                                       const MCFixup &Fixup,
694                                       const MCFragment *DF,
695                                       const MCValue &Target, uint64_t &Value,
696                                       bool &IsResolved) {
697   const MCSymbolRefExpr *A = Target.getSymA();
698   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
699   // Some fixups to thumb function symbols need the low bit (thumb bit)
700   // twiddled.
701   if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
702       (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
703       (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
704       (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
705       (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
706       (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
707     if (Sym) {
708       if (Asm.isThumbFunc(Sym))
709         Value |= 1;
710     }
711   }
712   if (IsResolved && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
713     assert(Sym && "How did we resolve this?");
714
715     // If the symbol is external the linker will handle it.
716     // FIXME: Should we handle it as an optimization?
717
718     // If the symbol is out of range, produce a relocation and hope the
719     // linker can handle it. GNU AS produces an error in this case.
720     if (Sym->isExternal() || Value >= 0x400004)
721       IsResolved = false;
722   }
723   // We must always generate a relocation for BL/BLX instructions if we have
724   // a symbol to reference, as the linker relies on knowing the destination
725   // symbol's thumb-ness to get interworking right.
726   if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
727             (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
728             (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
729             (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
730     IsResolved = false;
731
732   // Try to get the encoded value for the fixup as-if we're mapping it into
733   // the instruction. This allows adjustFixupValue() to issue a diagnostic
734   // if the value aren't invalid.
735   (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
736                          IsLittleEndian, IsResolved);
737 }
738
739 /// getFixupKindNumBytes - The number of bytes the fixup may change.
740 static unsigned getFixupKindNumBytes(unsigned Kind) {
741   switch (Kind) {
742   default:
743     llvm_unreachable("Unknown fixup kind!");
744
745   case FK_Data_1:
746   case ARM::fixup_arm_thumb_bcc:
747   case ARM::fixup_arm_thumb_cp:
748   case ARM::fixup_thumb_adr_pcrel_10:
749     return 1;
750
751   case FK_Data_2:
752   case ARM::fixup_arm_thumb_br:
753   case ARM::fixup_arm_thumb_cb:
754   case ARM::fixup_arm_mod_imm:
755     return 2;
756
757   case ARM::fixup_arm_pcrel_10_unscaled:
758   case ARM::fixup_arm_ldst_pcrel_12:
759   case ARM::fixup_arm_pcrel_10:
760   case ARM::fixup_arm_pcrel_9:
761   case ARM::fixup_arm_adr_pcrel_12:
762   case ARM::fixup_arm_uncondbl:
763   case ARM::fixup_arm_condbl:
764   case ARM::fixup_arm_blx:
765   case ARM::fixup_arm_condbranch:
766   case ARM::fixup_arm_uncondbranch:
767     return 3;
768
769   case FK_Data_4:
770   case ARM::fixup_t2_ldst_pcrel_12:
771   case ARM::fixup_t2_condbranch:
772   case ARM::fixup_t2_uncondbranch:
773   case ARM::fixup_t2_pcrel_10:
774   case ARM::fixup_t2_pcrel_9:
775   case ARM::fixup_t2_adr_pcrel_12:
776   case ARM::fixup_arm_thumb_bl:
777   case ARM::fixup_arm_thumb_blx:
778   case ARM::fixup_arm_movt_hi16:
779   case ARM::fixup_arm_movw_lo16:
780   case ARM::fixup_t2_movt_hi16:
781   case ARM::fixup_t2_movw_lo16:
782     return 4;
783
784   case FK_SecRel_2:
785     return 2;
786   case FK_SecRel_4:
787     return 4;
788   }
789 }
790
791 /// getFixupKindContainerSizeBytes - The number of bytes of the
792 /// container involved in big endian.
793 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
794   switch (Kind) {
795   default:
796     llvm_unreachable("Unknown fixup kind!");
797
798   case FK_Data_1:
799     return 1;
800   case FK_Data_2:
801     return 2;
802   case FK_Data_4:
803     return 4;
804
805   case ARM::fixup_arm_thumb_bcc:
806   case ARM::fixup_arm_thumb_cp:
807   case ARM::fixup_thumb_adr_pcrel_10:
808   case ARM::fixup_arm_thumb_br:
809   case ARM::fixup_arm_thumb_cb:
810     // Instruction size is 2 bytes.
811     return 2;
812
813   case ARM::fixup_arm_pcrel_10_unscaled:
814   case ARM::fixup_arm_ldst_pcrel_12:
815   case ARM::fixup_arm_pcrel_10:
816   case ARM::fixup_arm_adr_pcrel_12:
817   case ARM::fixup_arm_uncondbl:
818   case ARM::fixup_arm_condbl:
819   case ARM::fixup_arm_blx:
820   case ARM::fixup_arm_condbranch:
821   case ARM::fixup_arm_uncondbranch:
822   case ARM::fixup_t2_ldst_pcrel_12:
823   case ARM::fixup_t2_condbranch:
824   case ARM::fixup_t2_uncondbranch:
825   case ARM::fixup_t2_pcrel_10:
826   case ARM::fixup_t2_adr_pcrel_12:
827   case ARM::fixup_arm_thumb_bl:
828   case ARM::fixup_arm_thumb_blx:
829   case ARM::fixup_arm_movt_hi16:
830   case ARM::fixup_arm_movw_lo16:
831   case ARM::fixup_t2_movt_hi16:
832   case ARM::fixup_t2_movw_lo16:
833   case ARM::fixup_arm_mod_imm:
834     // Instruction size is 4 bytes.
835     return 4;
836   }
837 }
838
839 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
840                                unsigned DataSize, uint64_t Value,
841                                bool IsPCRel) const {
842   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
843   Value =
844       adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian, true);
845   if (!Value)
846     return; // Doesn't change encoding.
847
848   unsigned Offset = Fixup.getOffset();
849   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
850
851   // Used to point to big endian bytes.
852   unsigned FullSizeBytes;
853   if (!IsLittleEndian) {
854     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
855     assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!");
856     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
857   }
858
859   // For each byte of the fragment that the fixup touches, mask in the bits from
860   // the fixup value. The Value has been "split up" into the appropriate
861   // bitfields above.
862   for (unsigned i = 0; i != NumBytes; ++i) {
863     unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
864     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
865   }
866 }
867
868 namespace CU {
869
870 /// \brief Compact unwind encoding values.
871 enum CompactUnwindEncodings {
872   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
873   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
874   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
875   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
876
877   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
878
879   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
880   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
881   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
882
883   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
884   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
885   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
886   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
887   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
888
889   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
890
891   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
892 };
893
894 } // end CU namespace
895
896 /// Generate compact unwind encoding for the function based on the CFI
897 /// instructions. If the CFI instructions describe a frame that cannot be
898 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
899 /// tells the runtime to fallback and unwind using dwarf.
900 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
901     ArrayRef<MCCFIInstruction> Instrs) const {
902   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
903   // Only armv7k uses CFI based unwinding.
904   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
905     return 0;
906   // No .cfi directives means no frame.
907   if (Instrs.empty())
908     return 0;
909   // Start off assuming CFA is at SP+0.
910   int CFARegister = ARM::SP;
911   int CFARegisterOffset = 0;
912   // Mark savable registers as initially unsaved
913   DenseMap<unsigned, int> RegOffsets;
914   int FloatRegCount = 0;
915   // Process each .cfi directive and build up compact unwind info.
916   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
917     int Reg;
918     const MCCFIInstruction &Inst = Instrs[i];
919     switch (Inst.getOperation()) {
920     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
921       CFARegisterOffset = -Inst.getOffset();
922       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
923       break;
924     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
925       CFARegisterOffset = -Inst.getOffset();
926       break;
927     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
928       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
929       break;
930     case MCCFIInstruction::OpOffset: // DW_CFA_offset
931       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
932       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
933         RegOffsets[Reg] = Inst.getOffset();
934       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
935         RegOffsets[Reg] = Inst.getOffset();
936         ++FloatRegCount;
937       } else {
938         DEBUG_WITH_TYPE("compact-unwind",
939                         llvm::dbgs() << ".cfi_offset on unknown register="
940                                      << Inst.getRegister() << "\n");
941         return CU::UNWIND_ARM_MODE_DWARF;
942       }
943       break;
944     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
945       // Ignore
946       break;
947     default:
948       // Directive not convertable to compact unwind, bail out.
949       DEBUG_WITH_TYPE("compact-unwind",
950                       llvm::dbgs()
951                           << "CFI directive not compatiable with comact "
952                              "unwind encoding, opcode=" << Inst.getOperation()
953                           << "\n");
954       return CU::UNWIND_ARM_MODE_DWARF;
955       break;
956     }
957   }
958
959   // If no frame set up, return no unwind info.
960   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
961     return 0;
962
963   // Verify standard frame (lr/r7) was used.
964   if (CFARegister != ARM::R7) {
965     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
966                                                    << CFARegister
967                                                    << " instead of r7\n");
968     return CU::UNWIND_ARM_MODE_DWARF;
969   }
970   int StackAdjust = CFARegisterOffset - 8;
971   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
972     DEBUG_WITH_TYPE("compact-unwind",
973                     llvm::dbgs()
974                         << "LR not saved as standard frame, StackAdjust="
975                         << StackAdjust
976                         << ", CFARegisterOffset=" << CFARegisterOffset
977                         << ", lr save at offset=" << RegOffsets[14] << "\n");
978     return CU::UNWIND_ARM_MODE_DWARF;
979   }
980   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
981     DEBUG_WITH_TYPE("compact-unwind",
982                     llvm::dbgs() << "r7 not saved as standard frame\n");
983     return CU::UNWIND_ARM_MODE_DWARF;
984   }
985   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
986
987   // If var-args are used, there may be a stack adjust required.
988   switch (StackAdjust) {
989   case 0:
990     break;
991   case 4:
992     CompactUnwindEncoding |= 0x00400000;
993     break;
994   case 8:
995     CompactUnwindEncoding |= 0x00800000;
996     break;
997   case 12:
998     CompactUnwindEncoding |= 0x00C00000;
999     break;
1000   default:
1001     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1002                                           << ".cfi_def_cfa stack adjust ("
1003                                           << StackAdjust << ") out of range\n");
1004     return CU::UNWIND_ARM_MODE_DWARF;
1005   }
1006
1007   // If r6 is saved, it must be right below r7.
1008   static struct {
1009     unsigned Reg;
1010     unsigned Encoding;
1011   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1012                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1013                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1014                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1015                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1016                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1017                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1018                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1019
1020   int CurOffset = -8 - StackAdjust;
1021   for (auto CSReg : GPRCSRegs) {
1022     auto Offset = RegOffsets.find(CSReg.Reg);
1023     if (Offset == RegOffsets.end())
1024       continue;
1025
1026     int RegOffset = Offset->second;
1027     if (RegOffset != CurOffset - 4) {
1028       DEBUG_WITH_TYPE("compact-unwind",
1029                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1030                                    << RegOffset << " but only supported at "
1031                                    << CurOffset << "\n");
1032       return CU::UNWIND_ARM_MODE_DWARF;
1033     }
1034     CompactUnwindEncoding |= CSReg.Encoding;
1035     CurOffset -= 4;
1036   }
1037
1038   // If no floats saved, we are done.
1039   if (FloatRegCount == 0)
1040     return CompactUnwindEncoding;
1041
1042   // Switch mode to include D register saving.
1043   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1044   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1045
1046   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1047   // but needs coordination with the linker and libunwind.
1048   if (FloatRegCount > 4) {
1049     DEBUG_WITH_TYPE("compact-unwind",
1050                     llvm::dbgs() << "unsupported number of D registers saved ("
1051                                  << FloatRegCount << ")\n");
1052       return CU::UNWIND_ARM_MODE_DWARF;
1053   }
1054
1055   // Floating point registers must either be saved sequentially, or we defer to
1056   // DWARF. No gaps allowed here so check that each saved d-register is
1057   // precisely where it should be.
1058   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1059   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1060     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1061     if (Offset == RegOffsets.end()) {
1062       DEBUG_WITH_TYPE("compact-unwind",
1063                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1064                                    << MRI.getName(FPRCSRegs[Idx])
1065                                    << " not saved\n");
1066       return CU::UNWIND_ARM_MODE_DWARF;
1067     } else if (Offset->second != CurOffset - 8) {
1068       DEBUG_WITH_TYPE("compact-unwind",
1069                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1070                                    << MRI.getName(FPRCSRegs[Idx])
1071                                    << " saved at " << Offset->second
1072                                    << ", expected at " << CurOffset - 8
1073                                    << "\n");
1074       return CU::UNWIND_ARM_MODE_DWARF;
1075     }
1076     CurOffset -= 8;
1077   }
1078
1079   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1080 }
1081
1082 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1083   unsigned AK = ARM::parseArch(Arch);
1084   switch (AK) {
1085   default:
1086     return MachO::CPU_SUBTYPE_ARM_V7;
1087   case ARM::AK_ARMV4T:
1088     return MachO::CPU_SUBTYPE_ARM_V4T;
1089   case ARM::AK_ARMV5T:
1090   case ARM::AK_ARMV5TE:
1091   case ARM::AK_ARMV5TEJ:
1092     return MachO::CPU_SUBTYPE_ARM_V5;
1093   case ARM::AK_ARMV6:
1094   case ARM::AK_ARMV6K:
1095     return MachO::CPU_SUBTYPE_ARM_V6;
1096   case ARM::AK_ARMV7A:
1097     return MachO::CPU_SUBTYPE_ARM_V7;
1098   case ARM::AK_ARMV7S:
1099     return MachO::CPU_SUBTYPE_ARM_V7S;
1100   case ARM::AK_ARMV7K:
1101     return MachO::CPU_SUBTYPE_ARM_V7K;
1102   case ARM::AK_ARMV6M:
1103     return MachO::CPU_SUBTYPE_ARM_V6M;
1104   case ARM::AK_ARMV7M:
1105     return MachO::CPU_SUBTYPE_ARM_V7M;
1106   case ARM::AK_ARMV7EM:
1107     return MachO::CPU_SUBTYPE_ARM_V7EM;
1108   }
1109 }
1110
1111 MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
1112                                         const MCRegisterInfo &MRI,
1113                                         const Triple &TheTriple, StringRef CPU,
1114                                         const MCTargetOptions &Options,
1115                                         bool isLittle) {
1116   switch (TheTriple.getObjectFormat()) {
1117   default:
1118     llvm_unreachable("unsupported object format");
1119   case Triple::MachO: {
1120     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1121     return new ARMAsmBackendDarwin(T, TheTriple, MRI, CS);
1122   }
1123   case Triple::COFF:
1124     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1125     return new ARMAsmBackendWinCOFF(T, TheTriple);
1126   case Triple::ELF:
1127     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1128     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1129     return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle);
1130   }
1131 }
1132
1133 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1134                                           const MCRegisterInfo &MRI,
1135                                           const Triple &TT, StringRef CPU,
1136                                           const MCTargetOptions &Options) {
1137   return createARMAsmBackend(T, MRI, TT, CPU, Options, true);
1138 }
1139
1140 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1141                                           const MCRegisterInfo &MRI,
1142                                           const Triple &TT, StringRef CPU,
1143                                           const MCTargetOptions &Options) {
1144   return createARMAsmBackend(T, MRI, TT, CPU, Options, false);
1145 }
1146
1147 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
1148                                             const MCRegisterInfo &MRI,
1149                                             const Triple &TT, StringRef CPU,
1150                                             const MCTargetOptions &Options) {
1151   return createARMAsmBackend(T, MRI, TT, CPU, Options, true);
1152 }
1153
1154 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
1155                                             const MCRegisterInfo &MRI,
1156                                             const Triple &TT, StringRef CPU,
1157                                             const MCTargetOptions &Options) {
1158   return createARMAsmBackend(T, MRI, TT, CPU, Options, false);
1159 }