1 //===- InstCombine.h - Main InstCombine pass definition ---------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #ifndef INSTCOMBINE_INSTCOMBINE_H
11 #define INSTCOMBINE_INSTCOMBINE_H
13 #include "InstCombineWorklist.h"
14 #include "llvm/Analysis/TargetFolder.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/IRBuilder.h"
17 #include "llvm/IR/InstVisitor.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
23 #define DEBUG_TYPE "instcombine"
28 class TargetLibraryInfo;
33 /// SelectPatternFlavor - We can match a variety of different patterns for
34 /// select operations.
35 enum SelectPatternFlavor {
44 /// getComplexity: Assign a complexity or rank value to LLVM Values...
45 /// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
46 static inline unsigned getComplexity(Value *V) {
47 if (isa<Instruction>(V)) {
48 if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
49 BinaryOperator::isNot(V))
55 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
58 /// AddOne - Add one to a Constant
59 static inline Constant *AddOne(Constant *C) {
60 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
62 /// SubOne - Subtract one from a Constant
63 static inline Constant *SubOne(Constant *C) {
64 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
67 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
68 /// just like the normal insertion helper, but also adds any new instructions
69 /// to the instcombine worklist.
70 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
71 : public IRBuilderDefaultInserter<true> {
72 InstCombineWorklist &Worklist;
75 InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
77 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
78 BasicBlock::iterator InsertPt) const {
79 IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
84 /// InstCombiner - The -instcombine pass.
85 class LLVM_LIBRARY_VISIBILITY InstCombiner
86 : public FunctionPass,
87 public InstVisitor<InstCombiner, Instruction *> {
89 TargetLibraryInfo *TLI;
91 LibCallSimplifier *Simplifier;
95 /// Worklist - All of the instructions that need to be simplified.
96 InstCombineWorklist Worklist;
98 /// Builder - This is an IRBuilder that automatically inserts new
99 /// instructions into the worklist when they are created.
100 typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
103 static char ID; // Pass identification, replacement for typeid
104 InstCombiner() : FunctionPass(ID), DL(nullptr), Builder(nullptr) {
105 MinimizeSize = false;
106 initializeInstCombinerPass(*PassRegistry::getPassRegistry());
110 bool runOnFunction(Function &F) override;
112 bool DoOneIteration(Function &F, unsigned ItNum);
114 void getAnalysisUsage(AnalysisUsage &AU) const override;
116 const DataLayout *getDataLayout() const { return DL; }
118 TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
120 // Visitation implementation - Implement instruction combining for different
121 // instruction types. The semantics are as follows:
123 // null - No change was made
124 // I - Change was made, I is still valid, I may be dead though
125 // otherwise - Change was made, replace I with returned instruction
127 Instruction *visitAdd(BinaryOperator &I);
128 Instruction *visitFAdd(BinaryOperator &I);
129 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
130 Instruction *visitSub(BinaryOperator &I);
131 Instruction *visitFSub(BinaryOperator &I);
132 Instruction *visitMul(BinaryOperator &I);
133 Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
134 Instruction *InsertBefore);
135 Instruction *visitFMul(BinaryOperator &I);
136 Instruction *visitURem(BinaryOperator &I);
137 Instruction *visitSRem(BinaryOperator &I);
138 Instruction *visitFRem(BinaryOperator &I);
139 bool SimplifyDivRemOfSelect(BinaryOperator &I);
140 Instruction *commonRemTransforms(BinaryOperator &I);
141 Instruction *commonIRemTransforms(BinaryOperator &I);
142 Instruction *commonDivTransforms(BinaryOperator &I);
143 Instruction *commonIDivTransforms(BinaryOperator &I);
144 Instruction *visitUDiv(BinaryOperator &I);
145 Instruction *visitSDiv(BinaryOperator &I);
146 Instruction *visitFDiv(BinaryOperator &I);
147 Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
148 Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
149 Instruction *visitAnd(BinaryOperator &I);
150 Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
151 Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
152 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
154 Instruction *visitOr(BinaryOperator &I);
155 Instruction *visitXor(BinaryOperator &I);
156 Instruction *visitShl(BinaryOperator &I);
157 Instruction *visitAShr(BinaryOperator &I);
158 Instruction *visitLShr(BinaryOperator &I);
159 Instruction *commonShiftTransforms(BinaryOperator &I);
160 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
162 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
163 GlobalVariable *GV, CmpInst &ICI,
164 ConstantInt *AndCst = nullptr);
165 Instruction *visitFCmpInst(FCmpInst &I);
166 Instruction *visitICmpInst(ICmpInst &I);
167 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
168 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
170 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
171 ConstantInt *DivRHS);
172 Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
173 ConstantInt *DivRHS);
174 Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
175 ICmpInst::Predicate Pred);
176 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
177 ICmpInst::Predicate Cond, Instruction &I);
178 Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
180 Instruction *commonCastTransforms(CastInst &CI);
181 Instruction *commonPointerCastTransforms(CastInst &CI);
182 Instruction *visitTrunc(TruncInst &CI);
183 Instruction *visitZExt(ZExtInst &CI);
184 Instruction *visitSExt(SExtInst &CI);
185 Instruction *visitFPTrunc(FPTruncInst &CI);
186 Instruction *visitFPExt(CastInst &CI);
187 Instruction *visitFPToUI(FPToUIInst &FI);
188 Instruction *visitFPToSI(FPToSIInst &FI);
189 Instruction *visitUIToFP(CastInst &CI);
190 Instruction *visitSIToFP(CastInst &CI);
191 Instruction *visitPtrToInt(PtrToIntInst &CI);
192 Instruction *visitIntToPtr(IntToPtrInst &CI);
193 Instruction *visitBitCast(BitCastInst &CI);
194 Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
195 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
196 Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
197 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
198 Value *A, Value *B, Instruction &Outer,
199 SelectPatternFlavor SPF2, Value *C);
200 Instruction *visitSelectInst(SelectInst &SI);
201 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
202 Instruction *visitCallInst(CallInst &CI);
203 Instruction *visitInvokeInst(InvokeInst &II);
205 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
206 Instruction *visitPHINode(PHINode &PN);
207 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
208 Instruction *visitAllocaInst(AllocaInst &AI);
209 Instruction *visitAllocSite(Instruction &FI);
210 Instruction *visitFree(CallInst &FI);
211 Instruction *visitLoadInst(LoadInst &LI);
212 Instruction *visitStoreInst(StoreInst &SI);
213 Instruction *visitBranchInst(BranchInst &BI);
214 Instruction *visitSwitchInst(SwitchInst &SI);
215 Instruction *visitInsertValueInst(InsertValueInst &IV);
216 Instruction *visitInsertElementInst(InsertElementInst &IE);
217 Instruction *visitExtractElementInst(ExtractElementInst &EI);
218 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
219 Instruction *visitExtractValueInst(ExtractValueInst &EV);
220 Instruction *visitLandingPadInst(LandingPadInst &LI);
222 // visitInstruction - Specify what to return for unhandled instructions...
223 Instruction *visitInstruction(Instruction &I) { return nullptr; }
226 bool ShouldChangeType(Type *From, Type *To) const;
227 Value *dyn_castNegVal(Value *V) const;
228 Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
229 Type *FindElementAtOffset(Type *PtrTy, int64_t Offset,
230 SmallVectorImpl<Value *> &NewIndices);
231 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
233 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
234 /// results in any code being generated and is interesting to optimize out. If
235 /// the cast can be eliminated by some other simple transformation, we prefer
236 /// to do the simplification first.
237 bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
240 Instruction *visitCallSite(CallSite CS);
241 Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *DL);
242 bool transformConstExprCastCall(CallSite CS);
243 Instruction *transformCallThroughTrampoline(CallSite CS,
244 IntrinsicInst *Tramp);
245 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
246 bool DoXform = true);
247 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
248 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
249 Value *EmitGEPOffset(User *GEP);
250 Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
251 Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
254 // InsertNewInstBefore - insert an instruction New before instruction Old
255 // in the program. Add the new instruction to the worklist.
257 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
258 assert(New && !New->getParent() &&
259 "New instruction already inserted into a basic block!");
260 BasicBlock *BB = Old.getParent();
261 BB->getInstList().insert(&Old, New); // Insert inst
266 // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
269 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
270 New->setDebugLoc(Old.getDebugLoc());
271 return InsertNewInstBefore(New, Old);
274 // ReplaceInstUsesWith - This method is to be used when an instruction is
275 // found to be dead, replacable with another preexisting expression. Here
276 // we add all uses of I to the worklist, replace all uses of I with the new
277 // value, then return I, so that the inst combiner will know that I was
280 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
281 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
283 // If we are replacing the instruction with itself, this must be in a
284 // segment of unreachable code, so just clobber the instruction.
286 V = UndefValue::get(I.getType());
288 DEBUG(dbgs() << "IC: Replacing " << I << "\n"
289 " with " << *V << '\n');
291 I.replaceAllUsesWith(V);
295 // EraseInstFromFunction - When dealing with an instruction that has side
296 // effects or produces a void value, we can't rely on DCE to delete the
297 // instruction. Instead, visit methods should return the value returned by
299 Instruction *EraseInstFromFunction(Instruction &I) {
300 DEBUG(dbgs() << "IC: ERASE " << I << '\n');
302 assert(I.use_empty() && "Cannot erase instruction that is used!");
303 // Make sure that we reprocess all operands now that we reduced their
305 if (I.getNumOperands() < 8) {
306 for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
307 if (Instruction *Op = dyn_cast<Instruction>(*i))
313 return nullptr; // Don't do anything with FI
316 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
317 unsigned Depth = 0) const {
318 return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth);
321 bool MaskedValueIsZero(Value *V, const APInt &Mask,
322 unsigned Depth = 0) const {
323 return llvm::MaskedValueIsZero(V, Mask, DL, Depth);
325 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
326 return llvm::ComputeNumSignBits(Op, DL, Depth);
330 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
331 /// operators which are associative or commutative.
332 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
334 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
335 /// which some other binary operation distributes over either by factorizing
336 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
337 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
338 /// a win). Returns the simplified value, or null if it didn't simplify.
339 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
341 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
342 /// based on the demanded bits.
343 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
344 APInt &KnownOne, unsigned Depth);
345 bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
346 APInt &KnownOne, unsigned Depth = 0);
347 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
348 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
349 Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
350 APInt DemandedMask, APInt &KnownZero,
353 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
354 /// SimplifyDemandedBits knows about. See if the instruction has any
355 /// properties that allow us to simplify its operands.
356 bool SimplifyDemandedInstructionBits(Instruction &Inst);
358 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
359 APInt &UndefElts, unsigned Depth = 0);
361 Value *SimplifyVectorOp(BinaryOperator &Inst);
363 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
364 // which has a PHI node as operand #0, see if we can fold the instruction
365 // into the PHI (which is only possible if all operands to the PHI are
368 Instruction *FoldOpIntoPhi(Instruction &I);
370 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
371 // operator and they all are only used by the PHI, PHI together their
372 // inputs, and do the operation once, to the result of the PHI.
373 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
374 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
375 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
376 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
378 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
379 ConstantInt *AndRHS, BinaryOperator &TheAnd);
381 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
382 bool isSub, Instruction &I);
383 Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
385 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
386 Instruction *MatchBSwap(BinaryOperator &I);
387 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
388 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
389 Instruction *SimplifyMemSet(MemSetInst *MI);
391 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
393 /// Descale - Return a value X such that Val = X * Scale, or null if none. If
394 /// the multiplication is known not to overflow then NoSignedWrap is set.
395 Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
398 } // end namespace llvm.