OSDN Git Service

Sort the remaining #include lines in include/... and lib/....
[android-x86/external-llvm.git] / lib / Transforms / Utils / LoopUtils.cpp
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
22 #include "llvm/Analysis/ScalarEvolutionExpander.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35
36 #define DEBUG_TYPE "loop-utils"
37
38 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
39                                         SmallPtrSetImpl<Instruction *> &Set) {
40   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
41     if (!Set.count(dyn_cast<Instruction>(*Use)))
42       return false;
43   return true;
44 }
45
46 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
47   switch (Kind) {
48   default:
49     break;
50   case RK_IntegerAdd:
51   case RK_IntegerMult:
52   case RK_IntegerOr:
53   case RK_IntegerAnd:
54   case RK_IntegerXor:
55   case RK_IntegerMinMax:
56     return true;
57   }
58   return false;
59 }
60
61 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
62   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
63 }
64
65 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
66   switch (Kind) {
67   default:
68     break;
69   case RK_IntegerAdd:
70   case RK_IntegerMult:
71   case RK_FloatAdd:
72   case RK_FloatMult:
73     return true;
74   }
75   return false;
76 }
77
78 Instruction *
79 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
80                                      SmallPtrSetImpl<Instruction *> &Visited,
81                                      SmallPtrSetImpl<Instruction *> &CI) {
82   if (!Phi->hasOneUse())
83     return Phi;
84
85   const APInt *M = nullptr;
86   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
87
88   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
89   // with a new integer type of the corresponding bit width.
90   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
91                            m_And(m_APInt(M), m_Instruction(I))))) {
92     int32_t Bits = (*M + 1).exactLogBase2();
93     if (Bits > 0) {
94       RT = IntegerType::get(Phi->getContext(), Bits);
95       Visited.insert(Phi);
96       CI.insert(J);
97       return J;
98     }
99   }
100   return Phi;
101 }
102
103 bool RecurrenceDescriptor::getSourceExtensionKind(
104     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
105     SmallPtrSetImpl<Instruction *> &Visited,
106     SmallPtrSetImpl<Instruction *> &CI) {
107
108   SmallVector<Instruction *, 8> Worklist;
109   bool FoundOneOperand = false;
110   unsigned DstSize = RT->getPrimitiveSizeInBits();
111   Worklist.push_back(Exit);
112
113   // Traverse the instructions in the reduction expression, beginning with the
114   // exit value.
115   while (!Worklist.empty()) {
116     Instruction *I = Worklist.pop_back_val();
117     for (Use &U : I->operands()) {
118
119       // Terminate the traversal if the operand is not an instruction, or we
120       // reach the starting value.
121       Instruction *J = dyn_cast<Instruction>(U.get());
122       if (!J || J == Start)
123         continue;
124
125       // Otherwise, investigate the operation if it is also in the expression.
126       if (Visited.count(J)) {
127         Worklist.push_back(J);
128         continue;
129       }
130
131       // If the operand is not in Visited, it is not a reduction operation, but
132       // it does feed into one. Make sure it is either a single-use sign- or
133       // zero-extend instruction.
134       CastInst *Cast = dyn_cast<CastInst>(J);
135       bool IsSExtInst = isa<SExtInst>(J);
136       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
137         return false;
138
139       // Ensure the source type of the extend is no larger than the reduction
140       // type. It is not necessary for the types to be identical.
141       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
142       if (SrcSize > DstSize)
143         return false;
144
145       // Furthermore, ensure that all such extends are of the same kind.
146       if (FoundOneOperand) {
147         if (IsSigned != IsSExtInst)
148           return false;
149       } else {
150         FoundOneOperand = true;
151         IsSigned = IsSExtInst;
152       }
153
154       // Lastly, if the source type of the extend matches the reduction type,
155       // add the extend to CI so that we can avoid accounting for it in the
156       // cost model.
157       if (SrcSize == DstSize)
158         CI.insert(Cast);
159     }
160   }
161   return true;
162 }
163
164 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
165                                            Loop *TheLoop, bool HasFunNoNaNAttr,
166                                            RecurrenceDescriptor &RedDes) {
167   if (Phi->getNumIncomingValues() != 2)
168     return false;
169
170   // Reduction variables are only found in the loop header block.
171   if (Phi->getParent() != TheLoop->getHeader())
172     return false;
173
174   // Obtain the reduction start value from the value that comes from the loop
175   // preheader.
176   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
177
178   // ExitInstruction is the single value which is used outside the loop.
179   // We only allow for a single reduction value to be used outside the loop.
180   // This includes users of the reduction, variables (which form a cycle
181   // which ends in the phi node).
182   Instruction *ExitInstruction = nullptr;
183   // Indicates that we found a reduction operation in our scan.
184   bool FoundReduxOp = false;
185
186   // We start with the PHI node and scan for all of the users of this
187   // instruction. All users must be instructions that can be used as reduction
188   // variables (such as ADD). We must have a single out-of-block user. The cycle
189   // must include the original PHI.
190   bool FoundStartPHI = false;
191
192   // To recognize min/max patterns formed by a icmp select sequence, we store
193   // the number of instruction we saw from the recognized min/max pattern,
194   //  to make sure we only see exactly the two instructions.
195   unsigned NumCmpSelectPatternInst = 0;
196   InstDesc ReduxDesc(false, nullptr);
197
198   // Data used for determining if the recurrence has been type-promoted.
199   Type *RecurrenceType = Phi->getType();
200   SmallPtrSet<Instruction *, 4> CastInsts;
201   Instruction *Start = Phi;
202   bool IsSigned = false;
203
204   SmallPtrSet<Instruction *, 8> VisitedInsts;
205   SmallVector<Instruction *, 8> Worklist;
206
207   // Return early if the recurrence kind does not match the type of Phi. If the
208   // recurrence kind is arithmetic, we attempt to look through AND operations
209   // resulting from the type promotion performed by InstCombine.  Vector
210   // operations are not limited to the legal integer widths, so we may be able
211   // to evaluate the reduction in the narrower width.
212   if (RecurrenceType->isFloatingPointTy()) {
213     if (!isFloatingPointRecurrenceKind(Kind))
214       return false;
215   } else {
216     if (!isIntegerRecurrenceKind(Kind))
217       return false;
218     if (isArithmeticRecurrenceKind(Kind))
219       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
220   }
221
222   Worklist.push_back(Start);
223   VisitedInsts.insert(Start);
224
225   // A value in the reduction can be used:
226   //  - By the reduction:
227   //      - Reduction operation:
228   //        - One use of reduction value (safe).
229   //        - Multiple use of reduction value (not safe).
230   //      - PHI:
231   //        - All uses of the PHI must be the reduction (safe).
232   //        - Otherwise, not safe.
233   //  - By instructions outside of the loop (safe).
234   //      * One value may have several outside users, but all outside
235   //        uses must be of the same value.
236   //  - By an instruction that is not part of the reduction (not safe).
237   //    This is either:
238   //      * An instruction type other than PHI or the reduction operation.
239   //      * A PHI in the header other than the initial PHI.
240   while (!Worklist.empty()) {
241     Instruction *Cur = Worklist.back();
242     Worklist.pop_back();
243
244     // No Users.
245     // If the instruction has no users then this is a broken chain and can't be
246     // a reduction variable.
247     if (Cur->use_empty())
248       return false;
249
250     bool IsAPhi = isa<PHINode>(Cur);
251
252     // A header PHI use other than the original PHI.
253     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
254       return false;
255
256     // Reductions of instructions such as Div, and Sub is only possible if the
257     // LHS is the reduction variable.
258     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
259         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
260         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
261       return false;
262
263     // Any reduction instruction must be of one of the allowed kinds. We ignore
264     // the starting value (the Phi or an AND instruction if the Phi has been
265     // type-promoted).
266     if (Cur != Start) {
267       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
268       if (!ReduxDesc.isRecurrence())
269         return false;
270     }
271
272     // A reduction operation must only have one use of the reduction value.
273     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
274         hasMultipleUsesOf(Cur, VisitedInsts))
275       return false;
276
277     // All inputs to a PHI node must be a reduction value.
278     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
279       return false;
280
281     if (Kind == RK_IntegerMinMax &&
282         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
283       ++NumCmpSelectPatternInst;
284     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
285       ++NumCmpSelectPatternInst;
286
287     // Check  whether we found a reduction operator.
288     FoundReduxOp |= !IsAPhi && Cur != Start;
289
290     // Process users of current instruction. Push non-PHI nodes after PHI nodes
291     // onto the stack. This way we are going to have seen all inputs to PHI
292     // nodes once we get to them.
293     SmallVector<Instruction *, 8> NonPHIs;
294     SmallVector<Instruction *, 8> PHIs;
295     for (User *U : Cur->users()) {
296       Instruction *UI = cast<Instruction>(U);
297
298       // Check if we found the exit user.
299       BasicBlock *Parent = UI->getParent();
300       if (!TheLoop->contains(Parent)) {
301         // If we already know this instruction is used externally, move on to
302         // the next user.
303         if (ExitInstruction == Cur)
304           continue;
305
306         // Exit if you find multiple values used outside or if the header phi
307         // node is being used. In this case the user uses the value of the
308         // previous iteration, in which case we would loose "VF-1" iterations of
309         // the reduction operation if we vectorize.
310         if (ExitInstruction != nullptr || Cur == Phi)
311           return false;
312
313         // The instruction used by an outside user must be the last instruction
314         // before we feed back to the reduction phi. Otherwise, we loose VF-1
315         // operations on the value.
316         if (!is_contained(Phi->operands(), Cur))
317           return false;
318
319         ExitInstruction = Cur;
320         continue;
321       }
322
323       // Process instructions only once (termination). Each reduction cycle
324       // value must only be used once, except by phi nodes and min/max
325       // reductions which are represented as a cmp followed by a select.
326       InstDesc IgnoredVal(false, nullptr);
327       if (VisitedInsts.insert(UI).second) {
328         if (isa<PHINode>(UI))
329           PHIs.push_back(UI);
330         else
331           NonPHIs.push_back(UI);
332       } else if (!isa<PHINode>(UI) &&
333                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
334                    !isa<SelectInst>(UI)) ||
335                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
336         return false;
337
338       // Remember that we completed the cycle.
339       if (UI == Phi)
340         FoundStartPHI = true;
341     }
342     Worklist.append(PHIs.begin(), PHIs.end());
343     Worklist.append(NonPHIs.begin(), NonPHIs.end());
344   }
345
346   // This means we have seen one but not the other instruction of the
347   // pattern or more than just a select and cmp.
348   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
349       NumCmpSelectPatternInst != 2)
350     return false;
351
352   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
353     return false;
354
355   // If we think Phi may have been type-promoted, we also need to ensure that
356   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
357   // so, we will be able to evaluate the reduction in the narrower bit width.
358   if (Start != Phi)
359     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
360                                 IsSigned, VisitedInsts, CastInsts))
361       return false;
362
363   // We found a reduction var if we have reached the original phi node and we
364   // only have a single instruction with out-of-loop users.
365
366   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
367   // is saved as part of the RecurrenceDescriptor.
368
369   // Save the description of this reduction variable.
370   RecurrenceDescriptor RD(
371       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
372       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
373   RedDes = RD;
374
375   return true;
376 }
377
378 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
379 /// pattern corresponding to a min(X, Y) or max(X, Y).
380 RecurrenceDescriptor::InstDesc
381 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
382
383   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
384          "Expect a select instruction");
385   Instruction *Cmp = nullptr;
386   SelectInst *Select = nullptr;
387
388   // We must handle the select(cmp()) as a single instruction. Advance to the
389   // select.
390   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
391     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
392       return InstDesc(false, I);
393     return InstDesc(Select, Prev.getMinMaxKind());
394   }
395
396   // Only handle single use cases for now.
397   if (!(Select = dyn_cast<SelectInst>(I)))
398     return InstDesc(false, I);
399   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
400       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
401     return InstDesc(false, I);
402   if (!Cmp->hasOneUse())
403     return InstDesc(false, I);
404
405   Value *CmpLeft;
406   Value *CmpRight;
407
408   // Look for a min/max pattern.
409   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
410     return InstDesc(Select, MRK_UIntMin);
411   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
412     return InstDesc(Select, MRK_UIntMax);
413   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
414     return InstDesc(Select, MRK_SIntMax);
415   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
416     return InstDesc(Select, MRK_SIntMin);
417   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
418     return InstDesc(Select, MRK_FloatMin);
419   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
420     return InstDesc(Select, MRK_FloatMax);
421   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
422     return InstDesc(Select, MRK_FloatMin);
423   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
424     return InstDesc(Select, MRK_FloatMax);
425
426   return InstDesc(false, I);
427 }
428
429 RecurrenceDescriptor::InstDesc
430 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
431                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
432   bool FP = I->getType()->isFloatingPointTy();
433   Instruction *UAI = Prev.getUnsafeAlgebraInst();
434   if (!UAI && FP && !I->hasUnsafeAlgebra())
435     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
436
437   switch (I->getOpcode()) {
438   default:
439     return InstDesc(false, I);
440   case Instruction::PHI:
441     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
442   case Instruction::Sub:
443   case Instruction::Add:
444     return InstDesc(Kind == RK_IntegerAdd, I);
445   case Instruction::Mul:
446     return InstDesc(Kind == RK_IntegerMult, I);
447   case Instruction::And:
448     return InstDesc(Kind == RK_IntegerAnd, I);
449   case Instruction::Or:
450     return InstDesc(Kind == RK_IntegerOr, I);
451   case Instruction::Xor:
452     return InstDesc(Kind == RK_IntegerXor, I);
453   case Instruction::FMul:
454     return InstDesc(Kind == RK_FloatMult, I, UAI);
455   case Instruction::FSub:
456   case Instruction::FAdd:
457     return InstDesc(Kind == RK_FloatAdd, I, UAI);
458   case Instruction::FCmp:
459   case Instruction::ICmp:
460   case Instruction::Select:
461     if (Kind != RK_IntegerMinMax &&
462         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
463       return InstDesc(false, I);
464     return isMinMaxSelectCmpPattern(I, Prev);
465   }
466 }
467
468 bool RecurrenceDescriptor::hasMultipleUsesOf(
469     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
470   unsigned NumUses = 0;
471   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
472        ++Use) {
473     if (Insts.count(dyn_cast<Instruction>(*Use)))
474       ++NumUses;
475     if (NumUses > 1)
476       return true;
477   }
478
479   return false;
480 }
481 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
482                                           RecurrenceDescriptor &RedDes) {
483
484   BasicBlock *Header = TheLoop->getHeader();
485   Function &F = *Header->getParent();
486   bool HasFunNoNaNAttr =
487       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
488
489   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
490     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
491     return true;
492   }
493   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
494     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
495     return true;
496   }
497   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
498     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
499     return true;
500   }
501   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
502     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
503     return true;
504   }
505   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
506     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
507     return true;
508   }
509   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
510                       RedDes)) {
511     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
512     return true;
513   }
514   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
515     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
516     return true;
517   }
518   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
519     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
520     return true;
521   }
522   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
523     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
524     return true;
525   }
526   // Not a reduction of known type.
527   return false;
528 }
529
530 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
531                                                   DominatorTree *DT) {
532
533   // Ensure the phi node is in the loop header and has two incoming values.
534   if (Phi->getParent() != TheLoop->getHeader() ||
535       Phi->getNumIncomingValues() != 2)
536     return false;
537
538   // Ensure the loop has a preheader and a single latch block. The loop
539   // vectorizer will need the latch to set up the next iteration of the loop.
540   auto *Preheader = TheLoop->getLoopPreheader();
541   auto *Latch = TheLoop->getLoopLatch();
542   if (!Preheader || !Latch)
543     return false;
544
545   // Ensure the phi node's incoming blocks are the loop preheader and latch.
546   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
547       Phi->getBasicBlockIndex(Latch) < 0)
548     return false;
549
550   // Get the previous value. The previous value comes from the latch edge while
551   // the initial value comes form the preheader edge.
552   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
553   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
554     return false;
555
556   // Ensure every user of the phi node is dominated by the previous value.
557   // The dominance requirement ensures the loop vectorizer will not need to
558   // vectorize the initial value prior to the first iteration of the loop.
559   for (User *U : Phi->users())
560     if (auto *I = dyn_cast<Instruction>(U)) {
561       if (!DT->dominates(Previous, I))
562         return false;
563     }
564
565   return true;
566 }
567
568 /// This function returns the identity element (or neutral element) for
569 /// the operation K.
570 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
571                                                       Type *Tp) {
572   switch (K) {
573   case RK_IntegerXor:
574   case RK_IntegerAdd:
575   case RK_IntegerOr:
576     // Adding, Xoring, Oring zero to a number does not change it.
577     return ConstantInt::get(Tp, 0);
578   case RK_IntegerMult:
579     // Multiplying a number by 1 does not change it.
580     return ConstantInt::get(Tp, 1);
581   case RK_IntegerAnd:
582     // AND-ing a number with an all-1 value does not change it.
583     return ConstantInt::get(Tp, -1, true);
584   case RK_FloatMult:
585     // Multiplying a number by 1 does not change it.
586     return ConstantFP::get(Tp, 1.0L);
587   case RK_FloatAdd:
588     // Adding zero to a number does not change it.
589     return ConstantFP::get(Tp, 0.0L);
590   default:
591     llvm_unreachable("Unknown recurrence kind");
592   }
593 }
594
595 /// This function translates the recurrence kind to an LLVM binary operator.
596 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
597   switch (Kind) {
598   case RK_IntegerAdd:
599     return Instruction::Add;
600   case RK_IntegerMult:
601     return Instruction::Mul;
602   case RK_IntegerOr:
603     return Instruction::Or;
604   case RK_IntegerAnd:
605     return Instruction::And;
606   case RK_IntegerXor:
607     return Instruction::Xor;
608   case RK_FloatMult:
609     return Instruction::FMul;
610   case RK_FloatAdd:
611     return Instruction::FAdd;
612   case RK_IntegerMinMax:
613     return Instruction::ICmp;
614   case RK_FloatMinMax:
615     return Instruction::FCmp;
616   default:
617     llvm_unreachable("Unknown recurrence operation");
618   }
619 }
620
621 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
622                                             MinMaxRecurrenceKind RK,
623                                             Value *Left, Value *Right) {
624   CmpInst::Predicate P = CmpInst::ICMP_NE;
625   switch (RK) {
626   default:
627     llvm_unreachable("Unknown min/max recurrence kind");
628   case MRK_UIntMin:
629     P = CmpInst::ICMP_ULT;
630     break;
631   case MRK_UIntMax:
632     P = CmpInst::ICMP_UGT;
633     break;
634   case MRK_SIntMin:
635     P = CmpInst::ICMP_SLT;
636     break;
637   case MRK_SIntMax:
638     P = CmpInst::ICMP_SGT;
639     break;
640   case MRK_FloatMin:
641     P = CmpInst::FCMP_OLT;
642     break;
643   case MRK_FloatMax:
644     P = CmpInst::FCMP_OGT;
645     break;
646   }
647
648   // We only match FP sequences with unsafe algebra, so we can unconditionally
649   // set it on any generated instructions.
650   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
651   FastMathFlags FMF;
652   FMF.setUnsafeAlgebra();
653   Builder.setFastMathFlags(FMF);
654
655   Value *Cmp;
656   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
657     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
658   else
659     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
660
661   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
662   return Select;
663 }
664
665 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
666                                          const SCEV *Step, BinaryOperator *BOp)
667   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
668   assert(IK != IK_NoInduction && "Not an induction");
669
670   // Start value type should match the induction kind and the value
671   // itself should not be null.
672   assert(StartValue && "StartValue is null");
673   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
674          "StartValue is not a pointer for pointer induction");
675   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
676          "StartValue is not an integer for integer induction");
677
678   // Check the Step Value. It should be non-zero integer value.
679   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
680          "Step value is zero");
681
682   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
683          "Step value should be constant for pointer induction");
684   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
685          "StepValue is not an integer");
686
687   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
688          "StepValue is not FP for FpInduction");
689   assert((IK != IK_FpInduction || (InductionBinOp &&
690           (InductionBinOp->getOpcode() == Instruction::FAdd ||
691            InductionBinOp->getOpcode() == Instruction::FSub))) &&
692          "Binary opcode should be specified for FP induction");
693 }
694
695 int InductionDescriptor::getConsecutiveDirection() const {
696   ConstantInt *ConstStep = getConstIntStepValue();
697   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
698     return ConstStep->getSExtValue();
699   return 0;
700 }
701
702 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
703   if (isa<SCEVConstant>(Step))
704     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
705   return nullptr;
706 }
707
708 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
709                                       ScalarEvolution *SE,
710                                       const DataLayout& DL) const {
711
712   SCEVExpander Exp(*SE, DL, "induction");
713   assert(Index->getType() == Step->getType() &&
714          "Index type does not match StepValue type");
715   switch (IK) {
716   case IK_IntInduction: {
717     assert(Index->getType() == StartValue->getType() &&
718            "Index type does not match StartValue type");
719
720     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
721     // and calculate (Start + Index * Step) for all cases, without
722     // special handling for "isOne" and "isMinusOne".
723     // But in the real life the result code getting worse. We mix SCEV
724     // expressions and ADD/SUB operations and receive redundant
725     // intermediate values being calculated in different ways and
726     // Instcombine is unable to reduce them all.
727
728     if (getConstIntStepValue() &&
729         getConstIntStepValue()->isMinusOne())
730       return B.CreateSub(StartValue, Index);
731     if (getConstIntStepValue() &&
732         getConstIntStepValue()->isOne())
733       return B.CreateAdd(StartValue, Index);
734     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
735                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
736     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
737   }
738   case IK_PtrInduction: {
739     assert(isa<SCEVConstant>(Step) &&
740            "Expected constant step for pointer induction");
741     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
742     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
743     return B.CreateGEP(nullptr, StartValue, Index);
744   }
745   case IK_FpInduction: {
746     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
747     assert(InductionBinOp &&
748            (InductionBinOp->getOpcode() == Instruction::FAdd ||
749             InductionBinOp->getOpcode() == Instruction::FSub) &&
750            "Original bin op should be defined for FP induction");
751
752     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
753
754     // Floating point operations had to be 'fast' to enable the induction.
755     FastMathFlags Flags;
756     Flags.setUnsafeAlgebra();
757
758     Value *MulExp = B.CreateFMul(StepValue, Index);
759     if (isa<Instruction>(MulExp))
760       // We have to check, the MulExp may be a constant.
761       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
762
763     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
764                                MulExp, "induction");
765     if (isa<Instruction>(BOp))
766       cast<Instruction>(BOp)->setFastMathFlags(Flags);
767
768     return BOp;
769   }
770   case IK_NoInduction:
771     return nullptr;
772   }
773   llvm_unreachable("invalid enum");
774 }
775
776 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
777                                            ScalarEvolution *SE,
778                                            InductionDescriptor &D) {
779
780   // Here we only handle FP induction variables.
781   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
782
783   if (TheLoop->getHeader() != Phi->getParent())
784     return false;
785
786   // The loop may have multiple entrances or multiple exits; we can analyze
787   // this phi if it has a unique entry value and a unique backedge value.
788   if (Phi->getNumIncomingValues() != 2)
789     return false;
790   Value *BEValue = nullptr, *StartValue = nullptr;
791   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
792     BEValue = Phi->getIncomingValue(0);
793     StartValue = Phi->getIncomingValue(1);
794   } else {
795     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
796            "Unexpected Phi node in the loop"); 
797     BEValue = Phi->getIncomingValue(1);
798     StartValue = Phi->getIncomingValue(0);
799   }
800
801   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
802   if (!BOp)
803     return false;
804
805   Value *Addend = nullptr;
806   if (BOp->getOpcode() == Instruction::FAdd) {
807     if (BOp->getOperand(0) == Phi)
808       Addend = BOp->getOperand(1);
809     else if (BOp->getOperand(1) == Phi)
810       Addend = BOp->getOperand(0);
811   } else if (BOp->getOpcode() == Instruction::FSub)
812     if (BOp->getOperand(0) == Phi)
813       Addend = BOp->getOperand(1);
814
815   if (!Addend)
816     return false;
817
818   // The addend should be loop invariant
819   if (auto *I = dyn_cast<Instruction>(Addend))
820     if (TheLoop->contains(I))
821       return false;
822
823   // FP Step has unknown SCEV
824   const SCEV *Step = SE->getUnknown(Addend);
825   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
826   return true;
827 }
828
829 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
830                                          PredicatedScalarEvolution &PSE,
831                                          InductionDescriptor &D,
832                                          bool Assume) {
833   Type *PhiTy = Phi->getType();
834
835   // Handle integer and pointer inductions variables.
836   // Now we handle also FP induction but not trying to make a
837   // recurrent expression from the PHI node in-place.
838
839   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
840       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
841     return false;
842
843   if (PhiTy->isFloatingPointTy())
844     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
845
846   const SCEV *PhiScev = PSE.getSCEV(Phi);
847   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
848
849   // We need this expression to be an AddRecExpr.
850   if (Assume && !AR)
851     AR = PSE.getAsAddRec(Phi);
852
853   if (!AR) {
854     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
855     return false;
856   }
857
858   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
859 }
860
861 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
862                                          ScalarEvolution *SE,
863                                          InductionDescriptor &D,
864                                          const SCEV *Expr) {
865   Type *PhiTy = Phi->getType();
866   // We only handle integer and pointer inductions variables.
867   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
868     return false;
869
870   // Check that the PHI is consecutive.
871   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
872   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
873
874   if (!AR) {
875     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
876     return false;
877   }
878
879   if (AR->getLoop() != TheLoop) {
880     // FIXME: We should treat this as a uniform. Unfortunately, we
881     // don't currently know how to handled uniform PHIs.
882     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
883     return false;    
884   }
885
886   Value *StartValue =
887     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
888   const SCEV *Step = AR->getStepRecurrence(*SE);
889   // Calculate the pointer stride and check if it is consecutive.
890   // The stride may be a constant or a loop invariant integer value.
891   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
892   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
893     return false;
894
895   if (PhiTy->isIntegerTy()) {
896     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
897     return true;
898   }
899
900   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
901   // Pointer induction should be a constant.
902   if (!ConstStep)
903     return false;
904
905   ConstantInt *CV = ConstStep->getValue();
906   Type *PointerElementType = PhiTy->getPointerElementType();
907   // The pointer stride cannot be determined if the pointer element type is not
908   // sized.
909   if (!PointerElementType->isSized())
910     return false;
911
912   const DataLayout &DL = Phi->getModule()->getDataLayout();
913   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
914   if (!Size)
915     return false;
916
917   int64_t CVSize = CV->getSExtValue();
918   if (CVSize % Size)
919     return false;
920   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
921                                     true /* signed */);
922   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
923   return true;
924 }
925
926 /// \brief Returns the instructions that use values defined in the loop.
927 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
928   SmallVector<Instruction *, 8> UsedOutside;
929
930   for (auto *Block : L->getBlocks())
931     // FIXME: I believe that this could use copy_if if the Inst reference could
932     // be adapted into a pointer.
933     for (auto &Inst : *Block) {
934       auto Users = Inst.users();
935       if (any_of(Users, [&](User *U) {
936             auto *Use = cast<Instruction>(U);
937             return !L->contains(Use->getParent());
938           }))
939         UsedOutside.push_back(&Inst);
940     }
941
942   return UsedOutside;
943 }
944
945 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
946   // By definition, all loop passes need the LoopInfo analysis and the
947   // Dominator tree it depends on. Because they all participate in the loop
948   // pass manager, they must also preserve these.
949   AU.addRequired<DominatorTreeWrapperPass>();
950   AU.addPreserved<DominatorTreeWrapperPass>();
951   AU.addRequired<LoopInfoWrapperPass>();
952   AU.addPreserved<LoopInfoWrapperPass>();
953
954   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
955   // here because users shouldn't directly get them from this header.
956   extern char &LoopSimplifyID;
957   extern char &LCSSAID;
958   AU.addRequiredID(LoopSimplifyID);
959   AU.addPreservedID(LoopSimplifyID);
960   AU.addRequiredID(LCSSAID);
961   AU.addPreservedID(LCSSAID);
962   // This is used in the LPPassManager to perform LCSSA verification on passes
963   // which preserve lcssa form
964   AU.addRequired<LCSSAVerificationPass>();
965   AU.addPreserved<LCSSAVerificationPass>();
966
967   // Loop passes are designed to run inside of a loop pass manager which means
968   // that any function analyses they require must be required by the first loop
969   // pass in the manager (so that it is computed before the loop pass manager
970   // runs) and preserved by all loop pasess in the manager. To make this
971   // reasonably robust, the set needed for most loop passes is maintained here.
972   // If your loop pass requires an analysis not listed here, you will need to
973   // carefully audit the loop pass manager nesting structure that results.
974   AU.addRequired<AAResultsWrapperPass>();
975   AU.addPreserved<AAResultsWrapperPass>();
976   AU.addPreserved<BasicAAWrapperPass>();
977   AU.addPreserved<GlobalsAAWrapperPass>();
978   AU.addPreserved<SCEVAAWrapperPass>();
979   AU.addRequired<ScalarEvolutionWrapperPass>();
980   AU.addPreserved<ScalarEvolutionWrapperPass>();
981 }
982
983 /// Manually defined generic "LoopPass" dependency initialization. This is used
984 /// to initialize the exact set of passes from above in \c
985 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
986 /// with:
987 ///
988 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
989 ///
990 /// As-if "LoopPass" were a pass.
991 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
992   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
993   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
994   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
995   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
996   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
997   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
998   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
999   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1000   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1001 }
1002
1003 /// \brief Find string metadata for loop
1004 ///
1005 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1006 /// operand or null otherwise.  If the string metadata is not found return
1007 /// Optional's not-a-value.
1008 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1009                                                             StringRef Name) {
1010   MDNode *LoopID = TheLoop->getLoopID();
1011   // Return none if LoopID is false.
1012   if (!LoopID)
1013     return None;
1014
1015   // First operand should refer to the loop id itself.
1016   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1017   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1018
1019   // Iterate over LoopID operands and look for MDString Metadata
1020   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1021     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1022     if (!MD)
1023       continue;
1024     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1025     if (!S)
1026       continue;
1027     // Return true if MDString holds expected MetaData.
1028     if (Name.equals(S->getString()))
1029       switch (MD->getNumOperands()) {
1030       case 1:
1031         return nullptr;
1032       case 2:
1033         return &MD->getOperand(1);
1034       default:
1035         llvm_unreachable("loop metadata has 0 or 1 operand");
1036       }
1037   }
1038   return None;
1039 }
1040
1041 /// Returns true if the instruction in a loop is guaranteed to execute at least
1042 /// once.
1043 bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1044                                  const DominatorTree *DT, const Loop *CurLoop,
1045                                  const LoopSafetyInfo *SafetyInfo) {
1046   // We have to check to make sure that the instruction dominates all
1047   // of the exit blocks.  If it doesn't, then there is a path out of the loop
1048   // which does not execute this instruction, so we can't hoist it.
1049
1050   // If the instruction is in the header block for the loop (which is very
1051   // common), it is always guaranteed to dominate the exit blocks.  Since this
1052   // is a common case, and can save some work, check it now.
1053   if (Inst.getParent() == CurLoop->getHeader())
1054     // If there's a throw in the header block, we can't guarantee we'll reach
1055     // Inst.
1056     return !SafetyInfo->HeaderMayThrow;
1057
1058   // Somewhere in this loop there is an instruction which may throw and make us
1059   // exit the loop.
1060   if (SafetyInfo->MayThrow)
1061     return false;
1062
1063   // Get the exit blocks for the current loop.
1064   SmallVector<BasicBlock *, 8> ExitBlocks;
1065   CurLoop->getExitBlocks(ExitBlocks);
1066
1067   // Verify that the block dominates each of the exit blocks of the loop.
1068   for (BasicBlock *ExitBlock : ExitBlocks)
1069     if (!DT->dominates(Inst.getParent(), ExitBlock))
1070       return false;
1071
1072   // As a degenerate case, if the loop is statically infinite then we haven't
1073   // proven anything since there are no exit blocks.
1074   if (ExitBlocks.empty())
1075     return false;
1076
1077   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1078   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
1079   // just a special case of this.)
1080   return true;
1081 }
1082
1083 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1084   // Only support loops with a unique exiting block, and a latch.
1085   if (!L->getExitingBlock())
1086     return None;
1087
1088   // Get the branch weights for the the loop's backedge.
1089   BranchInst *LatchBR =
1090       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1091   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1092     return None;
1093
1094   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1095           LatchBR->getSuccessor(1) == L->getHeader()) &&
1096          "At least one edge out of the latch must go to the header");
1097
1098   // To estimate the number of times the loop body was executed, we want to
1099   // know the number of times the backedge was taken, vs. the number of times
1100   // we exited the loop.
1101   uint64_t TrueVal, FalseVal;
1102   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1103     return None;
1104
1105   if (!TrueVal || !FalseVal)
1106     return 0;
1107
1108   // Divide the count of the backedge by the count of the edge exiting the loop,
1109   // rounding to nearest.
1110   if (LatchBR->getSuccessor(0) == L->getHeader())
1111     return (TrueVal + (FalseVal / 2)) / FalseVal;
1112   else
1113     return (FalseVal + (TrueVal / 2)) / TrueVal;
1114 }
1115
1116 /// \brief Adds a 'fast' flag to floating point operations.
1117 static Value *addFastMathFlag(Value *V) {
1118   if (isa<FPMathOperator>(V)) {
1119     FastMathFlags Flags;
1120     Flags.setUnsafeAlgebra();
1121     cast<Instruction>(V)->setFastMathFlags(Flags);
1122   }
1123   return V;
1124 }
1125
1126 // Helper to generate a log2 shuffle reduction.
1127 Value *
1128 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1129                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1130                           ArrayRef<Value *> RedOps) {
1131   unsigned VF = Src->getType()->getVectorNumElements();
1132   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1133   // and vector ops, reducing the set of values being computed by half each
1134   // round.
1135   assert(isPowerOf2_32(VF) &&
1136          "Reduction emission only supported for pow2 vectors!");
1137   Value *TmpVec = Src;
1138   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1139   for (unsigned i = VF; i != 1; i >>= 1) {
1140     // Move the upper half of the vector to the lower half.
1141     for (unsigned j = 0; j != i / 2; ++j)
1142       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1143
1144     // Fill the rest of the mask with undef.
1145     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1146               UndefValue::get(Builder.getInt32Ty()));
1147
1148     Value *Shuf = Builder.CreateShuffleVector(
1149         TmpVec, UndefValue::get(TmpVec->getType()),
1150         ConstantVector::get(ShuffleMask), "rdx.shuf");
1151
1152     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1153       // Floating point operations had to be 'fast' to enable the reduction.
1154       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1155                                                    TmpVec, Shuf, "bin.rdx"));
1156     } else {
1157       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1158              "Invalid min/max");
1159       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1160                                                     Shuf);
1161     }
1162     if (!RedOps.empty())
1163       propagateIRFlags(TmpVec, RedOps);
1164   }
1165   // The result is in the first element of the vector.
1166   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1167 }
1168
1169 /// Create a simple vector reduction specified by an opcode and some
1170 /// flags (if generating min/max reductions).
1171 Value *llvm::createSimpleTargetReduction(
1172     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1173     Value *Src, TargetTransformInfo::ReductionFlags Flags,
1174     ArrayRef<Value *> RedOps) {
1175   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1176
1177   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1178   std::function<Value*()> BuildFunc;
1179   using RD = RecurrenceDescriptor;
1180   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1181   // TODO: Support creating ordered reductions.
1182   FastMathFlags FMFUnsafe;
1183   FMFUnsafe.setUnsafeAlgebra();
1184
1185   switch (Opcode) {
1186   case Instruction::Add:
1187     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1188     break;
1189   case Instruction::Mul:
1190     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1191     break;
1192   case Instruction::And:
1193     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1194     break;
1195   case Instruction::Or:
1196     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1197     break;
1198   case Instruction::Xor:
1199     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1200     break;
1201   case Instruction::FAdd:
1202     BuildFunc = [&]() {
1203       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1204       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1205       return Rdx;
1206     };
1207     break;
1208   case Instruction::FMul:
1209     BuildFunc = [&]() {
1210       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1211       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1212       return Rdx;
1213     };
1214     break;
1215   case Instruction::ICmp:
1216     if (Flags.IsMaxOp) {
1217       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1218       BuildFunc = [&]() {
1219         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1220       };
1221     } else {
1222       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1223       BuildFunc = [&]() {
1224         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1225       };
1226     }
1227     break;
1228   case Instruction::FCmp:
1229     if (Flags.IsMaxOp) {
1230       MinMaxKind = RD::MRK_FloatMax;
1231       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1232     } else {
1233       MinMaxKind = RD::MRK_FloatMin;
1234       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1235     }
1236     break;
1237   default:
1238     llvm_unreachable("Unhandled opcode");
1239     break;
1240   }
1241   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1242     return BuildFunc();
1243   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1244 }
1245
1246 /// Create a vector reduction using a given recurrence descriptor.
1247 Value *llvm::createTargetReduction(IRBuilder<> &Builder,
1248                                    const TargetTransformInfo *TTI,
1249                                    RecurrenceDescriptor &Desc, Value *Src,
1250                                    bool NoNaN) {
1251   // TODO: Support in-order reductions based on the recurrence descriptor.
1252   RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1253   TargetTransformInfo::ReductionFlags Flags;
1254   Flags.NoNaN = NoNaN;
1255   auto getSimpleRdx = [&](unsigned Opc) {
1256     return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
1257   };
1258   switch (RecKind) {
1259   case RecurrenceDescriptor::RK_FloatAdd:
1260     return getSimpleRdx(Instruction::FAdd);
1261   case RecurrenceDescriptor::RK_FloatMult:
1262     return getSimpleRdx(Instruction::FMul);
1263   case RecurrenceDescriptor::RK_IntegerAdd:
1264     return getSimpleRdx(Instruction::Add);
1265   case RecurrenceDescriptor::RK_IntegerMult:
1266     return getSimpleRdx(Instruction::Mul);
1267   case RecurrenceDescriptor::RK_IntegerAnd:
1268     return getSimpleRdx(Instruction::And);
1269   case RecurrenceDescriptor::RK_IntegerOr:
1270     return getSimpleRdx(Instruction::Or);
1271   case RecurrenceDescriptor::RK_IntegerXor:
1272     return getSimpleRdx(Instruction::Xor);
1273   case RecurrenceDescriptor::RK_IntegerMinMax: {
1274     switch (Desc.getMinMaxRecurrenceKind()) {
1275     case RecurrenceDescriptor::MRK_SIntMax:
1276       Flags.IsSigned = true;
1277       Flags.IsMaxOp = true;
1278       break;
1279     case RecurrenceDescriptor::MRK_UIntMax:
1280       Flags.IsMaxOp = true;
1281       break;
1282     case RecurrenceDescriptor::MRK_SIntMin:
1283       Flags.IsSigned = true;
1284       break;
1285     case RecurrenceDescriptor::MRK_UIntMin:
1286       break;
1287     default:
1288       llvm_unreachable("Unhandled MRK");
1289     }
1290     return getSimpleRdx(Instruction::ICmp);
1291   }
1292   case RecurrenceDescriptor::RK_FloatMinMax: {
1293     Flags.IsMaxOp =
1294         Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
1295     return getSimpleRdx(Instruction::FCmp);
1296   }
1297   default:
1298     llvm_unreachable("Unhandled RecKind");
1299   }
1300 }
1301
1302 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
1303   if (auto *VecOp = dyn_cast<Instruction>(I)) {
1304     if (auto *I0 = dyn_cast<Instruction>(VL[0])) {
1305       // VecOVp is initialized to the 0th scalar, so start counting from index
1306       // '1'.
1307       VecOp->copyIRFlags(I0);
1308       for (int i = 1, e = VL.size(); i < e; ++i) {
1309         if (auto *Scalar = dyn_cast<Instruction>(VL[i]))
1310           VecOp->andIRFlags(Scalar);
1311       }
1312     }
1313   }
1314 }