OSDN Git Service

8959e77438e994b6cef98bf0cd85fc03304960ee
[android-x86/external-llvm.git] / lib / Transforms / Utils / LowerSwitch.cpp
1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LowerSwitch transformation rewrites switch instructions with a sequence
11 // of branches, which allows targets to get away with not implementing the
12 // switch instruction until it is convenient.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/CFG.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 #define DEBUG_TYPE "lower-switch"
33
34 namespace {
35   struct IntRange {
36     int64_t Low, High;
37   };
38   // Return true iff R is covered by Ranges.
39   static bool IsInRanges(const IntRange &R,
40                          const std::vector<IntRange> &Ranges) {
41     // Note: Ranges must be sorted, non-overlapping and non-adjacent.
42
43     // Find the first range whose High field is >= R.High,
44     // then check if the Low field is <= R.Low. If so, we
45     // have a Range that covers R.
46     auto I = std::lower_bound(
47         Ranges.begin(), Ranges.end(), R,
48         [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
49     return I != Ranges.end() && I->Low <= R.Low;
50   }
51
52   /// Replace all SwitchInst instructions with chained branch instructions.
53   class LowerSwitch : public FunctionPass {
54   public:
55     static char ID; // Pass identification, replacement for typeid
56     LowerSwitch() : FunctionPass(ID) {
57       initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
58     } 
59
60     bool runOnFunction(Function &F) override;
61
62     struct CaseRange {
63       ConstantInt* Low;
64       ConstantInt* High;
65       BasicBlock* BB;
66
67       CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
68           : Low(low), High(high), BB(bb) {}
69     };
70
71     typedef std::vector<CaseRange> CaseVector;
72     typedef std::vector<CaseRange>::iterator CaseItr;
73   private:
74     void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
75
76     BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
77                               ConstantInt *LowerBound, ConstantInt *UpperBound,
78                               Value *Val, BasicBlock *Predecessor,
79                               BasicBlock *OrigBlock, BasicBlock *Default,
80                               const std::vector<IntRange> &UnreachableRanges);
81     BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
82                              BasicBlock *Default);
83     unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
84   };
85
86   /// The comparison function for sorting the switch case values in the vector.
87   /// WARNING: Case ranges should be disjoint!
88   struct CaseCmp {
89     bool operator () (const LowerSwitch::CaseRange& C1,
90                       const LowerSwitch::CaseRange& C2) {
91
92       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
93       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
94       return CI1->getValue().slt(CI2->getValue());
95     }
96   };
97 }
98
99 char LowerSwitch::ID = 0;
100 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
101                 "Lower SwitchInst's to branches", false, false)
102
103 // Publicly exposed interface to pass...
104 char &llvm::LowerSwitchID = LowerSwitch::ID;
105 // createLowerSwitchPass - Interface to this file...
106 FunctionPass *llvm::createLowerSwitchPass() {
107   return new LowerSwitch();
108 }
109
110 bool LowerSwitch::runOnFunction(Function &F) {
111   bool Changed = false;
112   SmallPtrSet<BasicBlock*, 8> DeleteList;
113
114   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
115     BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
116
117     // If the block is a dead Default block that will be deleted later, don't
118     // waste time processing it.
119     if (DeleteList.count(Cur))
120       continue;
121
122     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
123       Changed = true;
124       processSwitchInst(SI, DeleteList);
125     }
126   }
127
128   for (BasicBlock* BB: DeleteList) {
129     DeleteDeadBlock(BB);
130   }
131
132   return Changed;
133 }
134
135 /// Used for debugging purposes.
136 static raw_ostream& operator<<(raw_ostream &O,
137                                const LowerSwitch::CaseVector &C)
138     LLVM_ATTRIBUTE_USED;
139 static raw_ostream& operator<<(raw_ostream &O,
140                                const LowerSwitch::CaseVector &C) {
141   O << "[";
142
143   for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
144          E = C.end(); B != E; ) {
145     O << *B->Low << " -" << *B->High;
146     if (++B != E) O << ", ";
147   }
148
149   return O << "]";
150 }
151
152 /// \brief Update the first occurrence of the "switch statement" BB in the PHI
153 /// node with the "new" BB. The other occurrences will:
154 ///
155 /// 1) Be updated by subsequent calls to this function.  Switch statements may
156 /// have more than one outcoming edge into the same BB if they all have the same
157 /// value. When the switch statement is converted these incoming edges are now
158 /// coming from multiple BBs.
159 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
160 /// multiple outcome edges are condensed into one. This is necessary to keep the
161 /// number of phi values equal to the number of branches to SuccBB.
162 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
163                     unsigned NumMergedCases) {
164   for (BasicBlock::iterator I = SuccBB->begin(),
165                             IE = SuccBB->getFirstNonPHI()->getIterator();
166        I != IE; ++I) {
167     PHINode *PN = cast<PHINode>(I);
168
169     // Only update the first occurrence.
170     unsigned Idx = 0, E = PN->getNumIncomingValues();
171     unsigned LocalNumMergedCases = NumMergedCases;
172     for (; Idx != E; ++Idx) {
173       if (PN->getIncomingBlock(Idx) == OrigBB) {
174         PN->setIncomingBlock(Idx, NewBB);
175         break;
176       }
177     }
178
179     // Remove additional occurrences coming from condensed cases and keep the
180     // number of incoming values equal to the number of branches to SuccBB.
181     SmallVector<unsigned, 8> Indices;
182     for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
183       if (PN->getIncomingBlock(Idx) == OrigBB) {
184         Indices.push_back(Idx);
185         LocalNumMergedCases--;
186       }
187     // Remove incoming values in the reverse order to prevent invalidating
188     // *successive* index.
189     for (unsigned III : reverse(Indices))
190       PN->removeIncomingValue(III);
191   }
192 }
193
194 /// Convert the switch statement into a binary lookup of the case values.
195 /// The function recursively builds this tree. LowerBound and UpperBound are
196 /// used to keep track of the bounds for Val that have already been checked by
197 /// a block emitted by one of the previous calls to switchConvert in the call
198 /// stack.
199 BasicBlock *
200 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
201                            ConstantInt *UpperBound, Value *Val,
202                            BasicBlock *Predecessor, BasicBlock *OrigBlock,
203                            BasicBlock *Default,
204                            const std::vector<IntRange> &UnreachableRanges) {
205   unsigned Size = End - Begin;
206
207   if (Size == 1) {
208     // Check if the Case Range is perfectly squeezed in between
209     // already checked Upper and Lower bounds. If it is then we can avoid
210     // emitting the code that checks if the value actually falls in the range
211     // because the bounds already tell us so.
212     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
213       unsigned NumMergedCases = 0;
214       if (LowerBound && UpperBound)
215         NumMergedCases =
216             UpperBound->getSExtValue() - LowerBound->getSExtValue();
217       fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
218       return Begin->BB;
219     }
220     return newLeafBlock(*Begin, Val, OrigBlock, Default);
221   }
222
223   unsigned Mid = Size / 2;
224   std::vector<CaseRange> LHS(Begin, Begin + Mid);
225   DEBUG(dbgs() << "LHS: " << LHS << "\n");
226   std::vector<CaseRange> RHS(Begin + Mid, End);
227   DEBUG(dbgs() << "RHS: " << RHS << "\n");
228
229   CaseRange &Pivot = *(Begin + Mid);
230   DEBUG(dbgs() << "Pivot ==> "
231                << Pivot.Low->getValue()
232                << " -" << Pivot.High->getValue() << "\n");
233
234   // NewLowerBound here should never be the integer minimal value.
235   // This is because it is computed from a case range that is never
236   // the smallest, so there is always a case range that has at least
237   // a smaller value.
238   ConstantInt *NewLowerBound = Pivot.Low;
239
240   // Because NewLowerBound is never the smallest representable integer
241   // it is safe here to subtract one.
242   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
243                                                 NewLowerBound->getValue() - 1);
244
245   if (!UnreachableRanges.empty()) {
246     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
247     int64_t GapLow = LHS.back().High->getSExtValue() + 1;
248     int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
249     IntRange Gap = { GapLow, GapHigh };
250     if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
251       NewUpperBound = LHS.back().High;
252   }
253
254   DEBUG(dbgs() << "LHS Bounds ==> ";
255         if (LowerBound) {
256           dbgs() << LowerBound->getSExtValue();
257         } else {
258           dbgs() << "NONE";
259         }
260         dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
261         dbgs() << "RHS Bounds ==> ";
262         dbgs() << NewLowerBound->getSExtValue() << " - ";
263         if (UpperBound) {
264           dbgs() << UpperBound->getSExtValue() << "\n";
265         } else {
266           dbgs() << "NONE\n";
267         });
268
269   // Create a new node that checks if the value is < pivot. Go to the
270   // left branch if it is and right branch if not.
271   Function* F = OrigBlock->getParent();
272   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
273
274   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
275                                 Val, Pivot.Low, "Pivot");
276
277   BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
278                                       NewUpperBound, Val, NewNode, OrigBlock,
279                                       Default, UnreachableRanges);
280   BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
281                                       UpperBound, Val, NewNode, OrigBlock,
282                                       Default, UnreachableRanges);
283
284   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
285   NewNode->getInstList().push_back(Comp);
286
287   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
288   return NewNode;
289 }
290
291 /// Create a new leaf block for the binary lookup tree. It checks if the
292 /// switch's value == the case's value. If not, then it jumps to the default
293 /// branch. At this point in the tree, the value can't be another valid case
294 /// value, so the jump to the "default" branch is warranted.
295 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
296                                       BasicBlock* OrigBlock,
297                                       BasicBlock* Default)
298 {
299   Function* F = OrigBlock->getParent();
300   BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
301   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
302
303   // Emit comparison
304   ICmpInst* Comp = nullptr;
305   if (Leaf.Low == Leaf.High) {
306     // Make the seteq instruction...
307     Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
308                         Leaf.Low, "SwitchLeaf");
309   } else {
310     // Make range comparison
311     if (Leaf.Low->isMinValue(true /*isSigned*/)) {
312       // Val >= Min && Val <= Hi --> Val <= Hi
313       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
314                           "SwitchLeaf");
315     } else if (Leaf.Low->isZero()) {
316       // Val >= 0 && Val <= Hi --> Val <=u Hi
317       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
318                           "SwitchLeaf");      
319     } else {
320       // Emit V-Lo <=u Hi-Lo
321       Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
322       Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
323                                                    Val->getName()+".off",
324                                                    NewLeaf);
325       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
326       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
327                           "SwitchLeaf");
328     }
329   }
330
331   // Make the conditional branch...
332   BasicBlock* Succ = Leaf.BB;
333   BranchInst::Create(Succ, Default, Comp, NewLeaf);
334
335   // If there were any PHI nodes in this successor, rewrite one entry
336   // from OrigBlock to come from NewLeaf.
337   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
338     PHINode* PN = cast<PHINode>(I);
339     // Remove all but one incoming entries from the cluster
340     uint64_t Range = Leaf.High->getSExtValue() -
341                      Leaf.Low->getSExtValue();
342     for (uint64_t j = 0; j < Range; ++j) {
343       PN->removeIncomingValue(OrigBlock);
344     }
345     
346     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
347     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
348     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
349   }
350
351   return NewLeaf;
352 }
353
354 /// Transform simple list of Cases into list of CaseRange's.
355 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
356   unsigned numCmps = 0;
357
358   // Start with "simple" cases
359   for (auto Case : SI->cases())
360     Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
361                               Case.getCaseSuccessor()));
362
363   std::sort(Cases.begin(), Cases.end(), CaseCmp());
364
365   // Merge case into clusters
366   if (Cases.size() >= 2) {
367     CaseItr I = Cases.begin();
368     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
369       int64_t nextValue = J->Low->getSExtValue();
370       int64_t currentValue = I->High->getSExtValue();
371       BasicBlock* nextBB = J->BB;
372       BasicBlock* currentBB = I->BB;
373
374       // If the two neighboring cases go to the same destination, merge them
375       // into a single case.
376       assert(nextValue > currentValue && "Cases should be strictly ascending");
377       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
378         I->High = J->High;
379         // FIXME: Combine branch weights.
380       } else if (++I != J) {
381         *I = *J;
382       }
383     }
384     Cases.erase(std::next(I), Cases.end());
385   }
386
387   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
388     if (I->Low != I->High)
389       // A range counts double, since it requires two compares.
390       ++numCmps;
391   }
392
393   return numCmps;
394 }
395
396 /// Replace the specified switch instruction with a sequence of chained if-then
397 /// insts in a balanced binary search.
398 void LowerSwitch::processSwitchInst(SwitchInst *SI,
399                                     SmallPtrSetImpl<BasicBlock*> &DeleteList) {
400   BasicBlock *CurBlock = SI->getParent();
401   BasicBlock *OrigBlock = CurBlock;
402   Function *F = CurBlock->getParent();
403   Value *Val = SI->getCondition();  // The value we are switching on...
404   BasicBlock* Default = SI->getDefaultDest();
405
406   // Don't handle unreachable blocks. If there are successors with phis, this
407   // would leave them behind with missing predecessors.
408   if ((CurBlock != &F->getEntryBlock() && pred_empty(CurBlock)) ||
409       CurBlock->getSinglePredecessor() == CurBlock) {
410     DeleteList.insert(CurBlock);
411     return;
412   }
413
414   // If there is only the default destination, just branch.
415   if (!SI->getNumCases()) {
416     BranchInst::Create(Default, CurBlock);
417     SI->eraseFromParent();
418     return;
419   }
420
421   // Prepare cases vector.
422   CaseVector Cases;
423   unsigned numCmps = Clusterify(Cases, SI);
424   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
425                << ". Total compares: " << numCmps << "\n");
426   DEBUG(dbgs() << "Cases: " << Cases << "\n");
427   (void)numCmps;
428
429   ConstantInt *LowerBound = nullptr;
430   ConstantInt *UpperBound = nullptr;
431   std::vector<IntRange> UnreachableRanges;
432
433   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
434     // Make the bounds tightly fitted around the case value range, because we
435     // know that the value passed to the switch must be exactly one of the case
436     // values.
437     assert(!Cases.empty());
438     LowerBound = Cases.front().Low;
439     UpperBound = Cases.back().High;
440
441     DenseMap<BasicBlock *, unsigned> Popularity;
442     unsigned MaxPop = 0;
443     BasicBlock *PopSucc = nullptr;
444
445     IntRange R = { INT64_MIN, INT64_MAX };
446     UnreachableRanges.push_back(R);
447     for (const auto &I : Cases) {
448       int64_t Low = I.Low->getSExtValue();
449       int64_t High = I.High->getSExtValue();
450
451       IntRange &LastRange = UnreachableRanges.back();
452       if (LastRange.Low == Low) {
453         // There is nothing left of the previous range.
454         UnreachableRanges.pop_back();
455       } else {
456         // Terminate the previous range.
457         assert(Low > LastRange.Low);
458         LastRange.High = Low - 1;
459       }
460       if (High != INT64_MAX) {
461         IntRange R = { High + 1, INT64_MAX };
462         UnreachableRanges.push_back(R);
463       }
464
465       // Count popularity.
466       int64_t N = High - Low + 1;
467       unsigned &Pop = Popularity[I.BB];
468       if ((Pop += N) > MaxPop) {
469         MaxPop = Pop;
470         PopSucc = I.BB;
471       }
472     }
473 #ifndef NDEBUG
474     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
475     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
476          I != E; ++I) {
477       assert(I->Low <= I->High);
478       auto Next = I + 1;
479       if (Next != E) {
480         assert(Next->Low > I->High);
481       }
482     }
483 #endif
484
485     // Use the most popular block as the new default, reducing the number of
486     // cases.
487     assert(MaxPop > 0 && PopSucc);
488     Default = PopSucc;
489     Cases.erase(
490         remove_if(Cases,
491                   [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
492         Cases.end());
493
494     // If there are no cases left, just branch.
495     if (Cases.empty()) {
496       BranchInst::Create(Default, CurBlock);
497       SI->eraseFromParent();
498       return;
499     }
500   }
501
502   // Create a new, empty default block so that the new hierarchy of
503   // if-then statements go to this and the PHI nodes are happy.
504   BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
505   F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
506   BranchInst::Create(Default, NewDefault);
507
508   // If there is an entry in any PHI nodes for the default edge, make sure
509   // to update them as well.
510   for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
511     PHINode *PN = cast<PHINode>(I);
512     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
513     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
514     PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
515   }
516
517   BasicBlock *SwitchBlock =
518       switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
519                     OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
520
521   // Branch to our shiny new if-then stuff...
522   BranchInst::Create(SwitchBlock, OrigBlock);
523
524   // We are now done with the switch instruction, delete it.
525   BasicBlock *OldDefault = SI->getDefaultDest();
526   CurBlock->getInstList().erase(SI);
527
528   // If the Default block has no more predecessors just add it to DeleteList.
529   if (pred_begin(OldDefault) == pred_end(OldDefault))
530     DeleteList.insert(OldDefault);
531 }