OSDN Git Service

Merge branch 'kvm-insert-lfence' into kvm-master
[android-x86/kernel.git] / lib / crc32.c
1 /*
2  * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3  * cleaned up code to current version of sparse and added the slicing-by-8
4  * algorithm to the closely similar existing slicing-by-4 algorithm.
5  *
6  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
8  * Code was from the public domain, copyright abandoned.  Code was
9  * subsequently included in the kernel, thus was re-licensed under the
10  * GNU GPL v2.
11  *
12  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13  * Same crc32 function was used in 5 other places in the kernel.
14  * I made one version, and deleted the others.
15  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
16  * Some xor at the end with ~0.  The generic crc32() function takes
17  * seed as an argument, and doesn't xor at the end.  Then individual
18  * users can do whatever they need.
19  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
21  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
22  *
23  * This source code is licensed under the GNU General Public License,
24  * Version 2.  See the file COPYING for more details.
25  */
26
27 /* see: Documentation/crc32.txt for a description of algorithms */
28
29 #include <linux/crc32.h>
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/sched.h>
33 #include "crc32defs.h"
34
35 #if CRC_LE_BITS > 8
36 # define tole(x) ((__force u32) cpu_to_le32(x))
37 #else
38 # define tole(x) (x)
39 #endif
40
41 #if CRC_BE_BITS > 8
42 # define tobe(x) ((__force u32) cpu_to_be32(x))
43 #else
44 # define tobe(x) (x)
45 #endif
46
47 #include "crc32table.h"
48
49 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
50 MODULE_DESCRIPTION("Various CRC32 calculations");
51 MODULE_LICENSE("GPL");
52
53 #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
54
55 /* implements slicing-by-4 or slicing-by-8 algorithm */
56 static inline u32 __pure
57 crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
58 {
59 # ifdef __LITTLE_ENDIAN
60 #  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
61 #  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
62                    t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
63 #  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
64                    t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
65 # else
66 #  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
67 #  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
68                    t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
69 #  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
70                    t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
71 # endif
72         const u32 *b;
73         size_t    rem_len;
74 # ifdef CONFIG_X86
75         size_t i;
76 # endif
77         const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
78 # if CRC_LE_BITS != 32
79         const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
80 # endif
81         u32 q;
82
83         /* Align it */
84         if (unlikely((long)buf & 3 && len)) {
85                 do {
86                         DO_CRC(*buf++);
87                 } while ((--len) && ((long)buf)&3);
88         }
89
90 # if CRC_LE_BITS == 32
91         rem_len = len & 3;
92         len = len >> 2;
93 # else
94         rem_len = len & 7;
95         len = len >> 3;
96 # endif
97
98         b = (const u32 *)buf;
99 # ifdef CONFIG_X86
100         --b;
101         for (i = 0; i < len; i++) {
102 # else
103         for (--b; len; --len) {
104 # endif
105                 q = crc ^ *++b; /* use pre increment for speed */
106 # if CRC_LE_BITS == 32
107                 crc = DO_CRC4;
108 # else
109                 crc = DO_CRC8;
110                 q = *++b;
111                 crc ^= DO_CRC4;
112 # endif
113         }
114         len = rem_len;
115         /* And the last few bytes */
116         if (len) {
117                 u8 *p = (u8 *)(b + 1) - 1;
118 # ifdef CONFIG_X86
119                 for (i = 0; i < len; i++)
120                         DO_CRC(*++p); /* use pre increment for speed */
121 # else
122                 do {
123                         DO_CRC(*++p); /* use pre increment for speed */
124                 } while (--len);
125 # endif
126         }
127         return crc;
128 #undef DO_CRC
129 #undef DO_CRC4
130 #undef DO_CRC8
131 }
132 #endif
133
134
135 /**
136  * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
137  *                      CRC32/CRC32C
138  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for other
139  *       uses, or the previous crc32/crc32c value if computing incrementally.
140  * @p: pointer to buffer over which CRC32/CRC32C is run
141  * @len: length of buffer @p
142  * @tab: little-endian Ethernet table
143  * @polynomial: CRC32/CRC32c LE polynomial
144  */
145 static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
146                                           size_t len, const u32 (*tab)[256],
147                                           u32 polynomial)
148 {
149 #if CRC_LE_BITS == 1
150         int i;
151         while (len--) {
152                 crc ^= *p++;
153                 for (i = 0; i < 8; i++)
154                         crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
155         }
156 # elif CRC_LE_BITS == 2
157         while (len--) {
158                 crc ^= *p++;
159                 crc = (crc >> 2) ^ tab[0][crc & 3];
160                 crc = (crc >> 2) ^ tab[0][crc & 3];
161                 crc = (crc >> 2) ^ tab[0][crc & 3];
162                 crc = (crc >> 2) ^ tab[0][crc & 3];
163         }
164 # elif CRC_LE_BITS == 4
165         while (len--) {
166                 crc ^= *p++;
167                 crc = (crc >> 4) ^ tab[0][crc & 15];
168                 crc = (crc >> 4) ^ tab[0][crc & 15];
169         }
170 # elif CRC_LE_BITS == 8
171         /* aka Sarwate algorithm */
172         while (len--) {
173                 crc ^= *p++;
174                 crc = (crc >> 8) ^ tab[0][crc & 255];
175         }
176 # else
177         crc = (__force u32) __cpu_to_le32(crc);
178         crc = crc32_body(crc, p, len, tab);
179         crc = __le32_to_cpu((__force __le32)crc);
180 #endif
181         return crc;
182 }
183
184 #if CRC_LE_BITS == 1
185 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
186 {
187         return crc32_le_generic(crc, p, len, NULL, CRCPOLY_LE);
188 }
189 u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
190 {
191         return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
192 }
193 #else
194 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
195 {
196         return crc32_le_generic(crc, p, len,
197                         (const u32 (*)[256])crc32table_le, CRCPOLY_LE);
198 }
199 u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
200 {
201         return crc32_le_generic(crc, p, len,
202                         (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
203 }
204 #endif
205 EXPORT_SYMBOL(crc32_le);
206 EXPORT_SYMBOL(__crc32c_le);
207
208 /*
209  * This multiplies the polynomials x and y modulo the given modulus.
210  * This follows the "little-endian" CRC convention that the lsbit
211  * represents the highest power of x, and the msbit represents x^0.
212  */
213 static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
214 {
215         u32 product = x & 1 ? y : 0;
216         int i;
217
218         for (i = 0; i < 31; i++) {
219                 product = (product >> 1) ^ (product & 1 ? modulus : 0);
220                 x >>= 1;
221                 product ^= x & 1 ? y : 0;
222         }
223
224         return product;
225 }
226
227 /**
228  * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
229  * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
230  * @len: The number of bytes. @crc is multiplied by x^(8*@len)
231  * @polynomial: The modulus used to reduce the result to 32 bits.
232  *
233  * It's possible to parallelize CRC computations by computing a CRC
234  * over separate ranges of a buffer, then summing them.
235  * This shifts the given CRC by 8*len bits (i.e. produces the same effect
236  * as appending len bytes of zero to the data), in time proportional
237  * to log(len).
238  */
239 static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
240                                                    u32 polynomial)
241 {
242         u32 power = polynomial; /* CRC of x^32 */
243         int i;
244
245         /* Shift up to 32 bits in the simple linear way */
246         for (i = 0; i < 8 * (int)(len & 3); i++)
247                 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
248
249         len >>= 2;
250         if (!len)
251                 return crc;
252
253         for (;;) {
254                 /* "power" is x^(2^i), modulo the polynomial */
255                 if (len & 1)
256                         crc = gf2_multiply(crc, power, polynomial);
257
258                 len >>= 1;
259                 if (!len)
260                         break;
261
262                 /* Square power, advancing to x^(2^(i+1)) */
263                 power = gf2_multiply(power, power, polynomial);
264         }
265
266         return crc;
267 }
268
269 u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
270 {
271         return crc32_generic_shift(crc, len, CRCPOLY_LE);
272 }
273
274 u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
275 {
276         return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
277 }
278 EXPORT_SYMBOL(crc32_le_shift);
279 EXPORT_SYMBOL(__crc32c_le_shift);
280
281 /**
282  * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
283  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
284  *      other uses, or the previous crc32 value if computing incrementally.
285  * @p: pointer to buffer over which CRC32 is run
286  * @len: length of buffer @p
287  * @tab: big-endian Ethernet table
288  * @polynomial: CRC32 BE polynomial
289  */
290 static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
291                                           size_t len, const u32 (*tab)[256],
292                                           u32 polynomial)
293 {
294 #if CRC_BE_BITS == 1
295         int i;
296         while (len--) {
297                 crc ^= *p++ << 24;
298                 for (i = 0; i < 8; i++)
299                         crc =
300                             (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
301                                           0);
302         }
303 # elif CRC_BE_BITS == 2
304         while (len--) {
305                 crc ^= *p++ << 24;
306                 crc = (crc << 2) ^ tab[0][crc >> 30];
307                 crc = (crc << 2) ^ tab[0][crc >> 30];
308                 crc = (crc << 2) ^ tab[0][crc >> 30];
309                 crc = (crc << 2) ^ tab[0][crc >> 30];
310         }
311 # elif CRC_BE_BITS == 4
312         while (len--) {
313                 crc ^= *p++ << 24;
314                 crc = (crc << 4) ^ tab[0][crc >> 28];
315                 crc = (crc << 4) ^ tab[0][crc >> 28];
316         }
317 # elif CRC_BE_BITS == 8
318         while (len--) {
319                 crc ^= *p++ << 24;
320                 crc = (crc << 8) ^ tab[0][crc >> 24];
321         }
322 # else
323         crc = (__force u32) __cpu_to_be32(crc);
324         crc = crc32_body(crc, p, len, tab);
325         crc = __be32_to_cpu((__force __be32)crc);
326 # endif
327         return crc;
328 }
329
330 #if CRC_LE_BITS == 1
331 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
332 {
333         return crc32_be_generic(crc, p, len, NULL, CRCPOLY_BE);
334 }
335 #else
336 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
337 {
338         return crc32_be_generic(crc, p, len,
339                         (const u32 (*)[256])crc32table_be, CRCPOLY_BE);
340 }
341 #endif
342 EXPORT_SYMBOL(crc32_be);