OSDN Git Service

Revert "glibc compat: bump glibc minor version"
[uclinux-h8/uclibc-ng.git] / libcrypt / sha512-crypt.c
1 /* One way encryption based on SHA512 sum.
2    Copyright (C) 2007, 2009 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
5
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <http://www.gnu.org/licenses/>.  */
19
20 #include <assert.h>
21 #include <errno.h>
22 #include <stdbool.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/param.h>
26
27 #include "sha512.h"
28 #include "libcrypt.h"
29
30 /* Define our magic string to mark salt for SHA512 "encryption"
31    replacement.  */
32 static const char sha512_salt_prefix[] = "$6$";
33
34 /* Prefix for optional rounds specification.  */
35 static const char sha512_rounds_prefix[] = "rounds=";
36
37 /* Maximum salt string length.  */
38 #define SALT_LEN_MAX 16
39 /* Default number of rounds if not explicitly specified.  */
40 #define ROUNDS_DEFAULT 5000
41 /* Minimum number of rounds.  */
42 #define ROUNDS_MIN 1000
43 /* Maximum number of rounds.  */
44 #define ROUNDS_MAX 999999999
45
46 /* Table with characters for base64 transformation.  */
47 static const char b64t[64] =
48 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
49
50 #define B64_FROM_24BIT(b2, b1, b0, steps) \
51         { \
52                 int n = (steps); \
53                 unsigned int w = ((b2) << 16) | ((b1) << 8) | (b0); \
54                 while (n-- > 0 && buflen > 0) \
55                 { \
56                         *cp++ = b64t[w & 0x3f]; \
57                         --buflen; \
58                         w >>= 6; \
59                 } \
60         }
61
62 char *
63 __sha512_crypt_r (const char *key,
64      const char *salt,
65      char *buffer,
66      int buflen)
67 {
68   unsigned char alt_result[64]
69     __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
70   unsigned char temp_result[64]
71     __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
72   size_t salt_len;
73   size_t key_len;
74   size_t cnt;
75   char *cp;
76   char *copied_key = NULL;
77   char *copied_salt = NULL;
78   char *p_bytes;
79   char *s_bytes;
80   /* Default number of rounds.  */
81   size_t rounds = ROUNDS_DEFAULT;
82   bool rounds_custom = false;
83
84   /* Find beginning of salt string.  The prefix should normally always
85      be present.  Just in case it is not.  */
86   if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0)
87     /* Skip salt prefix.  */
88     salt += sizeof (sha512_salt_prefix) - 1;
89
90   if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1)
91       == 0)
92     {
93       const char *num = salt + sizeof (sha512_rounds_prefix) - 1;
94       char *endp;
95       unsigned long int srounds = strtoul (num, &endp, 10);
96       if (*endp == '$')
97         {
98           salt = endp + 1;
99           rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
100           rounds_custom = true;
101         }
102     }
103
104   salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
105   key_len = strlen (key);
106
107   if ((key - (char *) 0) % __alignof__ (uint64_t) != 0)
108     {
109       char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t));
110       key = copied_key =
111         memcpy (tmp + __alignof__ (uint64_t)
112                 - (tmp - (char *) 0) % __alignof__ (uint64_t),
113                 key, key_len);
114       assert ((key - (char *) 0) % __alignof__ (uint64_t) == 0);
115     }
116
117   if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0)
118     {
119       char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t));
120       salt = copied_salt =
121         memcpy (tmp + __alignof__ (uint64_t)
122                 - (tmp - (char *) 0) % __alignof__ (uint64_t),
123                 salt, salt_len);
124       assert ((salt - (char *) 0) % __alignof__ (uint64_t) == 0);
125     }
126
127   struct sha512_ctx ctx;
128   struct sha512_ctx alt_ctx;
129
130   /* Prepare for the real work.  */
131   __sha512_init_ctx (&ctx);
132
133   /* Add the key string.  */
134   __sha512_process_bytes (key, key_len, &ctx);
135
136   /* The last part is the salt string.  This must be at most 16
137      characters and it ends at the first `$' character.  */
138   __sha512_process_bytes (salt, salt_len, &ctx);
139
140
141   /* Compute alternate SHA512 sum with input KEY, SALT, and KEY.  The
142      final result will be added to the first context.  */
143   __sha512_init_ctx (&alt_ctx);
144
145   /* Add key.  */
146   __sha512_process_bytes (key, key_len, &alt_ctx);
147
148   /* Add salt.  */
149   __sha512_process_bytes (salt, salt_len, &alt_ctx);
150
151   /* Add key again.  */
152   __sha512_process_bytes (key, key_len, &alt_ctx);
153
154   /* Now get result of this (64 bytes) and add it to the other
155      context.  */
156   __sha512_finish_ctx (&alt_ctx, alt_result);
157
158   /* Add for any character in the key one byte of the alternate sum.  */
159   for (cnt = key_len; cnt > 64; cnt -= 64)
160     __sha512_process_bytes (alt_result, 64, &ctx);
161
162   __sha512_process_bytes (alt_result, cnt, &ctx);
163
164   /* Take the binary representation of the length of the key and for every
165      1 add the alternate sum, for every 0 the key.  */
166   for (cnt = key_len; cnt > 0; cnt >>= 1)
167     if ((cnt & 1) != 0)
168       __sha512_process_bytes (alt_result, 64, &ctx);
169     else
170       __sha512_process_bytes (key, key_len, &ctx);
171
172   /* Create intermediate result.  */
173   __sha512_finish_ctx (&ctx, alt_result);
174
175   /* Start computation of P byte sequence.  */
176   __sha512_init_ctx (&alt_ctx);
177
178   /* For every character in the password add the entire password.  */
179   for (cnt = 0; cnt < key_len; ++cnt)
180     __sha512_process_bytes (key, key_len, &alt_ctx);
181
182   /* Finish the digest.  */
183   __sha512_finish_ctx (&alt_ctx, temp_result);
184
185   /* Create byte sequence P.  */
186   cp = p_bytes = alloca (key_len);
187   for (cnt = key_len; cnt >= 64; cnt -= 64)
188     cp = mempcpy (cp, temp_result, 64);
189   memcpy (cp, temp_result, cnt);
190
191   /* Start computation of S byte sequence.  */
192   __sha512_init_ctx (&alt_ctx);
193
194   /* For every character in the password add the entire password.  */
195   for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
196     __sha512_process_bytes (salt, salt_len, &alt_ctx);
197
198   /* Finish the digest.  */
199   __sha512_finish_ctx (&alt_ctx, temp_result);
200
201   /* Create byte sequence S.  */
202   cp = s_bytes = alloca (salt_len);
203   for (cnt = salt_len; cnt >= 64; cnt -= 64)
204     cp = mempcpy (cp, temp_result, 64);
205   memcpy (cp, temp_result, cnt);
206
207   /* Repeatedly run the collected hash value through SHA512 to burn
208      CPU cycles.  */
209   for (cnt = 0; cnt < rounds; ++cnt)
210     {
211       /* New context.  */
212       __sha512_init_ctx (&ctx);
213
214       /* Add key or last result.  */
215       if ((cnt & 1) != 0)
216         __sha512_process_bytes (p_bytes, key_len, &ctx);
217       else
218         __sha512_process_bytes (alt_result, 64, &ctx);
219
220       /* Add salt for numbers not divisible by 3.  */
221       if (cnt % 3 != 0)
222         __sha512_process_bytes (s_bytes, salt_len, &ctx);
223
224       /* Add key for numbers not divisible by 7.  */
225       if (cnt % 7 != 0)
226         __sha512_process_bytes (p_bytes, key_len, &ctx);
227
228       /* Add key or last result.  */
229       if ((cnt & 1) != 0)
230         __sha512_process_bytes (alt_result, 64, &ctx);
231       else
232         __sha512_process_bytes (p_bytes, key_len, &ctx);
233
234       /* Create intermediate result.  */
235       __sha512_finish_ctx (&ctx, alt_result);
236     }
237
238   /* Now we can construct the result string.  It consists of three
239      parts.  */
240   cp = stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen));
241   buflen -= sizeof (sha512_salt_prefix) - 1;
242
243   if (rounds_custom)
244     {
245       int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
246                         sha512_rounds_prefix, rounds);
247       cp += n;
248       buflen -= n;
249     }
250
251   cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
252   buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
253
254   if (buflen > 0)
255     {
256       *cp++ = '$';
257       --buflen;
258     }
259
260   B64_FROM_24BIT (alt_result[0], alt_result[21], alt_result[42], 4);
261   B64_FROM_24BIT (alt_result[22], alt_result[43], alt_result[1], 4);
262   B64_FROM_24BIT (alt_result[44], alt_result[2], alt_result[23], 4);
263   B64_FROM_24BIT (alt_result[3], alt_result[24], alt_result[45], 4);
264   B64_FROM_24BIT (alt_result[25], alt_result[46], alt_result[4], 4);
265   B64_FROM_24BIT (alt_result[47], alt_result[5], alt_result[26], 4);
266   B64_FROM_24BIT (alt_result[6], alt_result[27], alt_result[48], 4);
267   B64_FROM_24BIT (alt_result[28], alt_result[49], alt_result[7], 4);
268   B64_FROM_24BIT (alt_result[50], alt_result[8], alt_result[29], 4);
269   B64_FROM_24BIT (alt_result[9], alt_result[30], alt_result[51], 4);
270   B64_FROM_24BIT (alt_result[31], alt_result[52], alt_result[10], 4);
271   B64_FROM_24BIT (alt_result[53], alt_result[11], alt_result[32], 4);
272   B64_FROM_24BIT (alt_result[12], alt_result[33], alt_result[54], 4);
273   B64_FROM_24BIT (alt_result[34], alt_result[55], alt_result[13], 4);
274   B64_FROM_24BIT (alt_result[56], alt_result[14], alt_result[35], 4);
275   B64_FROM_24BIT (alt_result[15], alt_result[36], alt_result[57], 4);
276   B64_FROM_24BIT (alt_result[37], alt_result[58], alt_result[16], 4);
277   B64_FROM_24BIT (alt_result[59], alt_result[17], alt_result[38], 4);
278   B64_FROM_24BIT (alt_result[18], alt_result[39], alt_result[60], 4);
279   B64_FROM_24BIT (alt_result[40], alt_result[61], alt_result[19], 4);
280   B64_FROM_24BIT (alt_result[62], alt_result[20], alt_result[41], 4);
281   B64_FROM_24BIT (0, 0, alt_result[63], 2);
282
283   if (buflen <= 0)
284     {
285       __set_errno (ERANGE);
286       buffer = NULL;
287     }
288   else
289     *cp = '\0';         /* Terminate the string.  */
290
291   /* Clear the buffer for the intermediate result so that people
292      attaching to processes or reading core dumps cannot get any
293      information.  We do it in this way to clear correct_words[]
294      inside the SHA512 implementation as well.  */
295   __sha512_init_ctx (&ctx);
296   __sha512_finish_ctx (&ctx, alt_result);
297   memset (&ctx, '\0', sizeof (ctx));
298   memset (&alt_ctx, '\0', sizeof (alt_ctx));
299
300   memset (temp_result, '\0', sizeof (temp_result));
301   memset (p_bytes, '\0', key_len);
302   memset (s_bytes, '\0', salt_len);
303   if (copied_key != NULL)
304     memset (copied_key, '\0', key_len);
305   if (copied_salt != NULL)
306     memset (copied_salt, '\0', salt_len);
307
308   return buffer;
309 }
310
311 static char *buffer;
312
313 /* This entry point is equivalent to the `crypt' function in Unix
314    libcs.  */
315 char *
316 __sha512_crypt (const unsigned char *key, const unsigned char *salt)
317 {
318   /* We don't want to have an arbitrary limit in the size of the
319      password.  We can compute an upper bound for the size of the
320      result in advance and so we can prepare the buffer we pass to
321      `sha512_crypt_r'.  */
322   static int buflen;
323   int needed = (sizeof (sha512_salt_prefix) - 1
324                 + sizeof (sha512_rounds_prefix) + 9 + 1
325                 + strlen (salt) + 1 + 86 + 1);
326
327   if (buflen < needed)
328     {
329       char *new_buffer = (char *) realloc (buffer, needed);
330       if (new_buffer == NULL)
331         return NULL;
332
333       buffer = new_buffer;
334       buflen = needed;
335     }
336
337   return __sha512_crypt_r ((const char *) key, (const char *) salt, buffer, buflen);
338 }