OSDN Git Service

- add long double math wrappers (Ned Ludd)
[uclinux-h8/uclibc-ng.git] / libm / e_jn.c
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
15 #endif
16
17 /*
18  * __ieee754_jn(n, x), __ieee754_yn(n, x)
19  * floating point Bessel's function of the 1st and 2nd kind
20  * of order n
21  *
22  * Special cases:
23  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25  * Note 2. About jn(n,x), yn(n,x)
26  *      For n=0, j0(x) is called,
27  *      for n=1, j1(x) is called,
28  *      for n<x, forward recursion us used starting
29  *      from values of j0(x) and j1(x).
30  *      for n>x, a continued fraction approximation to
31  *      j(n,x)/j(n-1,x) is evaluated and then backward
32  *      recursion is used starting from a supposed value
33  *      for j(n,x). The resulting value of j(0,x) is
34  *      compared with the actual value to correct the
35  *      supposed value of j(n,x).
36  *
37  *      yn(n,x) is similar in all respects, except
38  *      that forward recursion is used for all
39  *      values of n>1.
40  *
41  */
42
43 #include "math.h"
44 #include "math_private.h"
45
46
47 #ifdef __STDC__
48 static const double
49 #else
50 static double
51 #endif
52 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
53 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
54 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
55
56 #ifdef __STDC__
57 static const double zero  =  0.00000000000000000000e+00;
58 #else
59 static double zero  =  0.00000000000000000000e+00;
60 #endif
61
62 #ifdef __STDC__
63         double attribute_hidden __ieee754_jn(int n, double x)
64 #else
65         double attribute_hidden __ieee754_jn(n,x)
66         int n; double x;
67 #endif
68 {
69         int32_t i,hx,ix,lx, sgn;
70         double a, b, temp=0, di;
71         double z, w;
72
73     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
74      * Thus, J(-n,x) = J(n,-x)
75      */
76         EXTRACT_WORDS(hx,lx,x);
77         ix = 0x7fffffff&hx;
78     /* if J(n,NaN) is NaN */
79         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
80         if(n<0){
81                 n = -n;
82                 x = -x;
83                 hx ^= 0x80000000;
84         }
85         if(n==0) return(__ieee754_j0(x));
86         if(n==1) return(__ieee754_j1(x));
87         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
88         x = fabs(x);
89         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
90             b = zero;
91         else if((double)n<=x) {
92                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
93             if(ix>=0x52D00000) { /* x > 2**302 */
94     /* (x >> n**2)
95      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
97      *      Let s=sin(x), c=cos(x),
98      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
99      *
100      *             n    sin(xn)*sqt2    cos(xn)*sqt2
101      *          ----------------------------------
102      *             0     s-c             c+s
103      *             1    -s-c            -c+s
104      *             2    -s+c            -c-s
105      *             3     s+c             c-s
106      */
107                 switch(n&3) {
108                     case 0: temp =  cos(x)+sin(x); break;
109                     case 1: temp = -cos(x)+sin(x); break;
110                     case 2: temp = -cos(x)-sin(x); break;
111                     case 3: temp =  cos(x)-sin(x); break;
112                 }
113                 b = invsqrtpi*temp/sqrt(x);
114             } else {
115                 a = __ieee754_j0(x);
116                 b = __ieee754_j1(x);
117                 for(i=1;i<n;i++){
118                     temp = b;
119                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
120                     a = temp;
121                 }
122             }
123         } else {
124             if(ix<0x3e100000) { /* x < 2**-29 */
125     /* x is tiny, return the first Taylor expansion of J(n,x)
126      * J(n,x) = 1/n!*(x/2)^n  - ...
127      */
128                 if(n>33)        /* underflow */
129                     b = zero;
130                 else {
131                     temp = x*0.5; b = temp;
132                     for (a=one,i=2;i<=n;i++) {
133                         a *= (double)i;         /* a = n! */
134                         b *= temp;              /* b = (x/2)^n */
135                     }
136                     b = b/a;
137                 }
138             } else {
139                 /* use backward recurrence */
140                 /*                      x      x^2      x^2
141                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
142                  *                      2n  - 2(n+1) - 2(n+2)
143                  *
144                  *                      1      1        1
145                  *  (for large x)   =  ----  ------   ------   .....
146                  *                      2n   2(n+1)   2(n+2)
147                  *                      -- - ------ - ------ -
148                  *                       x     x         x
149                  *
150                  * Let w = 2n/x and h=2/x, then the above quotient
151                  * is equal to the continued fraction:
152                  *                  1
153                  *      = -----------------------
154                  *                     1
155                  *         w - -----------------
156                  *                        1
157                  *              w+h - ---------
158                  *                     w+2h - ...
159                  *
160                  * To determine how many terms needed, let
161                  * Q(0) = w, Q(1) = w(w+h) - 1,
162                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
163                  * When Q(k) > 1e4      good for single
164                  * When Q(k) > 1e9      good for double
165                  * When Q(k) > 1e17     good for quadruple
166                  */
167             /* determine k */
168                 double t,v;
169                 double q0,q1,h,tmp; int32_t k,m;
170                 w  = (n+n)/(double)x; h = 2.0/(double)x;
171                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
172                 while(q1<1.0e9) {
173                         k += 1; z += h;
174                         tmp = z*q1 - q0;
175                         q0 = q1;
176                         q1 = tmp;
177                 }
178                 m = n+n;
179                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
180                 a = t;
181                 b = one;
182                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
183                  *  Hence, if n*(log(2n/x)) > ...
184                  *  single 8.8722839355e+01
185                  *  double 7.09782712893383973096e+02
186                  *  long double 1.1356523406294143949491931077970765006170e+04
187                  *  then recurrent value may overflow and the result is
188                  *  likely underflow to zero
189                  */
190                 tmp = n;
191                 v = two/x;
192                 tmp = tmp*__ieee754_log(fabs(v*tmp));
193                 if(tmp<7.09782712893383973096e+02) {
194                     for(i=n-1,di=(double)(i+i);i>0;i--){
195                         temp = b;
196                         b *= di;
197                         b  = b/x - a;
198                         a = temp;
199                         di -= two;
200                     }
201                 } else {
202                     for(i=n-1,di=(double)(i+i);i>0;i--){
203                         temp = b;
204                         b *= di;
205                         b  = b/x - a;
206                         a = temp;
207                         di -= two;
208                     /* scale b to avoid spurious overflow */
209                         if(b>1e100) {
210                             a /= b;
211                             t /= b;
212                             b  = one;
213                         }
214                     }
215                 }
216                 b = (t*__ieee754_j0(x)/b);
217             }
218         }
219         if(sgn==1) return -b; else return b;
220 }
221
222 #ifdef __STDC__
223         double attribute_hidden __ieee754_yn(int n, double x)
224 #else
225         double attribute_hidden __ieee754_yn(n,x)
226         int n; double x;
227 #endif
228 {
229         int32_t i,hx,ix,lx;
230         int32_t sign;
231         double a, b, temp=0;
232
233         EXTRACT_WORDS(hx,lx,x);
234         ix = 0x7fffffff&hx;
235     /* if Y(n,NaN) is NaN */
236         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
237         if((ix|lx)==0) return -one/zero;
238         if(hx<0) return zero/zero;
239         sign = 1;
240         if(n<0){
241                 n = -n;
242                 sign = 1 - ((n&1)<<1);
243         }
244         if(n==0) return(__ieee754_y0(x));
245         if(n==1) return(sign*__ieee754_y1(x));
246         if(ix==0x7ff00000) return zero;
247         if(ix>=0x52D00000) { /* x > 2**302 */
248     /* (x >> n**2)
249      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
250      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
251      *      Let s=sin(x), c=cos(x),
252      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
253      *
254      *             n    sin(xn)*sqt2    cos(xn)*sqt2
255      *          ----------------------------------
256      *             0     s-c             c+s
257      *             1    -s-c            -c+s
258      *             2    -s+c            -c-s
259      *             3     s+c             c-s
260      */
261                 switch(n&3) {
262                     case 0: temp =  sin(x)-cos(x); break;
263                     case 1: temp = -sin(x)-cos(x); break;
264                     case 2: temp = -sin(x)+cos(x); break;
265                     case 3: temp =  sin(x)+cos(x); break;
266                 }
267                 b = invsqrtpi*temp/sqrt(x);
268         } else {
269             u_int32_t high;
270             a = __ieee754_y0(x);
271             b = __ieee754_y1(x);
272         /* quit if b is -inf */
273             GET_HIGH_WORD(high,b);
274             for(i=1;i<n&&high!=0xfff00000;i++){
275                 temp = b;
276                 b = ((double)(i+i)/x)*b - a;
277                 GET_HIGH_WORD(high,b);
278                 a = temp;
279             }
280         }
281         if(sign>0) return b; else return -b;
282 }