OSDN Git Service

nptl_db: handle SUSv4-OB
[uclinux-h8/uClibc.git] / libpthread / nptl / pthread_mutex_timedlock.c
1 /* Copyright (C) 2002-2007, 2008 Free Software Foundation, Inc.
2    This file is part of the GNU C Library.
3    Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
4
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, write to the Free
17    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
18    02111-1307 USA.  */
19
20 #include <assert.h>
21 #include <errno.h>
22 #include <time.h>
23 #include "pthreadP.h"
24 #include <lowlevellock.h>
25 #include <not-cancel.h>
26
27 /* We need to build this function with optimization to avoid
28  * lll_timedlock erroring out with
29  * error: can't find a register in class ‘GENERAL_REGS’ while reloading ‘asm’
30  */
31 int
32 attribute_optimize("Os")
33 pthread_mutex_timedlock (
34      pthread_mutex_t *mutex,
35      const struct timespec *abstime)
36 {
37   int oldval;
38   pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
39   int result = 0;
40
41   /* We must not check ABSTIME here.  If the thread does not block
42      abstime must not be checked for a valid value.  */
43
44   switch (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex),
45                             PTHREAD_MUTEX_TIMED_NP))
46     {
47       /* Recursive mutex.  */
48     case PTHREAD_MUTEX_RECURSIVE_NP:
49       /* Check whether we already hold the mutex.  */
50       if (mutex->__data.__owner == id)
51         {
52           /* Just bump the counter.  */
53           if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
54             /* Overflow of the counter.  */
55             return EAGAIN;
56
57           ++mutex->__data.__count;
58
59           goto out;
60         }
61
62       /* We have to get the mutex.  */
63       result = lll_timedlock (mutex->__data.__lock, abstime,
64                               PTHREAD_MUTEX_PSHARED (mutex));
65
66       if (result != 0)
67         goto out;
68
69       /* Only locked once so far.  */
70       mutex->__data.__count = 1;
71       break;
72
73       /* Error checking mutex.  */
74     case PTHREAD_MUTEX_ERRORCHECK_NP:
75       /* Check whether we already hold the mutex.  */
76       if (__builtin_expect (mutex->__data.__owner == id, 0))
77         return EDEADLK;
78
79       /* FALLTHROUGH */
80
81     case PTHREAD_MUTEX_TIMED_NP:
82     simple:
83       /* Normal mutex.  */
84       result = lll_timedlock (mutex->__data.__lock, abstime,
85                               PTHREAD_MUTEX_PSHARED (mutex));
86       break;
87
88     case PTHREAD_MUTEX_ADAPTIVE_NP:
89       if (! __is_smp)
90         goto simple;
91
92       if (lll_trylock (mutex->__data.__lock) != 0)
93         {
94           int cnt = 0;
95           int max_cnt = MIN (MAX_ADAPTIVE_COUNT,
96                              mutex->__data.__spins * 2 + 10);
97           do
98             {
99               if (cnt++ >= max_cnt)
100                 {
101                   result = lll_timedlock (mutex->__data.__lock, abstime,
102                                           PTHREAD_MUTEX_PSHARED (mutex));
103                   break;
104                 }
105
106 #ifdef BUSY_WAIT_NOP
107               BUSY_WAIT_NOP;
108 #endif
109             }
110           while (lll_trylock (mutex->__data.__lock) != 0);
111
112           mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
113         }
114       break;
115
116     case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
117     case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
118     case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
119     case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
120       THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
121                      &mutex->__data.__list.__next);
122
123       oldval = mutex->__data.__lock;
124       do
125         {
126         again:
127           if ((oldval & FUTEX_OWNER_DIED) != 0)
128             {
129               /* The previous owner died.  Try locking the mutex.  */
130               int newval = id | (oldval & FUTEX_WAITERS);
131
132               newval
133                 = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
134                                                        newval, oldval);
135               if (newval != oldval)
136                 {
137                   oldval = newval;
138                   goto again;
139                 }
140
141               /* We got the mutex.  */
142               mutex->__data.__count = 1;
143               /* But it is inconsistent unless marked otherwise.  */
144               mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
145
146               ENQUEUE_MUTEX (mutex);
147               THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
148
149               /* Note that we deliberately exit here.  If we fall
150                  through to the end of the function __nusers would be
151                  incremented which is not correct because the old
152                  owner has to be discounted.  */
153               return EOWNERDEAD;
154             }
155
156           /* Check whether we already hold the mutex.  */
157           if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))
158             {
159               int kind = PTHREAD_MUTEX_TYPE (mutex);
160               if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
161                 {
162                   THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
163                                  NULL);
164                   return EDEADLK;
165                 }
166
167               if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
168                 {
169                   THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
170                                  NULL);
171
172                   /* Just bump the counter.  */
173                   if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
174                     /* Overflow of the counter.  */
175                     return EAGAIN;
176
177                   ++mutex->__data.__count;
178
179                   return 0;
180                 }
181             }
182
183           result = lll_robust_timedlock (mutex->__data.__lock, abstime, id,
184                                          PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
185
186           if (__builtin_expect (mutex->__data.__owner
187                                 == PTHREAD_MUTEX_NOTRECOVERABLE, 0))
188             {
189               /* This mutex is now not recoverable.  */
190               mutex->__data.__count = 0;
191               lll_unlock (mutex->__data.__lock,
192                           PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
193               THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
194               return ENOTRECOVERABLE;
195             }
196
197           if (result == ETIMEDOUT || result == EINVAL)
198             goto out;
199
200           oldval = result;
201         }
202       while ((oldval & FUTEX_OWNER_DIED) != 0);
203
204       mutex->__data.__count = 1;
205       ENQUEUE_MUTEX (mutex);
206       THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
207       break;
208
209     case PTHREAD_MUTEX_PI_RECURSIVE_NP:
210     case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
211     case PTHREAD_MUTEX_PI_NORMAL_NP:
212     case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
213     case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
214     case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
215     case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
216     case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
217       {
218         int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
219         int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
220
221         if (robust)
222           /* Note: robust PI futexes are signaled by setting bit 0.  */
223           THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
224                          (void *) (((uintptr_t) &mutex->__data.__list.__next)
225                                    | 1));
226
227         oldval = mutex->__data.__lock;
228
229         /* Check whether we already hold the mutex.  */
230         if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))
231           {
232             if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
233               {
234                 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
235                 return EDEADLK;
236               }
237
238             if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
239               {
240                 THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
241
242                 /* Just bump the counter.  */
243                 if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
244                   /* Overflow of the counter.  */
245                   return EAGAIN;
246
247                 ++mutex->__data.__count;
248
249                 return 0;
250               }
251           }
252
253         oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
254                                                       id, 0);
255
256         if (oldval != 0)
257           {
258             /* The mutex is locked.  The kernel will now take care of
259                everything.  The timeout value must be a relative value.
260                Convert it.  */
261             int private = (robust
262                            ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
263                            : PTHREAD_MUTEX_PSHARED (mutex));
264             INTERNAL_SYSCALL_DECL (__err);
265
266             int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
267                                       __lll_private_flag (FUTEX_LOCK_PI,
268                                                           private), 1,
269                                       abstime);
270             if (INTERNAL_SYSCALL_ERROR_P (e, __err))
271               {
272                 if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT)
273                   return ETIMEDOUT;
274
275                 if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH
276                     || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)
277                   {
278                     assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK
279                             || (kind != PTHREAD_MUTEX_ERRORCHECK_NP
280                                 && kind != PTHREAD_MUTEX_RECURSIVE_NP));
281                     /* ESRCH can happen only for non-robust PI mutexes where
282                        the owner of the lock died.  */
283                     assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH
284                             || !robust);
285
286                     /* Delay the thread until the timeout is reached.
287                        Then return ETIMEDOUT.  */
288                     struct timespec reltime;
289                     struct timespec now;
290
291                     INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME,
292                                       &now);
293                     reltime.tv_sec = abstime->tv_sec - now.tv_sec;
294                     reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec;
295                     if (reltime.tv_nsec < 0)
296                       {
297                         reltime.tv_nsec += 1000000000;
298                         --reltime.tv_sec;
299                       }
300                     if (reltime.tv_sec >= 0)
301                       while (nanosleep_not_cancel (&reltime, &reltime) != 0)
302                         continue;
303
304                     return ETIMEDOUT;
305                   }
306
307                 return INTERNAL_SYSCALL_ERRNO (e, __err);
308               }
309
310             oldval = mutex->__data.__lock;
311
312             assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
313           }
314
315         if (__builtin_expect (oldval & FUTEX_OWNER_DIED, 0))
316           {
317             atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
318
319             /* We got the mutex.  */
320             mutex->__data.__count = 1;
321             /* But it is inconsistent unless marked otherwise.  */
322             mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
323
324             ENQUEUE_MUTEX_PI (mutex);
325             THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
326
327             /* Note that we deliberately exit here.  If we fall
328                through to the end of the function __nusers would be
329                incremented which is not correct because the old owner
330                has to be discounted.  */
331             return EOWNERDEAD;
332           }
333
334         if (robust
335             && __builtin_expect (mutex->__data.__owner
336                                  == PTHREAD_MUTEX_NOTRECOVERABLE, 0))
337           {
338             /* This mutex is now not recoverable.  */
339             mutex->__data.__count = 0;
340
341             INTERNAL_SYSCALL_DECL (__err);
342             INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,
343                               __lll_private_flag (FUTEX_UNLOCK_PI,
344                                                   PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),
345                               0, 0);
346
347             THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
348             return ENOTRECOVERABLE;
349           }
350
351         mutex->__data.__count = 1;
352         if (robust)
353           {
354             ENQUEUE_MUTEX_PI (mutex);
355             THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
356           }
357         }
358       break;
359
360     case PTHREAD_MUTEX_PP_RECURSIVE_NP:
361     case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
362     case PTHREAD_MUTEX_PP_NORMAL_NP:
363     case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
364       {
365         int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;
366
367         oldval = mutex->__data.__lock;
368
369         /* Check whether we already hold the mutex.  */
370         if (mutex->__data.__owner == id)
371           {
372             if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
373               return EDEADLK;
374
375             if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
376               {
377                 /* Just bump the counter.  */
378                 if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))
379                   /* Overflow of the counter.  */
380                   return EAGAIN;
381
382                 ++mutex->__data.__count;
383
384                 return 0;
385               }
386           }
387
388         int oldprio = -1, ceilval;
389         do
390           {
391             int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
392                           >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
393
394             if (__pthread_current_priority () > ceiling)
395               {
396                 result = EINVAL;
397               failpp:
398                 if (oldprio != -1)
399                   __pthread_tpp_change_priority (oldprio, -1);
400                 return result;
401               }
402
403             result = __pthread_tpp_change_priority (oldprio, ceiling);
404             if (result)
405               return result;
406
407             ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
408             oldprio = ceiling;
409
410             oldval
411               = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
412                                                      ceilval | 1, ceilval);
413
414             if (oldval == ceilval)
415               break;
416
417             do
418               {
419                 oldval
420                   = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
421                                                          ceilval | 2,
422                                                          ceilval | 1);
423
424                 if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
425                   break;
426
427                 if (oldval != ceilval)
428                   {
429                     /* Reject invalid timeouts.  */
430                     if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)
431                       {
432                         result = EINVAL;
433                         goto failpp;
434                       }
435
436                     struct timeval tv;
437                     struct timespec rt;
438
439                     /* Get the current time.  */
440                     (void) gettimeofday (&tv, NULL);
441
442                     /* Compute relative timeout.  */
443                     rt.tv_sec = abstime->tv_sec - tv.tv_sec;
444                     rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;
445                     if (rt.tv_nsec < 0)
446                       {
447                         rt.tv_nsec += 1000000000;
448                         --rt.tv_sec;
449                       }
450
451                     /* Already timed out?  */
452                     if (rt.tv_sec < 0)
453                       {
454                         result = ETIMEDOUT;
455                         goto failpp;
456                       }
457
458                     lll_futex_timed_wait (&mutex->__data.__lock,
459                                           ceilval | 2, &rt,
460                                           PTHREAD_MUTEX_PSHARED (mutex));
461                   }
462               }
463             while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
464                                                         ceilval | 2, ceilval)
465                    != ceilval);
466           }
467         while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
468
469         assert (mutex->__data.__owner == 0);
470         mutex->__data.__count = 1;
471       }
472       break;
473
474     default:
475       /* Correct code cannot set any other type.  */
476       return EINVAL;
477     }
478
479   if (result == 0)
480     {
481       /* Record the ownership.  */
482       mutex->__data.__owner = id;
483       ++mutex->__data.__nusers;
484     }
485
486  out:
487   return result;
488 }