OSDN Git Service

Increment when attempting to read protected Parcel Data
[android-x86/frameworks-native.git] / libs / binder / Parcel.cpp
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #define LOG_TAG "Parcel"
18 //#define LOG_NDEBUG 0
19
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <pthread.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/mman.h>
28 #include <sys/stat.h>
29 #include <sys/types.h>
30 #include <sys/resource.h>
31 #include <unistd.h>
32
33 #include <binder/Binder.h>
34 #include <binder/BpBinder.h>
35 #include <binder/IPCThreadState.h>
36 #include <binder/Parcel.h>
37 #include <binder/ProcessState.h>
38 #include <binder/Status.h>
39 #include <binder/TextOutput.h>
40 #include <binder/Value.h>
41
42 #include <cutils/ashmem.h>
43 #include <utils/Debug.h>
44 #include <utils/Flattenable.h>
45 #include <utils/Log.h>
46 #include <utils/misc.h>
47 #include <utils/String8.h>
48 #include <utils/String16.h>
49
50 #include <private/binder/binder_module.h>
51 #include <private/binder/Static.h>
52
53 #ifndef INT32_MAX
54 #define INT32_MAX ((int32_t)(2147483647))
55 #endif
56
57 #define LOG_REFS(...)
58 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
59 #define LOG_ALLOC(...)
60 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
61
62 // ---------------------------------------------------------------------------
63
64 // This macro should never be used at runtime, as a too large value
65 // of s could cause an integer overflow. Instead, you should always
66 // use the wrapper function pad_size()
67 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
68
69 static size_t pad_size(size_t s) {
70     if (s > (SIZE_T_MAX - 3)) {
71         abort();
72     }
73     return PAD_SIZE_UNSAFE(s);
74 }
75
76 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
77 #define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
78
79 // XXX This can be made public if we want to provide
80 // support for typed data.
81 struct small_flat_data
82 {
83     uint32_t type;
84     uint32_t data;
85 };
86
87 namespace android {
88
89 static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
90 static size_t gParcelGlobalAllocSize = 0;
91 static size_t gParcelGlobalAllocCount = 0;
92
93 static size_t gMaxFds = 0;
94
95 // Maximum size of a blob to transfer in-place.
96 static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
97
98 enum {
99     BLOB_INPLACE = 0,
100     BLOB_ASHMEM_IMMUTABLE = 1,
101     BLOB_ASHMEM_MUTABLE = 2,
102 };
103
104 void acquire_object(const sp<ProcessState>& proc,
105     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
106 {
107     switch (obj.type) {
108         case BINDER_TYPE_BINDER:
109             if (obj.binder) {
110                 LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
111                 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
112             }
113             return;
114         case BINDER_TYPE_WEAK_BINDER:
115             if (obj.binder)
116                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
117             return;
118         case BINDER_TYPE_HANDLE: {
119             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
120             if (b != NULL) {
121                 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
122                 b->incStrong(who);
123             }
124             return;
125         }
126         case BINDER_TYPE_WEAK_HANDLE: {
127             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
128             if (b != NULL) b.get_refs()->incWeak(who);
129             return;
130         }
131         case BINDER_TYPE_FD: {
132             if ((obj.cookie != 0) && (outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
133                 // If we own an ashmem fd, keep track of how much memory it refers to.
134                 int size = ashmem_get_size_region(obj.handle);
135                 if (size > 0) {
136                     *outAshmemSize += size;
137                 }
138             }
139             return;
140         }
141     }
142
143     ALOGD("Invalid object type 0x%08x", obj.type);
144 }
145
146 void acquire_object(const sp<ProcessState>& proc,
147     const flat_binder_object& obj, const void* who)
148 {
149     acquire_object(proc, obj, who, NULL);
150 }
151
152 static void release_object(const sp<ProcessState>& proc,
153     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
154 {
155     switch (obj.type) {
156         case BINDER_TYPE_BINDER:
157             if (obj.binder) {
158                 LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
159                 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
160             }
161             return;
162         case BINDER_TYPE_WEAK_BINDER:
163             if (obj.binder)
164                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
165             return;
166         case BINDER_TYPE_HANDLE: {
167             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
168             if (b != NULL) {
169                 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
170                 b->decStrong(who);
171             }
172             return;
173         }
174         case BINDER_TYPE_WEAK_HANDLE: {
175             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
176             if (b != NULL) b.get_refs()->decWeak(who);
177             return;
178         }
179         case BINDER_TYPE_FD: {
180             if (obj.cookie != 0) { // owned
181                 if ((outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
182                     int size = ashmem_get_size_region(obj.handle);
183                     if (size > 0) {
184                         *outAshmemSize -= size;
185                     }
186                 }
187
188                 close(obj.handle);
189             }
190             return;
191         }
192     }
193
194     ALOGE("Invalid object type 0x%08x", obj.type);
195 }
196
197 void release_object(const sp<ProcessState>& proc,
198     const flat_binder_object& obj, const void* who)
199 {
200     release_object(proc, obj, who, NULL);
201 }
202
203 inline static status_t finish_flatten_binder(
204     const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
205 {
206     return out->writeObject(flat, false);
207 }
208
209 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
210     const sp<IBinder>& binder, Parcel* out)
211 {
212     flat_binder_object obj;
213
214     if (IPCThreadState::self()->backgroundSchedulingDisabled()) {
215         /* minimum priority for all nodes is nice 0 */
216         obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
217     } else {
218         /* minimum priority for all nodes is MAX_NICE(19) */
219         obj.flags = 0x13 | FLAT_BINDER_FLAG_ACCEPTS_FDS;
220     }
221
222     if (binder != NULL) {
223         IBinder *local = binder->localBinder();
224         if (!local) {
225             BpBinder *proxy = binder->remoteBinder();
226             if (proxy == NULL) {
227                 ALOGE("null proxy");
228             }
229             const int32_t handle = proxy ? proxy->handle() : 0;
230             obj.type = BINDER_TYPE_HANDLE;
231             obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
232             obj.handle = handle;
233             obj.cookie = 0;
234         } else {
235             obj.type = BINDER_TYPE_BINDER;
236             obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
237             obj.cookie = reinterpret_cast<uintptr_t>(local);
238         }
239     } else {
240         obj.type = BINDER_TYPE_BINDER;
241         obj.binder = 0;
242         obj.cookie = 0;
243     }
244
245     return finish_flatten_binder(binder, obj, out);
246 }
247
248 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
249     const wp<IBinder>& binder, Parcel* out)
250 {
251     flat_binder_object obj;
252
253     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
254     if (binder != NULL) {
255         sp<IBinder> real = binder.promote();
256         if (real != NULL) {
257             IBinder *local = real->localBinder();
258             if (!local) {
259                 BpBinder *proxy = real->remoteBinder();
260                 if (proxy == NULL) {
261                     ALOGE("null proxy");
262                 }
263                 const int32_t handle = proxy ? proxy->handle() : 0;
264                 obj.type = BINDER_TYPE_WEAK_HANDLE;
265                 obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
266                 obj.handle = handle;
267                 obj.cookie = 0;
268             } else {
269                 obj.type = BINDER_TYPE_WEAK_BINDER;
270                 obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
271                 obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
272             }
273             return finish_flatten_binder(real, obj, out);
274         }
275
276         // XXX How to deal?  In order to flatten the given binder,
277         // we need to probe it for information, which requires a primary
278         // reference...  but we don't have one.
279         //
280         // The OpenBinder implementation uses a dynamic_cast<> here,
281         // but we can't do that with the different reference counting
282         // implementation we are using.
283         ALOGE("Unable to unflatten Binder weak reference!");
284         obj.type = BINDER_TYPE_BINDER;
285         obj.binder = 0;
286         obj.cookie = 0;
287         return finish_flatten_binder(NULL, obj, out);
288
289     } else {
290         obj.type = BINDER_TYPE_BINDER;
291         obj.binder = 0;
292         obj.cookie = 0;
293         return finish_flatten_binder(NULL, obj, out);
294     }
295 }
296
297 inline static status_t finish_unflatten_binder(
298     BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
299     const Parcel& /*in*/)
300 {
301     return NO_ERROR;
302 }
303
304 status_t unflatten_binder(const sp<ProcessState>& proc,
305     const Parcel& in, sp<IBinder>* out)
306 {
307     const flat_binder_object* flat = in.readObject(false);
308
309     if (flat) {
310         switch (flat->type) {
311             case BINDER_TYPE_BINDER:
312                 *out = reinterpret_cast<IBinder*>(flat->cookie);
313                 return finish_unflatten_binder(NULL, *flat, in);
314             case BINDER_TYPE_HANDLE:
315                 *out = proc->getStrongProxyForHandle(flat->handle);
316                 return finish_unflatten_binder(
317                     static_cast<BpBinder*>(out->get()), *flat, in);
318         }
319     }
320     return BAD_TYPE;
321 }
322
323 status_t unflatten_binder(const sp<ProcessState>& proc,
324     const Parcel& in, wp<IBinder>* out)
325 {
326     const flat_binder_object* flat = in.readObject(false);
327
328     if (flat) {
329         switch (flat->type) {
330             case BINDER_TYPE_BINDER:
331                 *out = reinterpret_cast<IBinder*>(flat->cookie);
332                 return finish_unflatten_binder(NULL, *flat, in);
333             case BINDER_TYPE_WEAK_BINDER:
334                 if (flat->binder != 0) {
335                     out->set_object_and_refs(
336                         reinterpret_cast<IBinder*>(flat->cookie),
337                         reinterpret_cast<RefBase::weakref_type*>(flat->binder));
338                 } else {
339                     *out = NULL;
340                 }
341                 return finish_unflatten_binder(NULL, *flat, in);
342             case BINDER_TYPE_HANDLE:
343             case BINDER_TYPE_WEAK_HANDLE:
344                 *out = proc->getWeakProxyForHandle(flat->handle);
345                 return finish_unflatten_binder(
346                     static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
347         }
348     }
349     return BAD_TYPE;
350 }
351
352 // ---------------------------------------------------------------------------
353
354 Parcel::Parcel()
355 {
356     LOG_ALLOC("Parcel %p: constructing", this);
357     initState();
358 }
359
360 Parcel::~Parcel()
361 {
362     freeDataNoInit();
363     LOG_ALLOC("Parcel %p: destroyed", this);
364 }
365
366 size_t Parcel::getGlobalAllocSize() {
367     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
368     size_t size = gParcelGlobalAllocSize;
369     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
370     return size;
371 }
372
373 size_t Parcel::getGlobalAllocCount() {
374     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
375     size_t count = gParcelGlobalAllocCount;
376     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
377     return count;
378 }
379
380 const uint8_t* Parcel::data() const
381 {
382     return mData;
383 }
384
385 size_t Parcel::dataSize() const
386 {
387     return (mDataSize > mDataPos ? mDataSize : mDataPos);
388 }
389
390 size_t Parcel::dataAvail() const
391 {
392     size_t result = dataSize() - dataPosition();
393     if (result > INT32_MAX) {
394         abort();
395     }
396     return result;
397 }
398
399 size_t Parcel::dataPosition() const
400 {
401     return mDataPos;
402 }
403
404 size_t Parcel::dataCapacity() const
405 {
406     return mDataCapacity;
407 }
408
409 status_t Parcel::setDataSize(size_t size)
410 {
411     if (size > INT32_MAX) {
412         // don't accept size_t values which may have come from an
413         // inadvertent conversion from a negative int.
414         return BAD_VALUE;
415     }
416
417     status_t err;
418     err = continueWrite(size);
419     if (err == NO_ERROR) {
420         mDataSize = size;
421         ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
422     }
423     return err;
424 }
425
426 void Parcel::setDataPosition(size_t pos) const
427 {
428     if (pos > INT32_MAX) {
429         // don't accept size_t values which may have come from an
430         // inadvertent conversion from a negative int.
431         abort();
432     }
433
434     mDataPos = pos;
435     mNextObjectHint = 0;
436     mObjectsSorted = false;
437 }
438
439 status_t Parcel::setDataCapacity(size_t size)
440 {
441     if (size > INT32_MAX) {
442         // don't accept size_t values which may have come from an
443         // inadvertent conversion from a negative int.
444         return BAD_VALUE;
445     }
446
447     if (size > mDataCapacity) return continueWrite(size);
448     return NO_ERROR;
449 }
450
451 status_t Parcel::setData(const uint8_t* buffer, size_t len)
452 {
453     if (len > INT32_MAX) {
454         // don't accept size_t values which may have come from an
455         // inadvertent conversion from a negative int.
456         return BAD_VALUE;
457     }
458
459     status_t err = restartWrite(len);
460     if (err == NO_ERROR) {
461         memcpy(const_cast<uint8_t*>(data()), buffer, len);
462         mDataSize = len;
463         mFdsKnown = false;
464     }
465     return err;
466 }
467
468 status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
469 {
470     const sp<ProcessState> proc(ProcessState::self());
471     status_t err;
472     const uint8_t *data = parcel->mData;
473     const binder_size_t *objects = parcel->mObjects;
474     size_t size = parcel->mObjectsSize;
475     int startPos = mDataPos;
476     int firstIndex = -1, lastIndex = -2;
477
478     if (len == 0) {
479         return NO_ERROR;
480     }
481
482     if (len > INT32_MAX) {
483         // don't accept size_t values which may have come from an
484         // inadvertent conversion from a negative int.
485         return BAD_VALUE;
486     }
487
488     // range checks against the source parcel size
489     if ((offset > parcel->mDataSize)
490             || (len > parcel->mDataSize)
491             || (offset + len > parcel->mDataSize)) {
492         return BAD_VALUE;
493     }
494
495     // Count objects in range
496     for (int i = 0; i < (int) size; i++) {
497         size_t off = objects[i];
498         if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
499             if (firstIndex == -1) {
500                 firstIndex = i;
501             }
502             lastIndex = i;
503         }
504     }
505     int numObjects = lastIndex - firstIndex + 1;
506
507     if ((mDataSize+len) > mDataCapacity) {
508         // grow data
509         err = growData(len);
510         if (err != NO_ERROR) {
511             return err;
512         }
513     }
514
515     // append data
516     memcpy(mData + mDataPos, data + offset, len);
517     mDataPos += len;
518     mDataSize += len;
519
520     err = NO_ERROR;
521
522     if (numObjects > 0) {
523         // grow objects
524         if (mObjectsCapacity < mObjectsSize + numObjects) {
525             size_t newSize = ((mObjectsSize + numObjects)*3)/2;
526             if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY;   // overflow
527             binder_size_t *objects =
528                 (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
529             if (objects == (binder_size_t*)0) {
530                 return NO_MEMORY;
531             }
532             mObjects = objects;
533             mObjectsCapacity = newSize;
534         }
535
536         // append and acquire objects
537         int idx = mObjectsSize;
538         for (int i = firstIndex; i <= lastIndex; i++) {
539             size_t off = objects[i] - offset + startPos;
540             mObjects[idx++] = off;
541             mObjectsSize++;
542
543             flat_binder_object* flat
544                 = reinterpret_cast<flat_binder_object*>(mData + off);
545             acquire_object(proc, *flat, this, &mOpenAshmemSize);
546
547             if (flat->type == BINDER_TYPE_FD) {
548                 // If this is a file descriptor, we need to dup it so the
549                 // new Parcel now owns its own fd, and can declare that we
550                 // officially know we have fds.
551                 flat->handle = fcntl(flat->handle, F_DUPFD_CLOEXEC, 0);
552                 flat->cookie = 1;
553                 mHasFds = mFdsKnown = true;
554                 if (!mAllowFds) {
555                     err = FDS_NOT_ALLOWED;
556                 }
557             }
558         }
559     }
560
561     return err;
562 }
563
564 int Parcel::compareData(const Parcel& other) {
565     size_t size = dataSize();
566     if (size != other.dataSize()) {
567         return size < other.dataSize() ? -1 : 1;
568     }
569     return memcmp(data(), other.data(), size);
570 }
571
572 bool Parcel::allowFds() const
573 {
574     return mAllowFds;
575 }
576
577 bool Parcel::pushAllowFds(bool allowFds)
578 {
579     const bool origValue = mAllowFds;
580     if (!allowFds) {
581         mAllowFds = false;
582     }
583     return origValue;
584 }
585
586 void Parcel::restoreAllowFds(bool lastValue)
587 {
588     mAllowFds = lastValue;
589 }
590
591 bool Parcel::hasFileDescriptors() const
592 {
593     if (!mFdsKnown) {
594         scanForFds();
595     }
596     return mHasFds;
597 }
598
599 // Write RPC headers.  (previously just the interface token)
600 status_t Parcel::writeInterfaceToken(const String16& interface)
601 {
602     writeInt32(IPCThreadState::self()->getStrictModePolicy() |
603                STRICT_MODE_PENALTY_GATHER);
604     // currently the interface identification token is just its name as a string
605     return writeString16(interface);
606 }
607
608 bool Parcel::checkInterface(IBinder* binder) const
609 {
610     return enforceInterface(binder->getInterfaceDescriptor());
611 }
612
613 bool Parcel::enforceInterface(const String16& interface,
614                               IPCThreadState* threadState) const
615 {
616     int32_t strictPolicy = readInt32();
617     if (threadState == NULL) {
618         threadState = IPCThreadState::self();
619     }
620     if ((threadState->getLastTransactionBinderFlags() &
621          IBinder::FLAG_ONEWAY) != 0) {
622       // For one-way calls, the callee is running entirely
623       // disconnected from the caller, so disable StrictMode entirely.
624       // Not only does disk/network usage not impact the caller, but
625       // there's no way to commuicate back any violations anyway.
626       threadState->setStrictModePolicy(0);
627     } else {
628       threadState->setStrictModePolicy(strictPolicy);
629     }
630     const String16 str(readString16());
631     if (str == interface) {
632         return true;
633     } else {
634         ALOGW("**** enforceInterface() expected '%s' but read '%s'",
635                 String8(interface).string(), String8(str).string());
636         return false;
637     }
638 }
639
640 const binder_size_t* Parcel::objects() const
641 {
642     return mObjects;
643 }
644
645 size_t Parcel::objectsCount() const
646 {
647     return mObjectsSize;
648 }
649
650 status_t Parcel::errorCheck() const
651 {
652     return mError;
653 }
654
655 void Parcel::setError(status_t err)
656 {
657     mError = err;
658 }
659
660 status_t Parcel::finishWrite(size_t len)
661 {
662     if (len > INT32_MAX) {
663         // don't accept size_t values which may have come from an
664         // inadvertent conversion from a negative int.
665         return BAD_VALUE;
666     }
667
668     //printf("Finish write of %d\n", len);
669     mDataPos += len;
670     ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
671     if (mDataPos > mDataSize) {
672         mDataSize = mDataPos;
673         ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
674     }
675     //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
676     return NO_ERROR;
677 }
678
679 status_t Parcel::writeUnpadded(const void* data, size_t len)
680 {
681     if (len > INT32_MAX) {
682         // don't accept size_t values which may have come from an
683         // inadvertent conversion from a negative int.
684         return BAD_VALUE;
685     }
686
687     size_t end = mDataPos + len;
688     if (end < mDataPos) {
689         // integer overflow
690         return BAD_VALUE;
691     }
692
693     if (end <= mDataCapacity) {
694 restart_write:
695         memcpy(mData+mDataPos, data, len);
696         return finishWrite(len);
697     }
698
699     status_t err = growData(len);
700     if (err == NO_ERROR) goto restart_write;
701     return err;
702 }
703
704 status_t Parcel::write(const void* data, size_t len)
705 {
706     if (len > INT32_MAX) {
707         // don't accept size_t values which may have come from an
708         // inadvertent conversion from a negative int.
709         return BAD_VALUE;
710     }
711
712     void* const d = writeInplace(len);
713     if (d) {
714         memcpy(d, data, len);
715         return NO_ERROR;
716     }
717     return mError;
718 }
719
720 void* Parcel::writeInplace(size_t len)
721 {
722     if (len > INT32_MAX) {
723         // don't accept size_t values which may have come from an
724         // inadvertent conversion from a negative int.
725         return NULL;
726     }
727
728     const size_t padded = pad_size(len);
729
730     // sanity check for integer overflow
731     if (mDataPos+padded < mDataPos) {
732         return NULL;
733     }
734
735     if ((mDataPos+padded) <= mDataCapacity) {
736 restart_write:
737         //printf("Writing %ld bytes, padded to %ld\n", len, padded);
738         uint8_t* const data = mData+mDataPos;
739
740         // Need to pad at end?
741         if (padded != len) {
742 #if BYTE_ORDER == BIG_ENDIAN
743             static const uint32_t mask[4] = {
744                 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
745             };
746 #endif
747 #if BYTE_ORDER == LITTLE_ENDIAN
748             static const uint32_t mask[4] = {
749                 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
750             };
751 #endif
752             //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
753             //    *reinterpret_cast<void**>(data+padded-4));
754             *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
755         }
756
757         finishWrite(padded);
758         return data;
759     }
760
761     status_t err = growData(padded);
762     if (err == NO_ERROR) goto restart_write;
763     return NULL;
764 }
765
766 status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
767     const uint8_t* strData = (uint8_t*)str.data();
768     const size_t strLen= str.length();
769     const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
770     if (utf16Len < 0 || utf16Len > std::numeric_limits<int32_t>::max()) {
771         return BAD_VALUE;
772     }
773
774     status_t err = writeInt32(utf16Len);
775     if (err) {
776         return err;
777     }
778
779     // Allocate enough bytes to hold our converted string and its terminating NULL.
780     void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
781     if (!dst) {
782         return NO_MEMORY;
783     }
784
785     utf8_to_utf16(strData, strLen, (char16_t*)dst, (size_t) utf16Len + 1);
786
787     return NO_ERROR;
788 }
789
790 status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
791   if (!str) {
792     return writeInt32(-1);
793   }
794   return writeUtf8AsUtf16(*str);
795 }
796
797 namespace {
798
799 template<typename T>
800 status_t writeByteVectorInternal(Parcel* parcel, const std::vector<T>& val)
801 {
802     status_t status;
803     if (val.size() > std::numeric_limits<int32_t>::max()) {
804         status = BAD_VALUE;
805         return status;
806     }
807
808     status = parcel->writeInt32(val.size());
809     if (status != OK) {
810         return status;
811     }
812
813     void* data = parcel->writeInplace(val.size());
814     if (!data) {
815         status = BAD_VALUE;
816         return status;
817     }
818
819     memcpy(data, val.data(), val.size());
820     return status;
821 }
822
823 template<typename T>
824 status_t writeByteVectorInternalPtr(Parcel* parcel,
825                                     const std::unique_ptr<std::vector<T>>& val)
826 {
827     if (!val) {
828         return parcel->writeInt32(-1);
829     }
830
831     return writeByteVectorInternal(parcel, *val);
832 }
833
834 }  // namespace
835
836 status_t Parcel::writeByteVector(const std::vector<int8_t>& val) {
837     return writeByteVectorInternal(this, val);
838 }
839
840 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
841 {
842     return writeByteVectorInternalPtr(this, val);
843 }
844
845 status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) {
846     return writeByteVectorInternal(this, val);
847 }
848
849 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val)
850 {
851     return writeByteVectorInternalPtr(this, val);
852 }
853
854 status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
855 {
856     return writeTypedVector(val, &Parcel::writeInt32);
857 }
858
859 status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
860 {
861     return writeNullableTypedVector(val, &Parcel::writeInt32);
862 }
863
864 status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
865 {
866     return writeTypedVector(val, &Parcel::writeInt64);
867 }
868
869 status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
870 {
871     return writeNullableTypedVector(val, &Parcel::writeInt64);
872 }
873
874 status_t Parcel::writeFloatVector(const std::vector<float>& val)
875 {
876     return writeTypedVector(val, &Parcel::writeFloat);
877 }
878
879 status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
880 {
881     return writeNullableTypedVector(val, &Parcel::writeFloat);
882 }
883
884 status_t Parcel::writeDoubleVector(const std::vector<double>& val)
885 {
886     return writeTypedVector(val, &Parcel::writeDouble);
887 }
888
889 status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
890 {
891     return writeNullableTypedVector(val, &Parcel::writeDouble);
892 }
893
894 status_t Parcel::writeBoolVector(const std::vector<bool>& val)
895 {
896     return writeTypedVector(val, &Parcel::writeBool);
897 }
898
899 status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
900 {
901     return writeNullableTypedVector(val, &Parcel::writeBool);
902 }
903
904 status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
905 {
906     return writeTypedVector(val, &Parcel::writeChar);
907 }
908
909 status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
910 {
911     return writeNullableTypedVector(val, &Parcel::writeChar);
912 }
913
914 status_t Parcel::writeString16Vector(const std::vector<String16>& val)
915 {
916     return writeTypedVector(val, &Parcel::writeString16);
917 }
918
919 status_t Parcel::writeString16Vector(
920         const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
921 {
922     return writeNullableTypedVector(val, &Parcel::writeString16);
923 }
924
925 status_t Parcel::writeUtf8VectorAsUtf16Vector(
926                         const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
927     return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
928 }
929
930 status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
931     return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
932 }
933
934 status_t Parcel::writeInt32(int32_t val)
935 {
936     return writeAligned(val);
937 }
938
939 status_t Parcel::writeUint32(uint32_t val)
940 {
941     return writeAligned(val);
942 }
943
944 status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
945     if (len > INT32_MAX) {
946         // don't accept size_t values which may have come from an
947         // inadvertent conversion from a negative int.
948         return BAD_VALUE;
949     }
950
951     if (!val) {
952         return writeInt32(-1);
953     }
954     status_t ret = writeInt32(static_cast<uint32_t>(len));
955     if (ret == NO_ERROR) {
956         ret = write(val, len * sizeof(*val));
957     }
958     return ret;
959 }
960 status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
961     if (len > INT32_MAX) {
962         // don't accept size_t values which may have come from an
963         // inadvertent conversion from a negative int.
964         return BAD_VALUE;
965     }
966
967     if (!val) {
968         return writeInt32(-1);
969     }
970     status_t ret = writeInt32(static_cast<uint32_t>(len));
971     if (ret == NO_ERROR) {
972         ret = write(val, len * sizeof(*val));
973     }
974     return ret;
975 }
976
977 status_t Parcel::writeBool(bool val)
978 {
979     return writeInt32(int32_t(val));
980 }
981
982 status_t Parcel::writeChar(char16_t val)
983 {
984     return writeInt32(int32_t(val));
985 }
986
987 status_t Parcel::writeByte(int8_t val)
988 {
989     return writeInt32(int32_t(val));
990 }
991
992 status_t Parcel::writeInt64(int64_t val)
993 {
994     return writeAligned(val);
995 }
996
997 status_t Parcel::writeUint64(uint64_t val)
998 {
999     return writeAligned(val);
1000 }
1001
1002 status_t Parcel::writePointer(uintptr_t val)
1003 {
1004     return writeAligned<binder_uintptr_t>(val);
1005 }
1006
1007 status_t Parcel::writeFloat(float val)
1008 {
1009     return writeAligned(val);
1010 }
1011
1012 #if defined(__mips__) && defined(__mips_hard_float)
1013
1014 status_t Parcel::writeDouble(double val)
1015 {
1016     union {
1017         double d;
1018         unsigned long long ll;
1019     } u;
1020     u.d = val;
1021     return writeAligned(u.ll);
1022 }
1023
1024 #else
1025
1026 status_t Parcel::writeDouble(double val)
1027 {
1028     return writeAligned(val);
1029 }
1030
1031 #endif
1032
1033 status_t Parcel::writeCString(const char* str)
1034 {
1035     return write(str, strlen(str)+1);
1036 }
1037
1038 status_t Parcel::writeString8(const String8& str)
1039 {
1040     status_t err = writeInt32(str.bytes());
1041     // only write string if its length is more than zero characters,
1042     // as readString8 will only read if the length field is non-zero.
1043     // this is slightly different from how writeString16 works.
1044     if (str.bytes() > 0 && err == NO_ERROR) {
1045         err = write(str.string(), str.bytes()+1);
1046     }
1047     return err;
1048 }
1049
1050 status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
1051 {
1052     if (!str) {
1053         return writeInt32(-1);
1054     }
1055
1056     return writeString16(*str);
1057 }
1058
1059 status_t Parcel::writeString16(const String16& str)
1060 {
1061     return writeString16(str.string(), str.size());
1062 }
1063
1064 status_t Parcel::writeString16(const char16_t* str, size_t len)
1065 {
1066     if (str == NULL) return writeInt32(-1);
1067
1068     status_t err = writeInt32(len);
1069     if (err == NO_ERROR) {
1070         len *= sizeof(char16_t);
1071         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1072         if (data) {
1073             memcpy(data, str, len);
1074             *reinterpret_cast<char16_t*>(data+len) = 0;
1075             return NO_ERROR;
1076         }
1077         err = mError;
1078     }
1079     return err;
1080 }
1081
1082 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1083 {
1084     return flatten_binder(ProcessState::self(), val, this);
1085 }
1086
1087 status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1088 {
1089     return writeTypedVector(val, &Parcel::writeStrongBinder);
1090 }
1091
1092 status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
1093 {
1094     return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
1095 }
1096
1097 status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
1098     return readNullableTypedVector(val, &Parcel::readNullableStrongBinder);
1099 }
1100
1101 status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1102     return readTypedVector(val, &Parcel::readStrongBinder);
1103 }
1104
1105 status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1106 {
1107     return flatten_binder(ProcessState::self(), val, this);
1108 }
1109
1110 status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1111     if (!parcelable) {
1112         return writeInt32(0);
1113     }
1114
1115     return writeParcelable(*parcelable);
1116 }
1117
1118 status_t Parcel::writeParcelable(const Parcelable& parcelable) {
1119     status_t status = writeInt32(1);  // parcelable is not null.
1120     if (status != OK) {
1121         return status;
1122     }
1123     return parcelable.writeToParcel(this);
1124 }
1125
1126 status_t Parcel::writeValue(const binder::Value& value) {
1127     return value.writeToParcel(this);
1128 }
1129
1130 status_t Parcel::writeNativeHandle(const native_handle* handle)
1131 {
1132     if (!handle || handle->version != sizeof(native_handle))
1133         return BAD_TYPE;
1134
1135     status_t err;
1136     err = writeInt32(handle->numFds);
1137     if (err != NO_ERROR) return err;
1138
1139     err = writeInt32(handle->numInts);
1140     if (err != NO_ERROR) return err;
1141
1142     for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1143         err = writeDupFileDescriptor(handle->data[i]);
1144
1145     if (err != NO_ERROR) {
1146         ALOGD("write native handle, write dup fd failed");
1147         return err;
1148     }
1149     err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1150     return err;
1151 }
1152
1153 status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1154 {
1155     flat_binder_object obj;
1156     obj.type = BINDER_TYPE_FD;
1157     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1158     obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1159     obj.handle = fd;
1160     obj.cookie = takeOwnership ? 1 : 0;
1161     return writeObject(obj, true);
1162 }
1163
1164 status_t Parcel::writeDupFileDescriptor(int fd)
1165 {
1166     int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
1167     if (dupFd < 0) {
1168         return -errno;
1169     }
1170     status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1171     if (err != OK) {
1172         close(dupFd);
1173     }
1174     return err;
1175 }
1176
1177 status_t Parcel::writeParcelFileDescriptor(int fd, bool takeOwnership)
1178 {
1179     writeInt32(0);
1180     return writeFileDescriptor(fd, takeOwnership);
1181 }
1182
1183 status_t Parcel::writeUniqueFileDescriptor(const base::unique_fd& fd) {
1184     return writeDupFileDescriptor(fd.get());
1185 }
1186
1187 status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<base::unique_fd>& val) {
1188     return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1189 }
1190
1191 status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>>& val) {
1192     return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1193 }
1194
1195 status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1196 {
1197     if (len > INT32_MAX) {
1198         // don't accept size_t values which may have come from an
1199         // inadvertent conversion from a negative int.
1200         return BAD_VALUE;
1201     }
1202
1203     status_t status;
1204     if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1205         ALOGV("writeBlob: write in place");
1206         status = writeInt32(BLOB_INPLACE);
1207         if (status) return status;
1208
1209         void* ptr = writeInplace(len);
1210         if (!ptr) return NO_MEMORY;
1211
1212         outBlob->init(-1, ptr, len, false);
1213         return NO_ERROR;
1214     }
1215
1216     ALOGV("writeBlob: write to ashmem");
1217     int fd = ashmem_create_region("Parcel Blob", len);
1218     if (fd < 0) return NO_MEMORY;
1219
1220     int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1221     if (result < 0) {
1222         status = result;
1223     } else {
1224         void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1225         if (ptr == MAP_FAILED) {
1226             status = -errno;
1227         } else {
1228             if (!mutableCopy) {
1229                 result = ashmem_set_prot_region(fd, PROT_READ);
1230             }
1231             if (result < 0) {
1232                 status = result;
1233             } else {
1234                 status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1235                 if (!status) {
1236                     status = writeFileDescriptor(fd, true /*takeOwnership*/);
1237                     if (!status) {
1238                         outBlob->init(fd, ptr, len, mutableCopy);
1239                         return NO_ERROR;
1240                     }
1241                 }
1242             }
1243         }
1244         ::munmap(ptr, len);
1245     }
1246     ::close(fd);
1247     return status;
1248 }
1249
1250 status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1251 {
1252     // Must match up with what's done in writeBlob.
1253     if (!mAllowFds) return FDS_NOT_ALLOWED;
1254     status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1255     if (status) return status;
1256     return writeDupFileDescriptor(fd);
1257 }
1258
1259 status_t Parcel::write(const FlattenableHelperInterface& val)
1260 {
1261     status_t err;
1262
1263     // size if needed
1264     const size_t len = val.getFlattenedSize();
1265     const size_t fd_count = val.getFdCount();
1266
1267     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1268         // don't accept size_t values which may have come from an
1269         // inadvertent conversion from a negative int.
1270         return BAD_VALUE;
1271     }
1272
1273     err = this->writeInt32(len);
1274     if (err) return err;
1275
1276     err = this->writeInt32(fd_count);
1277     if (err) return err;
1278
1279     // payload
1280     void* const buf = this->writeInplace(len);
1281     if (buf == NULL)
1282         return BAD_VALUE;
1283
1284     int* fds = NULL;
1285     if (fd_count) {
1286         fds = new (std::nothrow) int[fd_count];
1287         if (fds == nullptr) {
1288             ALOGE("write: failed to allocate requested %zu fds", fd_count);
1289             return BAD_VALUE;
1290         }
1291     }
1292
1293     err = val.flatten(buf, len, fds, fd_count);
1294     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1295         err = this->writeDupFileDescriptor( fds[i] );
1296     }
1297
1298     if (fd_count) {
1299         delete [] fds;
1300     }
1301
1302     return err;
1303 }
1304
1305 status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1306 {
1307     const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1308     const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1309     if (enoughData && enoughObjects) {
1310 restart_write:
1311         *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1312
1313         // remember if it's a file descriptor
1314         if (val.type == BINDER_TYPE_FD) {
1315             if (!mAllowFds) {
1316                 // fail before modifying our object index
1317                 return FDS_NOT_ALLOWED;
1318             }
1319             mHasFds = mFdsKnown = true;
1320         }
1321
1322         // Need to write meta-data?
1323         if (nullMetaData || val.binder != 0) {
1324             mObjects[mObjectsSize] = mDataPos;
1325             acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1326             mObjectsSize++;
1327         }
1328
1329         return finishWrite(sizeof(flat_binder_object));
1330     }
1331
1332     if (!enoughData) {
1333         const status_t err = growData(sizeof(val));
1334         if (err != NO_ERROR) return err;
1335     }
1336     if (!enoughObjects) {
1337         size_t newSize = ((mObjectsSize+2)*3)/2;
1338         if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY;   // overflow
1339         binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1340         if (objects == NULL) return NO_MEMORY;
1341         mObjects = objects;
1342         mObjectsCapacity = newSize;
1343     }
1344
1345     goto restart_write;
1346 }
1347
1348 status_t Parcel::writeNoException()
1349 {
1350     binder::Status status;
1351     return status.writeToParcel(this);
1352 }
1353
1354 status_t Parcel::writeMap(const ::android::binder::Map& map_in)
1355 {
1356     using ::std::map;
1357     using ::android::binder::Value;
1358     using ::android::binder::Map;
1359
1360     Map::const_iterator iter;
1361     status_t ret;
1362
1363     ret = writeInt32(map_in.size());
1364
1365     if (ret != NO_ERROR) {
1366         return ret;
1367     }
1368
1369     for (iter = map_in.begin(); iter != map_in.end(); ++iter) {
1370         ret = writeValue(Value(iter->first));
1371         if (ret != NO_ERROR) {
1372             return ret;
1373         }
1374
1375         ret = writeValue(iter->second);
1376         if (ret != NO_ERROR) {
1377             return ret;
1378         }
1379     }
1380
1381     return ret;
1382 }
1383
1384 status_t Parcel::writeNullableMap(const std::unique_ptr<binder::Map>& map)
1385 {
1386     if (map == NULL) {
1387         return writeInt32(-1);
1388     }
1389
1390     return writeMap(*map.get());
1391 }
1392
1393 status_t Parcel::readMap(::android::binder::Map* map_out)const
1394 {
1395     using ::std::map;
1396     using ::android::String16;
1397     using ::android::String8;
1398     using ::android::binder::Value;
1399     using ::android::binder::Map;
1400
1401     status_t ret = NO_ERROR;
1402     int32_t count;
1403
1404     ret = readInt32(&count);
1405     if (ret != NO_ERROR) {
1406         return ret;
1407     }
1408
1409     if (count < 0) {
1410         ALOGE("readMap: Unexpected count: %d", count);
1411         return (count == -1)
1412             ? UNEXPECTED_NULL
1413             : BAD_VALUE;
1414     }
1415
1416     map_out->clear();
1417
1418     while (count--) {
1419         Map::key_type key;
1420         Value value;
1421
1422         ret = readValue(&value);
1423         if (ret != NO_ERROR) {
1424             return ret;
1425         }
1426
1427         if (!value.getString(&key)) {
1428             ALOGE("readMap: Key type not a string (parcelType = %d)", value.parcelType());
1429             return BAD_VALUE;
1430         }
1431
1432         ret = readValue(&value);
1433         if (ret != NO_ERROR) {
1434             return ret;
1435         }
1436
1437         (*map_out)[key] = value;
1438     }
1439
1440     return ret;
1441 }
1442
1443 status_t Parcel::readNullableMap(std::unique_ptr<binder::Map>* map) const
1444 {
1445     const size_t start = dataPosition();
1446     int32_t count;
1447     status_t status = readInt32(&count);
1448     map->reset();
1449
1450     if (status != OK || count == -1) {
1451         return status;
1452     }
1453
1454     setDataPosition(start);
1455     map->reset(new binder::Map());
1456
1457     status = readMap(map->get());
1458
1459     if (status != OK) {
1460         map->reset();
1461     }
1462
1463     return status;
1464 }
1465
1466
1467
1468 void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1469 {
1470     LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1471 }
1472
1473 status_t Parcel::validateReadData(size_t upperBound) const
1474 {
1475     // Don't allow non-object reads on object data
1476     if (mObjectsSorted || mObjectsSize <= 1) {
1477 data_sorted:
1478         // Expect to check only against the next object
1479         if (mNextObjectHint < mObjectsSize && upperBound > mObjects[mNextObjectHint]) {
1480             // For some reason the current read position is greater than the next object
1481             // hint. Iterate until we find the right object
1482             size_t nextObject = mNextObjectHint;
1483             do {
1484                 if (mDataPos < mObjects[nextObject] + sizeof(flat_binder_object)) {
1485                     // Requested info overlaps with an object
1486                     ALOGE("Attempt to read from protected data in Parcel %p", this);
1487                     return PERMISSION_DENIED;
1488                 }
1489                 nextObject++;
1490             } while (nextObject < mObjectsSize && upperBound > mObjects[nextObject]);
1491             mNextObjectHint = nextObject;
1492         }
1493         return NO_ERROR;
1494     }
1495     // Quickly determine if mObjects is sorted.
1496     binder_size_t* currObj = mObjects + mObjectsSize - 1;
1497     binder_size_t* prevObj = currObj;
1498     while (currObj > mObjects) {
1499         prevObj--;
1500         if(*prevObj > *currObj) {
1501             goto data_unsorted;
1502         }
1503         currObj--;
1504     }
1505     mObjectsSorted = true;
1506     goto data_sorted;
1507
1508 data_unsorted:
1509     // Insertion Sort mObjects
1510     // Great for mostly sorted lists. If randomly sorted or reverse ordered mObjects become common,
1511     // switch to std::sort(mObjects, mObjects + mObjectsSize);
1512     for (binder_size_t* iter0 = mObjects + 1; iter0 < mObjects + mObjectsSize; iter0++) {
1513         binder_size_t temp = *iter0;
1514         binder_size_t* iter1 = iter0 - 1;
1515         while (iter1 >= mObjects && *iter1 > temp) {
1516             *(iter1 + 1) = *iter1;
1517             iter1--;
1518         }
1519         *(iter1 + 1) = temp;
1520     }
1521     mNextObjectHint = 0;
1522     mObjectsSorted = true;
1523     goto data_sorted;
1524 }
1525
1526 status_t Parcel::read(void* outData, size_t len) const
1527 {
1528     if (len > INT32_MAX) {
1529         // don't accept size_t values which may have come from an
1530         // inadvertent conversion from a negative int.
1531         return BAD_VALUE;
1532     }
1533
1534     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1535             && len <= pad_size(len)) {
1536         if (mObjectsSize > 0) {
1537             status_t err = validateReadData(mDataPos + pad_size(len));
1538             if(err != NO_ERROR) {
1539                 // Still increment the data position by the expected length
1540                 mDataPos += pad_size(len);
1541                 ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1542                 return err;
1543             }
1544         }
1545         memcpy(outData, mData+mDataPos, len);
1546         mDataPos += pad_size(len);
1547         ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1548         return NO_ERROR;
1549     }
1550     return NOT_ENOUGH_DATA;
1551 }
1552
1553 const void* Parcel::readInplace(size_t len) const
1554 {
1555     if (len > INT32_MAX) {
1556         // don't accept size_t values which may have come from an
1557         // inadvertent conversion from a negative int.
1558         return NULL;
1559     }
1560
1561     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1562             && len <= pad_size(len)) {
1563         if (mObjectsSize > 0) {
1564             status_t err = validateReadData(mDataPos + pad_size(len));
1565             if(err != NO_ERROR) {
1566                 // Still increment the data position by the expected length
1567                 mDataPos += pad_size(len);
1568                 ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1569                 return NULL;
1570             }
1571         }
1572
1573         const void* data = mData+mDataPos;
1574         mDataPos += pad_size(len);
1575         ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1576         return data;
1577     }
1578     return NULL;
1579 }
1580
1581 template<class T>
1582 status_t Parcel::readAligned(T *pArg) const {
1583     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1584
1585     if ((mDataPos+sizeof(T)) <= mDataSize) {
1586         if (mObjectsSize > 0) {
1587             status_t err = validateReadData(mDataPos + sizeof(T));
1588             if(err != NO_ERROR) {
1589                 // Still increment the data position by the expected length
1590                 mDataPos += sizeof(T);
1591                 return err;
1592             }
1593         }
1594
1595         const void* data = mData+mDataPos;
1596         mDataPos += sizeof(T);
1597         *pArg =  *reinterpret_cast<const T*>(data);
1598         return NO_ERROR;
1599     } else {
1600         return NOT_ENOUGH_DATA;
1601     }
1602 }
1603
1604 template<class T>
1605 T Parcel::readAligned() const {
1606     T result;
1607     if (readAligned(&result) != NO_ERROR) {
1608         result = 0;
1609     }
1610
1611     return result;
1612 }
1613
1614 template<class T>
1615 status_t Parcel::writeAligned(T val) {
1616     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1617
1618     if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1619 restart_write:
1620         *reinterpret_cast<T*>(mData+mDataPos) = val;
1621         return finishWrite(sizeof(val));
1622     }
1623
1624     status_t err = growData(sizeof(val));
1625     if (err == NO_ERROR) goto restart_write;
1626     return err;
1627 }
1628
1629 namespace {
1630
1631 template<typename T>
1632 status_t readByteVectorInternal(const Parcel* parcel,
1633                                 std::vector<T>* val) {
1634     val->clear();
1635
1636     int32_t size;
1637     status_t status = parcel->readInt32(&size);
1638
1639     if (status != OK) {
1640         return status;
1641     }
1642
1643     if (size < 0) {
1644         status = UNEXPECTED_NULL;
1645         return status;
1646     }
1647     if (size_t(size) > parcel->dataAvail()) {
1648         status = BAD_VALUE;
1649         return status;
1650     }
1651
1652     T* data = const_cast<T*>(reinterpret_cast<const T*>(parcel->readInplace(size)));
1653     if (!data) {
1654         status = BAD_VALUE;
1655         return status;
1656     }
1657     val->reserve(size);
1658     val->insert(val->end(), data, data + size);
1659
1660     return status;
1661 }
1662
1663 template<typename T>
1664 status_t readByteVectorInternalPtr(
1665         const Parcel* parcel,
1666         std::unique_ptr<std::vector<T>>* val) {
1667     const int32_t start = parcel->dataPosition();
1668     int32_t size;
1669     status_t status = parcel->readInt32(&size);
1670     val->reset();
1671
1672     if (status != OK || size < 0) {
1673         return status;
1674     }
1675
1676     parcel->setDataPosition(start);
1677     val->reset(new (std::nothrow) std::vector<T>());
1678
1679     status = readByteVectorInternal(parcel, val->get());
1680
1681     if (status != OK) {
1682         val->reset();
1683     }
1684
1685     return status;
1686 }
1687
1688 }  // namespace
1689
1690 status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1691     return readByteVectorInternal(this, val);
1692 }
1693
1694 status_t Parcel::readByteVector(std::vector<uint8_t>* val) const {
1695     return readByteVectorInternal(this, val);
1696 }
1697
1698 status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
1699     return readByteVectorInternalPtr(this, val);
1700 }
1701
1702 status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const {
1703     return readByteVectorInternalPtr(this, val);
1704 }
1705
1706 status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
1707     return readNullableTypedVector(val, &Parcel::readInt32);
1708 }
1709
1710 status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1711     return readTypedVector(val, &Parcel::readInt32);
1712 }
1713
1714 status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
1715     return readNullableTypedVector(val, &Parcel::readInt64);
1716 }
1717
1718 status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1719     return readTypedVector(val, &Parcel::readInt64);
1720 }
1721
1722 status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
1723     return readNullableTypedVector(val, &Parcel::readFloat);
1724 }
1725
1726 status_t Parcel::readFloatVector(std::vector<float>* val) const {
1727     return readTypedVector(val, &Parcel::readFloat);
1728 }
1729
1730 status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
1731     return readNullableTypedVector(val, &Parcel::readDouble);
1732 }
1733
1734 status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1735     return readTypedVector(val, &Parcel::readDouble);
1736 }
1737
1738 status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
1739     const int32_t start = dataPosition();
1740     int32_t size;
1741     status_t status = readInt32(&size);
1742     val->reset();
1743
1744     if (status != OK || size < 0) {
1745         return status;
1746     }
1747
1748     setDataPosition(start);
1749     val->reset(new (std::nothrow) std::vector<bool>());
1750
1751     status = readBoolVector(val->get());
1752
1753     if (status != OK) {
1754         val->reset();
1755     }
1756
1757     return status;
1758 }
1759
1760 status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1761     int32_t size;
1762     status_t status = readInt32(&size);
1763
1764     if (status != OK) {
1765         return status;
1766     }
1767
1768     if (size < 0) {
1769         return UNEXPECTED_NULL;
1770     }
1771
1772     val->resize(size);
1773
1774     /* C++ bool handling means a vector of bools isn't necessarily addressable
1775      * (we might use individual bits)
1776      */
1777     bool data;
1778     for (int32_t i = 0; i < size; ++i) {
1779         status = readBool(&data);
1780         (*val)[i] = data;
1781
1782         if (status != OK) {
1783             return status;
1784         }
1785     }
1786
1787     return OK;
1788 }
1789
1790 status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
1791     return readNullableTypedVector(val, &Parcel::readChar);
1792 }
1793
1794 status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1795     return readTypedVector(val, &Parcel::readChar);
1796 }
1797
1798 status_t Parcel::readString16Vector(
1799         std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
1800     return readNullableTypedVector(val, &Parcel::readString16);
1801 }
1802
1803 status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1804     return readTypedVector(val, &Parcel::readString16);
1805 }
1806
1807 status_t Parcel::readUtf8VectorFromUtf16Vector(
1808         std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
1809     return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
1810 }
1811
1812 status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
1813     return readTypedVector(val, &Parcel::readUtf8FromUtf16);
1814 }
1815
1816 status_t Parcel::readInt32(int32_t *pArg) const
1817 {
1818     return readAligned(pArg);
1819 }
1820
1821 int32_t Parcel::readInt32() const
1822 {
1823     return readAligned<int32_t>();
1824 }
1825
1826 status_t Parcel::readUint32(uint32_t *pArg) const
1827 {
1828     return readAligned(pArg);
1829 }
1830
1831 uint32_t Parcel::readUint32() const
1832 {
1833     return readAligned<uint32_t>();
1834 }
1835
1836 status_t Parcel::readInt64(int64_t *pArg) const
1837 {
1838     return readAligned(pArg);
1839 }
1840
1841
1842 int64_t Parcel::readInt64() const
1843 {
1844     return readAligned<int64_t>();
1845 }
1846
1847 status_t Parcel::readUint64(uint64_t *pArg) const
1848 {
1849     return readAligned(pArg);
1850 }
1851
1852 uint64_t Parcel::readUint64() const
1853 {
1854     return readAligned<uint64_t>();
1855 }
1856
1857 status_t Parcel::readPointer(uintptr_t *pArg) const
1858 {
1859     status_t ret;
1860     binder_uintptr_t ptr;
1861     ret = readAligned(&ptr);
1862     if (!ret)
1863         *pArg = ptr;
1864     return ret;
1865 }
1866
1867 uintptr_t Parcel::readPointer() const
1868 {
1869     return readAligned<binder_uintptr_t>();
1870 }
1871
1872
1873 status_t Parcel::readFloat(float *pArg) const
1874 {
1875     return readAligned(pArg);
1876 }
1877
1878
1879 float Parcel::readFloat() const
1880 {
1881     return readAligned<float>();
1882 }
1883
1884 #if defined(__mips__) && defined(__mips_hard_float)
1885
1886 status_t Parcel::readDouble(double *pArg) const
1887 {
1888     union {
1889       double d;
1890       unsigned long long ll;
1891     } u;
1892     u.d = 0;
1893     status_t status;
1894     status = readAligned(&u.ll);
1895     *pArg = u.d;
1896     return status;
1897 }
1898
1899 double Parcel::readDouble() const
1900 {
1901     union {
1902       double d;
1903       unsigned long long ll;
1904     } u;
1905     u.ll = readAligned<unsigned long long>();
1906     return u.d;
1907 }
1908
1909 #else
1910
1911 status_t Parcel::readDouble(double *pArg) const
1912 {
1913     return readAligned(pArg);
1914 }
1915
1916 double Parcel::readDouble() const
1917 {
1918     return readAligned<double>();
1919 }
1920
1921 #endif
1922
1923 status_t Parcel::readIntPtr(intptr_t *pArg) const
1924 {
1925     return readAligned(pArg);
1926 }
1927
1928
1929 intptr_t Parcel::readIntPtr() const
1930 {
1931     return readAligned<intptr_t>();
1932 }
1933
1934 status_t Parcel::readBool(bool *pArg) const
1935 {
1936     int32_t tmp = 0;
1937     status_t ret = readInt32(&tmp);
1938     *pArg = (tmp != 0);
1939     return ret;
1940 }
1941
1942 bool Parcel::readBool() const
1943 {
1944     return readInt32() != 0;
1945 }
1946
1947 status_t Parcel::readChar(char16_t *pArg) const
1948 {
1949     int32_t tmp = 0;
1950     status_t ret = readInt32(&tmp);
1951     *pArg = char16_t(tmp);
1952     return ret;
1953 }
1954
1955 char16_t Parcel::readChar() const
1956 {
1957     return char16_t(readInt32());
1958 }
1959
1960 status_t Parcel::readByte(int8_t *pArg) const
1961 {
1962     int32_t tmp = 0;
1963     status_t ret = readInt32(&tmp);
1964     *pArg = int8_t(tmp);
1965     return ret;
1966 }
1967
1968 int8_t Parcel::readByte() const
1969 {
1970     return int8_t(readInt32());
1971 }
1972
1973 status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1974     size_t utf16Size = 0;
1975     const char16_t* src = readString16Inplace(&utf16Size);
1976     if (!src) {
1977         return UNEXPECTED_NULL;
1978     }
1979
1980     // Save ourselves the trouble, we're done.
1981     if (utf16Size == 0u) {
1982         str->clear();
1983        return NO_ERROR;
1984     }
1985
1986     // Allow for closing '\0'
1987     ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size) + 1;
1988     if (utf8Size < 1) {
1989         return BAD_VALUE;
1990     }
1991     // Note that while it is probably safe to assume string::resize keeps a
1992     // spare byte around for the trailing null, we still pass the size including the trailing null
1993     str->resize(utf8Size);
1994     utf16_to_utf8(src, utf16Size, &((*str)[0]), utf8Size);
1995     str->resize(utf8Size - 1);
1996     return NO_ERROR;
1997 }
1998
1999 status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
2000     const int32_t start = dataPosition();
2001     int32_t size;
2002     status_t status = readInt32(&size);
2003     str->reset();
2004
2005     if (status != OK || size < 0) {
2006         return status;
2007     }
2008
2009     setDataPosition(start);
2010     str->reset(new (std::nothrow) std::string());
2011     return readUtf8FromUtf16(str->get());
2012 }
2013
2014 const char* Parcel::readCString() const
2015 {
2016     const size_t avail = mDataSize-mDataPos;
2017     if (avail > 0) {
2018         const char* str = reinterpret_cast<const char*>(mData+mDataPos);
2019         // is the string's trailing NUL within the parcel's valid bounds?
2020         const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
2021         if (eos) {
2022             const size_t len = eos - str;
2023             mDataPos += pad_size(len+1);
2024             ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
2025             return str;
2026         }
2027     }
2028     return NULL;
2029 }
2030
2031 String8 Parcel::readString8() const
2032 {
2033     String8 retString;
2034     status_t status = readString8(&retString);
2035     if (status != OK) {
2036         // We don't care about errors here, so just return an empty string.
2037         return String8();
2038     }
2039     return retString;
2040 }
2041
2042 status_t Parcel::readString8(String8* pArg) const
2043 {
2044     int32_t size;
2045     status_t status = readInt32(&size);
2046     if (status != OK) {
2047         return status;
2048     }
2049     // watch for potential int overflow from size+1
2050     if (size < 0 || size >= INT32_MAX) {
2051         return BAD_VALUE;
2052     }
2053     // |writeString8| writes nothing for empty string.
2054     if (size == 0) {
2055         *pArg = String8();
2056         return OK;
2057     }
2058     const char* str = (const char*)readInplace(size + 1);
2059     if (str == NULL) {
2060         return BAD_VALUE;
2061     }
2062     pArg->setTo(str, size);
2063     return OK;
2064 }
2065
2066 String16 Parcel::readString16() const
2067 {
2068     size_t len;
2069     const char16_t* str = readString16Inplace(&len);
2070     if (str) return String16(str, len);
2071     ALOGE("Reading a NULL string not supported here.");
2072     return String16();
2073 }
2074
2075 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
2076 {
2077     const int32_t start = dataPosition();
2078     int32_t size;
2079     status_t status = readInt32(&size);
2080     pArg->reset();
2081
2082     if (status != OK || size < 0) {
2083         return status;
2084     }
2085
2086     setDataPosition(start);
2087     pArg->reset(new (std::nothrow) String16());
2088
2089     status = readString16(pArg->get());
2090
2091     if (status != OK) {
2092         pArg->reset();
2093     }
2094
2095     return status;
2096 }
2097
2098 status_t Parcel::readString16(String16* pArg) const
2099 {
2100     size_t len;
2101     const char16_t* str = readString16Inplace(&len);
2102     if (str) {
2103         pArg->setTo(str, len);
2104         return 0;
2105     } else {
2106         *pArg = String16();
2107         return UNEXPECTED_NULL;
2108     }
2109 }
2110
2111 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
2112 {
2113     int32_t size = readInt32();
2114     // watch for potential int overflow from size+1
2115     if (size >= 0 && size < INT32_MAX) {
2116         *outLen = size;
2117         const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
2118         if (str != NULL) {
2119             return str;
2120         }
2121     }
2122     *outLen = 0;
2123     return NULL;
2124 }
2125
2126 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
2127 {
2128     status_t status = readNullableStrongBinder(val);
2129     if (status == OK && !val->get()) {
2130         status = UNEXPECTED_NULL;
2131     }
2132     return status;
2133 }
2134
2135 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
2136 {
2137     return unflatten_binder(ProcessState::self(), *this, val);
2138 }
2139
2140 sp<IBinder> Parcel::readStrongBinder() const
2141 {
2142     sp<IBinder> val;
2143     // Note that a lot of code in Android reads binders by hand with this
2144     // method, and that code has historically been ok with getting nullptr
2145     // back (while ignoring error codes).
2146     readNullableStrongBinder(&val);
2147     return val;
2148 }
2149
2150 wp<IBinder> Parcel::readWeakBinder() const
2151 {
2152     wp<IBinder> val;
2153     unflatten_binder(ProcessState::self(), *this, &val);
2154     return val;
2155 }
2156
2157 status_t Parcel::readParcelable(Parcelable* parcelable) const {
2158     int32_t have_parcelable = 0;
2159     status_t status = readInt32(&have_parcelable);
2160     if (status != OK) {
2161         return status;
2162     }
2163     if (!have_parcelable) {
2164         return UNEXPECTED_NULL;
2165     }
2166     return parcelable->readFromParcel(this);
2167 }
2168
2169 status_t Parcel::readValue(binder::Value* value) const {
2170     return value->readFromParcel(this);
2171 }
2172
2173 int32_t Parcel::readExceptionCode() const
2174 {
2175     binder::Status status;
2176     status.readFromParcel(*this);
2177     return status.exceptionCode();
2178 }
2179
2180 native_handle* Parcel::readNativeHandle() const
2181 {
2182     int numFds, numInts;
2183     status_t err;
2184     err = readInt32(&numFds);
2185     if (err != NO_ERROR) return 0;
2186     err = readInt32(&numInts);
2187     if (err != NO_ERROR) return 0;
2188
2189     native_handle* h = native_handle_create(numFds, numInts);
2190     if (!h) {
2191         return 0;
2192     }
2193
2194     for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
2195         h->data[i] = fcntl(readFileDescriptor(), F_DUPFD_CLOEXEC, 0);
2196         if (h->data[i] < 0) {
2197             for (int j = 0; j < i; j++) {
2198                 close(h->data[j]);
2199             }
2200             native_handle_delete(h);
2201             return 0;
2202         }
2203     }
2204     err = read(h->data + numFds, sizeof(int)*numInts);
2205     if (err != NO_ERROR) {
2206         native_handle_close(h);
2207         native_handle_delete(h);
2208         h = 0;
2209     }
2210     return h;
2211 }
2212
2213 int Parcel::readFileDescriptor() const
2214 {
2215     const flat_binder_object* flat = readObject(true);
2216
2217     if (flat && flat->type == BINDER_TYPE_FD) {
2218         return flat->handle;
2219     }
2220
2221     return BAD_TYPE;
2222 }
2223
2224 int Parcel::readParcelFileDescriptor() const
2225 {
2226     int32_t hasComm = readInt32();
2227     int fd = readFileDescriptor();
2228     if (hasComm != 0) {
2229         // skip
2230         readFileDescriptor();
2231     }
2232     return fd;
2233 }
2234
2235 status_t Parcel::readUniqueFileDescriptor(base::unique_fd* val) const
2236 {
2237     int got = readFileDescriptor();
2238
2239     if (got == BAD_TYPE) {
2240         return BAD_TYPE;
2241     }
2242
2243     val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0));
2244
2245     if (val->get() < 0) {
2246         return BAD_VALUE;
2247     }
2248
2249     return OK;
2250 }
2251
2252
2253 status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>>* val) const {
2254     return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
2255 }
2256
2257 status_t Parcel::readUniqueFileDescriptorVector(std::vector<base::unique_fd>* val) const {
2258     return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
2259 }
2260
2261 status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
2262 {
2263     int32_t blobType;
2264     status_t status = readInt32(&blobType);
2265     if (status) return status;
2266
2267     if (blobType == BLOB_INPLACE) {
2268         ALOGV("readBlob: read in place");
2269         const void* ptr = readInplace(len);
2270         if (!ptr) return BAD_VALUE;
2271
2272         outBlob->init(-1, const_cast<void*>(ptr), len, false);
2273         return NO_ERROR;
2274     }
2275
2276     ALOGV("readBlob: read from ashmem");
2277     bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
2278     int fd = readFileDescriptor();
2279     if (fd == int(BAD_TYPE)) return BAD_VALUE;
2280
2281     void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
2282             MAP_SHARED, fd, 0);
2283     if (ptr == MAP_FAILED) return NO_MEMORY;
2284
2285     outBlob->init(fd, ptr, len, isMutable);
2286     return NO_ERROR;
2287 }
2288
2289 status_t Parcel::read(FlattenableHelperInterface& val) const
2290 {
2291     // size
2292     const size_t len = this->readInt32();
2293     const size_t fd_count = this->readInt32();
2294
2295     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
2296         // don't accept size_t values which may have come from an
2297         // inadvertent conversion from a negative int.
2298         return BAD_VALUE;
2299     }
2300
2301     // payload
2302     void const* const buf = this->readInplace(pad_size(len));
2303     if (buf == NULL)
2304         return BAD_VALUE;
2305
2306     int* fds = NULL;
2307     if (fd_count) {
2308         fds = new (std::nothrow) int[fd_count];
2309         if (fds == nullptr) {
2310             ALOGE("read: failed to allocate requested %zu fds", fd_count);
2311             return BAD_VALUE;
2312         }
2313     }
2314
2315     status_t err = NO_ERROR;
2316     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2317         int fd = this->readFileDescriptor();
2318         if (fd < 0 || ((fds[i] = fcntl(fd, F_DUPFD_CLOEXEC, 0)) < 0)) {
2319             err = BAD_VALUE;
2320             ALOGE("fcntl(F_DUPFD_CLOEXEC) failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2321                   i, fds[i], fd_count, strerror(fd < 0 ? -fd : errno));
2322             // Close all the file descriptors that were dup-ed.
2323             for (size_t j=0; j<i ;j++) {
2324                 close(fds[j]);
2325             }
2326         }
2327     }
2328
2329     if (err == NO_ERROR) {
2330         err = val.unflatten(buf, len, fds, fd_count);
2331     }
2332
2333     if (fd_count) {
2334         delete [] fds;
2335     }
2336
2337     return err;
2338 }
2339 const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2340 {
2341     const size_t DPOS = mDataPos;
2342     if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2343         const flat_binder_object* obj
2344                 = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2345         mDataPos = DPOS + sizeof(flat_binder_object);
2346         if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2347             // When transferring a NULL object, we don't write it into
2348             // the object list, so we don't want to check for it when
2349             // reading.
2350             ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2351             return obj;
2352         }
2353
2354         // Ensure that this object is valid...
2355         binder_size_t* const OBJS = mObjects;
2356         const size_t N = mObjectsSize;
2357         size_t opos = mNextObjectHint;
2358
2359         if (N > 0) {
2360             ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2361                  this, DPOS, opos);
2362
2363             // Start at the current hint position, looking for an object at
2364             // the current data position.
2365             if (opos < N) {
2366                 while (opos < (N-1) && OBJS[opos] < DPOS) {
2367                     opos++;
2368                 }
2369             } else {
2370                 opos = N-1;
2371             }
2372             if (OBJS[opos] == DPOS) {
2373                 // Found it!
2374                 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2375                      this, DPOS, opos);
2376                 mNextObjectHint = opos+1;
2377                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2378                 return obj;
2379             }
2380
2381             // Look backwards for it...
2382             while (opos > 0 && OBJS[opos] > DPOS) {
2383                 opos--;
2384             }
2385             if (OBJS[opos] == DPOS) {
2386                 // Found it!
2387                 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2388                      this, DPOS, opos);
2389                 mNextObjectHint = opos+1;
2390                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2391                 return obj;
2392             }
2393         }
2394         ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2395              this, DPOS);
2396     }
2397     return NULL;
2398 }
2399
2400 void Parcel::closeFileDescriptors()
2401 {
2402     size_t i = mObjectsSize;
2403     if (i > 0) {
2404         //ALOGI("Closing file descriptors for %zu objects...", i);
2405     }
2406     while (i > 0) {
2407         i--;
2408         const flat_binder_object* flat
2409             = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2410         if (flat->type == BINDER_TYPE_FD) {
2411             //ALOGI("Closing fd: %ld", flat->handle);
2412             close(flat->handle);
2413         }
2414     }
2415 }
2416
2417 uintptr_t Parcel::ipcData() const
2418 {
2419     return reinterpret_cast<uintptr_t>(mData);
2420 }
2421
2422 size_t Parcel::ipcDataSize() const
2423 {
2424     return (mDataSize > mDataPos ? mDataSize : mDataPos);
2425 }
2426
2427 uintptr_t Parcel::ipcObjects() const
2428 {
2429     return reinterpret_cast<uintptr_t>(mObjects);
2430 }
2431
2432 size_t Parcel::ipcObjectsCount() const
2433 {
2434     return mObjectsSize;
2435 }
2436
2437 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2438     const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
2439 {
2440     binder_size_t minOffset = 0;
2441     freeDataNoInit();
2442     mError = NO_ERROR;
2443     mData = const_cast<uint8_t*>(data);
2444     mDataSize = mDataCapacity = dataSize;
2445     //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
2446     mDataPos = 0;
2447     ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
2448     mObjects = const_cast<binder_size_t*>(objects);
2449     mObjectsSize = mObjectsCapacity = objectsCount;
2450     mNextObjectHint = 0;
2451     mObjectsSorted = false;
2452     mOwner = relFunc;
2453     mOwnerCookie = relCookie;
2454     for (size_t i = 0; i < mObjectsSize; i++) {
2455         binder_size_t offset = mObjects[i];
2456         if (offset < minOffset) {
2457             ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2458                   __func__, (uint64_t)offset, (uint64_t)minOffset);
2459             mObjectsSize = 0;
2460             break;
2461         }
2462         minOffset = offset + sizeof(flat_binder_object);
2463     }
2464     scanForFds();
2465 }
2466
2467 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2468 {
2469     to << "Parcel(";
2470
2471     if (errorCheck() != NO_ERROR) {
2472         const status_t err = errorCheck();
2473         to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2474     } else if (dataSize() > 0) {
2475         const uint8_t* DATA = data();
2476         to << indent << HexDump(DATA, dataSize()) << dedent;
2477         const binder_size_t* OBJS = objects();
2478         const size_t N = objectsCount();
2479         for (size_t i=0; i<N; i++) {
2480             const flat_binder_object* flat
2481                 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2482             to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2483                 << TypeCode(flat->type & 0x7f7f7f00)
2484                 << " = " << flat->binder;
2485         }
2486     } else {
2487         to << "NULL";
2488     }
2489
2490     to << ")";
2491 }
2492
2493 void Parcel::releaseObjects()
2494 {
2495     const sp<ProcessState> proc(ProcessState::self());
2496     size_t i = mObjectsSize;
2497     uint8_t* const data = mData;
2498     binder_size_t* const objects = mObjects;
2499     while (i > 0) {
2500         i--;
2501         const flat_binder_object* flat
2502             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2503         release_object(proc, *flat, this, &mOpenAshmemSize);
2504     }
2505 }
2506
2507 void Parcel::acquireObjects()
2508 {
2509     const sp<ProcessState> proc(ProcessState::self());
2510     size_t i = mObjectsSize;
2511     uint8_t* const data = mData;
2512     binder_size_t* const objects = mObjects;
2513     while (i > 0) {
2514         i--;
2515         const flat_binder_object* flat
2516             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2517         acquire_object(proc, *flat, this, &mOpenAshmemSize);
2518     }
2519 }
2520
2521 void Parcel::freeData()
2522 {
2523     freeDataNoInit();
2524     initState();
2525 }
2526
2527 void Parcel::freeDataNoInit()
2528 {
2529     if (mOwner) {
2530         LOG_ALLOC("Parcel %p: freeing other owner data", this);
2531         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2532         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2533     } else {
2534         LOG_ALLOC("Parcel %p: freeing allocated data", this);
2535         releaseObjects();
2536         if (mData) {
2537             LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2538             pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2539             if (mDataCapacity <= gParcelGlobalAllocSize) {
2540               gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2541             } else {
2542               gParcelGlobalAllocSize = 0;
2543             }
2544             if (gParcelGlobalAllocCount > 0) {
2545               gParcelGlobalAllocCount--;
2546             }
2547             pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2548             free(mData);
2549         }
2550         if (mObjects) free(mObjects);
2551     }
2552 }
2553
2554 status_t Parcel::growData(size_t len)
2555 {
2556     if (len > INT32_MAX) {
2557         // don't accept size_t values which may have come from an
2558         // inadvertent conversion from a negative int.
2559         return BAD_VALUE;
2560     }
2561
2562     size_t newSize = ((mDataSize+len)*3)/2;
2563     return (newSize <= mDataSize)
2564             ? (status_t) NO_MEMORY
2565             : continueWrite(newSize);
2566 }
2567
2568 status_t Parcel::restartWrite(size_t desired)
2569 {
2570     if (desired > INT32_MAX) {
2571         // don't accept size_t values which may have come from an
2572         // inadvertent conversion from a negative int.
2573         return BAD_VALUE;
2574     }
2575
2576     if (mOwner) {
2577         freeData();
2578         return continueWrite(desired);
2579     }
2580
2581     uint8_t* data = (uint8_t*)realloc(mData, desired);
2582     if (!data && desired > mDataCapacity) {
2583         mError = NO_MEMORY;
2584         return NO_MEMORY;
2585     }
2586
2587     releaseObjects();
2588
2589     if (data) {
2590         LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2591         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2592         gParcelGlobalAllocSize += desired;
2593         gParcelGlobalAllocSize -= mDataCapacity;
2594         if (!mData) {
2595             gParcelGlobalAllocCount++;
2596         }
2597         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2598         mData = data;
2599         mDataCapacity = desired;
2600     }
2601
2602     mDataSize = mDataPos = 0;
2603     ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2604     ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2605
2606     free(mObjects);
2607     mObjects = NULL;
2608     mObjectsSize = mObjectsCapacity = 0;
2609     mNextObjectHint = 0;
2610     mObjectsSorted = false;
2611     mHasFds = false;
2612     mFdsKnown = true;
2613     mAllowFds = true;
2614
2615     return NO_ERROR;
2616 }
2617
2618 status_t Parcel::continueWrite(size_t desired)
2619 {
2620     if (desired > INT32_MAX) {
2621         // don't accept size_t values which may have come from an
2622         // inadvertent conversion from a negative int.
2623         return BAD_VALUE;
2624     }
2625
2626     // If shrinking, first adjust for any objects that appear
2627     // after the new data size.
2628     size_t objectsSize = mObjectsSize;
2629     if (desired < mDataSize) {
2630         if (desired == 0) {
2631             objectsSize = 0;
2632         } else {
2633             while (objectsSize > 0) {
2634                 if (mObjects[objectsSize-1] < desired)
2635                     break;
2636                 objectsSize--;
2637             }
2638         }
2639     }
2640
2641     if (mOwner) {
2642         // If the size is going to zero, just release the owner's data.
2643         if (desired == 0) {
2644             freeData();
2645             return NO_ERROR;
2646         }
2647
2648         // If there is a different owner, we need to take
2649         // posession.
2650         uint8_t* data = (uint8_t*)malloc(desired);
2651         if (!data) {
2652             mError = NO_MEMORY;
2653             return NO_MEMORY;
2654         }
2655         binder_size_t* objects = NULL;
2656
2657         if (objectsSize) {
2658             objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2659             if (!objects) {
2660                 free(data);
2661
2662                 mError = NO_MEMORY;
2663                 return NO_MEMORY;
2664             }
2665
2666             // Little hack to only acquire references on objects
2667             // we will be keeping.
2668             size_t oldObjectsSize = mObjectsSize;
2669             mObjectsSize = objectsSize;
2670             acquireObjects();
2671             mObjectsSize = oldObjectsSize;
2672         }
2673
2674         if (mData) {
2675             memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2676         }
2677         if (objects && mObjects) {
2678             memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2679         }
2680         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2681         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2682         mOwner = NULL;
2683
2684         LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2685         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2686         gParcelGlobalAllocSize += desired;
2687         gParcelGlobalAllocCount++;
2688         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2689
2690         mData = data;
2691         mObjects = objects;
2692         mDataSize = (mDataSize < desired) ? mDataSize : desired;
2693         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2694         mDataCapacity = desired;
2695         mObjectsSize = mObjectsCapacity = objectsSize;
2696         mNextObjectHint = 0;
2697         mObjectsSorted = false;
2698
2699     } else if (mData) {
2700         if (objectsSize < mObjectsSize) {
2701             // Need to release refs on any objects we are dropping.
2702             const sp<ProcessState> proc(ProcessState::self());
2703             for (size_t i=objectsSize; i<mObjectsSize; i++) {
2704                 const flat_binder_object* flat
2705                     = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2706                 if (flat->type == BINDER_TYPE_FD) {
2707                     // will need to rescan because we may have lopped off the only FDs
2708                     mFdsKnown = false;
2709                 }
2710                 release_object(proc, *flat, this, &mOpenAshmemSize);
2711             }
2712             binder_size_t* objects =
2713                 (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2714             if (objects) {
2715                 mObjects = objects;
2716             }
2717             mObjectsSize = objectsSize;
2718             mNextObjectHint = 0;
2719             mObjectsSorted = false;
2720         }
2721
2722         // We own the data, so we can just do a realloc().
2723         if (desired > mDataCapacity) {
2724             uint8_t* data = (uint8_t*)realloc(mData, desired);
2725             if (data) {
2726                 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2727                         desired);
2728                 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2729                 gParcelGlobalAllocSize += desired;
2730                 gParcelGlobalAllocSize -= mDataCapacity;
2731                 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2732                 mData = data;
2733                 mDataCapacity = desired;
2734             } else if (desired > mDataCapacity) {
2735                 mError = NO_MEMORY;
2736                 return NO_MEMORY;
2737             }
2738         } else {
2739             if (mDataSize > desired) {
2740                 mDataSize = desired;
2741                 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2742             }
2743             if (mDataPos > desired) {
2744                 mDataPos = desired;
2745                 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2746             }
2747         }
2748
2749     } else {
2750         // This is the first data.  Easy!
2751         uint8_t* data = (uint8_t*)malloc(desired);
2752         if (!data) {
2753             mError = NO_MEMORY;
2754             return NO_MEMORY;
2755         }
2756
2757         if(!(mDataCapacity == 0 && mObjects == NULL
2758              && mObjectsCapacity == 0)) {
2759             ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2760         }
2761
2762         LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2763         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2764         gParcelGlobalAllocSize += desired;
2765         gParcelGlobalAllocCount++;
2766         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2767
2768         mData = data;
2769         mDataSize = mDataPos = 0;
2770         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2771         ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2772         mDataCapacity = desired;
2773     }
2774
2775     return NO_ERROR;
2776 }
2777
2778 void Parcel::initState()
2779 {
2780     LOG_ALLOC("Parcel %p: initState", this);
2781     mError = NO_ERROR;
2782     mData = 0;
2783     mDataSize = 0;
2784     mDataCapacity = 0;
2785     mDataPos = 0;
2786     ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2787     ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2788     mObjects = NULL;
2789     mObjectsSize = 0;
2790     mObjectsCapacity = 0;
2791     mNextObjectHint = 0;
2792     mObjectsSorted = false;
2793     mHasFds = false;
2794     mFdsKnown = true;
2795     mAllowFds = true;
2796     mOwner = NULL;
2797     mOpenAshmemSize = 0;
2798
2799     // racing multiple init leads only to multiple identical write
2800     if (gMaxFds == 0) {
2801         struct rlimit result;
2802         if (!getrlimit(RLIMIT_NOFILE, &result)) {
2803             gMaxFds = (size_t)result.rlim_cur;
2804             //ALOGI("parcel fd limit set to %zu", gMaxFds);
2805         } else {
2806             ALOGW("Unable to getrlimit: %s", strerror(errno));
2807             gMaxFds = 1024;
2808         }
2809     }
2810 }
2811
2812 void Parcel::scanForFds() const
2813 {
2814     bool hasFds = false;
2815     for (size_t i=0; i<mObjectsSize; i++) {
2816         const flat_binder_object* flat
2817             = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2818         if (flat->type == BINDER_TYPE_FD) {
2819             hasFds = true;
2820             break;
2821         }
2822     }
2823     mHasFds = hasFds;
2824     mFdsKnown = true;
2825 }
2826
2827 size_t Parcel::getBlobAshmemSize() const
2828 {
2829     // This used to return the size of all blobs that were written to ashmem, now we're returning
2830     // the ashmem currently referenced by this Parcel, which should be equivalent.
2831     // TODO: Remove method once ABI can be changed.
2832     return mOpenAshmemSize;
2833 }
2834
2835 size_t Parcel::getOpenAshmemSize() const
2836 {
2837     return mOpenAshmemSize;
2838 }
2839
2840 // --- Parcel::Blob ---
2841
2842 Parcel::Blob::Blob() :
2843         mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2844 }
2845
2846 Parcel::Blob::~Blob() {
2847     release();
2848 }
2849
2850 void Parcel::Blob::release() {
2851     if (mFd != -1 && mData) {
2852         ::munmap(mData, mSize);
2853     }
2854     clear();
2855 }
2856
2857 void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2858     mFd = fd;
2859     mData = data;
2860     mSize = size;
2861     mMutable = isMutable;
2862 }
2863
2864 void Parcel::Blob::clear() {
2865     mFd = -1;
2866     mData = NULL;
2867     mSize = 0;
2868     mMutable = false;
2869 }
2870
2871 }; // namespace android