OSDN Git Service

[automerger skipped] Merge "DO NOT MERGE: Disable SpellChecker in secondary user...
[android-x86/frameworks-base.git] / media / java / android / media / MediaCodec.java
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 package android.media;
18
19 import android.annotation.IntDef;
20 import android.annotation.NonNull;
21 import android.annotation.Nullable;
22 import android.graphics.ImageFormat;
23 import android.graphics.Rect;
24 import android.graphics.SurfaceTexture;
25 import android.media.MediaCodecInfo.CodecCapabilities;
26 import android.os.Bundle;
27 import android.os.Handler;
28 import android.os.IBinder;
29 import android.os.IHwBinder;
30 import android.os.Looper;
31 import android.os.Message;
32 import android.os.PersistableBundle;
33 import android.view.Surface;
34
35 import java.io.IOException;
36 import java.lang.annotation.Retention;
37 import java.lang.annotation.RetentionPolicy;
38 import java.nio.ByteBuffer;
39 import java.nio.ByteOrder;
40 import java.nio.ReadOnlyBufferException;
41 import java.util.Arrays;
42 import java.util.HashMap;
43 import java.util.Map;
44
45 /**
46  MediaCodec class can be used to access low-level media codecs, i.e. encoder/decoder components.
47  It is part of the Android low-level multimedia support infrastructure (normally used together
48  with {@link MediaExtractor}, {@link MediaSync}, {@link MediaMuxer}, {@link MediaCrypto},
49  {@link MediaDrm}, {@link Image}, {@link Surface}, and {@link AudioTrack}.)
50  <p>
51  <center><object style="width: 540px; height: 205px;" type="image/svg+xml"
52    data="../../../images/media/mediacodec_buffers.svg"><img
53    src="../../../images/media/mediacodec_buffers.png" style="width: 540px; height: 205px"
54    alt="MediaCodec buffer flow diagram"></object></center>
55  <p>
56  In broad terms, a codec processes input data to generate output data. It processes data
57  asynchronously and uses a set of input and output buffers. At a simplistic level, you request
58  (or receive) an empty input buffer, fill it up with data and send it to the codec for
59  processing. The codec uses up the data and transforms it into one of its empty output buffers.
60  Finally, you request (or receive) a filled output buffer, consume its contents and release it
61  back to the codec.
62
63  <h3>Data Types</h3>
64  <p>
65  Codecs operate on three kinds of data: compressed data, raw audio data and raw video data.
66  All three kinds of data can be processed using {@link ByteBuffer ByteBuffers}, but you should use
67  a {@link Surface} for raw video data to improve codec performance. Surface uses native video
68  buffers without mapping or copying them to ByteBuffers; thus, it is much more efficient.
69  You normally cannot access the raw video data when using a Surface, but you can use the
70  {@link ImageReader} class to access unsecured decoded (raw) video frames. This may still be more
71  efficient than using ByteBuffers, as some native buffers may be mapped into {@linkplain
72  ByteBuffer#isDirect direct} ByteBuffers. When using ByteBuffer mode, you can access raw video
73  frames using the {@link Image} class and {@link #getInputImage getInput}/{@link #getOutputImage
74  OutputImage(int)}.
75
76  <h4>Compressed Buffers</h4>
77  <p>
78  Input buffers (for decoders) and output buffers (for encoders) contain compressed data according
79  to the {@linkplain MediaFormat#KEY_MIME format's type}. For video types this is normally a single
80  compressed video frame. For audio data this is normally a single access unit (an encoded audio
81  segment typically containing a few milliseconds of audio as dictated by the format type), but
82  this requirement is slightly relaxed in that a buffer may contain multiple encoded access units
83  of audio. In either case, buffers do not start or end on arbitrary byte boundaries, but rather on
84  frame/access unit boundaries unless they are flagged with {@link #BUFFER_FLAG_PARTIAL_FRAME}.
85
86  <h4>Raw Audio Buffers</h4>
87  <p>
88  Raw audio buffers contain entire frames of PCM audio data, which is one sample for each channel
89  in channel order. Each sample is a {@linkplain AudioFormat#ENCODING_PCM_16BIT 16-bit signed
90  integer in native byte order}.
91
92  <pre class=prettyprint>
93  short[] getSamplesForChannel(MediaCodec codec, int bufferId, int channelIx) {
94    ByteBuffer outputBuffer = codec.getOutputBuffer(bufferId);
95    MediaFormat format = codec.getOutputFormat(bufferId);
96    ShortBuffer samples = outputBuffer.order(ByteOrder.nativeOrder()).asShortBuffer();
97    int numChannels = formet.getInteger(MediaFormat.KEY_CHANNEL_COUNT);
98    if (channelIx &lt; 0 || channelIx &gt;= numChannels) {
99      return null;
100    }
101    short[] res = new short[samples.remaining() / numChannels];
102    for (int i = 0; i &lt; res.length; ++i) {
103      res[i] = samples.get(i * numChannels + channelIx);
104    }
105    return res;
106  }</pre>
107
108  <h4>Raw Video Buffers</h4>
109  <p>
110  In ByteBuffer mode video buffers are laid out according to their {@linkplain
111  MediaFormat#KEY_COLOR_FORMAT color format}. You can get the supported color formats as an array
112  from {@link #getCodecInfo}{@code .}{@link MediaCodecInfo#getCapabilitiesForType
113  getCapabilitiesForType(&hellip;)}{@code .}{@link CodecCapabilities#colorFormats colorFormats}.
114  Video codecs may support three kinds of color formats:
115  <ul>
116  <li><strong>native raw video format:</strong> This is marked by {@link
117  CodecCapabilities#COLOR_FormatSurface} and it can be used with an input or output Surface.</li>
118  <li><strong>flexible YUV buffers</strong> (such as {@link
119  CodecCapabilities#COLOR_FormatYUV420Flexible}): These can be used with an input/output Surface,
120  as well as in ByteBuffer mode, by using {@link #getInputImage getInput}/{@link #getOutputImage
121  OutputImage(int)}.</li>
122  <li><strong>other, specific formats:</strong> These are normally only supported in ByteBuffer
123  mode. Some color formats are vendor specific. Others are defined in {@link CodecCapabilities}.
124  For color formats that are equivalent to a flexible format, you can still use {@link
125  #getInputImage getInput}/{@link #getOutputImage OutputImage(int)}.</li>
126  </ul>
127  <p>
128  All video codecs support flexible YUV 4:2:0 buffers since {@link
129  android.os.Build.VERSION_CODES#LOLLIPOP_MR1}.
130
131  <h4>Accessing Raw Video ByteBuffers on Older Devices</h4>
132  <p>
133  Prior to {@link android.os.Build.VERSION_CODES#LOLLIPOP} and {@link Image} support, you need to
134  use the {@link MediaFormat#KEY_STRIDE} and {@link MediaFormat#KEY_SLICE_HEIGHT} output format
135  values to understand the layout of the raw output buffers.
136  <p class=note>
137  Note that on some devices the slice-height is advertised as 0. This could mean either that the
138  slice-height is the same as the frame height, or that the slice-height is the frame height
139  aligned to some value (usually a power of 2). Unfortunately, there is no standard and simple way
140  to tell the actual slice height in this case. Furthermore, the vertical stride of the {@code U}
141  plane in planar formats is also not specified or defined, though usually it is half of the slice
142  height.
143  <p>
144  The {@link MediaFormat#KEY_WIDTH} and {@link MediaFormat#KEY_HEIGHT} keys specify the size of the
145  video frames; however, for most encondings the video (picture) only occupies a portion of the
146  video frame. This is represented by the 'crop rectangle'.
147  <p>
148  You need to use the following keys to get the crop rectangle of raw output images from the
149  {@linkplain #getOutputFormat output format}. If these keys are not present, the video occupies the
150  entire video frame.The crop rectangle is understood in the context of the output frame
151  <em>before</em> applying any {@linkplain MediaFormat#KEY_ROTATION rotation}.
152  <table style="width: 0%">
153   <thead>
154    <tr>
155     <th>Format Key</th>
156     <th>Type</th>
157     <th>Description</th>
158    </tr>
159   </thead>
160   <tbody>
161    <tr>
162     <td>{@code "crop-left"}</td>
163     <td>Integer</td>
164     <td>The left-coordinate (x) of the crop rectangle</td>
165    </tr><tr>
166     <td>{@code "crop-top"}</td>
167     <td>Integer</td>
168     <td>The top-coordinate (y) of the crop rectangle</td>
169    </tr><tr>
170     <td>{@code "crop-right"}</td>
171     <td>Integer</td>
172     <td>The right-coordinate (x) <strong>MINUS 1</strong> of the crop rectangle</td>
173    </tr><tr>
174     <td>{@code "crop-bottom"}</td>
175     <td>Integer</td>
176     <td>The bottom-coordinate (y) <strong>MINUS 1</strong> of the crop rectangle</td>
177    </tr><tr>
178     <td colspan=3>
179      The right and bottom coordinates can be understood as the coordinates of the right-most
180      valid column/bottom-most valid row of the cropped output image.
181     </td>
182    </tr>
183   </tbody>
184  </table>
185  <p>
186  The size of the video frame (before rotation) can be calculated as such:
187  <pre class=prettyprint>
188  MediaFormat format = decoder.getOutputFormat(&hellip;);
189  int width = format.getInteger(MediaFormat.KEY_WIDTH);
190  if (format.containsKey("crop-left") && format.containsKey("crop-right")) {
191      width = format.getInteger("crop-right") + 1 - format.getInteger("crop-left");
192  }
193  int height = format.getInteger(MediaFormat.KEY_HEIGHT);
194  if (format.containsKey("crop-top") && format.containsKey("crop-bottom")) {
195      height = format.getInteger("crop-bottom") + 1 - format.getInteger("crop-top");
196  }
197  </pre>
198  <p class=note>
199  Also note that the meaning of {@link BufferInfo#offset BufferInfo.offset} was not consistent across
200  devices. On some devices the offset pointed to the top-left pixel of the crop rectangle, while on
201  most devices it pointed to the top-left pixel of the entire frame.
202
203  <h3>States</h3>
204  <p>
205  During its life a codec conceptually exists in one of three states: Stopped, Executing or
206  Released. The Stopped collective state is actually the conglomeration of three states:
207  Uninitialized, Configured and Error, whereas the Executing state conceptually progresses through
208  three sub-states: Flushed, Running and End-of-Stream.
209  <p>
210  <center><object style="width: 516px; height: 353px;" type="image/svg+xml"
211    data="../../../images/media/mediacodec_states.svg"><img
212    src="../../../images/media/mediacodec_states.png" style="width: 519px; height: 356px"
213    alt="MediaCodec state diagram"></object></center>
214  <p>
215  When you create a codec using one of the factory methods, the codec is in the Uninitialized
216  state. First, you need to configure it via {@link #configure configure(&hellip;)}, which brings
217  it to the Configured state, then call {@link #start} to move it to the Executing state. In this
218  state you can process data through the buffer queue manipulation described above.
219  <p>
220  The Executing state has three sub-states: Flushed, Running and End-of-Stream. Immediately after
221  {@link #start} the codec is in the Flushed sub-state, where it holds all the buffers. As soon
222  as the first input buffer is dequeued, the codec moves to the Running sub-state, where it spends
223  most of its life. When you queue an input buffer with the {@linkplain #BUFFER_FLAG_END_OF_STREAM
224  end-of-stream marker}, the codec transitions to the End-of-Stream sub-state. In this state the
225  codec no longer accepts further input buffers, but still generates output buffers until the
226  end-of-stream is reached on the output. You can move back to the Flushed sub-state at any time
227  while in the Executing state using {@link #flush}.
228  <p>
229  Call {@link #stop} to return the codec to the Uninitialized state, whereupon it may be configured
230  again. When you are done using a codec, you must release it by calling {@link #release}.
231  <p>
232  On rare occasions the codec may encounter an error and move to the Error state. This is
233  communicated using an invalid return value from a queuing operation, or sometimes via an
234  exception. Call {@link #reset} to make the codec usable again. You can call it from any state to
235  move the codec back to the Uninitialized state. Otherwise, call {@link #release} to move to the
236  terminal Released state.
237
238  <h3>Creation</h3>
239  <p>
240  Use {@link MediaCodecList} to create a MediaCodec for a specific {@link MediaFormat}. When
241  decoding a file or a stream, you can get the desired format from {@link
242  MediaExtractor#getTrackFormat MediaExtractor.getTrackFormat}. Inject any specific features that
243  you want to add using {@link MediaFormat#setFeatureEnabled MediaFormat.setFeatureEnabled}, then
244  call {@link MediaCodecList#findDecoderForFormat MediaCodecList.findDecoderForFormat} to get the
245  name of a codec that can handle that specific media format. Finally, create the codec using
246  {@link #createByCodecName}.
247  <p class=note>
248  <strong>Note:</strong> On {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the format to
249  {@code MediaCodecList.findDecoder}/{@code EncoderForFormat} must not contain a {@linkplain
250  MediaFormat#KEY_FRAME_RATE frame rate}. Use
251  <code class=prettyprint>format.setString(MediaFormat.KEY_FRAME_RATE, null)</code>
252  to clear any existing frame rate setting in the format.
253  <p>
254  You can also create the preferred codec for a specific MIME type using {@link
255  #createDecoderByType createDecoder}/{@link #createEncoderByType EncoderByType(String)}.
256  This, however, cannot be used to inject features, and may create a codec that cannot handle the
257  specific desired media format.
258
259  <h4>Creating secure decoders</h4>
260  <p>
261  On versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and earlier, secure codecs might
262  not be listed in {@link MediaCodecList}, but may still be available on the system. Secure codecs
263  that exist can be instantiated by name only, by appending {@code ".secure"} to the name of a
264  regular codec (the name of all secure codecs must end in {@code ".secure"}.) {@link
265  #createByCodecName} will throw an {@code IOException} if the codec is not present on the system.
266  <p>
267  From {@link android.os.Build.VERSION_CODES#LOLLIPOP} onwards, you should use the {@link
268  CodecCapabilities#FEATURE_SecurePlayback} feature in the media format to create a secure decoder.
269
270  <h3>Initialization</h3>
271  <p>
272  After creating the codec, you can set a callback using {@link #setCallback setCallback} if you
273  want to process data asynchronously. Then, {@linkplain #configure configure} the codec using the
274  specific media format. This is when you can specify the output {@link Surface} for video
275  producers &ndash; codecs that generate raw video data (e.g. video decoders). This is also when
276  you can set the decryption parameters for secure codecs (see {@link MediaCrypto}). Finally, since
277  some codecs can operate in multiple modes, you must specify whether you want it to work as a
278  decoder or an encoder.
279  <p>
280  Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you can query the resulting input and
281  output format in the Configured state. You can use this to verify the resulting configuration,
282  e.g. color formats, before starting the codec.
283  <p>
284  If you want to process raw input video buffers natively with a video consumer &ndash; a codec
285  that processes raw video input, such as a video encoder &ndash; create a destination Surface for
286  your input data using {@link #createInputSurface} after configuration. Alternately, set up the
287  codec to use a previously created {@linkplain #createPersistentInputSurface persistent input
288  surface} by calling {@link #setInputSurface}.
289
290  <h4 id=CSD><a name="CSD"></a>Codec-specific Data</h4>
291  <p>
292  Some formats, notably AAC audio and MPEG4, H.264 and H.265 video formats require the actual data
293  to be prefixed by a number of buffers containing setup data, or codec specific data. When
294  processing such compressed formats, this data must be submitted to the codec after {@link
295  #start} and before any frame data. Such data must be marked using the flag {@link
296  #BUFFER_FLAG_CODEC_CONFIG} in a call to {@link #queueInputBuffer queueInputBuffer}.
297  <p>
298  Codec-specific data can also be included in the format passed to {@link #configure configure} in
299  ByteBuffer entries with keys "csd-0", "csd-1", etc. These keys are always included in the track
300  {@link MediaFormat} obtained from the {@link MediaExtractor#getTrackFormat MediaExtractor}.
301  Codec-specific data in the format is automatically submitted to the codec upon {@link #start};
302  you <strong>MUST NOT</strong> submit this data explicitly. If the format did not contain codec
303  specific data, you can choose to submit it using the specified number of buffers in the correct
304  order, according to the format requirements. In case of H.264 AVC, you can also concatenate all
305  codec-specific data and submit it as a single codec-config buffer.
306  <p>
307  Android uses the following codec-specific data buffers. These are also required to be set in
308  the track format for proper {@link MediaMuxer} track configuration. Each parameter set and the
309  codec-specific-data sections marked with (<sup>*</sup>) must start with a start code of
310  {@code "\x00\x00\x00\x01"}.
311  <p>
312  <style>td.NA { background: #ccc; } .mid > tr > td { vertical-align: middle; }</style>
313  <table>
314   <thead>
315    <th>Format</th>
316    <th>CSD buffer #0</th>
317    <th>CSD buffer #1</th>
318    <th>CSD buffer #2</th>
319   </thead>
320   <tbody class=mid>
321    <tr>
322     <td>AAC</td>
323     <td>Decoder-specific information from ESDS<sup>*</sup></td>
324     <td class=NA>Not Used</td>
325     <td class=NA>Not Used</td>
326    </tr>
327    <tr>
328     <td>VORBIS</td>
329     <td>Identification header</td>
330     <td>Setup header</td>
331     <td class=NA>Not Used</td>
332    </tr>
333    <tr>
334     <td>OPUS</td>
335     <td>Identification header</td>
336     <td>Pre-skip in nanosecs<br>
337         (unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)<br>
338         This overrides the pre-skip value in the identification header.</td>
339     <td>Seek Pre-roll in nanosecs<br>
340         (unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)</td>
341    </tr>
342    <tr>
343     <td>FLAC</td>
344     <td>mandatory metadata block (called the STREAMINFO block),<br>
345         optionally followed by any number of other metadata blocks</td>
346     <td class=NA>Not Used</td>
347     <td class=NA>Not Used</td>
348    </tr>
349    <tr>
350     <td>MPEG-4</td>
351     <td>Decoder-specific information from ESDS<sup>*</sup></td>
352     <td class=NA>Not Used</td>
353     <td class=NA>Not Used</td>
354    </tr>
355    <tr>
356     <td>H.264 AVC</td>
357     <td>SPS (Sequence Parameter Sets<sup>*</sup>)</td>
358     <td>PPS (Picture Parameter Sets<sup>*</sup>)</td>
359     <td class=NA>Not Used</td>
360    </tr>
361    <tr>
362     <td>H.265 HEVC</td>
363     <td>VPS (Video Parameter Sets<sup>*</sup>) +<br>
364      SPS (Sequence Parameter Sets<sup>*</sup>) +<br>
365      PPS (Picture Parameter Sets<sup>*</sup>)</td>
366     <td class=NA>Not Used</td>
367     <td class=NA>Not Used</td>
368    </tr>
369    <tr>
370     <td>VP9</td>
371     <td>VP9 <a href="http://wiki.webmproject.org/vp9-codecprivate">CodecPrivate</a> Data
372         (optional)</td>
373     <td class=NA>Not Used</td>
374     <td class=NA>Not Used</td>
375    </tr>
376   </tbody>
377  </table>
378
379  <p class=note>
380  <strong>Note:</strong> care must be taken if the codec is flushed immediately or shortly
381  after start, before any output buffer or output format change has been returned, as the codec
382  specific data may be lost during the flush. You must resubmit the data using buffers marked with
383  {@link #BUFFER_FLAG_CODEC_CONFIG} after such flush to ensure proper codec operation.
384  <p>
385  Encoders (or codecs that generate compressed data) will create and return the codec specific data
386  before any valid output buffer in output buffers marked with the {@linkplain
387  #BUFFER_FLAG_CODEC_CONFIG codec-config flag}. Buffers containing codec-specific-data have no
388  meaningful timestamps.
389
390  <h3>Data Processing</h3>
391  <p>
392  Each codec maintains a set of input and output buffers that are referred to by a buffer-ID in
393  API calls. After a successful call to {@link #start} the client "owns" neither input nor output
394  buffers. In synchronous mode, call {@link #dequeueInputBuffer dequeueInput}/{@link
395  #dequeueOutputBuffer OutputBuffer(&hellip;)} to obtain (get ownership of) an input or output
396  buffer from the codec. In asynchronous mode, you will automatically receive available buffers via
397  the {@link Callback#onInputBufferAvailable MediaCodec.Callback.onInput}/{@link
398  Callback#onOutputBufferAvailable OutputBufferAvailable(&hellip;)} callbacks.
399  <p>
400  Upon obtaining an input buffer, fill it with data and submit it to the codec using {@link
401  #queueInputBuffer queueInputBuffer} &ndash; or {@link #queueSecureInputBuffer
402  queueSecureInputBuffer} if using decryption. Do not submit multiple input buffers with the same
403  timestamp (unless it is <a href="#CSD">codec-specific data</a> marked as such).
404  <p>
405  The codec in turn will return a read-only output buffer via the {@link
406  Callback#onOutputBufferAvailable onOutputBufferAvailable} callback in asynchronous mode, or in
407  response to a {@link #dequeueOutputBuffer dequeueOutputBuffer} call in synchronous mode. After the
408  output buffer has been processed, call one of the {@link #releaseOutputBuffer
409  releaseOutputBuffer} methods to return the buffer to the codec.
410  <p>
411  While you are not required to resubmit/release buffers immediately to the codec, holding onto
412  input and/or output buffers may stall the codec, and this behavior is device dependent.
413  <strong>Specifically, it is possible that a codec may hold off on generating output buffers until
414  <em>all</em> outstanding buffers have been released/resubmitted.</strong> Therefore, try to
415  hold onto to available buffers as little as possible.
416  <p>
417  Depending on the API version, you can process data in three ways:
418  <table>
419   <thead>
420    <tr>
421     <th>Processing Mode</th>
422     <th>API version <= 20<br>Jelly Bean/KitKat</th>
423     <th>API version >= 21<br>Lollipop and later</th>
424    </tr>
425   </thead>
426   <tbody>
427    <tr>
428     <td>Synchronous API using buffer arrays</td>
429     <td>Supported</td>
430     <td>Deprecated</td>
431    </tr>
432    <tr>
433     <td>Synchronous API using buffers</td>
434     <td class=NA>Not Available</td>
435     <td>Supported</td>
436    </tr>
437    <tr>
438     <td>Asynchronous API using buffers</td>
439     <td class=NA>Not Available</td>
440     <td>Supported</td>
441    </tr>
442   </tbody>
443  </table>
444
445  <h4>Asynchronous Processing using Buffers</h4>
446  <p>
447  Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the preferred method is to process data
448  asynchronously by setting a callback before calling {@link #configure configure}. Asynchronous
449  mode changes the state transitions slightly, because you must call {@link #start} after {@link
450  #flush} to transition the codec to the Running sub-state and start receiving input buffers.
451  Similarly, upon an initial call to {@code start} the codec will move directly to the Running
452  sub-state and start passing available input buffers via the callback.
453  <p>
454  <center><object style="width: 516px; height: 353px;" type="image/svg+xml"
455    data="../../../images/media/mediacodec_async_states.svg"><img
456    src="../../../images/media/mediacodec_async_states.png" style="width: 516px; height: 353px"
457    alt="MediaCodec state diagram for asynchronous operation"></object></center>
458  <p>
459  MediaCodec is typically used like this in asynchronous mode:
460  <pre class=prettyprint>
461  MediaCodec codec = MediaCodec.createByCodecName(name);
462  MediaFormat mOutputFormat; // member variable
463  codec.setCallback(new MediaCodec.Callback() {
464    {@literal @Override}
465    void onInputBufferAvailable(MediaCodec mc, int inputBufferId) {
466      ByteBuffer inputBuffer = codec.getInputBuffer(inputBufferId);
467      // fill inputBuffer with valid data
468      &hellip;
469      codec.queueInputBuffer(inputBufferId, &hellip;);
470    }
471
472    {@literal @Override}
473    void onOutputBufferAvailable(MediaCodec mc, int outputBufferId, &hellip;) {
474      ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
475      MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
476      // bufferFormat is equivalent to mOutputFormat
477      // outputBuffer is ready to be processed or rendered.
478      &hellip;
479      codec.releaseOutputBuffer(outputBufferId, &hellip;);
480    }
481
482    {@literal @Override}
483    void onOutputFormatChanged(MediaCodec mc, MediaFormat format) {
484      // Subsequent data will conform to new format.
485      // Can ignore if using getOutputFormat(outputBufferId)
486      mOutputFormat = format; // option B
487    }
488
489    {@literal @Override}
490    void onError(&hellip;) {
491      &hellip;
492    }
493  });
494  codec.configure(format, &hellip;);
495  mOutputFormat = codec.getOutputFormat(); // option B
496  codec.start();
497  // wait for processing to complete
498  codec.stop();
499  codec.release();</pre>
500
501  <h4>Synchronous Processing using Buffers</h4>
502  <p>
503  Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you should retrieve input and output
504  buffers using {@link #getInputBuffer getInput}/{@link #getOutputBuffer OutputBuffer(int)} and/or
505  {@link #getInputImage getInput}/{@link #getOutputImage OutputImage(int)} even when using the
506  codec in synchronous mode. This allows certain optimizations by the framework, e.g. when
507  processing dynamic content. This optimization is disabled if you call {@link #getInputBuffers
508  getInput}/{@link #getOutputBuffers OutputBuffers()}.
509
510  <p class=note>
511  <strong>Note:</strong> do not mix the methods of using buffers and buffer arrays at the same
512  time. Specifically, only call {@code getInput}/{@code OutputBuffers} directly after {@link
513  #start} or after having dequeued an output buffer ID with the value of {@link
514  #INFO_OUTPUT_FORMAT_CHANGED}.
515  <p>
516  MediaCodec is typically used like this in synchronous mode:
517  <pre>
518  MediaCodec codec = MediaCodec.createByCodecName(name);
519  codec.configure(format, &hellip;);
520  MediaFormat outputFormat = codec.getOutputFormat(); // option B
521  codec.start();
522  for (;;) {
523    int inputBufferId = codec.dequeueInputBuffer(timeoutUs);
524    if (inputBufferId &gt;= 0) {
525      ByteBuffer inputBuffer = codec.getInputBuffer(&hellip;);
526      // fill inputBuffer with valid data
527      &hellip;
528      codec.queueInputBuffer(inputBufferId, &hellip;);
529    }
530    int outputBufferId = codec.dequeueOutputBuffer(&hellip;);
531    if (outputBufferId &gt;= 0) {
532      ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
533      MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
534      // bufferFormat is identical to outputFormat
535      // outputBuffer is ready to be processed or rendered.
536      &hellip;
537      codec.releaseOutputBuffer(outputBufferId, &hellip;);
538    } else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
539      // Subsequent data will conform to new format.
540      // Can ignore if using getOutputFormat(outputBufferId)
541      outputFormat = codec.getOutputFormat(); // option B
542    }
543  }
544  codec.stop();
545  codec.release();</pre>
546
547  <h4>Synchronous Processing using Buffer Arrays (deprecated)</h4>
548  <p>
549  In versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and before, the set of input and
550  output buffers are represented by the {@code ByteBuffer[]} arrays. After a successful call to
551  {@link #start}, retrieve the buffer arrays using {@link #getInputBuffers getInput}/{@link
552  #getOutputBuffers OutputBuffers()}. Use the buffer ID-s as indices into these arrays (when
553  non-negative), as demonstrated in the sample below. Note that there is no inherent correlation
554  between the size of the arrays and the number of input and output buffers used by the system,
555  although the array size provides an upper bound.
556  <pre>
557  MediaCodec codec = MediaCodec.createByCodecName(name);
558  codec.configure(format, &hellip;);
559  codec.start();
560  ByteBuffer[] inputBuffers = codec.getInputBuffers();
561  ByteBuffer[] outputBuffers = codec.getOutputBuffers();
562  for (;;) {
563    int inputBufferId = codec.dequeueInputBuffer(&hellip;);
564    if (inputBufferId &gt;= 0) {
565      // fill inputBuffers[inputBufferId] with valid data
566      &hellip;
567      codec.queueInputBuffer(inputBufferId, &hellip;);
568    }
569    int outputBufferId = codec.dequeueOutputBuffer(&hellip;);
570    if (outputBufferId &gt;= 0) {
571      // outputBuffers[outputBufferId] is ready to be processed or rendered.
572      &hellip;
573      codec.releaseOutputBuffer(outputBufferId, &hellip;);
574    } else if (outputBufferId == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
575      outputBuffers = codec.getOutputBuffers();
576    } else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
577      // Subsequent data will conform to new format.
578      MediaFormat format = codec.getOutputFormat();
579    }
580  }
581  codec.stop();
582  codec.release();</pre>
583
584  <h4>End-of-stream Handling</h4>
585  <p>
586  When you reach the end of the input data, you must signal it to the codec by specifying the
587  {@link #BUFFER_FLAG_END_OF_STREAM} flag in the call to {@link #queueInputBuffer
588  queueInputBuffer}. You can do this on the last valid input buffer, or by submitting an additional
589  empty input buffer with the end-of-stream flag set. If using an empty buffer, the timestamp will
590  be ignored.
591  <p>
592  The codec will continue to return output buffers until it eventually signals the end of the
593  output stream by specifying the same end-of-stream flag in the {@link BufferInfo} set in {@link
594  #dequeueOutputBuffer dequeueOutputBuffer} or returned via {@link Callback#onOutputBufferAvailable
595  onOutputBufferAvailable}. This can be set on the last valid output buffer, or on an empty buffer
596  after the last valid output buffer. The timestamp of such empty buffer should be ignored.
597  <p>
598  Do not submit additional input buffers after signaling the end of the input stream, unless the
599  codec has been flushed, or stopped and restarted.
600
601  <h4>Using an Output Surface</h4>
602  <p>
603  The data processing is nearly identical to the ByteBuffer mode when using an output {@link
604  Surface}; however, the output buffers will not be accessible, and are represented as {@code null}
605  values. E.g. {@link #getOutputBuffer getOutputBuffer}/{@link #getOutputImage Image(int)} will
606  return {@code null} and {@link #getOutputBuffers} will return an array containing only {@code
607  null}-s.
608  <p>
609  When using an output Surface, you can select whether or not to render each output buffer on the
610  surface. You have three choices:
611  <ul>
612  <li><strong>Do not render the buffer:</strong> Call {@link #releaseOutputBuffer(int, boolean)
613  releaseOutputBuffer(bufferId, false)}.</li>
614  <li><strong>Render the buffer with the default timestamp:</strong> Call {@link
615  #releaseOutputBuffer(int, boolean) releaseOutputBuffer(bufferId, true)}.</li>
616  <li><strong>Render the buffer with a specific timestamp:</strong> Call {@link
617  #releaseOutputBuffer(int, long) releaseOutputBuffer(bufferId, timestamp)}.</li>
618  </ul>
619  <p>
620  Since {@link android.os.Build.VERSION_CODES#M}, the default timestamp is the {@linkplain
621  BufferInfo#presentationTimeUs presentation timestamp} of the buffer (converted to nanoseconds).
622  It was not defined prior to that.
623  <p>
624  Also since {@link android.os.Build.VERSION_CODES#M}, you can change the output Surface
625  dynamically using {@link #setOutputSurface setOutputSurface}.
626
627  <h4>Transformations When Rendering onto Surface</h4>
628
629  If the codec is configured into Surface mode, any crop rectangle, {@linkplain
630  MediaFormat#KEY_ROTATION rotation} and {@linkplain #setVideoScalingMode video scaling
631  mode} will be automatically applied with one exception:
632  <p class=note>
633  Prior to the {@link android.os.Build.VERSION_CODES#M} release, software decoders may not
634  have applied the rotation when being rendered onto a Surface. Unfortunately, there is no standard
635  and simple way to identify software decoders, or if they apply the rotation other than by trying
636  it out.
637  <p>
638  There are also some caveats.
639  <p class=note>
640  Note that the pixel aspect ratio is not considered when displaying the output onto the
641  Surface. This means that if you are using {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT} mode, you
642  must position the output Surface so that it has the proper final display aspect ratio. Conversely,
643  you can only use {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode for content with
644  square pixels (pixel aspect ratio or 1:1).
645  <p class=note>
646  Note also that as of {@link android.os.Build.VERSION_CODES#N} release, {@link
647  #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode may not work correctly for videos rotated
648  by 90 or 270 degrees.
649  <p class=note>
650  When setting the video scaling mode, note that it must be reset after each time the output
651  buffers change. Since the {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is deprecated, you can
652  do this after each time the output format changes.
653
654  <h4>Using an Input Surface</h4>
655  <p>
656  When using an input Surface, there are no accessible input buffers, as buffers are automatically
657  passed from the input surface to the codec. Calling {@link #dequeueInputBuffer
658  dequeueInputBuffer} will throw an {@code IllegalStateException}, and {@link #getInputBuffers}
659  returns a bogus {@code ByteBuffer[]} array that <strong>MUST NOT</strong> be written into.
660  <p>
661  Call {@link #signalEndOfInputStream} to signal end-of-stream. The input surface will stop
662  submitting data to the codec immediately after this call.
663  <p>
664
665  <h3>Seeking &amp; Adaptive Playback Support</h3>
666  <p>
667  Video decoders (and in general codecs that consume compressed video data) behave differently
668  regarding seek and format change whether or not they support and are configured for adaptive
669  playback. You can check if a decoder supports {@linkplain
670  CodecCapabilities#FEATURE_AdaptivePlayback adaptive playback} via {@link
671  CodecCapabilities#isFeatureSupported CodecCapabilities.isFeatureSupported(String)}. Adaptive
672  playback support for video decoders is only activated if you configure the codec to decode onto a
673  {@link Surface}.
674
675  <h4 id=KeyFrames><a name="KeyFrames"></a>Stream Boundary and Key Frames</h4>
676  <p>
677  It is important that the input data after {@link #start} or {@link #flush} starts at a suitable
678  stream boundary: the first frame must a key frame. A <em>key frame</em> can be decoded
679  completely on its own (for most codecs this means an I-frame), and no frames that are to be
680  displayed after a key frame refer to frames before the key frame.
681  <p>
682  The following table summarizes suitable key frames for various video formats.
683  <table>
684   <thead>
685    <tr>
686     <th>Format</th>
687     <th>Suitable key frame</th>
688    </tr>
689   </thead>
690   <tbody class=mid>
691    <tr>
692     <td>VP9/VP8</td>
693     <td>a suitable intraframe where no subsequent frames refer to frames prior to this frame.<br>
694       <i>(There is no specific name for such key frame.)</i></td>
695    </tr>
696    <tr>
697     <td>H.265 HEVC</td>
698     <td>IDR or CRA</td>
699    </tr>
700    <tr>
701     <td>H.264 AVC</td>
702     <td>IDR</td>
703    </tr>
704    <tr>
705     <td>MPEG-4<br>H.263<br>MPEG-2</td>
706     <td>a suitable I-frame where no subsequent frames refer to frames prior to this frame.<br>
707       <i>(There is no specific name for such key frame.)</td>
708    </tr>
709   </tbody>
710  </table>
711
712  <h4>For decoders that do not support adaptive playback (including when not decoding onto a
713  Surface)</h4>
714  <p>
715  In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
716  seek) you <strong>MUST</strong> flush the decoder. Since all output buffers are immediately
717  revoked at the point of the flush, you may want to first signal then wait for the end-of-stream
718  before you call {@code flush}. It is important that the input data after a flush starts at a
719  suitable stream boundary/key frame.
720  <p class=note>
721  <strong>Note:</strong> the format of the data submitted after a flush must not change; {@link
722  #flush} does not support format discontinuities; for that, a full {@link #stop} - {@link
723  #configure configure(&hellip;)} - {@link #start} cycle is necessary.
724
725  <p class=note>
726  <strong>Also note:</strong> if you flush the codec too soon after {@link #start} &ndash;
727  generally, before the first output buffer or output format change is received &ndash; you
728  will need to resubmit the codec-specific-data to the codec. See the <a
729  href="#CSD">codec-specific-data section</a> for more info.
730
731  <h4>For decoders that support and are configured for adaptive playback</h4>
732  <p>
733  In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
734  seek) it is <em>not necessary</em> to flush the decoder; however, input data after the
735  discontinuity must start at a suitable stream boundary/key frame.
736  <p>
737  For some video formats - namely H.264, H.265, VP8 and VP9 - it is also possible to change the
738  picture size or configuration mid-stream. To do this you must package the entire new
739  codec-specific configuration data together with the key frame into a single buffer (including
740  any start codes), and submit it as a <strong>regular</strong> input buffer.
741  <p>
742  You will receive an {@link #INFO_OUTPUT_FORMAT_CHANGED} return value from {@link
743  #dequeueOutputBuffer dequeueOutputBuffer} or a {@link Callback#onOutputBufferAvailable
744  onOutputFormatChanged} callback just after the picture-size change takes place and before any
745  frames with the new size have been returned.
746  <p class=note>
747  <strong>Note:</strong> just as the case for codec-specific data, be careful when calling
748  {@link #flush} shortly after you have changed the picture size. If you have not received
749  confirmation of the picture size change, you will need to repeat the request for the new picture
750  size.
751
752  <h3>Error handling</h3>
753  <p>
754  The factory methods {@link #createByCodecName createByCodecName} and {@link #createDecoderByType
755  createDecoder}/{@link #createEncoderByType EncoderByType} throw {@code IOException} on failure
756  which you must catch or declare to pass up. MediaCodec methods throw {@code
757  IllegalStateException} when the method is called from a codec state that does not allow it; this
758  is typically due to incorrect application API usage. Methods involving secure buffers may throw
759  {@link CryptoException}, which has further error information obtainable from {@link
760  CryptoException#getErrorCode}.
761  <p>
762  Internal codec errors result in a {@link CodecException}, which may be due to media content
763  corruption, hardware failure, resource exhaustion, and so forth, even when the application is
764  correctly using the API. The recommended action when receiving a {@code CodecException}
765  can be determined by calling {@link CodecException#isRecoverable} and {@link
766  CodecException#isTransient}:
767  <ul>
768  <li><strong>recoverable errors:</strong> If {@code isRecoverable()} returns true, then call
769  {@link #stop}, {@link #configure configure(&hellip;)}, and {@link #start} to recover.</li>
770  <li><strong>transient errors:</strong> If {@code isTransient()} returns true, then resources are
771  temporarily unavailable and the method may be retried at a later time.</li>
772  <li><strong>fatal errors:</strong> If both {@code isRecoverable()} and {@code isTransient()}
773  return false, then the {@code CodecException} is fatal and the codec must be {@linkplain #reset
774  reset} or {@linkplain #release released}.</li>
775  </ul>
776  <p>
777  Both {@code isRecoverable()} and {@code isTransient()} do not return true at the same time.
778
779  <h2 id=History><a name="History"></a>Valid API Calls and API History</h2>
780  <p>
781  This sections summarizes the valid API calls in each state and the API history of the MediaCodec
782  class. For API version numbers, see {@link android.os.Build.VERSION_CODES}.
783
784  <style>
785  .api > tr > th, .api > tr > td { text-align: center; padding: 4px 4px; }
786  .api > tr > th     { vertical-align: bottom; }
787  .api > tr > td     { vertical-align: middle; }
788  .sml > tr > th, .sml > tr > td { text-align: center; padding: 2px 4px; }
789  .fn { text-align: left; }
790  .fn > code > a { font: 14px/19px Roboto Condensed, sans-serif; }
791  .deg45 {
792    white-space: nowrap; background: none; border: none; vertical-align: bottom;
793    width: 30px; height: 83px;
794  }
795  .deg45 > div {
796    transform: skew(-45deg, 0deg) translate(1px, -67px);
797    transform-origin: bottom left 0;
798    width: 30px; height: 20px;
799  }
800  .deg45 > div > div { border: 1px solid #ddd; background: #999; height: 90px; width: 42px; }
801  .deg45 > div > div > div { transform: skew(45deg, 0deg) translate(-55px, 55px) rotate(-45deg); }
802  </style>
803
804  <table align="right" style="width: 0%">
805   <thead>
806    <tr><th>Symbol</th><th>Meaning</th></tr>
807   </thead>
808   <tbody class=sml>
809    <tr><td>&#9679;</td><td>Supported</td></tr>
810    <tr><td>&#8277;</td><td>Semantics changed</td></tr>
811    <tr><td>&#9675;</td><td>Experimental support</td></tr>
812    <tr><td>[ ]</td><td>Deprecated</td></tr>
813    <tr><td>&#9099;</td><td>Restricted to surface input mode</td></tr>
814    <tr><td>&#9094;</td><td>Restricted to surface output mode</td></tr>
815    <tr><td>&#9639;</td><td>Restricted to ByteBuffer input mode</td></tr>
816    <tr><td>&#8617;</td><td>Restricted to synchronous mode</td></tr>
817    <tr><td>&#8644;</td><td>Restricted to asynchronous mode</td></tr>
818    <tr><td>( )</td><td>Can be called, but shouldn't</td></tr>
819   </tbody>
820  </table>
821
822  <table style="width: 100%;">
823   <thead class=api>
824    <tr>
825     <th class=deg45><div><div style="background:#4285f4"><div>Uninitialized</div></div></div></th>
826     <th class=deg45><div><div style="background:#f4b400"><div>Configured</div></div></div></th>
827     <th class=deg45><div><div style="background:#e67c73"><div>Flushed</div></div></div></th>
828     <th class=deg45><div><div style="background:#0f9d58"><div>Running</div></div></div></th>
829     <th class=deg45><div><div style="background:#f7cb4d"><div>End of Stream</div></div></div></th>
830     <th class=deg45><div><div style="background:#db4437"><div>Error</div></div></div></th>
831     <th class=deg45><div><div style="background:#666"><div>Released</div></div></div></th>
832     <th></th>
833     <th colspan="8">SDK Version</th>
834    </tr>
835    <tr>
836     <th colspan="7">State</th>
837     <th>Method</th>
838     <th>16</th>
839     <th>17</th>
840     <th>18</th>
841     <th>19</th>
842     <th>20</th>
843     <th>21</th>
844     <th>22</th>
845     <th>23</th>
846    </tr>
847   </thead>
848   <tbody class=api>
849    <tr>
850     <td></td>
851     <td></td>
852     <td></td>
853     <td></td>
854     <td></td>
855     <td></td>
856     <td></td>
857     <td class=fn>{@link #createByCodecName createByCodecName}</td>
858     <td>&#9679;</td>
859     <td>&#9679;</td>
860     <td>&#9679;</td>
861     <td>&#9679;</td>
862     <td>&#9679;</td>
863     <td>&#9679;</td>
864     <td>&#9679;</td>
865     <td>&#9679;</td>
866    </tr>
867    <tr>
868     <td></td>
869     <td></td>
870     <td></td>
871     <td></td>
872     <td></td>
873     <td></td>
874     <td></td>
875     <td class=fn>{@link #createDecoderByType createDecoderByType}</td>
876     <td>&#9679;</td>
877     <td>&#9679;</td>
878     <td>&#9679;</td>
879     <td>&#9679;</td>
880     <td>&#9679;</td>
881     <td>&#9679;</td>
882     <td>&#9679;</td>
883     <td>&#9679;</td>
884    </tr>
885    <tr>
886     <td></td>
887     <td></td>
888     <td></td>
889     <td></td>
890     <td></td>
891     <td></td>
892     <td></td>
893     <td class=fn>{@link #createEncoderByType createEncoderByType}</td>
894     <td>&#9679;</td>
895     <td>&#9679;</td>
896     <td>&#9679;</td>
897     <td>&#9679;</td>
898     <td>&#9679;</td>
899     <td>&#9679;</td>
900     <td>&#9679;</td>
901     <td>&#9679;</td>
902    </tr>
903    <tr>
904     <td></td>
905     <td></td>
906     <td></td>
907     <td></td>
908     <td></td>
909     <td></td>
910     <td></td>
911     <td class=fn>{@link #createPersistentInputSurface createPersistentInputSurface}</td>
912     <td></td>
913     <td></td>
914     <td></td>
915     <td></td>
916     <td></td>
917     <td></td>
918     <td></td>
919     <td>&#9679;</td>
920    </tr>
921    <tr>
922     <td>16+</td>
923     <td>-</td>
924     <td>-</td>
925     <td>-</td>
926     <td>-</td>
927     <td>-</td>
928     <td>-</td>
929     <td class=fn>{@link #configure configure}</td>
930     <td>&#9679;</td>
931     <td>&#9679;</td>
932     <td>&#9679;</td>
933     <td>&#9679;</td>
934     <td>&#9679;</td>
935     <td>&#8277;</td>
936     <td>&#9679;</td>
937     <td>&#9679;</td>
938    </tr>
939    <tr>
940     <td>-</td>
941     <td>18+</td>
942     <td>-</td>
943     <td>-</td>
944     <td>-</td>
945     <td>-</td>
946     <td>-</td>
947     <td class=fn>{@link #createInputSurface createInputSurface}</td>
948     <td></td>
949     <td></td>
950     <td>&#9099;</td>
951     <td>&#9099;</td>
952     <td>&#9099;</td>
953     <td>&#9099;</td>
954     <td>&#9099;</td>
955     <td>&#9099;</td>
956    </tr>
957    <tr>
958     <td>-</td>
959     <td>-</td>
960     <td>16+</td>
961     <td>16+</td>
962     <td>(16+)</td>
963     <td>-</td>
964     <td>-</td>
965     <td class=fn>{@link #dequeueInputBuffer dequeueInputBuffer}</td>
966     <td>&#9679;</td>
967     <td>&#9679;</td>
968     <td>&#9639;</td>
969     <td>&#9639;</td>
970     <td>&#9639;</td>
971     <td>&#8277;&#9639;&#8617;</td>
972     <td>&#9639;&#8617;</td>
973     <td>&#9639;&#8617;</td>
974    </tr>
975    <tr>
976     <td>-</td>
977     <td>-</td>
978     <td>16+</td>
979     <td>16+</td>
980     <td>16+</td>
981     <td>-</td>
982     <td>-</td>
983     <td class=fn>{@link #dequeueOutputBuffer dequeueOutputBuffer}</td>
984     <td>&#9679;</td>
985     <td>&#9679;</td>
986     <td>&#9679;</td>
987     <td>&#9679;</td>
988     <td>&#9679;</td>
989     <td>&#8277;&#8617;</td>
990     <td>&#8617;</td>
991     <td>&#8617;</td>
992    </tr>
993    <tr>
994     <td>-</td>
995     <td>-</td>
996     <td>16+</td>
997     <td>16+</td>
998     <td>16+</td>
999     <td>-</td>
1000     <td>-</td>
1001     <td class=fn>{@link #flush flush}</td>
1002     <td>&#9679;</td>
1003     <td>&#9679;</td>
1004     <td>&#9679;</td>
1005     <td>&#9679;</td>
1006     <td>&#9679;</td>
1007     <td>&#9679;</td>
1008     <td>&#9679;</td>
1009     <td>&#9679;</td>
1010    </tr>
1011    <tr>
1012     <td>18+</td>
1013     <td>18+</td>
1014     <td>18+</td>
1015     <td>18+</td>
1016     <td>18+</td>
1017     <td>18+</td>
1018     <td>-</td>
1019     <td class=fn>{@link #getCodecInfo getCodecInfo}</td>
1020     <td></td>
1021     <td></td>
1022     <td>&#9679;</td>
1023     <td>&#9679;</td>
1024     <td>&#9679;</td>
1025     <td>&#9679;</td>
1026     <td>&#9679;</td>
1027     <td>&#9679;</td>
1028    </tr>
1029    <tr>
1030     <td>-</td>
1031     <td>-</td>
1032     <td>(21+)</td>
1033     <td>21+</td>
1034     <td>(21+)</td>
1035     <td>-</td>
1036     <td>-</td>
1037     <td class=fn>{@link #getInputBuffer getInputBuffer}</td>
1038     <td></td>
1039     <td></td>
1040     <td></td>
1041     <td></td>
1042     <td></td>
1043     <td>&#9679;</td>
1044     <td>&#9679;</td>
1045     <td>&#9679;</td>
1046    </tr>
1047    <tr>
1048     <td>-</td>
1049     <td>-</td>
1050     <td>16+</td>
1051     <td>(16+)</td>
1052     <td>(16+)</td>
1053     <td>-</td>
1054     <td>-</td>
1055     <td class=fn>{@link #getInputBuffers getInputBuffers}</td>
1056     <td>&#9679;</td>
1057     <td>&#9679;</td>
1058     <td>&#9679;</td>
1059     <td>&#9679;</td>
1060     <td>&#9679;</td>
1061     <td>[&#8277;&#8617;]</td>
1062     <td>[&#8617;]</td>
1063     <td>[&#8617;]</td>
1064    </tr>
1065    <tr>
1066     <td>-</td>
1067     <td>21+</td>
1068     <td>(21+)</td>
1069     <td>(21+)</td>
1070     <td>(21+)</td>
1071     <td>-</td>
1072     <td>-</td>
1073     <td class=fn>{@link #getInputFormat getInputFormat}</td>
1074     <td></td>
1075     <td></td>
1076     <td></td>
1077     <td></td>
1078     <td></td>
1079     <td>&#9679;</td>
1080     <td>&#9679;</td>
1081     <td>&#9679;</td>
1082    </tr>
1083    <tr>
1084     <td>-</td>
1085     <td>-</td>
1086     <td>(21+)</td>
1087     <td>21+</td>
1088     <td>(21+)</td>
1089     <td>-</td>
1090     <td>-</td>
1091     <td class=fn>{@link #getInputImage getInputImage}</td>
1092     <td></td>
1093     <td></td>
1094     <td></td>
1095     <td></td>
1096     <td></td>
1097     <td>&#9675;</td>
1098     <td>&#9679;</td>
1099     <td>&#9679;</td>
1100    </tr>
1101    <tr>
1102     <td>18+</td>
1103     <td>18+</td>
1104     <td>18+</td>
1105     <td>18+</td>
1106     <td>18+</td>
1107     <td>18+</td>
1108     <td>-</td>
1109     <td class=fn>{@link #getName getName}</td>
1110     <td></td>
1111     <td></td>
1112     <td>&#9679;</td>
1113     <td>&#9679;</td>
1114     <td>&#9679;</td>
1115     <td>&#9679;</td>
1116     <td>&#9679;</td>
1117     <td>&#9679;</td>
1118    </tr>
1119    <tr>
1120     <td>-</td>
1121     <td>-</td>
1122     <td>(21+)</td>
1123     <td>21+</td>
1124     <td>21+</td>
1125     <td>-</td>
1126     <td>-</td>
1127     <td class=fn>{@link #getOutputBuffer getOutputBuffer}</td>
1128     <td></td>
1129     <td></td>
1130     <td></td>
1131     <td></td>
1132     <td></td>
1133     <td>&#9679;</td>
1134     <td>&#9679;</td>
1135     <td>&#9679;</td>
1136    </tr>
1137    <tr>
1138     <td>-</td>
1139     <td>-</td>
1140     <td>16+</td>
1141     <td>16+</td>
1142     <td>16+</td>
1143     <td>-</td>
1144     <td>-</td>
1145     <td class=fn>{@link #getOutputBuffers getOutputBuffers}</td>
1146     <td>&#9679;</td>
1147     <td>&#9679;</td>
1148     <td>&#9679;</td>
1149     <td>&#9679;</td>
1150     <td>&#9679;</td>
1151     <td>[&#8277;&#8617;]</td>
1152     <td>[&#8617;]</td>
1153     <td>[&#8617;]</td>
1154    </tr>
1155    <tr>
1156     <td>-</td>
1157     <td>21+</td>
1158     <td>16+</td>
1159     <td>16+</td>
1160     <td>16+</td>
1161     <td>-</td>
1162     <td>-</td>
1163     <td class=fn>{@link #getOutputFormat()}</td>
1164     <td>&#9679;</td>
1165     <td>&#9679;</td>
1166     <td>&#9679;</td>
1167     <td>&#9679;</td>
1168     <td>&#9679;</td>
1169     <td>&#9679;</td>
1170     <td>&#9679;</td>
1171     <td>&#9679;</td>
1172    </tr>
1173    <tr>
1174     <td>-</td>
1175     <td>-</td>
1176     <td>(21+)</td>
1177     <td>21+</td>
1178     <td>21+</td>
1179     <td>-</td>
1180     <td>-</td>
1181     <td class=fn>{@link #getOutputFormat(int)}</td>
1182     <td></td>
1183     <td></td>
1184     <td></td>
1185     <td></td>
1186     <td></td>
1187     <td>&#9679;</td>
1188     <td>&#9679;</td>
1189     <td>&#9679;</td>
1190    </tr>
1191    <tr>
1192     <td>-</td>
1193     <td>-</td>
1194     <td>(21+)</td>
1195     <td>21+</td>
1196     <td>21+</td>
1197     <td>-</td>
1198     <td>-</td>
1199     <td class=fn>{@link #getOutputImage getOutputImage}</td>
1200     <td></td>
1201     <td></td>
1202     <td></td>
1203     <td></td>
1204     <td></td>
1205     <td>&#9675;</td>
1206     <td>&#9679;</td>
1207     <td>&#9679;</td>
1208    </tr>
1209    <tr>
1210     <td>-</td>
1211     <td>-</td>
1212     <td>-</td>
1213     <td>16+</td>
1214     <td>(16+)</td>
1215     <td>-</td>
1216     <td>-</td>
1217     <td class=fn>{@link #queueInputBuffer queueInputBuffer}</td>
1218     <td>&#9679;</td>
1219     <td>&#9679;</td>
1220     <td>&#9679;</td>
1221     <td>&#9679;</td>
1222     <td>&#9679;</td>
1223     <td>&#8277;</td>
1224     <td>&#9679;</td>
1225     <td>&#9679;</td>
1226    </tr>
1227    <tr>
1228     <td>-</td>
1229     <td>-</td>
1230     <td>-</td>
1231     <td>16+</td>
1232     <td>(16+)</td>
1233     <td>-</td>
1234     <td>-</td>
1235     <td class=fn>{@link #queueSecureInputBuffer queueSecureInputBuffer}</td>
1236     <td>&#9679;</td>
1237     <td>&#9679;</td>
1238     <td>&#9679;</td>
1239     <td>&#9679;</td>
1240     <td>&#9679;</td>
1241     <td>&#8277;</td>
1242     <td>&#9679;</td>
1243     <td>&#9679;</td>
1244    </tr>
1245    <tr>
1246     <td>16+</td>
1247     <td>16+</td>
1248     <td>16+</td>
1249     <td>16+</td>
1250     <td>16+</td>
1251     <td>16+</td>
1252     <td>16+</td>
1253     <td class=fn>{@link #release release}</td>
1254     <td>&#9679;</td>
1255     <td>&#9679;</td>
1256     <td>&#9679;</td>
1257     <td>&#9679;</td>
1258     <td>&#9679;</td>
1259     <td>&#9679;</td>
1260     <td>&#9679;</td>
1261     <td>&#9679;</td>
1262    </tr>
1263    <tr>
1264     <td>-</td>
1265     <td>-</td>
1266     <td>-</td>
1267     <td>16+</td>
1268     <td>16+</td>
1269     <td>-</td>
1270     <td>-</td>
1271     <td class=fn>{@link #releaseOutputBuffer(int, boolean)}</td>
1272     <td>&#9679;</td>
1273     <td>&#9679;</td>
1274     <td>&#9679;</td>
1275     <td>&#9679;</td>
1276     <td>&#9679;</td>
1277     <td>&#8277;</td>
1278     <td>&#9679;</td>
1279     <td>&#8277;</td>
1280    </tr>
1281    <tr>
1282     <td>-</td>
1283     <td>-</td>
1284     <td>-</td>
1285     <td>21+</td>
1286     <td>21+</td>
1287     <td>-</td>
1288     <td>-</td>
1289     <td class=fn>{@link #releaseOutputBuffer(int, long)}</td>
1290     <td></td>
1291     <td></td>
1292     <td></td>
1293     <td></td>
1294     <td></td>
1295     <td>&#9094;</td>
1296     <td>&#9094;</td>
1297     <td>&#9094;</td>
1298    </tr>
1299    <tr>
1300     <td>21+</td>
1301     <td>21+</td>
1302     <td>21+</td>
1303     <td>21+</td>
1304     <td>21+</td>
1305     <td>21+</td>
1306     <td>-</td>
1307     <td class=fn>{@link #reset reset}</td>
1308     <td></td>
1309     <td></td>
1310     <td></td>
1311     <td></td>
1312     <td></td>
1313     <td>&#9679;</td>
1314     <td>&#9679;</td>
1315     <td>&#9679;</td>
1316    </tr>
1317    <tr>
1318     <td>21+</td>
1319     <td>-</td>
1320     <td>-</td>
1321     <td>-</td>
1322     <td>-</td>
1323     <td>-</td>
1324     <td>-</td>
1325     <td class=fn>{@link #setCallback(Callback) setCallback}</td>
1326     <td></td>
1327     <td></td>
1328     <td></td>
1329     <td></td>
1330     <td></td>
1331     <td>&#9679;</td>
1332     <td>&#9679;</td>
1333     <td>{@link #setCallback(Callback, Handler) &#8277;}</td>
1334    </tr>
1335    <tr>
1336     <td>-</td>
1337     <td>23+</td>
1338     <td>-</td>
1339     <td>-</td>
1340     <td>-</td>
1341     <td>-</td>
1342     <td>-</td>
1343     <td class=fn>{@link #setInputSurface setInputSurface}</td>
1344     <td></td>
1345     <td></td>
1346     <td></td>
1347     <td></td>
1348     <td></td>
1349     <td></td>
1350     <td></td>
1351     <td>&#9099;</td>
1352    </tr>
1353    <tr>
1354     <td>23+</td>
1355     <td>23+</td>
1356     <td>23+</td>
1357     <td>23+</td>
1358     <td>23+</td>
1359     <td>(23+)</td>
1360     <td>(23+)</td>
1361     <td class=fn>{@link #setOnFrameRenderedListener setOnFrameRenderedListener}</td>
1362     <td></td>
1363     <td></td>
1364     <td></td>
1365     <td></td>
1366     <td></td>
1367     <td></td>
1368     <td></td>
1369     <td>&#9675; &#9094;</td>
1370    </tr>
1371    <tr>
1372     <td>-</td>
1373     <td>23+</td>
1374     <td>23+</td>
1375     <td>23+</td>
1376     <td>23+</td>
1377     <td>-</td>
1378     <td>-</td>
1379     <td class=fn>{@link #setOutputSurface setOutputSurface}</td>
1380     <td></td>
1381     <td></td>
1382     <td></td>
1383     <td></td>
1384     <td></td>
1385     <td></td>
1386     <td></td>
1387     <td>&#9094;</td>
1388    </tr>
1389    <tr>
1390     <td>19+</td>
1391     <td>19+</td>
1392     <td>19+</td>
1393     <td>19+</td>
1394     <td>19+</td>
1395     <td>(19+)</td>
1396     <td>-</td>
1397     <td class=fn>{@link #setParameters setParameters}</td>
1398     <td></td>
1399     <td></td>
1400     <td></td>
1401     <td>&#9679;</td>
1402     <td>&#9679;</td>
1403     <td>&#9679;</td>
1404     <td>&#9679;</td>
1405     <td>&#9679;</td>
1406    </tr>
1407    <tr>
1408     <td>-</td>
1409     <td>(16+)</td>
1410     <td>(16+)</td>
1411     <td>16+</td>
1412     <td>(16+)</td>
1413     <td>(16+)</td>
1414     <td>-</td>
1415     <td class=fn>{@link #setVideoScalingMode setVideoScalingMode}</td>
1416     <td>&#9094;</td>
1417     <td>&#9094;</td>
1418     <td>&#9094;</td>
1419     <td>&#9094;</td>
1420     <td>&#9094;</td>
1421     <td>&#9094;</td>
1422     <td>&#9094;</td>
1423     <td>&#9094;</td>
1424    </tr>
1425    <tr>
1426     <td>-</td>
1427     <td>-</td>
1428     <td>18+</td>
1429     <td>18+</td>
1430     <td>-</td>
1431     <td>-</td>
1432     <td>-</td>
1433     <td class=fn>{@link #signalEndOfInputStream signalEndOfInputStream}</td>
1434     <td></td>
1435     <td></td>
1436     <td>&#9099;</td>
1437     <td>&#9099;</td>
1438     <td>&#9099;</td>
1439     <td>&#9099;</td>
1440     <td>&#9099;</td>
1441     <td>&#9099;</td>
1442    </tr>
1443    <tr>
1444     <td>-</td>
1445     <td>16+</td>
1446     <td>21+(&#8644;)</td>
1447     <td>-</td>
1448     <td>-</td>
1449     <td>-</td>
1450     <td>-</td>
1451     <td class=fn>{@link #start start}</td>
1452     <td>&#9679;</td>
1453     <td>&#9679;</td>
1454     <td>&#9679;</td>
1455     <td>&#9679;</td>
1456     <td>&#9679;</td>
1457     <td>&#8277;</td>
1458     <td>&#9679;</td>
1459     <td>&#9679;</td>
1460    </tr>
1461    <tr>
1462     <td>-</td>
1463     <td>-</td>
1464     <td>16+</td>
1465     <td>16+</td>
1466     <td>16+</td>
1467     <td>-</td>
1468     <td>-</td>
1469     <td class=fn>{@link #stop stop}</td>
1470     <td>&#9679;</td>
1471     <td>&#9679;</td>
1472     <td>&#9679;</td>
1473     <td>&#9679;</td>
1474     <td>&#9679;</td>
1475     <td>&#9679;</td>
1476     <td>&#9679;</td>
1477     <td>&#9679;</td>
1478    </tr>
1479   </tbody>
1480  </table>
1481  */
1482 final public class MediaCodec {
1483     /**
1484      * Per buffer metadata includes an offset and size specifying
1485      * the range of valid data in the associated codec (output) buffer.
1486      */
1487     public final static class BufferInfo {
1488         /**
1489          * Update the buffer metadata information.
1490          *
1491          * @param newOffset the start-offset of the data in the buffer.
1492          * @param newSize   the amount of data (in bytes) in the buffer.
1493          * @param newTimeUs the presentation timestamp in microseconds.
1494          * @param newFlags  buffer flags associated with the buffer.  This
1495          * should be a combination of  {@link #BUFFER_FLAG_KEY_FRAME} and
1496          * {@link #BUFFER_FLAG_END_OF_STREAM}.
1497          */
1498         public void set(
1499                 int newOffset, int newSize, long newTimeUs, @BufferFlag int newFlags) {
1500             offset = newOffset;
1501             size = newSize;
1502             presentationTimeUs = newTimeUs;
1503             flags = newFlags;
1504         }
1505
1506         /**
1507          * The start-offset of the data in the buffer.
1508          */
1509         public int offset;
1510
1511         /**
1512          * The amount of data (in bytes) in the buffer.  If this is {@code 0},
1513          * the buffer has no data in it and can be discarded.  The only
1514          * use of a 0-size buffer is to carry the end-of-stream marker.
1515          */
1516         public int size;
1517
1518         /**
1519          * The presentation timestamp in microseconds for the buffer.
1520          * This is derived from the presentation timestamp passed in
1521          * with the corresponding input buffer.  This should be ignored for
1522          * a 0-sized buffer.
1523          */
1524         public long presentationTimeUs;
1525
1526         /**
1527          * Buffer flags associated with the buffer.  A combination of
1528          * {@link #BUFFER_FLAG_KEY_FRAME} and {@link #BUFFER_FLAG_END_OF_STREAM}.
1529          *
1530          * <p>Encoded buffers that are key frames are marked with
1531          * {@link #BUFFER_FLAG_KEY_FRAME}.
1532          *
1533          * <p>The last output buffer corresponding to the input buffer
1534          * marked with {@link #BUFFER_FLAG_END_OF_STREAM} will also be marked
1535          * with {@link #BUFFER_FLAG_END_OF_STREAM}. In some cases this could
1536          * be an empty buffer, whose sole purpose is to carry the end-of-stream
1537          * marker.
1538          */
1539         @BufferFlag
1540         public int flags;
1541
1542         /** @hide */
1543         @NonNull
1544         public BufferInfo dup() {
1545             BufferInfo copy = new BufferInfo();
1546             copy.set(offset, size, presentationTimeUs, flags);
1547             return copy;
1548         }
1549     };
1550
1551     // The follow flag constants MUST stay in sync with their equivalents
1552     // in MediaCodec.h !
1553
1554     /**
1555      * This indicates that the (encoded) buffer marked as such contains
1556      * the data for a key frame.
1557      *
1558      * @deprecated Use {@link #BUFFER_FLAG_KEY_FRAME} instead.
1559      */
1560     public static final int BUFFER_FLAG_SYNC_FRAME = 1;
1561
1562     /**
1563      * This indicates that the (encoded) buffer marked as such contains
1564      * the data for a key frame.
1565      */
1566     public static final int BUFFER_FLAG_KEY_FRAME = 1;
1567
1568     /**
1569      * This indicated that the buffer marked as such contains codec
1570      * initialization / codec specific data instead of media data.
1571      */
1572     public static final int BUFFER_FLAG_CODEC_CONFIG = 2;
1573
1574     /**
1575      * This signals the end of stream, i.e. no buffers will be available
1576      * after this, unless of course, {@link #flush} follows.
1577      */
1578     public static final int BUFFER_FLAG_END_OF_STREAM = 4;
1579
1580     /**
1581      * This indicates that the buffer only contains part of a frame,
1582      * and the decoder should batch the data until a buffer without
1583      * this flag appears before decoding the frame.
1584      */
1585     public static final int BUFFER_FLAG_PARTIAL_FRAME = 8;
1586
1587     /**
1588      * This indicates that the buffer contains non-media data for the
1589      * muxer to process.
1590      *
1591      * All muxer data should start with a FOURCC header that determines the type of data.
1592      *
1593      * For example, when it contains Exif data sent to a MediaMuxer track of
1594      * {@link MediaFormat#MIMETYPE_IMAGE_ANDROID_HEIC} type, the data must start with
1595      * Exif header ("Exif\0\0"), followed by the TIFF header (See JEITA CP-3451C Section 4.5.2.)
1596      *
1597      * @hide
1598      */
1599     public static final int BUFFER_FLAG_MUXER_DATA = 16;
1600
1601     /** @hide */
1602     @IntDef(
1603         flag = true,
1604         value = {
1605             BUFFER_FLAG_SYNC_FRAME,
1606             BUFFER_FLAG_KEY_FRAME,
1607             BUFFER_FLAG_CODEC_CONFIG,
1608             BUFFER_FLAG_END_OF_STREAM,
1609             BUFFER_FLAG_PARTIAL_FRAME,
1610             BUFFER_FLAG_MUXER_DATA,
1611     })
1612     @Retention(RetentionPolicy.SOURCE)
1613     public @interface BufferFlag {}
1614
1615     private EventHandler mEventHandler;
1616     private EventHandler mOnFrameRenderedHandler;
1617     private EventHandler mCallbackHandler;
1618     private Callback mCallback;
1619     private OnFrameRenderedListener mOnFrameRenderedListener;
1620     private final Object mListenerLock = new Object();
1621     private MediaCodecInfo mCodecInfo;
1622     private final Object mCodecInfoLock = new Object();
1623
1624     private static final int EVENT_CALLBACK = 1;
1625     private static final int EVENT_SET_CALLBACK = 2;
1626     private static final int EVENT_FRAME_RENDERED = 3;
1627
1628     private static final int CB_INPUT_AVAILABLE = 1;
1629     private static final int CB_OUTPUT_AVAILABLE = 2;
1630     private static final int CB_ERROR = 3;
1631     private static final int CB_OUTPUT_FORMAT_CHANGE = 4;
1632
1633     private class EventHandler extends Handler {
1634         private MediaCodec mCodec;
1635
1636         public EventHandler(@NonNull MediaCodec codec, @NonNull Looper looper) {
1637             super(looper);
1638             mCodec = codec;
1639         }
1640
1641         @Override
1642         public void handleMessage(@NonNull Message msg) {
1643             switch (msg.what) {
1644                 case EVENT_CALLBACK:
1645                 {
1646                     handleCallback(msg);
1647                     break;
1648                 }
1649                 case EVENT_SET_CALLBACK:
1650                 {
1651                     mCallback = (MediaCodec.Callback) msg.obj;
1652                     break;
1653                 }
1654                 case EVENT_FRAME_RENDERED:
1655                     synchronized (mListenerLock) {
1656                         Map<String, Object> map = (Map<String, Object>)msg.obj;
1657                         for (int i = 0; ; ++i) {
1658                             Object mediaTimeUs = map.get(i + "-media-time-us");
1659                             Object systemNano = map.get(i + "-system-nano");
1660                             if (mediaTimeUs == null || systemNano == null
1661                                     || mOnFrameRenderedListener == null) {
1662                                 break;
1663                             }
1664                             mOnFrameRenderedListener.onFrameRendered(
1665                                     mCodec, (long)mediaTimeUs, (long)systemNano);
1666                         }
1667                         break;
1668                     }
1669                 default:
1670                 {
1671                     break;
1672                 }
1673             }
1674         }
1675
1676         private void handleCallback(@NonNull Message msg) {
1677             if (mCallback == null) {
1678                 return;
1679             }
1680
1681             switch (msg.arg1) {
1682                 case CB_INPUT_AVAILABLE:
1683                 {
1684                     int index = msg.arg2;
1685                     synchronized(mBufferLock) {
1686                         validateInputByteBuffer(mCachedInputBuffers, index);
1687                     }
1688                     mCallback.onInputBufferAvailable(mCodec, index);
1689                     break;
1690                 }
1691
1692                 case CB_OUTPUT_AVAILABLE:
1693                 {
1694                     int index = msg.arg2;
1695                     BufferInfo info = (MediaCodec.BufferInfo) msg.obj;
1696                     synchronized(mBufferLock) {
1697                         validateOutputByteBuffer(mCachedOutputBuffers, index, info);
1698                     }
1699                     mCallback.onOutputBufferAvailable(
1700                             mCodec, index, info);
1701                     break;
1702                 }
1703
1704                 case CB_ERROR:
1705                 {
1706                     mCallback.onError(mCodec, (MediaCodec.CodecException) msg.obj);
1707                     break;
1708                 }
1709
1710                 case CB_OUTPUT_FORMAT_CHANGE:
1711                 {
1712                     mCallback.onOutputFormatChanged(mCodec,
1713                             new MediaFormat((Map<String, Object>) msg.obj));
1714                     break;
1715                 }
1716
1717                 default:
1718                 {
1719                     break;
1720                 }
1721             }
1722         }
1723     }
1724
1725     private boolean mHasSurface = false;
1726
1727     /**
1728      * Instantiate the preferred decoder supporting input data of the given mime type.
1729      *
1730      * The following is a partial list of defined mime types and their semantics:
1731      * <ul>
1732      * <li>"video/x-vnd.on2.vp8" - VP8 video (i.e. video in .webm)
1733      * <li>"video/x-vnd.on2.vp9" - VP9 video (i.e. video in .webm)
1734      * <li>"video/avc" - H.264/AVC video
1735      * <li>"video/hevc" - H.265/HEVC video
1736      * <li>"video/mp4v-es" - MPEG4 video
1737      * <li>"video/3gpp" - H.263 video
1738      * <li>"audio/3gpp" - AMR narrowband audio
1739      * <li>"audio/amr-wb" - AMR wideband audio
1740      * <li>"audio/mpeg" - MPEG1/2 audio layer III
1741      * <li>"audio/mp4a-latm" - AAC audio (note, this is raw AAC packets, not packaged in LATM!)
1742      * <li>"audio/vorbis" - vorbis audio
1743      * <li>"audio/g711-alaw" - G.711 alaw audio
1744      * <li>"audio/g711-mlaw" - G.711 ulaw audio
1745      * </ul>
1746      *
1747      * <strong>Note:</strong> It is preferred to use {@link MediaCodecList#findDecoderForFormat}
1748      * and {@link #createByCodecName} to ensure that the resulting codec can handle a
1749      * given format.
1750      *
1751      * @param type The mime type of the input data.
1752      * @throws IOException if the codec cannot be created.
1753      * @throws IllegalArgumentException if type is not a valid mime type.
1754      * @throws NullPointerException if type is null.
1755      */
1756     @NonNull
1757     public static MediaCodec createDecoderByType(@NonNull String type)
1758             throws IOException {
1759         return new MediaCodec(type, true /* nameIsType */, false /* encoder */);
1760     }
1761
1762     /**
1763      * Instantiate the preferred encoder supporting output data of the given mime type.
1764      *
1765      * <strong>Note:</strong> It is preferred to use {@link MediaCodecList#findEncoderForFormat}
1766      * and {@link #createByCodecName} to ensure that the resulting codec can handle a
1767      * given format.
1768      *
1769      * @param type The desired mime type of the output data.
1770      * @throws IOException if the codec cannot be created.
1771      * @throws IllegalArgumentException if type is not a valid mime type.
1772      * @throws NullPointerException if type is null.
1773      */
1774     @NonNull
1775     public static MediaCodec createEncoderByType(@NonNull String type)
1776             throws IOException {
1777         return new MediaCodec(type, true /* nameIsType */, true /* encoder */);
1778     }
1779
1780     /**
1781      * If you know the exact name of the component you want to instantiate
1782      * use this method to instantiate it. Use with caution.
1783      * Likely to be used with information obtained from {@link android.media.MediaCodecList}
1784      * @param name The name of the codec to be instantiated.
1785      * @throws IOException if the codec cannot be created.
1786      * @throws IllegalArgumentException if name is not valid.
1787      * @throws NullPointerException if name is null.
1788      */
1789     @NonNull
1790     public static MediaCodec createByCodecName(@NonNull String name)
1791             throws IOException {
1792         return new MediaCodec(
1793                 name, false /* nameIsType */, false /* unused */);
1794     }
1795
1796     private MediaCodec(
1797             @NonNull String name, boolean nameIsType, boolean encoder) {
1798         Looper looper;
1799         if ((looper = Looper.myLooper()) != null) {
1800             mEventHandler = new EventHandler(this, looper);
1801         } else if ((looper = Looper.getMainLooper()) != null) {
1802             mEventHandler = new EventHandler(this, looper);
1803         } else {
1804             mEventHandler = null;
1805         }
1806         mCallbackHandler = mEventHandler;
1807         mOnFrameRenderedHandler = mEventHandler;
1808
1809         mBufferLock = new Object();
1810
1811         native_setup(name, nameIsType, encoder);
1812     }
1813
1814     @Override
1815     protected void finalize() {
1816         native_finalize();
1817     }
1818
1819     /**
1820      * Returns the codec to its initial (Uninitialized) state.
1821      *
1822      * Call this if an {@link MediaCodec.CodecException#isRecoverable unrecoverable}
1823      * error has occured to reset the codec to its initial state after creation.
1824      *
1825      * @throws CodecException if an unrecoverable error has occured and the codec
1826      * could not be reset.
1827      * @throws IllegalStateException if in the Released state.
1828      */
1829     public final void reset() {
1830         freeAllTrackedBuffers(); // free buffers first
1831         native_reset();
1832     }
1833
1834     private native final void native_reset();
1835
1836     /**
1837      * Free up resources used by the codec instance.
1838      *
1839      * Make sure you call this when you're done to free up any opened
1840      * component instance instead of relying on the garbage collector
1841      * to do this for you at some point in the future.
1842      */
1843     public final void release() {
1844         freeAllTrackedBuffers(); // free buffers first
1845         native_release();
1846     }
1847
1848     private native final void native_release();
1849
1850     /**
1851      * If this codec is to be used as an encoder, pass this flag.
1852      */
1853     public static final int CONFIGURE_FLAG_ENCODE = 1;
1854
1855     /** @hide */
1856     @IntDef(flag = true, value = { CONFIGURE_FLAG_ENCODE })
1857     @Retention(RetentionPolicy.SOURCE)
1858     public @interface ConfigureFlag {}
1859
1860     /**
1861      * Configures a component.
1862      *
1863      * @param format The format of the input data (decoder) or the desired
1864      *               format of the output data (encoder). Passing {@code null}
1865      *               as {@code format} is equivalent to passing an
1866      *               {@link MediaFormat#MediaFormat an empty mediaformat}.
1867      * @param surface Specify a surface on which to render the output of this
1868      *                decoder. Pass {@code null} as {@code surface} if the
1869      *                codec does not generate raw video output (e.g. not a video
1870      *                decoder) and/or if you want to configure the codec for
1871      *                {@link ByteBuffer} output.
1872      * @param crypto  Specify a crypto object to facilitate secure decryption
1873      *                of the media data. Pass {@code null} as {@code crypto} for
1874      *                non-secure codecs.
1875      * @param flags   Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
1876      *                component as an encoder.
1877      * @throws IllegalArgumentException if the surface has been released (or is invalid),
1878      * or the format is unacceptable (e.g. missing a mandatory key),
1879      * or the flags are not set properly
1880      * (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
1881      * @throws IllegalStateException if not in the Uninitialized state.
1882      * @throws CryptoException upon DRM error.
1883      * @throws CodecException upon codec error.
1884      */
1885     public void configure(
1886             @Nullable MediaFormat format,
1887             @Nullable Surface surface, @Nullable MediaCrypto crypto,
1888             @ConfigureFlag int flags) {
1889         configure(format, surface, crypto, null, flags);
1890     }
1891
1892     /**
1893      * Configure a component to be used with a descrambler.
1894      * @param format The format of the input data (decoder) or the desired
1895      *               format of the output data (encoder). Passing {@code null}
1896      *               as {@code format} is equivalent to passing an
1897      *               {@link MediaFormat#MediaFormat an empty mediaformat}.
1898      * @param surface Specify a surface on which to render the output of this
1899      *                decoder. Pass {@code null} as {@code surface} if the
1900      *                codec does not generate raw video output (e.g. not a video
1901      *                decoder) and/or if you want to configure the codec for
1902      *                {@link ByteBuffer} output.
1903      * @param flags   Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
1904      *                component as an encoder.
1905      * @param descrambler Specify a descrambler object to facilitate secure
1906      *                descrambling of the media data, or null for non-secure codecs.
1907      * @throws IllegalArgumentException if the surface has been released (or is invalid),
1908      * or the format is unacceptable (e.g. missing a mandatory key),
1909      * or the flags are not set properly
1910      * (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
1911      * @throws IllegalStateException if not in the Uninitialized state.
1912      * @throws CryptoException upon DRM error.
1913      * @throws CodecException upon codec error.
1914      */
1915     public void configure(
1916             @Nullable MediaFormat format, @Nullable Surface surface,
1917             @ConfigureFlag int flags, @Nullable MediaDescrambler descrambler) {
1918         configure(format, surface, null,
1919                 descrambler != null ? descrambler.getBinder() : null, flags);
1920     }
1921
1922     private void configure(
1923             @Nullable MediaFormat format, @Nullable Surface surface,
1924             @Nullable MediaCrypto crypto, @Nullable IHwBinder descramblerBinder,
1925             @ConfigureFlag int flags) {
1926         if (crypto != null && descramblerBinder != null) {
1927             throw new IllegalArgumentException("Can't use crypto and descrambler together!");
1928         }
1929
1930         String[] keys = null;
1931         Object[] values = null;
1932
1933         if (format != null) {
1934             Map<String, Object> formatMap = format.getMap();
1935             keys = new String[formatMap.size()];
1936             values = new Object[formatMap.size()];
1937
1938             int i = 0;
1939             for (Map.Entry<String, Object> entry: formatMap.entrySet()) {
1940                 if (entry.getKey().equals(MediaFormat.KEY_AUDIO_SESSION_ID)) {
1941                     int sessionId = 0;
1942                     try {
1943                         sessionId = (Integer)entry.getValue();
1944                     }
1945                     catch (Exception e) {
1946                         throw new IllegalArgumentException("Wrong Session ID Parameter!");
1947                     }
1948                     keys[i] = "audio-hw-sync";
1949                     values[i] = AudioSystem.getAudioHwSyncForSession(sessionId);
1950                 } else {
1951                     keys[i] = entry.getKey();
1952                     values[i] = entry.getValue();
1953                 }
1954                 ++i;
1955             }
1956         }
1957
1958         mHasSurface = surface != null;
1959
1960         native_configure(keys, values, surface, crypto, descramblerBinder, flags);
1961     }
1962
1963     /**
1964      *  Dynamically sets the output surface of a codec.
1965      *  <p>
1966      *  This can only be used if the codec was configured with an output surface.  The
1967      *  new output surface should have a compatible usage type to the original output surface.
1968      *  E.g. codecs may not support switching from a SurfaceTexture (GPU readable) output
1969      *  to ImageReader (software readable) output.
1970      *  @param surface the output surface to use. It must not be {@code null}.
1971      *  @throws IllegalStateException if the codec does not support setting the output
1972      *            surface in the current state.
1973      *  @throws IllegalArgumentException if the new surface is not of a suitable type for the codec.
1974      */
1975     public void setOutputSurface(@NonNull Surface surface) {
1976         if (!mHasSurface) {
1977             throw new IllegalStateException("codec was not configured for an output surface");
1978         }
1979         native_setSurface(surface);
1980     }
1981
1982     private native void native_setSurface(@NonNull Surface surface);
1983
1984     /**
1985      * Create a persistent input surface that can be used with codecs that normally have an input
1986      * surface, such as video encoders. A persistent input can be reused by subsequent
1987      * {@link MediaCodec} or {@link MediaRecorder} instances, but can only be used by at
1988      * most one codec or recorder instance concurrently.
1989      * <p>
1990      * The application is responsible for calling release() on the Surface when done.
1991      *
1992      * @return an input surface that can be used with {@link #setInputSurface}.
1993      */
1994     @NonNull
1995     public static Surface createPersistentInputSurface() {
1996         return native_createPersistentInputSurface();
1997     }
1998
1999     static class PersistentSurface extends Surface {
2000         @SuppressWarnings("unused")
2001         PersistentSurface() {} // used by native
2002
2003         @Override
2004         public void release() {
2005             native_releasePersistentInputSurface(this);
2006             super.release();
2007         }
2008
2009         private long mPersistentObject;
2010     };
2011
2012     /**
2013      * Configures the codec (e.g. encoder) to use a persistent input surface in place of input
2014      * buffers.  This may only be called after {@link #configure} and before {@link #start}, in
2015      * lieu of {@link #createInputSurface}.
2016      * @param surface a persistent input surface created by {@link #createPersistentInputSurface}
2017      * @throws IllegalStateException if not in the Configured state or does not require an input
2018      *           surface.
2019      * @throws IllegalArgumentException if the surface was not created by
2020      *           {@link #createPersistentInputSurface}.
2021      */
2022     public void setInputSurface(@NonNull Surface surface) {
2023         if (!(surface instanceof PersistentSurface)) {
2024             throw new IllegalArgumentException("not a PersistentSurface");
2025         }
2026         native_setInputSurface(surface);
2027     }
2028
2029     @NonNull
2030     private static native final PersistentSurface native_createPersistentInputSurface();
2031     private static native final void native_releasePersistentInputSurface(@NonNull Surface surface);
2032     private native final void native_setInputSurface(@NonNull Surface surface);
2033
2034     private native final void native_setCallback(@Nullable Callback cb);
2035
2036     private native final void native_configure(
2037             @Nullable String[] keys, @Nullable Object[] values,
2038             @Nullable Surface surface, @Nullable MediaCrypto crypto,
2039             @Nullable IHwBinder descramblerBinder, @ConfigureFlag int flags);
2040
2041     /**
2042      * Requests a Surface to use as the input to an encoder, in place of input buffers.  This
2043      * may only be called after {@link #configure} and before {@link #start}.
2044      * <p>
2045      * The application is responsible for calling release() on the Surface when
2046      * done.
2047      * <p>
2048      * The Surface must be rendered with a hardware-accelerated API, such as OpenGL ES.
2049      * {@link android.view.Surface#lockCanvas(android.graphics.Rect)} may fail or produce
2050      * unexpected results.
2051      * @throws IllegalStateException if not in the Configured state.
2052      */
2053     @NonNull
2054     public native final Surface createInputSurface();
2055
2056     /**
2057      * After successfully configuring the component, call {@code start}.
2058      * <p>
2059      * Call {@code start} also if the codec is configured in asynchronous mode,
2060      * and it has just been flushed, to resume requesting input buffers.
2061      * @throws IllegalStateException if not in the Configured state
2062      *         or just after {@link #flush} for a codec that is configured
2063      *         in asynchronous mode.
2064      * @throws MediaCodec.CodecException upon codec error. Note that some codec errors
2065      * for start may be attributed to future method calls.
2066      */
2067     public final void start() {
2068         native_start();
2069         synchronized(mBufferLock) {
2070             cacheBuffers(true /* input */);
2071             cacheBuffers(false /* input */);
2072         }
2073     }
2074     private native final void native_start();
2075
2076     /**
2077      * Finish the decode/encode session, note that the codec instance
2078      * remains active and ready to be {@link #start}ed again.
2079      * To ensure that it is available to other client call {@link #release}
2080      * and don't just rely on garbage collection to eventually do this for you.
2081      * @throws IllegalStateException if in the Released state.
2082      */
2083     public final void stop() {
2084         native_stop();
2085         freeAllTrackedBuffers();
2086
2087         synchronized (mListenerLock) {
2088             if (mCallbackHandler != null) {
2089                 mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
2090                 mCallbackHandler.removeMessages(EVENT_CALLBACK);
2091             }
2092             if (mOnFrameRenderedHandler != null) {
2093                 mOnFrameRenderedHandler.removeMessages(EVENT_FRAME_RENDERED);
2094             }
2095         }
2096     }
2097
2098     private native final void native_stop();
2099
2100     /**
2101      * Flush both input and output ports of the component.
2102      * <p>
2103      * Upon return, all indices previously returned in calls to {@link #dequeueInputBuffer
2104      * dequeueInputBuffer} and {@link #dequeueOutputBuffer dequeueOutputBuffer} &mdash; or obtained
2105      * via {@link Callback#onInputBufferAvailable onInputBufferAvailable} or
2106      * {@link Callback#onOutputBufferAvailable onOutputBufferAvailable} callbacks &mdash; become
2107      * invalid, and all buffers are owned by the codec.
2108      * <p>
2109      * If the codec is configured in asynchronous mode, call {@link #start}
2110      * after {@code flush} has returned to resume codec operations. The codec
2111      * will not request input buffers until this has happened.
2112      * <strong>Note, however, that there may still be outstanding {@code onOutputBufferAvailable}
2113      * callbacks that were not handled prior to calling {@code flush}.
2114      * The indices returned via these callbacks also become invalid upon calling {@code flush} and
2115      * should be discarded.</strong>
2116      * <p>
2117      * If the codec is configured in synchronous mode, codec will resume
2118      * automatically if it is configured with an input surface.  Otherwise, it
2119      * will resume when {@link #dequeueInputBuffer dequeueInputBuffer} is called.
2120      *
2121      * @throws IllegalStateException if not in the Executing state.
2122      * @throws MediaCodec.CodecException upon codec error.
2123      */
2124     public final void flush() {
2125         synchronized(mBufferLock) {
2126             invalidateByteBuffers(mCachedInputBuffers);
2127             invalidateByteBuffers(mCachedOutputBuffers);
2128             mDequeuedInputBuffers.clear();
2129             mDequeuedOutputBuffers.clear();
2130         }
2131         native_flush();
2132     }
2133
2134     private native final void native_flush();
2135
2136     /**
2137      * Thrown when an internal codec error occurs.
2138      */
2139     public final static class CodecException extends IllegalStateException {
2140         CodecException(int errorCode, int actionCode, @Nullable String detailMessage) {
2141             super(detailMessage);
2142             mErrorCode = errorCode;
2143             mActionCode = actionCode;
2144
2145             // TODO get this from codec
2146             final String sign = errorCode < 0 ? "neg_" : "";
2147             mDiagnosticInfo =
2148                 "android.media.MediaCodec.error_" + sign + Math.abs(errorCode);
2149         }
2150
2151         /**
2152          * Returns true if the codec exception is a transient issue,
2153          * perhaps due to resource constraints, and that the method
2154          * (or encoding/decoding) may be retried at a later time.
2155          */
2156         public boolean isTransient() {
2157             return mActionCode == ACTION_TRANSIENT;
2158         }
2159
2160         /**
2161          * Returns true if the codec cannot proceed further,
2162          * but can be recovered by stopping, configuring,
2163          * and starting again.
2164          */
2165         public boolean isRecoverable() {
2166             return mActionCode == ACTION_RECOVERABLE;
2167         }
2168
2169         /**
2170          * Retrieve the error code associated with a CodecException
2171          */
2172         public int getErrorCode() {
2173             return mErrorCode;
2174         }
2175
2176         /**
2177          * Retrieve a developer-readable diagnostic information string
2178          * associated with the exception. Do not show this to end-users,
2179          * since this string will not be localized or generally
2180          * comprehensible to end-users.
2181          */
2182         public @NonNull String getDiagnosticInfo() {
2183             return mDiagnosticInfo;
2184         }
2185
2186         /**
2187          * This indicates required resource was not able to be allocated.
2188          */
2189         public static final int ERROR_INSUFFICIENT_RESOURCE = 1100;
2190
2191         /**
2192          * This indicates the resource manager reclaimed the media resource used by the codec.
2193          * <p>
2194          * With this exception, the codec must be released, as it has moved to terminal state.
2195          */
2196         public static final int ERROR_RECLAIMED = 1101;
2197
2198         /** @hide */
2199         @IntDef({
2200             ERROR_INSUFFICIENT_RESOURCE,
2201             ERROR_RECLAIMED,
2202         })
2203         @Retention(RetentionPolicy.SOURCE)
2204         public @interface ReasonCode {}
2205
2206         /* Must be in sync with android_media_MediaCodec.cpp */
2207         private final static int ACTION_TRANSIENT = 1;
2208         private final static int ACTION_RECOVERABLE = 2;
2209
2210         private final String mDiagnosticInfo;
2211         private final int mErrorCode;
2212         private final int mActionCode;
2213     }
2214
2215     /**
2216      * Thrown when a crypto error occurs while queueing a secure input buffer.
2217      */
2218     public final static class CryptoException extends RuntimeException {
2219         public CryptoException(int errorCode, @Nullable String detailMessage) {
2220             super(detailMessage);
2221             mErrorCode = errorCode;
2222         }
2223
2224         /**
2225          * This indicates that the requested key was not found when trying to
2226          * perform a decrypt operation.  The operation can be retried after adding
2227          * the correct decryption key.
2228          */
2229         public static final int ERROR_NO_KEY = 1;
2230
2231         /**
2232          * This indicates that the key used for decryption is no longer
2233          * valid due to license term expiration.  The operation can be retried
2234          * after updating the expired keys.
2235          */
2236         public static final int ERROR_KEY_EXPIRED = 2;
2237
2238         /**
2239          * This indicates that a required crypto resource was not able to be
2240          * allocated while attempting the requested operation.  The operation
2241          * can be retried if the app is able to release resources.
2242          */
2243         public static final int ERROR_RESOURCE_BUSY = 3;
2244
2245         /**
2246          * This indicates that the output protection levels supported by the
2247          * device are not sufficient to meet the requirements set by the
2248          * content owner in the license policy.
2249          */
2250         public static final int ERROR_INSUFFICIENT_OUTPUT_PROTECTION = 4;
2251
2252         /**
2253          * This indicates that decryption was attempted on a session that is
2254          * not opened, which could be due to a failure to open the session,
2255          * closing the session prematurely, or the session being reclaimed
2256          * by the resource manager.
2257          */
2258         public static final int ERROR_SESSION_NOT_OPENED = 5;
2259
2260         /**
2261          * This indicates that an operation was attempted that could not be
2262          * supported by the crypto system of the device in its current
2263          * configuration.  It may occur when the license policy requires
2264          * device security features that aren't supported by the device,
2265          * or due to an internal error in the crypto system that prevents
2266          * the specified security policy from being met.
2267          */
2268         public static final int ERROR_UNSUPPORTED_OPERATION = 6;
2269
2270         /** @hide */
2271         @IntDef({
2272             ERROR_NO_KEY,
2273             ERROR_KEY_EXPIRED,
2274             ERROR_RESOURCE_BUSY,
2275             ERROR_INSUFFICIENT_OUTPUT_PROTECTION,
2276             ERROR_SESSION_NOT_OPENED,
2277             ERROR_UNSUPPORTED_OPERATION
2278         })
2279         @Retention(RetentionPolicy.SOURCE)
2280         public @interface CryptoErrorCode {}
2281
2282         /**
2283          * Retrieve the error code associated with a CryptoException
2284          */
2285         @CryptoErrorCode
2286         public int getErrorCode() {
2287             return mErrorCode;
2288         }
2289
2290         private int mErrorCode;
2291     }
2292
2293     /**
2294      * After filling a range of the input buffer at the specified index
2295      * submit it to the component. Once an input buffer is queued to
2296      * the codec, it MUST NOT be used until it is later retrieved by
2297      * {@link #getInputBuffer} in response to a {@link #dequeueInputBuffer}
2298      * return value or a {@link Callback#onInputBufferAvailable}
2299      * callback.
2300      * <p>
2301      * Many decoders require the actual compressed data stream to be
2302      * preceded by "codec specific data", i.e. setup data used to initialize
2303      * the codec such as PPS/SPS in the case of AVC video or code tables
2304      * in the case of vorbis audio.
2305      * The class {@link android.media.MediaExtractor} provides codec
2306      * specific data as part of
2307      * the returned track format in entries named "csd-0", "csd-1" ...
2308      * <p>
2309      * These buffers can be submitted directly after {@link #start} or
2310      * {@link #flush} by specifying the flag {@link
2311      * #BUFFER_FLAG_CODEC_CONFIG}.  However, if you configure the
2312      * codec with a {@link MediaFormat} containing these keys, they
2313      * will be automatically submitted by MediaCodec directly after
2314      * start.  Therefore, the use of {@link
2315      * #BUFFER_FLAG_CODEC_CONFIG} flag is discouraged and is
2316      * recommended only for advanced users.
2317      * <p>
2318      * To indicate that this is the final piece of input data (or rather that
2319      * no more input data follows unless the decoder is subsequently flushed)
2320      * specify the flag {@link #BUFFER_FLAG_END_OF_STREAM}.
2321      * <p class=note>
2322      * <strong>Note:</strong> Prior to {@link android.os.Build.VERSION_CODES#M},
2323      * {@code presentationTimeUs} was not propagated to the frame timestamp of (rendered)
2324      * Surface output buffers, and the resulting frame timestamp was undefined.
2325      * Use {@link #releaseOutputBuffer(int, long)} to ensure a specific frame timestamp is set.
2326      * Similarly, since frame timestamps can be used by the destination surface for rendering
2327      * synchronization, <strong>care must be taken to normalize presentationTimeUs so as to not be
2328      * mistaken for a system time. (See {@linkplain #releaseOutputBuffer(int, long)
2329      * SurfaceView specifics}).</strong>
2330      *
2331      * @param index The index of a client-owned input buffer previously returned
2332      *              in a call to {@link #dequeueInputBuffer}.
2333      * @param offset The byte offset into the input buffer at which the data starts.
2334      * @param size The number of bytes of valid input data.
2335      * @param presentationTimeUs The presentation timestamp in microseconds for this
2336      *                           buffer. This is normally the media time at which this
2337      *                           buffer should be presented (rendered). When using an output
2338      *                           surface, this will be propagated as the {@link
2339      *                           SurfaceTexture#getTimestamp timestamp} for the frame (after
2340      *                           conversion to nanoseconds).
2341      * @param flags A bitmask of flags
2342      *              {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
2343      *              While not prohibited, most codecs do not use the
2344      *              {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
2345      * @throws IllegalStateException if not in the Executing state.
2346      * @throws MediaCodec.CodecException upon codec error.
2347      * @throws CryptoException if a crypto object has been specified in
2348      *         {@link #configure}
2349      */
2350     public final void queueInputBuffer(
2351             int index,
2352             int offset, int size, long presentationTimeUs, int flags)
2353         throws CryptoException {
2354         synchronized(mBufferLock) {
2355             invalidateByteBuffer(mCachedInputBuffers, index);
2356             mDequeuedInputBuffers.remove(index);
2357         }
2358         try {
2359             native_queueInputBuffer(
2360                     index, offset, size, presentationTimeUs, flags);
2361         } catch (CryptoException | IllegalStateException e) {
2362             revalidateByteBuffer(mCachedInputBuffers, index);
2363             throw e;
2364         }
2365     }
2366
2367     private native final void native_queueInputBuffer(
2368             int index,
2369             int offset, int size, long presentationTimeUs, int flags)
2370         throws CryptoException;
2371
2372     public static final int CRYPTO_MODE_UNENCRYPTED = 0;
2373     public static final int CRYPTO_MODE_AES_CTR     = 1;
2374     public static final int CRYPTO_MODE_AES_CBC     = 2;
2375
2376     /**
2377      * Metadata describing the structure of an encrypted input sample.
2378      * <p>
2379      * A buffer's data is considered to be partitioned into "subSamples". Each subSample starts with
2380      * a run of plain, unencrypted bytes followed by a run of encrypted bytes. Either of these runs
2381      * may be empty. If pattern encryption applies, each of the encrypted runs is encrypted only
2382      * partly, according to a repeating pattern of "encrypt" and "skip" blocks.
2383      * {@link #numBytesOfClearData} can be null to indicate that all data is encrypted, and
2384      * {@link #numBytesOfEncryptedData} can be null to indicate that all data is clear. At least one
2385      * of {@link #numBytesOfClearData} and {@link #numBytesOfEncryptedData} must be non-null.
2386      * <p>
2387      * This information encapsulates per-sample metadata as outlined in ISO/IEC FDIS 23001-7:2016
2388      * "Common encryption in ISO base media file format files".
2389      * <p>
2390      * <h3>ISO-CENC Schemes</h3>
2391      * ISO/IEC FDIS 23001-7:2016 defines four possible schemes by which media may be encrypted,
2392      * corresponding to each possible combination of an AES mode with the presence or absence of
2393      * patterned encryption.
2394      *
2395      * <table style="width: 0%">
2396      *   <thead>
2397      *     <tr>
2398      *       <th>&nbsp;</th>
2399      *       <th>AES-CTR</th>
2400      *       <th>AES-CBC</th>
2401      *     </tr>
2402      *   </thead>
2403      *   <tbody>
2404      *     <tr>
2405      *       <th>Without Patterns</th>
2406      *       <td>cenc</td>
2407      *       <td>cbc1</td>
2408      *     </tr><tr>
2409      *       <th>With Patterns</th>
2410      *       <td>cens</td>
2411      *       <td>cbcs</td>
2412      *     </tr>
2413      *   </tbody>
2414      * </table>
2415      *
2416      * For {@code CryptoInfo}, the scheme is selected implicitly by the combination of the
2417      * {@link #mode} field and the value set with {@link #setPattern}. For the pattern, setting the
2418      * pattern to all zeroes (that is, both {@code blocksToEncrypt} and {@code blocksToSkip} are
2419      * zero) is interpreted as turning patterns off completely. A scheme that does not use patterns
2420      * will be selected, either cenc or cbc1. Setting the pattern to any nonzero value will choose
2421      * one of the pattern-supporting schemes, cens or cbcs. The default pattern if
2422      * {@link #setPattern} is never called is all zeroes.
2423      * <p>
2424      * <h4>HLS SAMPLE-AES Audio</h4>
2425      * HLS SAMPLE-AES audio is encrypted in a manner compatible with the cbcs scheme, except that it
2426      * does not use patterned encryption. However, if {@link #setPattern} is used to set the pattern
2427      * to all zeroes, this will be interpreted as selecting the cbc1 scheme. The cbc1 scheme cannot
2428      * successfully decrypt HLS SAMPLE-AES audio because of differences in how the IVs are handled.
2429      * For this reason, it is recommended that a pattern of {@code 1} encrypted block and {@code 0}
2430      * skip blocks be used with HLS SAMPLE-AES audio. This will trigger decryption to use cbcs mode
2431      * while still decrypting every block.
2432      */
2433     public final static class CryptoInfo {
2434         /**
2435          * The number of subSamples that make up the buffer's contents.
2436          */
2437         public int numSubSamples;
2438         /**
2439          * The number of leading unencrypted bytes in each subSample. If null, all bytes are treated
2440          * as encrypted and {@link #numBytesOfEncryptedData} must be specified.
2441          */
2442         public int[] numBytesOfClearData;
2443         /**
2444          * The number of trailing encrypted bytes in each subSample. If null, all bytes are treated
2445          * as clear and {@link #numBytesOfClearData} must be specified.
2446          */
2447         public int[] numBytesOfEncryptedData;
2448         /**
2449          * A 16-byte key id
2450          */
2451         public byte[] key;
2452         /**
2453          * A 16-byte initialization vector
2454          */
2455         public byte[] iv;
2456         /**
2457          * The type of encryption that has been applied,
2458          * see {@link #CRYPTO_MODE_UNENCRYPTED}, {@link #CRYPTO_MODE_AES_CTR}
2459          * and {@link #CRYPTO_MODE_AES_CBC}
2460          */
2461         public int mode;
2462
2463         /**
2464          * Metadata describing an encryption pattern for the protected bytes in a subsample.  An
2465          * encryption pattern consists of a repeating sequence of crypto blocks comprised of a
2466          * number of encrypted blocks followed by a number of unencrypted, or skipped, blocks.
2467          */
2468         public final static class Pattern {
2469             /**
2470              * Number of blocks to be encrypted in the pattern. If both this and
2471              * {@link #mSkipBlocks} are zero, pattern encryption is inoperative.
2472              */
2473             private int mEncryptBlocks;
2474
2475             /**
2476              * Number of blocks to be skipped (left clear) in the pattern. If both this and
2477              * {@link #mEncryptBlocks} are zero, pattern encryption is inoperative.
2478              */
2479             private int mSkipBlocks;
2480
2481             /**
2482              * Construct a sample encryption pattern given the number of blocks to encrypt and skip
2483              * in the pattern. If both parameters are zero, pattern encryption is inoperative.
2484              */
2485             public Pattern(int blocksToEncrypt, int blocksToSkip) {
2486                 set(blocksToEncrypt, blocksToSkip);
2487             }
2488
2489             /**
2490              * Set the number of blocks to encrypt and skip in a sample encryption pattern. If both
2491              * parameters are zero, pattern encryption is inoperative.
2492              */
2493             public void set(int blocksToEncrypt, int blocksToSkip) {
2494                 mEncryptBlocks = blocksToEncrypt;
2495                 mSkipBlocks = blocksToSkip;
2496             }
2497
2498             /**
2499              * Return the number of blocks to skip in a sample encryption pattern.
2500              */
2501             public int getSkipBlocks() {
2502                 return mSkipBlocks;
2503             }
2504
2505             /**
2506              * Return the number of blocks to encrypt in a sample encryption pattern.
2507              */
2508             public int getEncryptBlocks() {
2509                 return mEncryptBlocks;
2510             }
2511         };
2512
2513         private final Pattern zeroPattern = new Pattern(0, 0);
2514
2515         /**
2516          * The pattern applicable to the protected data in each subsample.
2517          */
2518         private Pattern pattern;
2519
2520         /**
2521          * Set the subsample count, clear/encrypted sizes, key, IV and mode fields of
2522          * a {@link MediaCodec.CryptoInfo} instance.
2523          */
2524         public void set(
2525                 int newNumSubSamples,
2526                 @NonNull int[] newNumBytesOfClearData,
2527                 @NonNull int[] newNumBytesOfEncryptedData,
2528                 @NonNull byte[] newKey,
2529                 @NonNull byte[] newIV,
2530                 int newMode) {
2531             numSubSamples = newNumSubSamples;
2532             numBytesOfClearData = newNumBytesOfClearData;
2533             numBytesOfEncryptedData = newNumBytesOfEncryptedData;
2534             key = newKey;
2535             iv = newIV;
2536             mode = newMode;
2537             pattern = zeroPattern;
2538         }
2539
2540         /**
2541          * Set the encryption pattern on a {@link MediaCodec.CryptoInfo} instance.
2542          * See {@link MediaCodec.CryptoInfo.Pattern}.
2543          */
2544         public void setPattern(Pattern newPattern) {
2545             pattern = newPattern;
2546         }
2547
2548         private void setPattern(int blocksToEncrypt, int blocksToSkip) {
2549             pattern = new Pattern(blocksToEncrypt, blocksToSkip);
2550         }
2551
2552         @Override
2553         public String toString() {
2554             StringBuilder builder = new StringBuilder();
2555             builder.append(numSubSamples + " subsamples, key [");
2556             String hexdigits = "0123456789abcdef";
2557             for (int i = 0; i < key.length; i++) {
2558                 builder.append(hexdigits.charAt((key[i] & 0xf0) >> 4));
2559                 builder.append(hexdigits.charAt(key[i] & 0x0f));
2560             }
2561             builder.append("], iv [");
2562             for (int i = 0; i < key.length; i++) {
2563                 builder.append(hexdigits.charAt((iv[i] & 0xf0) >> 4));
2564                 builder.append(hexdigits.charAt(iv[i] & 0x0f));
2565             }
2566             builder.append("], clear ");
2567             builder.append(Arrays.toString(numBytesOfClearData));
2568             builder.append(", encrypted ");
2569             builder.append(Arrays.toString(numBytesOfEncryptedData));
2570             return builder.toString();
2571         }
2572     };
2573
2574     /**
2575      * Similar to {@link #queueInputBuffer queueInputBuffer} but submits a buffer that is
2576      * potentially encrypted.
2577      * <strong>Check out further notes at {@link #queueInputBuffer queueInputBuffer}.</strong>
2578      *
2579      * @param index The index of a client-owned input buffer previously returned
2580      *              in a call to {@link #dequeueInputBuffer}.
2581      * @param offset The byte offset into the input buffer at which the data starts.
2582      * @param info Metadata required to facilitate decryption, the object can be
2583      *             reused immediately after this call returns.
2584      * @param presentationTimeUs The presentation timestamp in microseconds for this
2585      *                           buffer. This is normally the media time at which this
2586      *                           buffer should be presented (rendered).
2587      * @param flags A bitmask of flags
2588      *              {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
2589      *              While not prohibited, most codecs do not use the
2590      *              {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
2591      * @throws IllegalStateException if not in the Executing state.
2592      * @throws MediaCodec.CodecException upon codec error.
2593      * @throws CryptoException if an error occurs while attempting to decrypt the buffer.
2594      *              An error code associated with the exception helps identify the
2595      *              reason for the failure.
2596      */
2597     public final void queueSecureInputBuffer(
2598             int index,
2599             int offset,
2600             @NonNull CryptoInfo info,
2601             long presentationTimeUs,
2602             int flags) throws CryptoException {
2603         synchronized(mBufferLock) {
2604             invalidateByteBuffer(mCachedInputBuffers, index);
2605             mDequeuedInputBuffers.remove(index);
2606         }
2607         try {
2608             native_queueSecureInputBuffer(
2609                     index, offset, info, presentationTimeUs, flags);
2610         } catch (CryptoException | IllegalStateException e) {
2611             revalidateByteBuffer(mCachedInputBuffers, index);
2612             throw e;
2613         }
2614     }
2615
2616     private native final void native_queueSecureInputBuffer(
2617             int index,
2618             int offset,
2619             @NonNull CryptoInfo info,
2620             long presentationTimeUs,
2621             int flags) throws CryptoException;
2622
2623     /**
2624      * Returns the index of an input buffer to be filled with valid data
2625      * or -1 if no such buffer is currently available.
2626      * This method will return immediately if timeoutUs == 0, wait indefinitely
2627      * for the availability of an input buffer if timeoutUs &lt; 0 or wait up
2628      * to "timeoutUs" microseconds if timeoutUs &gt; 0.
2629      * @param timeoutUs The timeout in microseconds, a negative timeout indicates "infinite".
2630      * @throws IllegalStateException if not in the Executing state,
2631      *         or codec is configured in asynchronous mode.
2632      * @throws MediaCodec.CodecException upon codec error.
2633      */
2634     public final int dequeueInputBuffer(long timeoutUs) {
2635         int res = native_dequeueInputBuffer(timeoutUs);
2636         if (res >= 0) {
2637             synchronized(mBufferLock) {
2638                 validateInputByteBuffer(mCachedInputBuffers, res);
2639             }
2640         }
2641         return res;
2642     }
2643
2644     private native final int native_dequeueInputBuffer(long timeoutUs);
2645
2646     /**
2647      * If a non-negative timeout had been specified in the call
2648      * to {@link #dequeueOutputBuffer}, indicates that the call timed out.
2649      */
2650     public static final int INFO_TRY_AGAIN_LATER        = -1;
2651
2652     /**
2653      * The output format has changed, subsequent data will follow the new
2654      * format. {@link #getOutputFormat()} returns the new format.  Note, that
2655      * you can also use the new {@link #getOutputFormat(int)} method to
2656      * get the format for a specific output buffer.  This frees you from
2657      * having to track output format changes.
2658      */
2659     public static final int INFO_OUTPUT_FORMAT_CHANGED  = -2;
2660
2661     /**
2662      * The output buffers have changed, the client must refer to the new
2663      * set of output buffers returned by {@link #getOutputBuffers} from
2664      * this point on.
2665      *
2666      * <p>Additionally, this event signals that the video scaling mode
2667      * may have been reset to the default.</p>
2668      *
2669      * @deprecated This return value can be ignored as {@link
2670      * #getOutputBuffers} has been deprecated.  Client should
2671      * request a current buffer using on of the get-buffer or
2672      * get-image methods each time one has been dequeued.
2673      */
2674     public static final int INFO_OUTPUT_BUFFERS_CHANGED = -3;
2675
2676     /** @hide */
2677     @IntDef({
2678         INFO_TRY_AGAIN_LATER,
2679         INFO_OUTPUT_FORMAT_CHANGED,
2680         INFO_OUTPUT_BUFFERS_CHANGED,
2681     })
2682     @Retention(RetentionPolicy.SOURCE)
2683     public @interface OutputBufferInfo {}
2684
2685     /**
2686      * Dequeue an output buffer, block at most "timeoutUs" microseconds.
2687      * Returns the index of an output buffer that has been successfully
2688      * decoded or one of the INFO_* constants.
2689      * @param info Will be filled with buffer meta data.
2690      * @param timeoutUs The timeout in microseconds, a negative timeout indicates "infinite".
2691      * @throws IllegalStateException if not in the Executing state,
2692      *         or codec is configured in asynchronous mode.
2693      * @throws MediaCodec.CodecException upon codec error.
2694      */
2695     @OutputBufferInfo
2696     public final int dequeueOutputBuffer(
2697             @NonNull BufferInfo info, long timeoutUs) {
2698         int res = native_dequeueOutputBuffer(info, timeoutUs);
2699         synchronized(mBufferLock) {
2700             if (res == INFO_OUTPUT_BUFFERS_CHANGED) {
2701                 cacheBuffers(false /* input */);
2702             } else if (res >= 0) {
2703                 validateOutputByteBuffer(mCachedOutputBuffers, res, info);
2704                 if (mHasSurface) {
2705                     mDequeuedOutputInfos.put(res, info.dup());
2706                 }
2707             }
2708         }
2709         return res;
2710     }
2711
2712     private native final int native_dequeueOutputBuffer(
2713             @NonNull BufferInfo info, long timeoutUs);
2714
2715     /**
2716      * If you are done with a buffer, use this call to return the buffer to the codec
2717      * or to render it on the output surface. If you configured the codec with an
2718      * output surface, setting {@code render} to {@code true} will first send the buffer
2719      * to that output surface. The surface will release the buffer back to the codec once
2720      * it is no longer used/displayed.
2721      *
2722      * Once an output buffer is released to the codec, it MUST NOT
2723      * be used until it is later retrieved by {@link #getOutputBuffer} in response
2724      * to a {@link #dequeueOutputBuffer} return value or a
2725      * {@link Callback#onOutputBufferAvailable} callback.
2726      *
2727      * @param index The index of a client-owned output buffer previously returned
2728      *              from a call to {@link #dequeueOutputBuffer}.
2729      * @param render If a valid surface was specified when configuring the codec,
2730      *               passing true renders this output buffer to the surface.
2731      * @throws IllegalStateException if not in the Executing state.
2732      * @throws MediaCodec.CodecException upon codec error.
2733      */
2734     public final void releaseOutputBuffer(int index, boolean render) {
2735         BufferInfo info = null;
2736         synchronized(mBufferLock) {
2737             invalidateByteBuffer(mCachedOutputBuffers, index);
2738             mDequeuedOutputBuffers.remove(index);
2739             if (mHasSurface) {
2740                 info = mDequeuedOutputInfos.remove(index);
2741             }
2742         }
2743         releaseOutputBuffer(index, render, false /* updatePTS */, 0 /* dummy */);
2744     }
2745
2746     /**
2747      * If you are done with a buffer, use this call to update its surface timestamp
2748      * and return it to the codec to render it on the output surface. If you
2749      * have not specified an output surface when configuring this video codec,
2750      * this call will simply return the buffer to the codec.<p>
2751      *
2752      * The timestamp may have special meaning depending on the destination surface.
2753      *
2754      * <table>
2755      * <tr><th>SurfaceView specifics</th></tr>
2756      * <tr><td>
2757      * If you render your buffer on a {@link android.view.SurfaceView},
2758      * you can use the timestamp to render the buffer at a specific time (at the
2759      * VSYNC at or after the buffer timestamp).  For this to work, the timestamp
2760      * needs to be <i>reasonably close</i> to the current {@link System#nanoTime}.
2761      * Currently, this is set as within one (1) second. A few notes:
2762      *
2763      * <ul>
2764      * <li>the buffer will not be returned to the codec until the timestamp
2765      * has passed and the buffer is no longer used by the {@link android.view.Surface}.
2766      * <li>buffers are processed sequentially, so you may block subsequent buffers to
2767      * be displayed on the {@link android.view.Surface}.  This is important if you
2768      * want to react to user action, e.g. stop the video or seek.
2769      * <li>if multiple buffers are sent to the {@link android.view.Surface} to be
2770      * rendered at the same VSYNC, the last one will be shown, and the other ones
2771      * will be dropped.
2772      * <li>if the timestamp is <em>not</em> "reasonably close" to the current system
2773      * time, the {@link android.view.Surface} will ignore the timestamp, and
2774      * display the buffer at the earliest feasible time.  In this mode it will not
2775      * drop frames.
2776      * <li>for best performance and quality, call this method when you are about
2777      * two VSYNCs' time before the desired render time.  For 60Hz displays, this is
2778      * about 33 msec.
2779      * </ul>
2780      * </td></tr>
2781      * </table>
2782      *
2783      * Once an output buffer is released to the codec, it MUST NOT
2784      * be used until it is later retrieved by {@link #getOutputBuffer} in response
2785      * to a {@link #dequeueOutputBuffer} return value or a
2786      * {@link Callback#onOutputBufferAvailable} callback.
2787      *
2788      * @param index The index of a client-owned output buffer previously returned
2789      *              from a call to {@link #dequeueOutputBuffer}.
2790      * @param renderTimestampNs The timestamp to associate with this buffer when
2791      *              it is sent to the Surface.
2792      * @throws IllegalStateException if not in the Executing state.
2793      * @throws MediaCodec.CodecException upon codec error.
2794      */
2795     public final void releaseOutputBuffer(int index, long renderTimestampNs) {
2796         BufferInfo info = null;
2797         synchronized(mBufferLock) {
2798             invalidateByteBuffer(mCachedOutputBuffers, index);
2799             mDequeuedOutputBuffers.remove(index);
2800             if (mHasSurface) {
2801                 info = mDequeuedOutputInfos.remove(index);
2802             }
2803         }
2804         releaseOutputBuffer(
2805                 index, true /* render */, true /* updatePTS */, renderTimestampNs);
2806     }
2807
2808     private native final void releaseOutputBuffer(
2809             int index, boolean render, boolean updatePTS, long timeNs);
2810
2811     /**
2812      * Signals end-of-stream on input.  Equivalent to submitting an empty buffer with
2813      * {@link #BUFFER_FLAG_END_OF_STREAM} set.  This may only be used with
2814      * encoders receiving input from a Surface created by {@link #createInputSurface}.
2815      * @throws IllegalStateException if not in the Executing state.
2816      * @throws MediaCodec.CodecException upon codec error.
2817      */
2818     public native final void signalEndOfInputStream();
2819
2820     /**
2821      * Call this after dequeueOutputBuffer signals a format change by returning
2822      * {@link #INFO_OUTPUT_FORMAT_CHANGED}.
2823      * You can also call this after {@link #configure} returns
2824      * successfully to get the output format initially configured
2825      * for the codec.  Do this to determine what optional
2826      * configuration parameters were supported by the codec.
2827      *
2828      * @throws IllegalStateException if not in the Executing or
2829      *                               Configured state.
2830      * @throws MediaCodec.CodecException upon codec error.
2831      */
2832     @NonNull
2833     public final MediaFormat getOutputFormat() {
2834         return new MediaFormat(getFormatNative(false /* input */));
2835     }
2836
2837     /**
2838      * Call this after {@link #configure} returns successfully to
2839      * get the input format accepted by the codec. Do this to
2840      * determine what optional configuration parameters were
2841      * supported by the codec.
2842      *
2843      * @throws IllegalStateException if not in the Executing or
2844      *                               Configured state.
2845      * @throws MediaCodec.CodecException upon codec error.
2846      */
2847     @NonNull
2848     public final MediaFormat getInputFormat() {
2849         return new MediaFormat(getFormatNative(true /* input */));
2850     }
2851
2852     /**
2853      * Returns the output format for a specific output buffer.
2854      *
2855      * @param index The index of a client-owned input buffer previously
2856      *              returned from a call to {@link #dequeueInputBuffer}.
2857      *
2858      * @return the format for the output buffer, or null if the index
2859      * is not a dequeued output buffer.
2860      */
2861     @NonNull
2862     public final MediaFormat getOutputFormat(int index) {
2863         return new MediaFormat(getOutputFormatNative(index));
2864     }
2865
2866     @NonNull
2867     private native final Map<String, Object> getFormatNative(boolean input);
2868
2869     @NonNull
2870     private native final Map<String, Object> getOutputFormatNative(int index);
2871
2872     // used to track dequeued buffers
2873     private static class BufferMap {
2874         // various returned representations of the codec buffer
2875         private static class CodecBuffer {
2876             private Image mImage;
2877             private ByteBuffer mByteBuffer;
2878
2879             public void free() {
2880                 if (mByteBuffer != null) {
2881                     // all of our ByteBuffers are direct
2882                     java.nio.NioUtils.freeDirectBuffer(mByteBuffer);
2883                     mByteBuffer = null;
2884                 }
2885                 if (mImage != null) {
2886                     mImage.close();
2887                     mImage = null;
2888                 }
2889             }
2890
2891             public void setImage(@Nullable Image image) {
2892                 free();
2893                 mImage = image;
2894             }
2895
2896             public void setByteBuffer(@Nullable ByteBuffer buffer) {
2897                 free();
2898                 mByteBuffer = buffer;
2899             }
2900         }
2901
2902         private final Map<Integer, CodecBuffer> mMap =
2903             new HashMap<Integer, CodecBuffer>();
2904
2905         public void remove(int index) {
2906             CodecBuffer buffer = mMap.get(index);
2907             if (buffer != null) {
2908                 buffer.free();
2909                 mMap.remove(index);
2910             }
2911         }
2912
2913         public void put(int index, @Nullable ByteBuffer newBuffer) {
2914             CodecBuffer buffer = mMap.get(index);
2915             if (buffer == null) { // likely
2916                 buffer = new CodecBuffer();
2917                 mMap.put(index, buffer);
2918             }
2919             buffer.setByteBuffer(newBuffer);
2920         }
2921
2922         public void put(int index, @Nullable Image newImage) {
2923             CodecBuffer buffer = mMap.get(index);
2924             if (buffer == null) { // likely
2925                 buffer = new CodecBuffer();
2926                 mMap.put(index, buffer);
2927             }
2928             buffer.setImage(newImage);
2929         }
2930
2931         public void clear() {
2932             for (CodecBuffer buffer: mMap.values()) {
2933                 buffer.free();
2934             }
2935             mMap.clear();
2936         }
2937     }
2938
2939     private ByteBuffer[] mCachedInputBuffers;
2940     private ByteBuffer[] mCachedOutputBuffers;
2941     private final BufferMap mDequeuedInputBuffers = new BufferMap();
2942     private final BufferMap mDequeuedOutputBuffers = new BufferMap();
2943     private final Map<Integer, BufferInfo> mDequeuedOutputInfos =
2944         new HashMap<Integer, BufferInfo>();
2945     final private Object mBufferLock;
2946
2947     private final void invalidateByteBuffer(
2948             @Nullable ByteBuffer[] buffers, int index) {
2949         if (buffers != null && index >= 0 && index < buffers.length) {
2950             ByteBuffer buffer = buffers[index];
2951             if (buffer != null) {
2952                 buffer.setAccessible(false);
2953             }
2954         }
2955     }
2956
2957     private final void validateInputByteBuffer(
2958             @Nullable ByteBuffer[] buffers, int index) {
2959         if (buffers != null && index >= 0 && index < buffers.length) {
2960             ByteBuffer buffer = buffers[index];
2961             if (buffer != null) {
2962                 buffer.setAccessible(true);
2963                 buffer.clear();
2964             }
2965         }
2966     }
2967
2968     private final void revalidateByteBuffer(
2969             @Nullable ByteBuffer[] buffers, int index) {
2970         synchronized(mBufferLock) {
2971             if (buffers != null && index >= 0 && index < buffers.length) {
2972                 ByteBuffer buffer = buffers[index];
2973                 if (buffer != null) {
2974                     buffer.setAccessible(true);
2975                 }
2976             }
2977         }
2978     }
2979
2980     private final void validateOutputByteBuffer(
2981             @Nullable ByteBuffer[] buffers, int index, @NonNull BufferInfo info) {
2982         if (buffers != null && index >= 0 && index < buffers.length) {
2983             ByteBuffer buffer = buffers[index];
2984             if (buffer != null) {
2985                 buffer.setAccessible(true);
2986                 buffer.limit(info.offset + info.size).position(info.offset);
2987             }
2988         }
2989     }
2990
2991     private final void invalidateByteBuffers(@Nullable ByteBuffer[] buffers) {
2992         if (buffers != null) {
2993             for (ByteBuffer buffer: buffers) {
2994                 if (buffer != null) {
2995                     buffer.setAccessible(false);
2996                 }
2997             }
2998         }
2999     }
3000
3001     private final void freeByteBuffer(@Nullable ByteBuffer buffer) {
3002         if (buffer != null /* && buffer.isDirect() */) {
3003             // all of our ByteBuffers are direct
3004             java.nio.NioUtils.freeDirectBuffer(buffer);
3005         }
3006     }
3007
3008     private final void freeByteBuffers(@Nullable ByteBuffer[] buffers) {
3009         if (buffers != null) {
3010             for (ByteBuffer buffer: buffers) {
3011                 freeByteBuffer(buffer);
3012             }
3013         }
3014     }
3015
3016     private final void freeAllTrackedBuffers() {
3017         synchronized(mBufferLock) {
3018             freeByteBuffers(mCachedInputBuffers);
3019             freeByteBuffers(mCachedOutputBuffers);
3020             mCachedInputBuffers = null;
3021             mCachedOutputBuffers = null;
3022             mDequeuedInputBuffers.clear();
3023             mDequeuedOutputBuffers.clear();
3024         }
3025     }
3026
3027     private final void cacheBuffers(boolean input) {
3028         ByteBuffer[] buffers = null;
3029         try {
3030             buffers = getBuffers(input);
3031             invalidateByteBuffers(buffers);
3032         } catch (IllegalStateException e) {
3033             // we don't get buffers in async mode
3034         }
3035         if (input) {
3036             mCachedInputBuffers = buffers;
3037         } else {
3038             mCachedOutputBuffers = buffers;
3039         }
3040     }
3041
3042     /**
3043      * Retrieve the set of input buffers.  Call this after start()
3044      * returns. After calling this method, any ByteBuffers
3045      * previously returned by an earlier call to this method MUST no
3046      * longer be used.
3047      *
3048      * @deprecated Use the new {@link #getInputBuffer} method instead
3049      * each time an input buffer is dequeued.
3050      *
3051      * <b>Note:</b> As of API 21, dequeued input buffers are
3052      * automatically {@link java.nio.Buffer#clear cleared}.
3053      *
3054      * <em>Do not use this method if using an input surface.</em>
3055      *
3056      * @throws IllegalStateException if not in the Executing state,
3057      *         or codec is configured in asynchronous mode.
3058      * @throws MediaCodec.CodecException upon codec error.
3059      */
3060     @NonNull
3061     public ByteBuffer[] getInputBuffers() {
3062         if (mCachedInputBuffers == null) {
3063             throw new IllegalStateException();
3064         }
3065         // FIXME: check codec status
3066         return mCachedInputBuffers;
3067     }
3068
3069     /**
3070      * Retrieve the set of output buffers.  Call this after start()
3071      * returns and whenever dequeueOutputBuffer signals an output
3072      * buffer change by returning {@link
3073      * #INFO_OUTPUT_BUFFERS_CHANGED}. After calling this method, any
3074      * ByteBuffers previously returned by an earlier call to this
3075      * method MUST no longer be used.
3076      *
3077      * @deprecated Use the new {@link #getOutputBuffer} method instead
3078      * each time an output buffer is dequeued.  This method is not
3079      * supported if codec is configured in asynchronous mode.
3080      *
3081      * <b>Note:</b> As of API 21, the position and limit of output
3082      * buffers that are dequeued will be set to the valid data
3083      * range.
3084      *
3085      * <em>Do not use this method if using an output surface.</em>
3086      *
3087      * @throws IllegalStateException if not in the Executing state,
3088      *         or codec is configured in asynchronous mode.
3089      * @throws MediaCodec.CodecException upon codec error.
3090      */
3091     @NonNull
3092     public ByteBuffer[] getOutputBuffers() {
3093         if (mCachedOutputBuffers == null) {
3094             throw new IllegalStateException();
3095         }
3096         // FIXME: check codec status
3097         return mCachedOutputBuffers;
3098     }
3099
3100     /**
3101      * Returns a {@link java.nio.Buffer#clear cleared}, writable ByteBuffer
3102      * object for a dequeued input buffer index to contain the input data.
3103      *
3104      * After calling this method any ByteBuffer or Image object
3105      * previously returned for the same input index MUST no longer
3106      * be used.
3107      *
3108      * @param index The index of a client-owned input buffer previously
3109      *              returned from a call to {@link #dequeueInputBuffer},
3110      *              or received via an onInputBufferAvailable callback.
3111      *
3112      * @return the input buffer, or null if the index is not a dequeued
3113      * input buffer, or if the codec is configured for surface input.
3114      *
3115      * @throws IllegalStateException if not in the Executing state.
3116      * @throws MediaCodec.CodecException upon codec error.
3117      */
3118     @Nullable
3119     public ByteBuffer getInputBuffer(int index) {
3120         ByteBuffer newBuffer = getBuffer(true /* input */, index);
3121         synchronized(mBufferLock) {
3122             invalidateByteBuffer(mCachedInputBuffers, index);
3123             mDequeuedInputBuffers.put(index, newBuffer);
3124         }
3125         return newBuffer;
3126     }
3127
3128     /**
3129      * Returns a writable Image object for a dequeued input buffer
3130      * index to contain the raw input video frame.
3131      *
3132      * After calling this method any ByteBuffer or Image object
3133      * previously returned for the same input index MUST no longer
3134      * be used.
3135      *
3136      * @param index The index of a client-owned input buffer previously
3137      *              returned from a call to {@link #dequeueInputBuffer},
3138      *              or received via an onInputBufferAvailable callback.
3139      *
3140      * @return the input image, or null if the index is not a
3141      * dequeued input buffer, or not a ByteBuffer that contains a
3142      * raw image.
3143      *
3144      * @throws IllegalStateException if not in the Executing state.
3145      * @throws MediaCodec.CodecException upon codec error.
3146      */
3147     @Nullable
3148     public Image getInputImage(int index) {
3149         Image newImage = getImage(true /* input */, index);
3150         synchronized(mBufferLock) {
3151             invalidateByteBuffer(mCachedInputBuffers, index);
3152             mDequeuedInputBuffers.put(index, newImage);
3153         }
3154         return newImage;
3155     }
3156
3157     /**
3158      * Returns a read-only ByteBuffer for a dequeued output buffer
3159      * index. The position and limit of the returned buffer are set
3160      * to the valid output data.
3161      *
3162      * After calling this method, any ByteBuffer or Image object
3163      * previously returned for the same output index MUST no longer
3164      * be used.
3165      *
3166      * @param index The index of a client-owned output buffer previously
3167      *              returned from a call to {@link #dequeueOutputBuffer},
3168      *              or received via an onOutputBufferAvailable callback.
3169      *
3170      * @return the output buffer, or null if the index is not a dequeued
3171      * output buffer, or the codec is configured with an output surface.
3172      *
3173      * @throws IllegalStateException if not in the Executing state.
3174      * @throws MediaCodec.CodecException upon codec error.
3175      */
3176     @Nullable
3177     public ByteBuffer getOutputBuffer(int index) {
3178         ByteBuffer newBuffer = getBuffer(false /* input */, index);
3179         synchronized(mBufferLock) {
3180             invalidateByteBuffer(mCachedOutputBuffers, index);
3181             mDequeuedOutputBuffers.put(index, newBuffer);
3182         }
3183         return newBuffer;
3184     }
3185
3186     /**
3187      * Returns a read-only Image object for a dequeued output buffer
3188      * index that contains the raw video frame.
3189      *
3190      * After calling this method, any ByteBuffer or Image object previously
3191      * returned for the same output index MUST no longer be used.
3192      *
3193      * @param index The index of a client-owned output buffer previously
3194      *              returned from a call to {@link #dequeueOutputBuffer},
3195      *              or received via an onOutputBufferAvailable callback.
3196      *
3197      * @return the output image, or null if the index is not a
3198      * dequeued output buffer, not a raw video frame, or if the codec
3199      * was configured with an output surface.
3200      *
3201      * @throws IllegalStateException if not in the Executing state.
3202      * @throws MediaCodec.CodecException upon codec error.
3203      */
3204     @Nullable
3205     public Image getOutputImage(int index) {
3206         Image newImage = getImage(false /* input */, index);
3207         synchronized(mBufferLock) {
3208             invalidateByteBuffer(mCachedOutputBuffers, index);
3209             mDequeuedOutputBuffers.put(index, newImage);
3210         }
3211         return newImage;
3212     }
3213
3214     /**
3215      * The content is scaled to the surface dimensions
3216      */
3217     public static final int VIDEO_SCALING_MODE_SCALE_TO_FIT               = 1;
3218
3219     /**
3220      * The content is scaled, maintaining its aspect ratio, the whole
3221      * surface area is used, content may be cropped.
3222      * <p class=note>
3223      * This mode is only suitable for content with 1:1 pixel aspect ratio as you cannot
3224      * configure the pixel aspect ratio for a {@link Surface}.
3225      * <p class=note>
3226      * As of {@link android.os.Build.VERSION_CODES#N} release, this mode may not work if
3227      * the video is {@linkplain MediaFormat#KEY_ROTATION rotated} by 90 or 270 degrees.
3228      */
3229     public static final int VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING = 2;
3230
3231     /** @hide */
3232     @IntDef({
3233         VIDEO_SCALING_MODE_SCALE_TO_FIT,
3234         VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING,
3235     })
3236     @Retention(RetentionPolicy.SOURCE)
3237     public @interface VideoScalingMode {}
3238
3239     /**
3240      * If a surface has been specified in a previous call to {@link #configure}
3241      * specifies the scaling mode to use. The default is "scale to fit".
3242      * <p class=note>
3243      * The scaling mode may be reset to the <strong>default</strong> each time an
3244      * {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is received from the codec; therefore, the client
3245      * must call this method after every buffer change event (and before the first output buffer is
3246      * released for rendering) to ensure consistent scaling mode.
3247      * <p class=note>
3248      * Since the {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is deprecated, this can also be done
3249      * after each {@link #INFO_OUTPUT_FORMAT_CHANGED} event.
3250      *
3251      * @throws IllegalArgumentException if mode is not recognized.
3252      * @throws IllegalStateException if in the Released state.
3253      */
3254     public native final void setVideoScalingMode(@VideoScalingMode int mode);
3255
3256     /**
3257      * Get the component name. If the codec was created by createDecoderByType
3258      * or createEncoderByType, what component is chosen is not known beforehand.
3259      * @throws IllegalStateException if in the Released state.
3260      */
3261     @NonNull
3262     public native final String getName();
3263
3264     /**
3265      *  Return Metrics data about the current codec instance.
3266      *
3267      * @return a {@link PersistableBundle} containing the set of attributes and values
3268      * available for the media being handled by this instance of MediaCodec
3269      * The attributes are descibed in {@link MetricsConstants}.
3270      *
3271      * Additional vendor-specific fields may also be present in
3272      * the return value.
3273      */
3274     public PersistableBundle getMetrics() {
3275         PersistableBundle bundle = native_getMetrics();
3276         return bundle;
3277     }
3278
3279     private native PersistableBundle native_getMetrics();
3280
3281     /**
3282      * Change a video encoder's target bitrate on the fly. The value is an
3283      * Integer object containing the new bitrate in bps.
3284      */
3285     public static final String PARAMETER_KEY_VIDEO_BITRATE = "video-bitrate";
3286
3287     /**
3288      * Temporarily suspend/resume encoding of input data. While suspended
3289      * input data is effectively discarded instead of being fed into the
3290      * encoder. This parameter really only makes sense to use with an encoder
3291      * in "surface-input" mode, as the client code has no control over the
3292      * input-side of the encoder in that case.
3293      * The value is an Integer object containing the value 1 to suspend
3294      * or the value 0 to resume.
3295      */
3296     public static final String PARAMETER_KEY_SUSPEND = "drop-input-frames";
3297
3298     /**
3299      * Request that the encoder produce a sync frame "soon".
3300      * Provide an Integer with the value 0.
3301      */
3302     public static final String PARAMETER_KEY_REQUEST_SYNC_FRAME = "request-sync";
3303
3304     /**
3305      * Communicate additional parameter changes to the component instance.
3306      * <b>Note:</b> Some of these parameter changes may silently fail to apply.
3307      *
3308      * @param params The bundle of parameters to set.
3309      * @throws IllegalStateException if in the Released state.
3310      */
3311     public final void setParameters(@Nullable Bundle params) {
3312         if (params == null) {
3313             return;
3314         }
3315
3316         String[] keys = new String[params.size()];
3317         Object[] values = new Object[params.size()];
3318
3319         int i = 0;
3320         for (final String key: params.keySet()) {
3321             keys[i] = key;
3322             values[i] = params.get(key);
3323             ++i;
3324         }
3325
3326         setParameters(keys, values);
3327     }
3328
3329     /**
3330      * Sets an asynchronous callback for actionable MediaCodec events.
3331      *
3332      * If the client intends to use the component in asynchronous mode,
3333      * a valid callback should be provided before {@link #configure} is called.
3334      *
3335      * When asynchronous callback is enabled, the client should not call
3336      * {@link #getInputBuffers}, {@link #getOutputBuffers},
3337      * {@link #dequeueInputBuffer(long)} or {@link #dequeueOutputBuffer(BufferInfo, long)}.
3338      * <p>
3339      * Also, {@link #flush} behaves differently in asynchronous mode.  After calling
3340      * {@code flush}, you must call {@link #start} to "resume" receiving input buffers,
3341      * even if an input surface was created.
3342      *
3343      * @param cb The callback that will run.  Use {@code null} to clear a previously
3344      *           set callback (before {@link #configure configure} is called and run
3345      *           in synchronous mode).
3346      * @param handler Callbacks will happen on the handler's thread. If {@code null},
3347      *           callbacks are done on the default thread (the caller's thread or the
3348      *           main thread.)
3349      */
3350     public void setCallback(@Nullable /* MediaCodec. */ Callback cb, @Nullable Handler handler) {
3351         if (cb != null) {
3352             synchronized (mListenerLock) {
3353                 EventHandler newHandler = getEventHandlerOn(handler, mCallbackHandler);
3354                 // NOTE: there are no callbacks on the handler at this time, but check anyways
3355                 // even if we were to extend this to be callable dynamically, it must
3356                 // be called when codec is flushed, so no messages are pending.
3357                 if (newHandler != mCallbackHandler) {
3358                     mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
3359                     mCallbackHandler.removeMessages(EVENT_CALLBACK);
3360                     mCallbackHandler = newHandler;
3361                 }
3362             }
3363         } else if (mCallbackHandler != null) {
3364             mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
3365             mCallbackHandler.removeMessages(EVENT_CALLBACK);
3366         }
3367
3368         if (mCallbackHandler != null) {
3369             // set java callback on main handler
3370             Message msg = mCallbackHandler.obtainMessage(EVENT_SET_CALLBACK, 0, 0, cb);
3371             mCallbackHandler.sendMessage(msg);
3372
3373             // set native handler here, don't post to handler because
3374             // it may cause the callback to be delayed and set in a wrong state.
3375             // Note that native codec may start sending events to the callback
3376             // handler after this returns.
3377             native_setCallback(cb);
3378         }
3379     }
3380
3381     /**
3382      * Sets an asynchronous callback for actionable MediaCodec events on the default
3383      * looper.
3384      * <p>
3385      * Same as {@link #setCallback(Callback, Handler)} with handler set to null.
3386      * @param cb The callback that will run.  Use {@code null} to clear a previously
3387      *           set callback (before {@link #configure configure} is called and run
3388      *           in synchronous mode).
3389      * @see #setCallback(Callback, Handler)
3390      */
3391     public void setCallback(@Nullable /* MediaCodec. */ Callback cb) {
3392         setCallback(cb, null /* handler */);
3393     }
3394
3395     /**
3396      * Listener to be called when an output frame has rendered on the output surface
3397      *
3398      * @see MediaCodec#setOnFrameRenderedListener
3399      */
3400     public interface OnFrameRenderedListener {
3401
3402         /**
3403          * Called when an output frame has rendered on the output surface.
3404          * <p>
3405          * <strong>Note:</strong> This callback is for informational purposes only: to get precise
3406          * render timing samples, and can be significantly delayed and batched. Some frames may have
3407          * been rendered even if there was no callback generated.
3408          *
3409          * @param codec the MediaCodec instance
3410          * @param presentationTimeUs the presentation time (media time) of the frame rendered.
3411          *          This is usually the same as specified in {@link #queueInputBuffer}; however,
3412          *          some codecs may alter the media time by applying some time-based transformation,
3413          *          such as frame rate conversion. In that case, presentation time corresponds
3414          *          to the actual output frame rendered.
3415          * @param nanoTime The system time when the frame was rendered.
3416          *
3417          * @see System#nanoTime
3418          */
3419         public void onFrameRendered(
3420                 @NonNull MediaCodec codec, long presentationTimeUs, long nanoTime);
3421     }
3422
3423     /**
3424      * Registers a callback to be invoked when an output frame is rendered on the output surface.
3425      * <p>
3426      * This method can be called in any codec state, but will only have an effect in the
3427      * Executing state for codecs that render buffers to the output surface.
3428      * <p>
3429      * <strong>Note:</strong> This callback is for informational purposes only: to get precise
3430      * render timing samples, and can be significantly delayed and batched. Some frames may have
3431      * been rendered even if there was no callback generated.
3432      *
3433      * @param listener the callback that will be run
3434      * @param handler the callback will be run on the handler's thread. If {@code null},
3435      *           the callback will be run on the default thread, which is the looper
3436      *           from which the codec was created, or a new thread if there was none.
3437      */
3438     public void setOnFrameRenderedListener(
3439             @Nullable OnFrameRenderedListener listener, @Nullable Handler handler) {
3440         synchronized (mListenerLock) {
3441             mOnFrameRenderedListener = listener;
3442             if (listener != null) {
3443                 EventHandler newHandler = getEventHandlerOn(handler, mOnFrameRenderedHandler);
3444                 if (newHandler != mOnFrameRenderedHandler) {
3445                     mOnFrameRenderedHandler.removeMessages(EVENT_FRAME_RENDERED);
3446                 }
3447                 mOnFrameRenderedHandler = newHandler;
3448             } else if (mOnFrameRenderedHandler != null) {
3449                 mOnFrameRenderedHandler.removeMessages(EVENT_FRAME_RENDERED);
3450             }
3451             native_enableOnFrameRenderedListener(listener != null);
3452         }
3453     }
3454
3455     private native void native_enableOnFrameRenderedListener(boolean enable);
3456
3457     private EventHandler getEventHandlerOn(
3458             @Nullable Handler handler, @NonNull EventHandler lastHandler) {
3459         if (handler == null) {
3460             return mEventHandler;
3461         } else {
3462             Looper looper = handler.getLooper();
3463             if (lastHandler.getLooper() == looper) {
3464                 return lastHandler;
3465             } else {
3466                 return new EventHandler(this, looper);
3467             }
3468         }
3469     }
3470
3471     /**
3472      * MediaCodec callback interface. Used to notify the user asynchronously
3473      * of various MediaCodec events.
3474      */
3475     public static abstract class Callback {
3476         /**
3477          * Called when an input buffer becomes available.
3478          *
3479          * @param codec The MediaCodec object.
3480          * @param index The index of the available input buffer.
3481          */
3482         public abstract void onInputBufferAvailable(@NonNull MediaCodec codec, int index);
3483
3484         /**
3485          * Called when an output buffer becomes available.
3486          *
3487          * @param codec The MediaCodec object.
3488          * @param index The index of the available output buffer.
3489          * @param info Info regarding the available output buffer {@link MediaCodec.BufferInfo}.
3490          */
3491         public abstract void onOutputBufferAvailable(
3492                 @NonNull MediaCodec codec, int index, @NonNull BufferInfo info);
3493
3494         /**
3495          * Called when the MediaCodec encountered an error
3496          *
3497          * @param codec The MediaCodec object.
3498          * @param e The {@link MediaCodec.CodecException} object describing the error.
3499          */
3500         public abstract void onError(@NonNull MediaCodec codec, @NonNull CodecException e);
3501
3502         /**
3503          * Called when the output format has changed
3504          *
3505          * @param codec The MediaCodec object.
3506          * @param format The new output format.
3507          */
3508         public abstract void onOutputFormatChanged(
3509                 @NonNull MediaCodec codec, @NonNull MediaFormat format);
3510     }
3511
3512     private void postEventFromNative(
3513             int what, int arg1, int arg2, @Nullable Object obj) {
3514         synchronized (mListenerLock) {
3515             EventHandler handler = mEventHandler;
3516             if (what == EVENT_CALLBACK) {
3517                 handler = mCallbackHandler;
3518             } else if (what == EVENT_FRAME_RENDERED) {
3519                 handler = mOnFrameRenderedHandler;
3520             }
3521             if (handler != null) {
3522                 Message msg = handler.obtainMessage(what, arg1, arg2, obj);
3523                 handler.sendMessage(msg);
3524             }
3525         }
3526     }
3527
3528     private native final void setParameters(@NonNull String[] keys, @NonNull Object[] values);
3529
3530     /**
3531      * Get the codec info. If the codec was created by createDecoderByType
3532      * or createEncoderByType, what component is chosen is not known beforehand,
3533      * and thus the caller does not have the MediaCodecInfo.
3534      * @throws IllegalStateException if in the Released state.
3535      */
3536     @NonNull
3537     public MediaCodecInfo getCodecInfo() {
3538         // Get the codec name first. If the codec is already released,
3539         // IllegalStateException will be thrown here.
3540         String name = getName();
3541         synchronized (mCodecInfoLock) {
3542             if (mCodecInfo == null) {
3543                 // Get the codec info for this codec itself first. Only initialize
3544                 // the full codec list if this somehow fails because it can be slow.
3545                 mCodecInfo = getOwnCodecInfo();
3546                 if (mCodecInfo == null) {
3547                     mCodecInfo = MediaCodecList.getInfoFor(name);
3548                 }
3549             }
3550             return mCodecInfo;
3551         }
3552     }
3553
3554     @NonNull
3555     private native final MediaCodecInfo getOwnCodecInfo();
3556
3557     @NonNull
3558     private native final ByteBuffer[] getBuffers(boolean input);
3559
3560     @Nullable
3561     private native final ByteBuffer getBuffer(boolean input, int index);
3562
3563     @Nullable
3564     private native final Image getImage(boolean input, int index);
3565
3566     private static native final void native_init();
3567
3568     private native final void native_setup(
3569             @NonNull String name, boolean nameIsType, boolean encoder);
3570
3571     private native final void native_finalize();
3572
3573     static {
3574         System.loadLibrary("media_jni");
3575         native_init();
3576     }
3577
3578     private long mNativeContext;
3579
3580     /** @hide */
3581     public static class MediaImage extends Image {
3582         private final boolean mIsReadOnly;
3583         private final int mWidth;
3584         private final int mHeight;
3585         private final int mFormat;
3586         private long mTimestamp;
3587         private final Plane[] mPlanes;
3588         private final ByteBuffer mBuffer;
3589         private final ByteBuffer mInfo;
3590         private final int mXOffset;
3591         private final int mYOffset;
3592
3593         private final static int TYPE_YUV = 1;
3594
3595         private final int mTransform = 0; //Default no transform
3596         private final int mScalingMode = 0; //Default frozen scaling mode
3597
3598         @Override
3599         public int getFormat() {
3600             throwISEIfImageIsInvalid();
3601             return mFormat;
3602         }
3603
3604         @Override
3605         public int getHeight() {
3606             throwISEIfImageIsInvalid();
3607             return mHeight;
3608         }
3609
3610         @Override
3611         public int getWidth() {
3612             throwISEIfImageIsInvalid();
3613             return mWidth;
3614         }
3615
3616         @Override
3617         public int getTransform() {
3618             throwISEIfImageIsInvalid();
3619             return mTransform;
3620         }
3621
3622         @Override
3623         public int getScalingMode() {
3624             throwISEIfImageIsInvalid();
3625             return mScalingMode;
3626         }
3627
3628         @Override
3629         public long getTimestamp() {
3630             throwISEIfImageIsInvalid();
3631             return mTimestamp;
3632         }
3633
3634         @Override
3635         @NonNull
3636         public Plane[] getPlanes() {
3637             throwISEIfImageIsInvalid();
3638             return Arrays.copyOf(mPlanes, mPlanes.length);
3639         }
3640
3641         @Override
3642         public void close() {
3643             if (mIsImageValid) {
3644                 java.nio.NioUtils.freeDirectBuffer(mBuffer);
3645                 mIsImageValid = false;
3646             }
3647         }
3648
3649         /**
3650          * Set the crop rectangle associated with this frame.
3651          * <p>
3652          * The crop rectangle specifies the region of valid pixels in the image,
3653          * using coordinates in the largest-resolution plane.
3654          */
3655         @Override
3656         public void setCropRect(@Nullable Rect cropRect) {
3657             if (mIsReadOnly) {
3658                 throw new ReadOnlyBufferException();
3659             }
3660             super.setCropRect(cropRect);
3661         }
3662
3663
3664         public MediaImage(
3665                 @NonNull ByteBuffer buffer, @NonNull ByteBuffer info, boolean readOnly,
3666                 long timestamp, int xOffset, int yOffset, @Nullable Rect cropRect) {
3667             mFormat = ImageFormat.YUV_420_888;
3668             mTimestamp = timestamp;
3669             mIsImageValid = true;
3670             mIsReadOnly = buffer.isReadOnly();
3671             mBuffer = buffer.duplicate();
3672
3673             // save offsets and info
3674             mXOffset = xOffset;
3675             mYOffset = yOffset;
3676             mInfo = info;
3677
3678             // read media-info.  See MediaImage2
3679             if (info.remaining() == 104) {
3680                 int type = info.getInt();
3681                 if (type != TYPE_YUV) {
3682                     throw new UnsupportedOperationException("unsupported type: " + type);
3683                 }
3684                 int numPlanes = info.getInt();
3685                 if (numPlanes != 3) {
3686                     throw new RuntimeException("unexpected number of planes: " + numPlanes);
3687                 }
3688                 mWidth = info.getInt();
3689                 mHeight = info.getInt();
3690                 if (mWidth < 1 || mHeight < 1) {
3691                     throw new UnsupportedOperationException(
3692                             "unsupported size: " + mWidth + "x" + mHeight);
3693                 }
3694                 int bitDepth = info.getInt();
3695                 if (bitDepth != 8) {
3696                     throw new UnsupportedOperationException("unsupported bit depth: " + bitDepth);
3697                 }
3698                 int bitDepthAllocated = info.getInt();
3699                 if (bitDepthAllocated != 8) {
3700                     throw new UnsupportedOperationException(
3701                             "unsupported allocated bit depth: " + bitDepthAllocated);
3702                 }
3703                 mPlanes = new MediaPlane[numPlanes];
3704                 for (int ix = 0; ix < numPlanes; ix++) {
3705                     int planeOffset = info.getInt();
3706                     int colInc = info.getInt();
3707                     int rowInc = info.getInt();
3708                     int horiz = info.getInt();
3709                     int vert = info.getInt();
3710                     if (horiz != vert || horiz != (ix == 0 ? 1 : 2)) {
3711                         throw new UnsupportedOperationException("unexpected subsampling: "
3712                                 + horiz + "x" + vert + " on plane " + ix);
3713                     }
3714                     if (colInc < 1 || rowInc < 1) {
3715                         throw new UnsupportedOperationException("unexpected strides: "
3716                                 + colInc + " pixel, " + rowInc + " row on plane " + ix);
3717                     }
3718
3719                     buffer.clear();
3720                     buffer.position(mBuffer.position() + planeOffset
3721                             + (xOffset / horiz) * colInc + (yOffset / vert) * rowInc);
3722                     buffer.limit(buffer.position() + Utils.divUp(bitDepth, 8)
3723                             + (mHeight / vert - 1) * rowInc + (mWidth / horiz - 1) * colInc);
3724                     mPlanes[ix] = new MediaPlane(buffer.slice(), rowInc, colInc);
3725                 }
3726             } else {
3727                 throw new UnsupportedOperationException(
3728                         "unsupported info length: " + info.remaining());
3729             }
3730
3731             if (cropRect == null) {
3732                 cropRect = new Rect(0, 0, mWidth, mHeight);
3733             }
3734             cropRect.offset(-xOffset, -yOffset);
3735             super.setCropRect(cropRect);
3736         }
3737
3738         private class MediaPlane extends Plane {
3739             public MediaPlane(@NonNull ByteBuffer buffer, int rowInc, int colInc) {
3740                 mData = buffer;
3741                 mRowInc = rowInc;
3742                 mColInc = colInc;
3743             }
3744
3745             @Override
3746             public int getRowStride() {
3747                 throwISEIfImageIsInvalid();
3748                 return mRowInc;
3749             }
3750
3751             @Override
3752             public int getPixelStride() {
3753                 throwISEIfImageIsInvalid();
3754                 return mColInc;
3755             }
3756
3757             @Override
3758             @NonNull
3759             public ByteBuffer getBuffer() {
3760                 throwISEIfImageIsInvalid();
3761                 return mData;
3762             }
3763
3764             private final int mRowInc;
3765             private final int mColInc;
3766             private final ByteBuffer mData;
3767         }
3768     }
3769
3770     public final static class MetricsConstants
3771     {
3772         private MetricsConstants() {}
3773
3774         /**
3775          * Key to extract the codec being used
3776          * from the {@link MediaCodec#getMetrics} return value.
3777          * The value is a String.
3778          */
3779         public static final String CODEC = "android.media.mediacodec.codec";
3780
3781         /**
3782          * Key to extract the MIME type
3783          * from the {@link MediaCodec#getMetrics} return value.
3784          * The value is a String.
3785          */
3786         public static final String MIME_TYPE = "android.media.mediacodec.mime";
3787
3788         /**
3789          * Key to extract what the codec mode
3790          * from the {@link MediaCodec#getMetrics} return value.
3791          * The value is a String. Values will be one of the constants
3792          * {@link #MODE_AUDIO} or {@link #MODE_VIDEO}.
3793          */
3794         public static final String MODE = "android.media.mediacodec.mode";
3795
3796         /**
3797          * The value returned for the key {@link #MODE} when the
3798          * codec is a audio codec.
3799          */
3800         public static final String MODE_AUDIO = "audio";
3801
3802         /**
3803          * The value returned for the key {@link #MODE} when the
3804          * codec is a video codec.
3805          */
3806         public static final String MODE_VIDEO = "video";
3807
3808         /**
3809          * Key to extract the flag indicating whether the codec is running
3810          * as an encoder or decoder from the {@link MediaCodec#getMetrics} return value.
3811          * The value is an integer.
3812          * A 0 indicates decoder; 1 indicates encoder.
3813          */
3814         public static final String ENCODER = "android.media.mediacodec.encoder";
3815
3816         /**
3817          * Key to extract the flag indicating whether the codec is running
3818          * in secure (DRM) mode from the {@link MediaCodec#getMetrics} return value.
3819          * The value is an integer.
3820          */
3821         public static final String SECURE = "android.media.mediacodec.secure";
3822
3823         /**
3824          * Key to extract the width (in pixels) of the video track
3825          * from the {@link MediaCodec#getMetrics} return value.
3826          * The value is an integer.
3827          */
3828         public static final String WIDTH = "android.media.mediacodec.width";
3829
3830         /**
3831          * Key to extract the height (in pixels) of the video track
3832          * from the {@link MediaCodec#getMetrics} return value.
3833          * The value is an integer.
3834          */
3835         public static final String HEIGHT = "android.media.mediacodec.height";
3836
3837         /**
3838          * Key to extract the rotation (in degrees) to properly orient the video
3839          * from the {@link MediaCodec#getMetrics} return.
3840          * The value is a integer.
3841          */
3842         public static final String ROTATION = "android.media.mediacodec.rotation";
3843
3844     }
3845 }