OSDN Git Service

memory: inline a few small accessors
[qmiga/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qemu/error-report.h"
22 #include "qom/object.h"
23 #include "trace.h"
24 #include <assert.h>
25
26 #include "exec/memory-internal.h"
27 #include "exec/ram_addr.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/sysemu.h"
30
31 //#define DEBUG_UNASSIGNED
32
33 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
34
35 static unsigned memory_region_transaction_depth;
36 static bool memory_region_update_pending;
37 static bool ioeventfd_update_pending;
38 static bool global_dirty_log = false;
39
40 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
41     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
42
43 static QTAILQ_HEAD(, AddressSpace) address_spaces
44     = QTAILQ_HEAD_INITIALIZER(address_spaces);
45
46 typedef struct AddrRange AddrRange;
47
48 /*
49  * Note that signed integers are needed for negative offsetting in aliases
50  * (large MemoryRegion::alias_offset).
51  */
52 struct AddrRange {
53     Int128 start;
54     Int128 size;
55 };
56
57 static AddrRange addrrange_make(Int128 start, Int128 size)
58 {
59     return (AddrRange) { start, size };
60 }
61
62 static bool addrrange_equal(AddrRange r1, AddrRange r2)
63 {
64     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
65 }
66
67 static Int128 addrrange_end(AddrRange r)
68 {
69     return int128_add(r.start, r.size);
70 }
71
72 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
73 {
74     int128_addto(&range.start, delta);
75     return range;
76 }
77
78 static bool addrrange_contains(AddrRange range, Int128 addr)
79 {
80     return int128_ge(addr, range.start)
81         && int128_lt(addr, addrrange_end(range));
82 }
83
84 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
85 {
86     return addrrange_contains(r1, r2.start)
87         || addrrange_contains(r2, r1.start);
88 }
89
90 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
91 {
92     Int128 start = int128_max(r1.start, r2.start);
93     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
94     return addrrange_make(start, int128_sub(end, start));
95 }
96
97 enum ListenerDirection { Forward, Reverse };
98
99 static bool memory_listener_match(MemoryListener *listener,
100                                   MemoryRegionSection *section)
101 {
102     return !listener->address_space_filter
103         || listener->address_space_filter == section->address_space;
104 }
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
107     do {                                                                \
108         MemoryListener *_listener;                                      \
109                                                                         \
110         switch (_direction) {                                           \
111         case Forward:                                                   \
112             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         case Reverse:                                                   \
119             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
120                                    memory_listeners, link) {            \
121                 if (_listener->_callback) {                             \
122                     _listener->_callback(_listener, ##_args);           \
123                 }                                                       \
124             }                                                           \
125             break;                                                      \
126         default:                                                        \
127             abort();                                                    \
128         }                                                               \
129     } while (0)
130
131 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
132     do {                                                                \
133         MemoryListener *_listener;                                      \
134                                                                         \
135         switch (_direction) {                                           \
136         case Forward:                                                   \
137             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
138                 if (_listener->_callback                                \
139                     && memory_listener_match(_listener, _section)) {    \
140                     _listener->_callback(_listener, _section, ##_args); \
141                 }                                                       \
142             }                                                           \
143             break;                                                      \
144         case Reverse:                                                   \
145             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
146                                    memory_listeners, link) {            \
147                 if (_listener->_callback                                \
148                     && memory_listener_match(_listener, _section)) {    \
149                     _listener->_callback(_listener, _section, ##_args); \
150                 }                                                       \
151             }                                                           \
152             break;                                                      \
153         default:                                                        \
154             abort();                                                    \
155         }                                                               \
156     } while (0)
157
158 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
159 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
160     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
161         .mr = (fr)->mr,                                                 \
162         .address_space = (as),                                          \
163         .offset_within_region = (fr)->offset_in_region,                 \
164         .size = (fr)->addr.size,                                        \
165         .offset_within_address_space = int128_get64((fr)->addr.start),  \
166         .readonly = (fr)->readonly,                                     \
167               }), ##_args)
168
169 struct CoalescedMemoryRange {
170     AddrRange addr;
171     QTAILQ_ENTRY(CoalescedMemoryRange) link;
172 };
173
174 struct MemoryRegionIoeventfd {
175     AddrRange addr;
176     bool match_data;
177     uint64_t data;
178     EventNotifier *e;
179 };
180
181 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
182                                            MemoryRegionIoeventfd b)
183 {
184     if (int128_lt(a.addr.start, b.addr.start)) {
185         return true;
186     } else if (int128_gt(a.addr.start, b.addr.start)) {
187         return false;
188     } else if (int128_lt(a.addr.size, b.addr.size)) {
189         return true;
190     } else if (int128_gt(a.addr.size, b.addr.size)) {
191         return false;
192     } else if (a.match_data < b.match_data) {
193         return true;
194     } else  if (a.match_data > b.match_data) {
195         return false;
196     } else if (a.match_data) {
197         if (a.data < b.data) {
198             return true;
199         } else if (a.data > b.data) {
200             return false;
201         }
202     }
203     if (a.e < b.e) {
204         return true;
205     } else if (a.e > b.e) {
206         return false;
207     }
208     return false;
209 }
210
211 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
212                                           MemoryRegionIoeventfd b)
213 {
214     return !memory_region_ioeventfd_before(a, b)
215         && !memory_region_ioeventfd_before(b, a);
216 }
217
218 typedef struct FlatRange FlatRange;
219 typedef struct FlatView FlatView;
220
221 /* Range of memory in the global map.  Addresses are absolute. */
222 struct FlatRange {
223     MemoryRegion *mr;
224     hwaddr offset_in_region;
225     AddrRange addr;
226     uint8_t dirty_log_mask;
227     bool romd_mode;
228     bool readonly;
229 };
230
231 /* Flattened global view of current active memory hierarchy.  Kept in sorted
232  * order.
233  */
234 struct FlatView {
235     struct rcu_head rcu;
236     unsigned ref;
237     FlatRange *ranges;
238     unsigned nr;
239     unsigned nr_allocated;
240 };
241
242 typedef struct AddressSpaceOps AddressSpaceOps;
243
244 #define FOR_EACH_FLAT_RANGE(var, view)          \
245     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
246
247 static bool flatrange_equal(FlatRange *a, FlatRange *b)
248 {
249     return a->mr == b->mr
250         && addrrange_equal(a->addr, b->addr)
251         && a->offset_in_region == b->offset_in_region
252         && a->romd_mode == b->romd_mode
253         && a->readonly == b->readonly;
254 }
255
256 static void flatview_init(FlatView *view)
257 {
258     view->ref = 1;
259     view->ranges = NULL;
260     view->nr = 0;
261     view->nr_allocated = 0;
262 }
263
264 /* Insert a range into a given position.  Caller is responsible for maintaining
265  * sorting order.
266  */
267 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
268 {
269     if (view->nr == view->nr_allocated) {
270         view->nr_allocated = MAX(2 * view->nr, 10);
271         view->ranges = g_realloc(view->ranges,
272                                     view->nr_allocated * sizeof(*view->ranges));
273     }
274     memmove(view->ranges + pos + 1, view->ranges + pos,
275             (view->nr - pos) * sizeof(FlatRange));
276     view->ranges[pos] = *range;
277     memory_region_ref(range->mr);
278     ++view->nr;
279 }
280
281 static void flatview_destroy(FlatView *view)
282 {
283     int i;
284
285     for (i = 0; i < view->nr; i++) {
286         memory_region_unref(view->ranges[i].mr);
287     }
288     g_free(view->ranges);
289     g_free(view);
290 }
291
292 static void flatview_ref(FlatView *view)
293 {
294     atomic_inc(&view->ref);
295 }
296
297 static void flatview_unref(FlatView *view)
298 {
299     if (atomic_fetch_dec(&view->ref) == 1) {
300         flatview_destroy(view);
301     }
302 }
303
304 static bool can_merge(FlatRange *r1, FlatRange *r2)
305 {
306     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
307         && r1->mr == r2->mr
308         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
309                                 r1->addr.size),
310                      int128_make64(r2->offset_in_region))
311         && r1->dirty_log_mask == r2->dirty_log_mask
312         && r1->romd_mode == r2->romd_mode
313         && r1->readonly == r2->readonly;
314 }
315
316 /* Attempt to simplify a view by merging adjacent ranges */
317 static void flatview_simplify(FlatView *view)
318 {
319     unsigned i, j;
320
321     i = 0;
322     while (i < view->nr) {
323         j = i + 1;
324         while (j < view->nr
325                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
326             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
327             ++j;
328         }
329         ++i;
330         memmove(&view->ranges[i], &view->ranges[j],
331                 (view->nr - j) * sizeof(view->ranges[j]));
332         view->nr -= j - i;
333     }
334 }
335
336 static bool memory_region_big_endian(MemoryRegion *mr)
337 {
338 #ifdef TARGET_WORDS_BIGENDIAN
339     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
340 #else
341     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
342 #endif
343 }
344
345 static bool memory_region_wrong_endianness(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
349 #else
350     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
355 {
356     if (memory_region_wrong_endianness(mr)) {
357         switch (size) {
358         case 1:
359             break;
360         case 2:
361             *data = bswap16(*data);
362             break;
363         case 4:
364             *data = bswap32(*data);
365             break;
366         case 8:
367             *data = bswap64(*data);
368             break;
369         default:
370             abort();
371         }
372     }
373 }
374
375 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
376                                                        hwaddr addr,
377                                                        uint64_t *value,
378                                                        unsigned size,
379                                                        unsigned shift,
380                                                        uint64_t mask,
381                                                        MemTxAttrs attrs)
382 {
383     uint64_t tmp;
384
385     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
386     trace_memory_region_ops_read(mr, addr, tmp, size);
387     *value |= (tmp & mask) << shift;
388     return MEMTX_OK;
389 }
390
391 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
392                                                 hwaddr addr,
393                                                 uint64_t *value,
394                                                 unsigned size,
395                                                 unsigned shift,
396                                                 uint64_t mask,
397                                                 MemTxAttrs attrs)
398 {
399     uint64_t tmp;
400
401     tmp = mr->ops->read(mr->opaque, addr, size);
402     trace_memory_region_ops_read(mr, addr, tmp, size);
403     *value |= (tmp & mask) << shift;
404     return MEMTX_OK;
405 }
406
407 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
408                                                           hwaddr addr,
409                                                           uint64_t *value,
410                                                           unsigned size,
411                                                           unsigned shift,
412                                                           uint64_t mask,
413                                                           MemTxAttrs attrs)
414 {
415     uint64_t tmp = 0;
416     MemTxResult r;
417
418     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
419     trace_memory_region_ops_read(mr, addr, tmp, size);
420     *value |= (tmp & mask) << shift;
421     return r;
422 }
423
424 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
425                                                         hwaddr addr,
426                                                         uint64_t *value,
427                                                         unsigned size,
428                                                         unsigned shift,
429                                                         uint64_t mask,
430                                                         MemTxAttrs attrs)
431 {
432     uint64_t tmp;
433
434     tmp = (*value >> shift) & mask;
435     trace_memory_region_ops_write(mr, addr, tmp, size);
436     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
437     return MEMTX_OK;
438 }
439
440 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
441                                                 hwaddr addr,
442                                                 uint64_t *value,
443                                                 unsigned size,
444                                                 unsigned shift,
445                                                 uint64_t mask,
446                                                 MemTxAttrs attrs)
447 {
448     uint64_t tmp;
449
450     tmp = (*value >> shift) & mask;
451     trace_memory_region_ops_write(mr, addr, tmp, size);
452     mr->ops->write(mr->opaque, addr, tmp, size);
453     return MEMTX_OK;
454 }
455
456 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
457                                                            hwaddr addr,
458                                                            uint64_t *value,
459                                                            unsigned size,
460                                                            unsigned shift,
461                                                            uint64_t mask,
462                                                            MemTxAttrs attrs)
463 {
464     uint64_t tmp;
465
466     tmp = (*value >> shift) & mask;
467     trace_memory_region_ops_write(mr, addr, tmp, size);
468     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
469 }
470
471 static MemTxResult access_with_adjusted_size(hwaddr addr,
472                                       uint64_t *value,
473                                       unsigned size,
474                                       unsigned access_size_min,
475                                       unsigned access_size_max,
476                                       MemTxResult (*access)(MemoryRegion *mr,
477                                                             hwaddr addr,
478                                                             uint64_t *value,
479                                                             unsigned size,
480                                                             unsigned shift,
481                                                             uint64_t mask,
482                                                             MemTxAttrs attrs),
483                                       MemoryRegion *mr,
484                                       MemTxAttrs attrs)
485 {
486     uint64_t access_mask;
487     unsigned access_size;
488     unsigned i;
489     MemTxResult r = MEMTX_OK;
490
491     if (!access_size_min) {
492         access_size_min = 1;
493     }
494     if (!access_size_max) {
495         access_size_max = 4;
496     }
497
498     /* FIXME: support unaligned access? */
499     access_size = MAX(MIN(size, access_size_max), access_size_min);
500     access_mask = -1ULL >> (64 - access_size * 8);
501     if (memory_region_big_endian(mr)) {
502         for (i = 0; i < size; i += access_size) {
503             r |= access(mr, addr + i, value, access_size,
504                         (size - access_size - i) * 8, access_mask, attrs);
505         }
506     } else {
507         for (i = 0; i < size; i += access_size) {
508             r |= access(mr, addr + i, value, access_size, i * 8,
509                         access_mask, attrs);
510         }
511     }
512     return r;
513 }
514
515 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
516 {
517     AddressSpace *as;
518
519     while (mr->container) {
520         mr = mr->container;
521     }
522     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
523         if (mr == as->root) {
524             return as;
525         }
526     }
527     return NULL;
528 }
529
530 /* Render a memory region into the global view.  Ranges in @view obscure
531  * ranges in @mr.
532  */
533 static void render_memory_region(FlatView *view,
534                                  MemoryRegion *mr,
535                                  Int128 base,
536                                  AddrRange clip,
537                                  bool readonly)
538 {
539     MemoryRegion *subregion;
540     unsigned i;
541     hwaddr offset_in_region;
542     Int128 remain;
543     Int128 now;
544     FlatRange fr;
545     AddrRange tmp;
546
547     if (!mr->enabled) {
548         return;
549     }
550
551     int128_addto(&base, int128_make64(mr->addr));
552     readonly |= mr->readonly;
553
554     tmp = addrrange_make(base, mr->size);
555
556     if (!addrrange_intersects(tmp, clip)) {
557         return;
558     }
559
560     clip = addrrange_intersection(tmp, clip);
561
562     if (mr->alias) {
563         int128_subfrom(&base, int128_make64(mr->alias->addr));
564         int128_subfrom(&base, int128_make64(mr->alias_offset));
565         render_memory_region(view, mr->alias, base, clip, readonly);
566         return;
567     }
568
569     /* Render subregions in priority order. */
570     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
571         render_memory_region(view, subregion, base, clip, readonly);
572     }
573
574     if (!mr->terminates) {
575         return;
576     }
577
578     offset_in_region = int128_get64(int128_sub(clip.start, base));
579     base = clip.start;
580     remain = clip.size;
581
582     fr.mr = mr;
583     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
584     fr.romd_mode = mr->romd_mode;
585     fr.readonly = readonly;
586
587     /* Render the region itself into any gaps left by the current view. */
588     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
589         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
590             continue;
591         }
592         if (int128_lt(base, view->ranges[i].addr.start)) {
593             now = int128_min(remain,
594                              int128_sub(view->ranges[i].addr.start, base));
595             fr.offset_in_region = offset_in_region;
596             fr.addr = addrrange_make(base, now);
597             flatview_insert(view, i, &fr);
598             ++i;
599             int128_addto(&base, now);
600             offset_in_region += int128_get64(now);
601             int128_subfrom(&remain, now);
602         }
603         now = int128_sub(int128_min(int128_add(base, remain),
604                                     addrrange_end(view->ranges[i].addr)),
605                          base);
606         int128_addto(&base, now);
607         offset_in_region += int128_get64(now);
608         int128_subfrom(&remain, now);
609     }
610     if (int128_nz(remain)) {
611         fr.offset_in_region = offset_in_region;
612         fr.addr = addrrange_make(base, remain);
613         flatview_insert(view, i, &fr);
614     }
615 }
616
617 /* Render a memory topology into a list of disjoint absolute ranges. */
618 static FlatView *generate_memory_topology(MemoryRegion *mr)
619 {
620     FlatView *view;
621
622     view = g_new(FlatView, 1);
623     flatview_init(view);
624
625     if (mr) {
626         render_memory_region(view, mr, int128_zero(),
627                              addrrange_make(int128_zero(), int128_2_64()), false);
628     }
629     flatview_simplify(view);
630
631     return view;
632 }
633
634 static void address_space_add_del_ioeventfds(AddressSpace *as,
635                                              MemoryRegionIoeventfd *fds_new,
636                                              unsigned fds_new_nb,
637                                              MemoryRegionIoeventfd *fds_old,
638                                              unsigned fds_old_nb)
639 {
640     unsigned iold, inew;
641     MemoryRegionIoeventfd *fd;
642     MemoryRegionSection section;
643
644     /* Generate a symmetric difference of the old and new fd sets, adding
645      * and deleting as necessary.
646      */
647
648     iold = inew = 0;
649     while (iold < fds_old_nb || inew < fds_new_nb) {
650         if (iold < fds_old_nb
651             && (inew == fds_new_nb
652                 || memory_region_ioeventfd_before(fds_old[iold],
653                                                   fds_new[inew]))) {
654             fd = &fds_old[iold];
655             section = (MemoryRegionSection) {
656                 .address_space = as,
657                 .offset_within_address_space = int128_get64(fd->addr.start),
658                 .size = fd->addr.size,
659             };
660             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
661                                  fd->match_data, fd->data, fd->e);
662             ++iold;
663         } else if (inew < fds_new_nb
664                    && (iold == fds_old_nb
665                        || memory_region_ioeventfd_before(fds_new[inew],
666                                                          fds_old[iold]))) {
667             fd = &fds_new[inew];
668             section = (MemoryRegionSection) {
669                 .address_space = as,
670                 .offset_within_address_space = int128_get64(fd->addr.start),
671                 .size = fd->addr.size,
672             };
673             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
674                                  fd->match_data, fd->data, fd->e);
675             ++inew;
676         } else {
677             ++iold;
678             ++inew;
679         }
680     }
681 }
682
683 static FlatView *address_space_get_flatview(AddressSpace *as)
684 {
685     FlatView *view;
686
687     rcu_read_lock();
688     view = atomic_rcu_read(&as->current_map);
689     flatview_ref(view);
690     rcu_read_unlock();
691     return view;
692 }
693
694 static void address_space_update_ioeventfds(AddressSpace *as)
695 {
696     FlatView *view;
697     FlatRange *fr;
698     unsigned ioeventfd_nb = 0;
699     MemoryRegionIoeventfd *ioeventfds = NULL;
700     AddrRange tmp;
701     unsigned i;
702
703     view = address_space_get_flatview(as);
704     FOR_EACH_FLAT_RANGE(fr, view) {
705         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
706             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
707                                   int128_sub(fr->addr.start,
708                                              int128_make64(fr->offset_in_region)));
709             if (addrrange_intersects(fr->addr, tmp)) {
710                 ++ioeventfd_nb;
711                 ioeventfds = g_realloc(ioeventfds,
712                                           ioeventfd_nb * sizeof(*ioeventfds));
713                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
714                 ioeventfds[ioeventfd_nb-1].addr = tmp;
715             }
716         }
717     }
718
719     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
720                                      as->ioeventfds, as->ioeventfd_nb);
721
722     g_free(as->ioeventfds);
723     as->ioeventfds = ioeventfds;
724     as->ioeventfd_nb = ioeventfd_nb;
725     flatview_unref(view);
726 }
727
728 static void address_space_update_topology_pass(AddressSpace *as,
729                                                const FlatView *old_view,
730                                                const FlatView *new_view,
731                                                bool adding)
732 {
733     unsigned iold, inew;
734     FlatRange *frold, *frnew;
735
736     /* Generate a symmetric difference of the old and new memory maps.
737      * Kill ranges in the old map, and instantiate ranges in the new map.
738      */
739     iold = inew = 0;
740     while (iold < old_view->nr || inew < new_view->nr) {
741         if (iold < old_view->nr) {
742             frold = &old_view->ranges[iold];
743         } else {
744             frold = NULL;
745         }
746         if (inew < new_view->nr) {
747             frnew = &new_view->ranges[inew];
748         } else {
749             frnew = NULL;
750         }
751
752         if (frold
753             && (!frnew
754                 || int128_lt(frold->addr.start, frnew->addr.start)
755                 || (int128_eq(frold->addr.start, frnew->addr.start)
756                     && !flatrange_equal(frold, frnew)))) {
757             /* In old but not in new, or in both but attributes changed. */
758
759             if (!adding) {
760                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
761             }
762
763             ++iold;
764         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
765             /* In both and unchanged (except logging may have changed) */
766
767             if (adding) {
768                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
769                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
770                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
771                                                   frold->dirty_log_mask,
772                                                   frnew->dirty_log_mask);
773                 }
774                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
775                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
776                                                   frold->dirty_log_mask,
777                                                   frnew->dirty_log_mask);
778                 }
779             }
780
781             ++iold;
782             ++inew;
783         } else {
784             /* In new */
785
786             if (adding) {
787                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
788             }
789
790             ++inew;
791         }
792     }
793 }
794
795
796 static void address_space_update_topology(AddressSpace *as)
797 {
798     FlatView *old_view = address_space_get_flatview(as);
799     FlatView *new_view = generate_memory_topology(as->root);
800
801     address_space_update_topology_pass(as, old_view, new_view, false);
802     address_space_update_topology_pass(as, old_view, new_view, true);
803
804     /* Writes are protected by the BQL.  */
805     atomic_rcu_set(&as->current_map, new_view);
806     call_rcu(old_view, flatview_unref, rcu);
807
808     /* Note that all the old MemoryRegions are still alive up to this
809      * point.  This relieves most MemoryListeners from the need to
810      * ref/unref the MemoryRegions they get---unless they use them
811      * outside the iothread mutex, in which case precise reference
812      * counting is necessary.
813      */
814     flatview_unref(old_view);
815
816     address_space_update_ioeventfds(as);
817 }
818
819 void memory_region_transaction_begin(void)
820 {
821     qemu_flush_coalesced_mmio_buffer();
822     ++memory_region_transaction_depth;
823 }
824
825 static void memory_region_clear_pending(void)
826 {
827     memory_region_update_pending = false;
828     ioeventfd_update_pending = false;
829 }
830
831 void memory_region_transaction_commit(void)
832 {
833     AddressSpace *as;
834
835     assert(memory_region_transaction_depth);
836     --memory_region_transaction_depth;
837     if (!memory_region_transaction_depth) {
838         if (memory_region_update_pending) {
839             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
840
841             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
842                 address_space_update_topology(as);
843             }
844
845             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
846         } else if (ioeventfd_update_pending) {
847             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
848                 address_space_update_ioeventfds(as);
849             }
850         }
851         memory_region_clear_pending();
852    }
853 }
854
855 static void memory_region_destructor_none(MemoryRegion *mr)
856 {
857 }
858
859 static void memory_region_destructor_ram(MemoryRegion *mr)
860 {
861     qemu_ram_free(mr->ram_addr);
862 }
863
864 static void memory_region_destructor_rom_device(MemoryRegion *mr)
865 {
866     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
867 }
868
869 static bool memory_region_need_escape(char c)
870 {
871     return c == '/' || c == '[' || c == '\\' || c == ']';
872 }
873
874 static char *memory_region_escape_name(const char *name)
875 {
876     const char *p;
877     char *escaped, *q;
878     uint8_t c;
879     size_t bytes = 0;
880
881     for (p = name; *p; p++) {
882         bytes += memory_region_need_escape(*p) ? 4 : 1;
883     }
884     if (bytes == p - name) {
885        return g_memdup(name, bytes + 1);
886     }
887
888     escaped = g_malloc(bytes + 1);
889     for (p = name, q = escaped; *p; p++) {
890         c = *p;
891         if (unlikely(memory_region_need_escape(c))) {
892             *q++ = '\\';
893             *q++ = 'x';
894             *q++ = "0123456789abcdef"[c >> 4];
895             c = "0123456789abcdef"[c & 15];
896         }
897         *q++ = c;
898     }
899     *q = 0;
900     return escaped;
901 }
902
903 void memory_region_init(MemoryRegion *mr,
904                         Object *owner,
905                         const char *name,
906                         uint64_t size)
907 {
908     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
909     mr->size = int128_make64(size);
910     if (size == UINT64_MAX) {
911         mr->size = int128_2_64();
912     }
913     mr->name = g_strdup(name);
914     mr->owner = owner;
915
916     if (name) {
917         char *escaped_name = memory_region_escape_name(name);
918         char *name_array = g_strdup_printf("%s[*]", escaped_name);
919
920         if (!owner) {
921             owner = container_get(qdev_get_machine(), "/unattached");
922         }
923
924         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
925         object_unref(OBJECT(mr));
926         g_free(name_array);
927         g_free(escaped_name);
928     }
929 }
930
931 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
932                                    const char *name, Error **errp)
933 {
934     MemoryRegion *mr = MEMORY_REGION(obj);
935     uint64_t value = mr->addr;
936
937     visit_type_uint64(v, &value, name, errp);
938 }
939
940 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
941                                         const char *name, Error **errp)
942 {
943     MemoryRegion *mr = MEMORY_REGION(obj);
944     gchar *path = (gchar *)"";
945
946     if (mr->container) {
947         path = object_get_canonical_path(OBJECT(mr->container));
948     }
949     visit_type_str(v, &path, name, errp);
950     if (mr->container) {
951         g_free(path);
952     }
953 }
954
955 static Object *memory_region_resolve_container(Object *obj, void *opaque,
956                                                const char *part)
957 {
958     MemoryRegion *mr = MEMORY_REGION(obj);
959
960     return OBJECT(mr->container);
961 }
962
963 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
964                                        const char *name, Error **errp)
965 {
966     MemoryRegion *mr = MEMORY_REGION(obj);
967     int32_t value = mr->priority;
968
969     visit_type_int32(v, &value, name, errp);
970 }
971
972 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
973 {
974     MemoryRegion *mr = MEMORY_REGION(obj);
975
976     return mr->may_overlap;
977 }
978
979 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
980                                    const char *name, Error **errp)
981 {
982     MemoryRegion *mr = MEMORY_REGION(obj);
983     uint64_t value = memory_region_size(mr);
984
985     visit_type_uint64(v, &value, name, errp);
986 }
987
988 static void memory_region_initfn(Object *obj)
989 {
990     MemoryRegion *mr = MEMORY_REGION(obj);
991     ObjectProperty *op;
992
993     mr->ops = &unassigned_mem_ops;
994     mr->ram_addr = RAM_ADDR_INVALID;
995     mr->enabled = true;
996     mr->romd_mode = true;
997     mr->global_locking = true;
998     mr->destructor = memory_region_destructor_none;
999     QTAILQ_INIT(&mr->subregions);
1000     QTAILQ_INIT(&mr->coalesced);
1001
1002     op = object_property_add(OBJECT(mr), "container",
1003                              "link<" TYPE_MEMORY_REGION ">",
1004                              memory_region_get_container,
1005                              NULL, /* memory_region_set_container */
1006                              NULL, NULL, &error_abort);
1007     op->resolve = memory_region_resolve_container;
1008
1009     object_property_add(OBJECT(mr), "addr", "uint64",
1010                         memory_region_get_addr,
1011                         NULL, /* memory_region_set_addr */
1012                         NULL, NULL, &error_abort);
1013     object_property_add(OBJECT(mr), "priority", "uint32",
1014                         memory_region_get_priority,
1015                         NULL, /* memory_region_set_priority */
1016                         NULL, NULL, &error_abort);
1017     object_property_add_bool(OBJECT(mr), "may-overlap",
1018                              memory_region_get_may_overlap,
1019                              NULL, /* memory_region_set_may_overlap */
1020                              &error_abort);
1021     object_property_add(OBJECT(mr), "size", "uint64",
1022                         memory_region_get_size,
1023                         NULL, /* memory_region_set_size, */
1024                         NULL, NULL, &error_abort);
1025 }
1026
1027 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1028                                     unsigned size)
1029 {
1030 #ifdef DEBUG_UNASSIGNED
1031     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1032 #endif
1033     if (current_cpu != NULL) {
1034         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1035     }
1036     return 0;
1037 }
1038
1039 static void unassigned_mem_write(void *opaque, hwaddr addr,
1040                                  uint64_t val, unsigned size)
1041 {
1042 #ifdef DEBUG_UNASSIGNED
1043     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1044 #endif
1045     if (current_cpu != NULL) {
1046         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1047     }
1048 }
1049
1050 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1051                                    unsigned size, bool is_write)
1052 {
1053     return false;
1054 }
1055
1056 const MemoryRegionOps unassigned_mem_ops = {
1057     .valid.accepts = unassigned_mem_accepts,
1058     .endianness = DEVICE_NATIVE_ENDIAN,
1059 };
1060
1061 bool memory_region_access_valid(MemoryRegion *mr,
1062                                 hwaddr addr,
1063                                 unsigned size,
1064                                 bool is_write)
1065 {
1066     int access_size_min, access_size_max;
1067     int access_size, i;
1068
1069     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1070         return false;
1071     }
1072
1073     if (!mr->ops->valid.accepts) {
1074         return true;
1075     }
1076
1077     access_size_min = mr->ops->valid.min_access_size;
1078     if (!mr->ops->valid.min_access_size) {
1079         access_size_min = 1;
1080     }
1081
1082     access_size_max = mr->ops->valid.max_access_size;
1083     if (!mr->ops->valid.max_access_size) {
1084         access_size_max = 4;
1085     }
1086
1087     access_size = MAX(MIN(size, access_size_max), access_size_min);
1088     for (i = 0; i < size; i += access_size) {
1089         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1090                                     is_write)) {
1091             return false;
1092         }
1093     }
1094
1095     return true;
1096 }
1097
1098 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1099                                                 hwaddr addr,
1100                                                 uint64_t *pval,
1101                                                 unsigned size,
1102                                                 MemTxAttrs attrs)
1103 {
1104     *pval = 0;
1105
1106     if (mr->ops->read) {
1107         return access_with_adjusted_size(addr, pval, size,
1108                                          mr->ops->impl.min_access_size,
1109                                          mr->ops->impl.max_access_size,
1110                                          memory_region_read_accessor,
1111                                          mr, attrs);
1112     } else if (mr->ops->read_with_attrs) {
1113         return access_with_adjusted_size(addr, pval, size,
1114                                          mr->ops->impl.min_access_size,
1115                                          mr->ops->impl.max_access_size,
1116                                          memory_region_read_with_attrs_accessor,
1117                                          mr, attrs);
1118     } else {
1119         return access_with_adjusted_size(addr, pval, size, 1, 4,
1120                                          memory_region_oldmmio_read_accessor,
1121                                          mr, attrs);
1122     }
1123 }
1124
1125 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1126                                         hwaddr addr,
1127                                         uint64_t *pval,
1128                                         unsigned size,
1129                                         MemTxAttrs attrs)
1130 {
1131     MemTxResult r;
1132
1133     if (!memory_region_access_valid(mr, addr, size, false)) {
1134         *pval = unassigned_mem_read(mr, addr, size);
1135         return MEMTX_DECODE_ERROR;
1136     }
1137
1138     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1139     adjust_endianness(mr, pval, size);
1140     return r;
1141 }
1142
1143 /* Return true if an eventfd was signalled */
1144 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1145                                                     hwaddr addr,
1146                                                     uint64_t data,
1147                                                     unsigned size,
1148                                                     MemTxAttrs attrs)
1149 {
1150     MemoryRegionIoeventfd ioeventfd = {
1151         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1152         .data = data,
1153     };
1154     unsigned i;
1155
1156     for (i = 0; i < mr->ioeventfd_nb; i++) {
1157         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1158         ioeventfd.e = mr->ioeventfds[i].e;
1159
1160         if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1161             event_notifier_set(ioeventfd.e);
1162             return true;
1163         }
1164     }
1165
1166     return false;
1167 }
1168
1169 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1170                                          hwaddr addr,
1171                                          uint64_t data,
1172                                          unsigned size,
1173                                          MemTxAttrs attrs)
1174 {
1175     if (!memory_region_access_valid(mr, addr, size, true)) {
1176         unassigned_mem_write(mr, addr, data, size);
1177         return MEMTX_DECODE_ERROR;
1178     }
1179
1180     adjust_endianness(mr, &data, size);
1181
1182     if ((!kvm_eventfds_enabled()) &&
1183         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1184         return MEMTX_OK;
1185     }
1186
1187     if (mr->ops->write) {
1188         return access_with_adjusted_size(addr, &data, size,
1189                                          mr->ops->impl.min_access_size,
1190                                          mr->ops->impl.max_access_size,
1191                                          memory_region_write_accessor, mr,
1192                                          attrs);
1193     } else if (mr->ops->write_with_attrs) {
1194         return
1195             access_with_adjusted_size(addr, &data, size,
1196                                       mr->ops->impl.min_access_size,
1197                                       mr->ops->impl.max_access_size,
1198                                       memory_region_write_with_attrs_accessor,
1199                                       mr, attrs);
1200     } else {
1201         return access_with_adjusted_size(addr, &data, size, 1, 4,
1202                                          memory_region_oldmmio_write_accessor,
1203                                          mr, attrs);
1204     }
1205 }
1206
1207 void memory_region_init_io(MemoryRegion *mr,
1208                            Object *owner,
1209                            const MemoryRegionOps *ops,
1210                            void *opaque,
1211                            const char *name,
1212                            uint64_t size)
1213 {
1214     memory_region_init(mr, owner, name, size);
1215     mr->ops = ops ? ops : &unassigned_mem_ops;
1216     mr->opaque = opaque;
1217     mr->terminates = true;
1218 }
1219
1220 void memory_region_init_ram(MemoryRegion *mr,
1221                             Object *owner,
1222                             const char *name,
1223                             uint64_t size,
1224                             Error **errp)
1225 {
1226     memory_region_init(mr, owner, name, size);
1227     mr->ram = true;
1228     mr->terminates = true;
1229     mr->destructor = memory_region_destructor_ram;
1230     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1231     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1232 }
1233
1234 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1235                                        Object *owner,
1236                                        const char *name,
1237                                        uint64_t size,
1238                                        uint64_t max_size,
1239                                        void (*resized)(const char*,
1240                                                        uint64_t length,
1241                                                        void *host),
1242                                        Error **errp)
1243 {
1244     memory_region_init(mr, owner, name, size);
1245     mr->ram = true;
1246     mr->terminates = true;
1247     mr->destructor = memory_region_destructor_ram;
1248     mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
1249     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1250 }
1251
1252 #ifdef __linux__
1253 void memory_region_init_ram_from_file(MemoryRegion *mr,
1254                                       struct Object *owner,
1255                                       const char *name,
1256                                       uint64_t size,
1257                                       bool share,
1258                                       const char *path,
1259                                       Error **errp)
1260 {
1261     memory_region_init(mr, owner, name, size);
1262     mr->ram = true;
1263     mr->terminates = true;
1264     mr->destructor = memory_region_destructor_ram;
1265     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1266     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1267 }
1268 #endif
1269
1270 void memory_region_init_ram_ptr(MemoryRegion *mr,
1271                                 Object *owner,
1272                                 const char *name,
1273                                 uint64_t size,
1274                                 void *ptr)
1275 {
1276     memory_region_init(mr, owner, name, size);
1277     mr->ram = true;
1278     mr->terminates = true;
1279     mr->destructor = memory_region_destructor_ram;
1280     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1281
1282     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1283     assert(ptr != NULL);
1284     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1285 }
1286
1287 void memory_region_set_skip_dump(MemoryRegion *mr)
1288 {
1289     mr->skip_dump = true;
1290 }
1291
1292 void memory_region_init_alias(MemoryRegion *mr,
1293                               Object *owner,
1294                               const char *name,
1295                               MemoryRegion *orig,
1296                               hwaddr offset,
1297                               uint64_t size)
1298 {
1299     memory_region_init(mr, owner, name, size);
1300     mr->alias = orig;
1301     mr->alias_offset = offset;
1302 }
1303
1304 void memory_region_init_rom_device(MemoryRegion *mr,
1305                                    Object *owner,
1306                                    const MemoryRegionOps *ops,
1307                                    void *opaque,
1308                                    const char *name,
1309                                    uint64_t size,
1310                                    Error **errp)
1311 {
1312     memory_region_init(mr, owner, name, size);
1313     mr->ops = ops;
1314     mr->opaque = opaque;
1315     mr->terminates = true;
1316     mr->rom_device = true;
1317     mr->destructor = memory_region_destructor_rom_device;
1318     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1319 }
1320
1321 void memory_region_init_iommu(MemoryRegion *mr,
1322                               Object *owner,
1323                               const MemoryRegionIOMMUOps *ops,
1324                               const char *name,
1325                               uint64_t size)
1326 {
1327     memory_region_init(mr, owner, name, size);
1328     mr->iommu_ops = ops,
1329     mr->terminates = true;  /* then re-forwards */
1330     notifier_list_init(&mr->iommu_notify);
1331 }
1332
1333 static void memory_region_finalize(Object *obj)
1334 {
1335     MemoryRegion *mr = MEMORY_REGION(obj);
1336
1337     assert(!mr->container);
1338
1339     /* We know the region is not visible in any address space (it
1340      * does not have a container and cannot be a root either because
1341      * it has no references, so we can blindly clear mr->enabled.
1342      * memory_region_set_enabled instead could trigger a transaction
1343      * and cause an infinite loop.
1344      */
1345     mr->enabled = false;
1346     memory_region_transaction_begin();
1347     while (!QTAILQ_EMPTY(&mr->subregions)) {
1348         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1349         memory_region_del_subregion(mr, subregion);
1350     }
1351     memory_region_transaction_commit();
1352
1353     mr->destructor(mr);
1354     memory_region_clear_coalescing(mr);
1355     g_free((char *)mr->name);
1356     g_free(mr->ioeventfds);
1357 }
1358
1359 Object *memory_region_owner(MemoryRegion *mr)
1360 {
1361     Object *obj = OBJECT(mr);
1362     return obj->parent;
1363 }
1364
1365 void memory_region_ref(MemoryRegion *mr)
1366 {
1367     /* MMIO callbacks most likely will access data that belongs
1368      * to the owner, hence the need to ref/unref the owner whenever
1369      * the memory region is in use.
1370      *
1371      * The memory region is a child of its owner.  As long as the
1372      * owner doesn't call unparent itself on the memory region,
1373      * ref-ing the owner will also keep the memory region alive.
1374      * Memory regions without an owner are supposed to never go away;
1375      * we do not ref/unref them because it slows down DMA sensibly.
1376      */
1377     if (mr && mr->owner) {
1378         object_ref(mr->owner);
1379     }
1380 }
1381
1382 void memory_region_unref(MemoryRegion *mr)
1383 {
1384     if (mr && mr->owner) {
1385         object_unref(mr->owner);
1386     }
1387 }
1388
1389 uint64_t memory_region_size(MemoryRegion *mr)
1390 {
1391     if (int128_eq(mr->size, int128_2_64())) {
1392         return UINT64_MAX;
1393     }
1394     return int128_get64(mr->size);
1395 }
1396
1397 const char *memory_region_name(const MemoryRegion *mr)
1398 {
1399     if (!mr->name) {
1400         ((MemoryRegion *)mr)->name =
1401             object_get_canonical_path_component(OBJECT(mr));
1402     }
1403     return mr->name;
1404 }
1405
1406 bool memory_region_is_skip_dump(MemoryRegion *mr)
1407 {
1408     return mr->skip_dump;
1409 }
1410
1411 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1412 {
1413     uint8_t mask = mr->dirty_log_mask;
1414     if (global_dirty_log) {
1415         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1416     }
1417     return mask;
1418 }
1419
1420 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1421 {
1422     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1423 }
1424
1425 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1426 {
1427     notifier_list_add(&mr->iommu_notify, n);
1428 }
1429
1430 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1431                                 hwaddr granularity, bool is_write)
1432 {
1433     hwaddr addr;
1434     IOMMUTLBEntry iotlb;
1435
1436     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1437         iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1438         if (iotlb.perm != IOMMU_NONE) {
1439             n->notify(n, &iotlb);
1440         }
1441
1442         /* if (2^64 - MR size) < granularity, it's possible to get an
1443          * infinite loop here.  This should catch such a wraparound */
1444         if ((addr + granularity) < addr) {
1445             break;
1446         }
1447     }
1448 }
1449
1450 void memory_region_unregister_iommu_notifier(Notifier *n)
1451 {
1452     notifier_remove(n);
1453 }
1454
1455 void memory_region_notify_iommu(MemoryRegion *mr,
1456                                 IOMMUTLBEntry entry)
1457 {
1458     assert(memory_region_is_iommu(mr));
1459     notifier_list_notify(&mr->iommu_notify, &entry);
1460 }
1461
1462 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1463 {
1464     uint8_t mask = 1 << client;
1465     uint8_t old_logging;
1466
1467     assert(client == DIRTY_MEMORY_VGA);
1468     old_logging = mr->vga_logging_count;
1469     mr->vga_logging_count += log ? 1 : -1;
1470     if (!!old_logging == !!mr->vga_logging_count) {
1471         return;
1472     }
1473
1474     memory_region_transaction_begin();
1475     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1476     memory_region_update_pending |= mr->enabled;
1477     memory_region_transaction_commit();
1478 }
1479
1480 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1481                              hwaddr size, unsigned client)
1482 {
1483     assert(mr->ram_addr != RAM_ADDR_INVALID);
1484     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1485 }
1486
1487 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1488                              hwaddr size)
1489 {
1490     assert(mr->ram_addr != RAM_ADDR_INVALID);
1491     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size,
1492                                         memory_region_get_dirty_log_mask(mr));
1493 }
1494
1495 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1496                                         hwaddr size, unsigned client)
1497 {
1498     assert(mr->ram_addr != RAM_ADDR_INVALID);
1499     return cpu_physical_memory_test_and_clear_dirty(mr->ram_addr + addr,
1500                                                     size, client);
1501 }
1502
1503
1504 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1505 {
1506     AddressSpace *as;
1507     FlatRange *fr;
1508
1509     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1510         FlatView *view = address_space_get_flatview(as);
1511         FOR_EACH_FLAT_RANGE(fr, view) {
1512             if (fr->mr == mr) {
1513                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1514             }
1515         }
1516         flatview_unref(view);
1517     }
1518 }
1519
1520 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1521 {
1522     if (mr->readonly != readonly) {
1523         memory_region_transaction_begin();
1524         mr->readonly = readonly;
1525         memory_region_update_pending |= mr->enabled;
1526         memory_region_transaction_commit();
1527     }
1528 }
1529
1530 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1531 {
1532     if (mr->romd_mode != romd_mode) {
1533         memory_region_transaction_begin();
1534         mr->romd_mode = romd_mode;
1535         memory_region_update_pending |= mr->enabled;
1536         memory_region_transaction_commit();
1537     }
1538 }
1539
1540 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1541                                hwaddr size, unsigned client)
1542 {
1543     assert(mr->ram_addr != RAM_ADDR_INVALID);
1544     cpu_physical_memory_test_and_clear_dirty(mr->ram_addr + addr, size,
1545                                              client);
1546 }
1547
1548 int memory_region_get_fd(MemoryRegion *mr)
1549 {
1550     if (mr->alias) {
1551         return memory_region_get_fd(mr->alias);
1552     }
1553
1554     assert(mr->ram_addr != RAM_ADDR_INVALID);
1555
1556     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1557 }
1558
1559 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1560 {
1561     void *ptr;
1562     uint64_t offset = 0;
1563
1564     rcu_read_lock();
1565     while (mr->alias) {
1566         offset += mr->alias_offset;
1567         mr = mr->alias;
1568     }
1569     assert(mr->ram_addr != RAM_ADDR_INVALID);
1570     ptr = qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1571     rcu_read_unlock();
1572
1573     return ptr + offset;
1574 }
1575
1576 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1577 {
1578     assert(mr->ram_addr != RAM_ADDR_INVALID);
1579
1580     qemu_ram_resize(mr->ram_addr, newsize, errp);
1581 }
1582
1583 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1584 {
1585     FlatView *view;
1586     FlatRange *fr;
1587     CoalescedMemoryRange *cmr;
1588     AddrRange tmp;
1589     MemoryRegionSection section;
1590
1591     view = address_space_get_flatview(as);
1592     FOR_EACH_FLAT_RANGE(fr, view) {
1593         if (fr->mr == mr) {
1594             section = (MemoryRegionSection) {
1595                 .address_space = as,
1596                 .offset_within_address_space = int128_get64(fr->addr.start),
1597                 .size = fr->addr.size,
1598             };
1599
1600             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1601                                  int128_get64(fr->addr.start),
1602                                  int128_get64(fr->addr.size));
1603             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1604                 tmp = addrrange_shift(cmr->addr,
1605                                       int128_sub(fr->addr.start,
1606                                                  int128_make64(fr->offset_in_region)));
1607                 if (!addrrange_intersects(tmp, fr->addr)) {
1608                     continue;
1609                 }
1610                 tmp = addrrange_intersection(tmp, fr->addr);
1611                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1612                                      int128_get64(tmp.start),
1613                                      int128_get64(tmp.size));
1614             }
1615         }
1616     }
1617     flatview_unref(view);
1618 }
1619
1620 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1621 {
1622     AddressSpace *as;
1623
1624     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1625         memory_region_update_coalesced_range_as(mr, as);
1626     }
1627 }
1628
1629 void memory_region_set_coalescing(MemoryRegion *mr)
1630 {
1631     memory_region_clear_coalescing(mr);
1632     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1633 }
1634
1635 void memory_region_add_coalescing(MemoryRegion *mr,
1636                                   hwaddr offset,
1637                                   uint64_t size)
1638 {
1639     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1640
1641     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1642     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1643     memory_region_update_coalesced_range(mr);
1644     memory_region_set_flush_coalesced(mr);
1645 }
1646
1647 void memory_region_clear_coalescing(MemoryRegion *mr)
1648 {
1649     CoalescedMemoryRange *cmr;
1650     bool updated = false;
1651
1652     qemu_flush_coalesced_mmio_buffer();
1653     mr->flush_coalesced_mmio = false;
1654
1655     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1656         cmr = QTAILQ_FIRST(&mr->coalesced);
1657         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1658         g_free(cmr);
1659         updated = true;
1660     }
1661
1662     if (updated) {
1663         memory_region_update_coalesced_range(mr);
1664     }
1665 }
1666
1667 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1668 {
1669     mr->flush_coalesced_mmio = true;
1670 }
1671
1672 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1673 {
1674     qemu_flush_coalesced_mmio_buffer();
1675     if (QTAILQ_EMPTY(&mr->coalesced)) {
1676         mr->flush_coalesced_mmio = false;
1677     }
1678 }
1679
1680 void memory_region_set_global_locking(MemoryRegion *mr)
1681 {
1682     mr->global_locking = true;
1683 }
1684
1685 void memory_region_clear_global_locking(MemoryRegion *mr)
1686 {
1687     mr->global_locking = false;
1688 }
1689
1690 static bool userspace_eventfd_warning;
1691
1692 void memory_region_add_eventfd(MemoryRegion *mr,
1693                                hwaddr addr,
1694                                unsigned size,
1695                                bool match_data,
1696                                uint64_t data,
1697                                EventNotifier *e)
1698 {
1699     MemoryRegionIoeventfd mrfd = {
1700         .addr.start = int128_make64(addr),
1701         .addr.size = int128_make64(size),
1702         .match_data = match_data,
1703         .data = data,
1704         .e = e,
1705     };
1706     unsigned i;
1707
1708     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1709                             userspace_eventfd_warning))) {
1710         userspace_eventfd_warning = true;
1711         error_report("Using eventfd without MMIO binding in KVM. "
1712                      "Suboptimal performance expected");
1713     }
1714
1715     if (size) {
1716         adjust_endianness(mr, &mrfd.data, size);
1717     }
1718     memory_region_transaction_begin();
1719     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1720         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1721             break;
1722         }
1723     }
1724     ++mr->ioeventfd_nb;
1725     mr->ioeventfds = g_realloc(mr->ioeventfds,
1726                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1727     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1728             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1729     mr->ioeventfds[i] = mrfd;
1730     ioeventfd_update_pending |= mr->enabled;
1731     memory_region_transaction_commit();
1732 }
1733
1734 void memory_region_del_eventfd(MemoryRegion *mr,
1735                                hwaddr addr,
1736                                unsigned size,
1737                                bool match_data,
1738                                uint64_t data,
1739                                EventNotifier *e)
1740 {
1741     MemoryRegionIoeventfd mrfd = {
1742         .addr.start = int128_make64(addr),
1743         .addr.size = int128_make64(size),
1744         .match_data = match_data,
1745         .data = data,
1746         .e = e,
1747     };
1748     unsigned i;
1749
1750     if (size) {
1751         adjust_endianness(mr, &mrfd.data, size);
1752     }
1753     memory_region_transaction_begin();
1754     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1755         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1756             break;
1757         }
1758     }
1759     assert(i != mr->ioeventfd_nb);
1760     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1761             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1762     --mr->ioeventfd_nb;
1763     mr->ioeventfds = g_realloc(mr->ioeventfds,
1764                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1765     ioeventfd_update_pending |= mr->enabled;
1766     memory_region_transaction_commit();
1767 }
1768
1769 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1770 {
1771     hwaddr offset = subregion->addr;
1772     MemoryRegion *mr = subregion->container;
1773     MemoryRegion *other;
1774
1775     memory_region_transaction_begin();
1776
1777     memory_region_ref(subregion);
1778     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1779         if (subregion->may_overlap || other->may_overlap) {
1780             continue;
1781         }
1782         if (int128_ge(int128_make64(offset),
1783                       int128_add(int128_make64(other->addr), other->size))
1784             || int128_le(int128_add(int128_make64(offset), subregion->size),
1785                          int128_make64(other->addr))) {
1786             continue;
1787         }
1788 #if 0
1789         printf("warning: subregion collision %llx/%llx (%s) "
1790                "vs %llx/%llx (%s)\n",
1791                (unsigned long long)offset,
1792                (unsigned long long)int128_get64(subregion->size),
1793                subregion->name,
1794                (unsigned long long)other->addr,
1795                (unsigned long long)int128_get64(other->size),
1796                other->name);
1797 #endif
1798     }
1799     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1800         if (subregion->priority >= other->priority) {
1801             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1802             goto done;
1803         }
1804     }
1805     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1806 done:
1807     memory_region_update_pending |= mr->enabled && subregion->enabled;
1808     memory_region_transaction_commit();
1809 }
1810
1811 static void memory_region_add_subregion_common(MemoryRegion *mr,
1812                                                hwaddr offset,
1813                                                MemoryRegion *subregion)
1814 {
1815     assert(!subregion->container);
1816     subregion->container = mr;
1817     subregion->addr = offset;
1818     memory_region_update_container_subregions(subregion);
1819 }
1820
1821 void memory_region_add_subregion(MemoryRegion *mr,
1822                                  hwaddr offset,
1823                                  MemoryRegion *subregion)
1824 {
1825     subregion->may_overlap = false;
1826     subregion->priority = 0;
1827     memory_region_add_subregion_common(mr, offset, subregion);
1828 }
1829
1830 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1831                                          hwaddr offset,
1832                                          MemoryRegion *subregion,
1833                                          int priority)
1834 {
1835     subregion->may_overlap = true;
1836     subregion->priority = priority;
1837     memory_region_add_subregion_common(mr, offset, subregion);
1838 }
1839
1840 void memory_region_del_subregion(MemoryRegion *mr,
1841                                  MemoryRegion *subregion)
1842 {
1843     memory_region_transaction_begin();
1844     assert(subregion->container == mr);
1845     subregion->container = NULL;
1846     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1847     memory_region_unref(subregion);
1848     memory_region_update_pending |= mr->enabled && subregion->enabled;
1849     memory_region_transaction_commit();
1850 }
1851
1852 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1853 {
1854     if (enabled == mr->enabled) {
1855         return;
1856     }
1857     memory_region_transaction_begin();
1858     mr->enabled = enabled;
1859     memory_region_update_pending = true;
1860     memory_region_transaction_commit();
1861 }
1862
1863 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1864 {
1865     Int128 s = int128_make64(size);
1866
1867     if (size == UINT64_MAX) {
1868         s = int128_2_64();
1869     }
1870     if (int128_eq(s, mr->size)) {
1871         return;
1872     }
1873     memory_region_transaction_begin();
1874     mr->size = s;
1875     memory_region_update_pending = true;
1876     memory_region_transaction_commit();
1877 }
1878
1879 static void memory_region_readd_subregion(MemoryRegion *mr)
1880 {
1881     MemoryRegion *container = mr->container;
1882
1883     if (container) {
1884         memory_region_transaction_begin();
1885         memory_region_ref(mr);
1886         memory_region_del_subregion(container, mr);
1887         mr->container = container;
1888         memory_region_update_container_subregions(mr);
1889         memory_region_unref(mr);
1890         memory_region_transaction_commit();
1891     }
1892 }
1893
1894 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1895 {
1896     if (addr != mr->addr) {
1897         mr->addr = addr;
1898         memory_region_readd_subregion(mr);
1899     }
1900 }
1901
1902 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1903 {
1904     assert(mr->alias);
1905
1906     if (offset == mr->alias_offset) {
1907         return;
1908     }
1909
1910     memory_region_transaction_begin();
1911     mr->alias_offset = offset;
1912     memory_region_update_pending |= mr->enabled;
1913     memory_region_transaction_commit();
1914 }
1915
1916 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1917 {
1918     return mr->align;
1919 }
1920
1921 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1922 {
1923     const AddrRange *addr = addr_;
1924     const FlatRange *fr = fr_;
1925
1926     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1927         return -1;
1928     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1929         return 1;
1930     }
1931     return 0;
1932 }
1933
1934 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1935 {
1936     return bsearch(&addr, view->ranges, view->nr,
1937                    sizeof(FlatRange), cmp_flatrange_addr);
1938 }
1939
1940 bool memory_region_is_mapped(MemoryRegion *mr)
1941 {
1942     return mr->container ? true : false;
1943 }
1944
1945 /* Same as memory_region_find, but it does not add a reference to the
1946  * returned region.  It must be called from an RCU critical section.
1947  */
1948 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
1949                                                   hwaddr addr, uint64_t size)
1950 {
1951     MemoryRegionSection ret = { .mr = NULL };
1952     MemoryRegion *root;
1953     AddressSpace *as;
1954     AddrRange range;
1955     FlatView *view;
1956     FlatRange *fr;
1957
1958     addr += mr->addr;
1959     for (root = mr; root->container; ) {
1960         root = root->container;
1961         addr += root->addr;
1962     }
1963
1964     as = memory_region_to_address_space(root);
1965     if (!as) {
1966         return ret;
1967     }
1968     range = addrrange_make(int128_make64(addr), int128_make64(size));
1969
1970     view = atomic_rcu_read(&as->current_map);
1971     fr = flatview_lookup(view, range);
1972     if (!fr) {
1973         return ret;
1974     }
1975
1976     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1977         --fr;
1978     }
1979
1980     ret.mr = fr->mr;
1981     ret.address_space = as;
1982     range = addrrange_intersection(range, fr->addr);
1983     ret.offset_within_region = fr->offset_in_region;
1984     ret.offset_within_region += int128_get64(int128_sub(range.start,
1985                                                         fr->addr.start));
1986     ret.size = range.size;
1987     ret.offset_within_address_space = int128_get64(range.start);
1988     ret.readonly = fr->readonly;
1989     return ret;
1990 }
1991
1992 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1993                                        hwaddr addr, uint64_t size)
1994 {
1995     MemoryRegionSection ret;
1996     rcu_read_lock();
1997     ret = memory_region_find_rcu(mr, addr, size);
1998     if (ret.mr) {
1999         memory_region_ref(ret.mr);
2000     }
2001     rcu_read_unlock();
2002     return ret;
2003 }
2004
2005 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2006 {
2007     MemoryRegion *mr;
2008
2009     rcu_read_lock();
2010     mr = memory_region_find_rcu(container, addr, 1).mr;
2011     rcu_read_unlock();
2012     return mr && mr != container;
2013 }
2014
2015 void address_space_sync_dirty_bitmap(AddressSpace *as)
2016 {
2017     FlatView *view;
2018     FlatRange *fr;
2019
2020     view = address_space_get_flatview(as);
2021     FOR_EACH_FLAT_RANGE(fr, view) {
2022         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2023     }
2024     flatview_unref(view);
2025 }
2026
2027 void memory_global_dirty_log_start(void)
2028 {
2029     global_dirty_log = true;
2030
2031     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2032
2033     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2034     memory_region_transaction_begin();
2035     memory_region_update_pending = true;
2036     memory_region_transaction_commit();
2037 }
2038
2039 void memory_global_dirty_log_stop(void)
2040 {
2041     global_dirty_log = false;
2042
2043     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2044     memory_region_transaction_begin();
2045     memory_region_update_pending = true;
2046     memory_region_transaction_commit();
2047
2048     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2049 }
2050
2051 static void listener_add_address_space(MemoryListener *listener,
2052                                        AddressSpace *as)
2053 {
2054     FlatView *view;
2055     FlatRange *fr;
2056
2057     if (listener->address_space_filter
2058         && listener->address_space_filter != as) {
2059         return;
2060     }
2061
2062     if (listener->begin) {
2063         listener->begin(listener);
2064     }
2065     if (global_dirty_log) {
2066         if (listener->log_global_start) {
2067             listener->log_global_start(listener);
2068         }
2069     }
2070
2071     view = address_space_get_flatview(as);
2072     FOR_EACH_FLAT_RANGE(fr, view) {
2073         MemoryRegionSection section = {
2074             .mr = fr->mr,
2075             .address_space = as,
2076             .offset_within_region = fr->offset_in_region,
2077             .size = fr->addr.size,
2078             .offset_within_address_space = int128_get64(fr->addr.start),
2079             .readonly = fr->readonly,
2080         };
2081         if (fr->dirty_log_mask && listener->log_start) {
2082             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2083         }
2084         if (listener->region_add) {
2085             listener->region_add(listener, &section);
2086         }
2087     }
2088     if (listener->commit) {
2089         listener->commit(listener);
2090     }
2091     flatview_unref(view);
2092 }
2093
2094 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2095 {
2096     MemoryListener *other = NULL;
2097     AddressSpace *as;
2098
2099     listener->address_space_filter = filter;
2100     if (QTAILQ_EMPTY(&memory_listeners)
2101         || listener->priority >= QTAILQ_LAST(&memory_listeners,
2102                                              memory_listeners)->priority) {
2103         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2104     } else {
2105         QTAILQ_FOREACH(other, &memory_listeners, link) {
2106             if (listener->priority < other->priority) {
2107                 break;
2108             }
2109         }
2110         QTAILQ_INSERT_BEFORE(other, listener, link);
2111     }
2112
2113     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2114         listener_add_address_space(listener, as);
2115     }
2116 }
2117
2118 void memory_listener_unregister(MemoryListener *listener)
2119 {
2120     QTAILQ_REMOVE(&memory_listeners, listener, link);
2121 }
2122
2123 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2124 {
2125     memory_region_ref(root);
2126     memory_region_transaction_begin();
2127     as->root = root;
2128     as->current_map = g_new(FlatView, 1);
2129     flatview_init(as->current_map);
2130     as->ioeventfd_nb = 0;
2131     as->ioeventfds = NULL;
2132     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2133     as->name = g_strdup(name ? name : "anonymous");
2134     address_space_init_dispatch(as);
2135     memory_region_update_pending |= root->enabled;
2136     memory_region_transaction_commit();
2137 }
2138
2139 static void do_address_space_destroy(AddressSpace *as)
2140 {
2141     MemoryListener *listener;
2142
2143     address_space_destroy_dispatch(as);
2144
2145     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2146         assert(listener->address_space_filter != as);
2147     }
2148
2149     flatview_unref(as->current_map);
2150     g_free(as->name);
2151     g_free(as->ioeventfds);
2152     memory_region_unref(as->root);
2153 }
2154
2155 void address_space_destroy(AddressSpace *as)
2156 {
2157     MemoryRegion *root = as->root;
2158
2159     /* Flush out anything from MemoryListeners listening in on this */
2160     memory_region_transaction_begin();
2161     as->root = NULL;
2162     memory_region_transaction_commit();
2163     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2164     address_space_unregister(as);
2165
2166     /* At this point, as->dispatch and as->current_map are dummy
2167      * entries that the guest should never use.  Wait for the old
2168      * values to expire before freeing the data.
2169      */
2170     as->root = root;
2171     call_rcu(as, do_address_space_destroy, rcu);
2172 }
2173
2174 typedef struct MemoryRegionList MemoryRegionList;
2175
2176 struct MemoryRegionList {
2177     const MemoryRegion *mr;
2178     QTAILQ_ENTRY(MemoryRegionList) queue;
2179 };
2180
2181 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2182
2183 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2184                            const MemoryRegion *mr, unsigned int level,
2185                            hwaddr base,
2186                            MemoryRegionListHead *alias_print_queue)
2187 {
2188     MemoryRegionList *new_ml, *ml, *next_ml;
2189     MemoryRegionListHead submr_print_queue;
2190     const MemoryRegion *submr;
2191     unsigned int i;
2192
2193     if (!mr) {
2194         return;
2195     }
2196
2197     for (i = 0; i < level; i++) {
2198         mon_printf(f, "  ");
2199     }
2200
2201     if (mr->alias) {
2202         MemoryRegionList *ml;
2203         bool found = false;
2204
2205         /* check if the alias is already in the queue */
2206         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2207             if (ml->mr == mr->alias) {
2208                 found = true;
2209             }
2210         }
2211
2212         if (!found) {
2213             ml = g_new(MemoryRegionList, 1);
2214             ml->mr = mr->alias;
2215             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2216         }
2217         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2218                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2219                    "-" TARGET_FMT_plx "%s\n",
2220                    base + mr->addr,
2221                    base + mr->addr
2222                    + (int128_nz(mr->size) ?
2223                       (hwaddr)int128_get64(int128_sub(mr->size,
2224                                                       int128_one())) : 0),
2225                    mr->priority,
2226                    mr->romd_mode ? 'R' : '-',
2227                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2228                                                                        : '-',
2229                    memory_region_name(mr),
2230                    memory_region_name(mr->alias),
2231                    mr->alias_offset,
2232                    mr->alias_offset
2233                    + (int128_nz(mr->size) ?
2234                       (hwaddr)int128_get64(int128_sub(mr->size,
2235                                                       int128_one())) : 0),
2236                    mr->enabled ? "" : " [disabled]");
2237     } else {
2238         mon_printf(f,
2239                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2240                    base + mr->addr,
2241                    base + mr->addr
2242                    + (int128_nz(mr->size) ?
2243                       (hwaddr)int128_get64(int128_sub(mr->size,
2244                                                       int128_one())) : 0),
2245                    mr->priority,
2246                    mr->romd_mode ? 'R' : '-',
2247                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2248                                                                        : '-',
2249                    memory_region_name(mr),
2250                    mr->enabled ? "" : " [disabled]");
2251     }
2252
2253     QTAILQ_INIT(&submr_print_queue);
2254
2255     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2256         new_ml = g_new(MemoryRegionList, 1);
2257         new_ml->mr = submr;
2258         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2259             if (new_ml->mr->addr < ml->mr->addr ||
2260                 (new_ml->mr->addr == ml->mr->addr &&
2261                  new_ml->mr->priority > ml->mr->priority)) {
2262                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2263                 new_ml = NULL;
2264                 break;
2265             }
2266         }
2267         if (new_ml) {
2268             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2269         }
2270     }
2271
2272     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2273         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2274                        alias_print_queue);
2275     }
2276
2277     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2278         g_free(ml);
2279     }
2280 }
2281
2282 void mtree_info(fprintf_function mon_printf, void *f)
2283 {
2284     MemoryRegionListHead ml_head;
2285     MemoryRegionList *ml, *ml2;
2286     AddressSpace *as;
2287
2288     QTAILQ_INIT(&ml_head);
2289
2290     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2291         mon_printf(f, "address-space: %s\n", as->name);
2292         mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2293         mon_printf(f, "\n");
2294     }
2295
2296     /* print aliased regions */
2297     QTAILQ_FOREACH(ml, &ml_head, queue) {
2298         mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2299         mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2300         mon_printf(f, "\n");
2301     }
2302
2303     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2304         g_free(ml);
2305     }
2306 }
2307
2308 static const TypeInfo memory_region_info = {
2309     .parent             = TYPE_OBJECT,
2310     .name               = TYPE_MEMORY_REGION,
2311     .instance_size      = sizeof(MemoryRegion),
2312     .instance_init      = memory_region_initfn,
2313     .instance_finalize  = memory_region_finalize,
2314 };
2315
2316 static void memory_register_types(void)
2317 {
2318     type_register_static(&memory_region_info);
2319 }
2320
2321 type_init(memory_register_types)