OSDN Git Service

qemu-common: push cpu.h inclusion out of qemu-common.h
[qmiga/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33
34 //#define DEBUG_UNASSIGNED
35
36 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
37
38 static unsigned memory_region_transaction_depth;
39 static bool memory_region_update_pending;
40 static bool ioeventfd_update_pending;
41 static bool global_dirty_log = false;
42
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47     = QTAILQ_HEAD_INITIALIZER(address_spaces);
48
49 typedef struct AddrRange AddrRange;
50
51 /*
52  * Note that signed integers are needed for negative offsetting in aliases
53  * (large MemoryRegion::alias_offset).
54  */
55 struct AddrRange {
56     Int128 start;
57     Int128 size;
58 };
59
60 static AddrRange addrrange_make(Int128 start, Int128 size)
61 {
62     return (AddrRange) { start, size };
63 }
64
65 static bool addrrange_equal(AddrRange r1, AddrRange r2)
66 {
67     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
68 }
69
70 static Int128 addrrange_end(AddrRange r)
71 {
72     return int128_add(r.start, r.size);
73 }
74
75 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
76 {
77     int128_addto(&range.start, delta);
78     return range;
79 }
80
81 static bool addrrange_contains(AddrRange range, Int128 addr)
82 {
83     return int128_ge(addr, range.start)
84         && int128_lt(addr, addrrange_end(range));
85 }
86
87 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
88 {
89     return addrrange_contains(r1, r2.start)
90         || addrrange_contains(r2, r1.start);
91 }
92
93 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
94 {
95     Int128 start = int128_max(r1.start, r2.start);
96     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
97     return addrrange_make(start, int128_sub(end, start));
98 }
99
100 enum ListenerDirection { Forward, Reverse };
101
102 static bool memory_listener_match(MemoryListener *listener,
103                                   MemoryRegionSection *section)
104 {
105     return !listener->address_space_filter
106         || listener->address_space_filter == section->address_space;
107 }
108
109 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
110     do {                                                                \
111         MemoryListener *_listener;                                      \
112                                                                         \
113         switch (_direction) {                                           \
114         case Forward:                                                   \
115             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
116                 if (_listener->_callback) {                             \
117                     _listener->_callback(_listener, ##_args);           \
118                 }                                                       \
119             }                                                           \
120             break;                                                      \
121         case Reverse:                                                   \
122             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
123                                    memory_listeners, link) {            \
124                 if (_listener->_callback) {                             \
125                     _listener->_callback(_listener, ##_args);           \
126                 }                                                       \
127             }                                                           \
128             break;                                                      \
129         default:                                                        \
130             abort();                                                    \
131         }                                                               \
132     } while (0)
133
134 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
135     do {                                                                \
136         MemoryListener *_listener;                                      \
137                                                                         \
138         switch (_direction) {                                           \
139         case Forward:                                                   \
140             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
141                 if (_listener->_callback                                \
142                     && memory_listener_match(_listener, _section)) {    \
143                     _listener->_callback(_listener, _section, ##_args); \
144                 }                                                       \
145             }                                                           \
146             break;                                                      \
147         case Reverse:                                                   \
148             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
149                                    memory_listeners, link) {            \
150                 if (_listener->_callback                                \
151                     && memory_listener_match(_listener, _section)) {    \
152                     _listener->_callback(_listener, _section, ##_args); \
153                 }                                                       \
154             }                                                           \
155             break;                                                      \
156         default:                                                        \
157             abort();                                                    \
158         }                                                               \
159     } while (0)
160
161 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
162 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
163     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
164         .mr = (fr)->mr,                                                 \
165         .address_space = (as),                                          \
166         .offset_within_region = (fr)->offset_in_region,                 \
167         .size = (fr)->addr.size,                                        \
168         .offset_within_address_space = int128_get64((fr)->addr.start),  \
169         .readonly = (fr)->readonly,                                     \
170               }), ##_args)
171
172 struct CoalescedMemoryRange {
173     AddrRange addr;
174     QTAILQ_ENTRY(CoalescedMemoryRange) link;
175 };
176
177 struct MemoryRegionIoeventfd {
178     AddrRange addr;
179     bool match_data;
180     uint64_t data;
181     EventNotifier *e;
182 };
183
184 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
185                                            MemoryRegionIoeventfd b)
186 {
187     if (int128_lt(a.addr.start, b.addr.start)) {
188         return true;
189     } else if (int128_gt(a.addr.start, b.addr.start)) {
190         return false;
191     } else if (int128_lt(a.addr.size, b.addr.size)) {
192         return true;
193     } else if (int128_gt(a.addr.size, b.addr.size)) {
194         return false;
195     } else if (a.match_data < b.match_data) {
196         return true;
197     } else  if (a.match_data > b.match_data) {
198         return false;
199     } else if (a.match_data) {
200         if (a.data < b.data) {
201             return true;
202         } else if (a.data > b.data) {
203             return false;
204         }
205     }
206     if (a.e < b.e) {
207         return true;
208     } else if (a.e > b.e) {
209         return false;
210     }
211     return false;
212 }
213
214 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
215                                           MemoryRegionIoeventfd b)
216 {
217     return !memory_region_ioeventfd_before(a, b)
218         && !memory_region_ioeventfd_before(b, a);
219 }
220
221 typedef struct FlatRange FlatRange;
222 typedef struct FlatView FlatView;
223
224 /* Range of memory in the global map.  Addresses are absolute. */
225 struct FlatRange {
226     MemoryRegion *mr;
227     hwaddr offset_in_region;
228     AddrRange addr;
229     uint8_t dirty_log_mask;
230     bool romd_mode;
231     bool readonly;
232 };
233
234 /* Flattened global view of current active memory hierarchy.  Kept in sorted
235  * order.
236  */
237 struct FlatView {
238     struct rcu_head rcu;
239     unsigned ref;
240     FlatRange *ranges;
241     unsigned nr;
242     unsigned nr_allocated;
243 };
244
245 typedef struct AddressSpaceOps AddressSpaceOps;
246
247 #define FOR_EACH_FLAT_RANGE(var, view)          \
248     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
249
250 static bool flatrange_equal(FlatRange *a, FlatRange *b)
251 {
252     return a->mr == b->mr
253         && addrrange_equal(a->addr, b->addr)
254         && a->offset_in_region == b->offset_in_region
255         && a->romd_mode == b->romd_mode
256         && a->readonly == b->readonly;
257 }
258
259 static void flatview_init(FlatView *view)
260 {
261     view->ref = 1;
262     view->ranges = NULL;
263     view->nr = 0;
264     view->nr_allocated = 0;
265 }
266
267 /* Insert a range into a given position.  Caller is responsible for maintaining
268  * sorting order.
269  */
270 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
271 {
272     if (view->nr == view->nr_allocated) {
273         view->nr_allocated = MAX(2 * view->nr, 10);
274         view->ranges = g_realloc(view->ranges,
275                                     view->nr_allocated * sizeof(*view->ranges));
276     }
277     memmove(view->ranges + pos + 1, view->ranges + pos,
278             (view->nr - pos) * sizeof(FlatRange));
279     view->ranges[pos] = *range;
280     memory_region_ref(range->mr);
281     ++view->nr;
282 }
283
284 static void flatview_destroy(FlatView *view)
285 {
286     int i;
287
288     for (i = 0; i < view->nr; i++) {
289         memory_region_unref(view->ranges[i].mr);
290     }
291     g_free(view->ranges);
292     g_free(view);
293 }
294
295 static void flatview_ref(FlatView *view)
296 {
297     atomic_inc(&view->ref);
298 }
299
300 static void flatview_unref(FlatView *view)
301 {
302     if (atomic_fetch_dec(&view->ref) == 1) {
303         flatview_destroy(view);
304     }
305 }
306
307 static bool can_merge(FlatRange *r1, FlatRange *r2)
308 {
309     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
310         && r1->mr == r2->mr
311         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
312                                 r1->addr.size),
313                      int128_make64(r2->offset_in_region))
314         && r1->dirty_log_mask == r2->dirty_log_mask
315         && r1->romd_mode == r2->romd_mode
316         && r1->readonly == r2->readonly;
317 }
318
319 /* Attempt to simplify a view by merging adjacent ranges */
320 static void flatview_simplify(FlatView *view)
321 {
322     unsigned i, j;
323
324     i = 0;
325     while (i < view->nr) {
326         j = i + 1;
327         while (j < view->nr
328                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
329             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
330             ++j;
331         }
332         ++i;
333         memmove(&view->ranges[i], &view->ranges[j],
334                 (view->nr - j) * sizeof(view->ranges[j]));
335         view->nr -= j - i;
336     }
337 }
338
339 static bool memory_region_big_endian(MemoryRegion *mr)
340 {
341 #ifdef TARGET_WORDS_BIGENDIAN
342     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
343 #else
344     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
345 #endif
346 }
347
348 static bool memory_region_wrong_endianness(MemoryRegion *mr)
349 {
350 #ifdef TARGET_WORDS_BIGENDIAN
351     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
352 #else
353     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
354 #endif
355 }
356
357 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
358 {
359     if (memory_region_wrong_endianness(mr)) {
360         switch (size) {
361         case 1:
362             break;
363         case 2:
364             *data = bswap16(*data);
365             break;
366         case 4:
367             *data = bswap32(*data);
368             break;
369         case 8:
370             *data = bswap64(*data);
371             break;
372         default:
373             abort();
374         }
375     }
376 }
377
378 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
379 {
380     MemoryRegion *root;
381     hwaddr abs_addr = offset;
382
383     abs_addr += mr->addr;
384     for (root = mr; root->container; ) {
385         root = root->container;
386         abs_addr += root->addr;
387     }
388
389     return abs_addr;
390 }
391
392 static int get_cpu_index(void)
393 {
394     if (current_cpu) {
395         return current_cpu->cpu_index;
396     }
397     return -1;
398 }
399
400 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
401                                                        hwaddr addr,
402                                                        uint64_t *value,
403                                                        unsigned size,
404                                                        unsigned shift,
405                                                        uint64_t mask,
406                                                        MemTxAttrs attrs)
407 {
408     uint64_t tmp;
409
410     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
411     if (mr->subpage) {
412         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
413     } else if (mr == &io_mem_notdirty) {
414         /* Accesses to code which has previously been translated into a TB show
415          * up in the MMIO path, as accesses to the io_mem_notdirty
416          * MemoryRegion. */
417         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
418     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
419         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
420         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
421     }
422     *value |= (tmp & mask) << shift;
423     return MEMTX_OK;
424 }
425
426 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
427                                                 hwaddr addr,
428                                                 uint64_t *value,
429                                                 unsigned size,
430                                                 unsigned shift,
431                                                 uint64_t mask,
432                                                 MemTxAttrs attrs)
433 {
434     uint64_t tmp;
435
436     tmp = mr->ops->read(mr->opaque, addr, size);
437     if (mr->subpage) {
438         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
439     } else if (mr == &io_mem_notdirty) {
440         /* Accesses to code which has previously been translated into a TB show
441          * up in the MMIO path, as accesses to the io_mem_notdirty
442          * MemoryRegion. */
443         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
444     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
445         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
446         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
447     }
448     *value |= (tmp & mask) << shift;
449     return MEMTX_OK;
450 }
451
452 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
453                                                           hwaddr addr,
454                                                           uint64_t *value,
455                                                           unsigned size,
456                                                           unsigned shift,
457                                                           uint64_t mask,
458                                                           MemTxAttrs attrs)
459 {
460     uint64_t tmp = 0;
461     MemTxResult r;
462
463     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
464     if (mr->subpage) {
465         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
466     } else if (mr == &io_mem_notdirty) {
467         /* Accesses to code which has previously been translated into a TB show
468          * up in the MMIO path, as accesses to the io_mem_notdirty
469          * MemoryRegion. */
470         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
471     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
472         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
474     }
475     *value |= (tmp & mask) << shift;
476     return r;
477 }
478
479 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
480                                                         hwaddr addr,
481                                                         uint64_t *value,
482                                                         unsigned size,
483                                                         unsigned shift,
484                                                         uint64_t mask,
485                                                         MemTxAttrs attrs)
486 {
487     uint64_t tmp;
488
489     tmp = (*value >> shift) & mask;
490     if (mr->subpage) {
491         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492     } else if (mr == &io_mem_notdirty) {
493         /* Accesses to code which has previously been translated into a TB show
494          * up in the MMIO path, as accesses to the io_mem_notdirty
495          * MemoryRegion. */
496         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
497     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
498         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
499         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
500     }
501     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
502     return MEMTX_OK;
503 }
504
505 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
506                                                 hwaddr addr,
507                                                 uint64_t *value,
508                                                 unsigned size,
509                                                 unsigned shift,
510                                                 uint64_t mask,
511                                                 MemTxAttrs attrs)
512 {
513     uint64_t tmp;
514
515     tmp = (*value >> shift) & mask;
516     if (mr->subpage) {
517         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
518     } else if (mr == &io_mem_notdirty) {
519         /* Accesses to code which has previously been translated into a TB show
520          * up in the MMIO path, as accesses to the io_mem_notdirty
521          * MemoryRegion. */
522         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
523     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
524         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
525         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
526     }
527     mr->ops->write(mr->opaque, addr, tmp, size);
528     return MEMTX_OK;
529 }
530
531 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
532                                                            hwaddr addr,
533                                                            uint64_t *value,
534                                                            unsigned size,
535                                                            unsigned shift,
536                                                            uint64_t mask,
537                                                            MemTxAttrs attrs)
538 {
539     uint64_t tmp;
540
541     tmp = (*value >> shift) & mask;
542     if (mr->subpage) {
543         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
544     } else if (mr == &io_mem_notdirty) {
545         /* Accesses to code which has previously been translated into a TB show
546          * up in the MMIO path, as accesses to the io_mem_notdirty
547          * MemoryRegion. */
548         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
549     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
550         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
551         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
552     }
553     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
554 }
555
556 static MemTxResult access_with_adjusted_size(hwaddr addr,
557                                       uint64_t *value,
558                                       unsigned size,
559                                       unsigned access_size_min,
560                                       unsigned access_size_max,
561                                       MemTxResult (*access)(MemoryRegion *mr,
562                                                             hwaddr addr,
563                                                             uint64_t *value,
564                                                             unsigned size,
565                                                             unsigned shift,
566                                                             uint64_t mask,
567                                                             MemTxAttrs attrs),
568                                       MemoryRegion *mr,
569                                       MemTxAttrs attrs)
570 {
571     uint64_t access_mask;
572     unsigned access_size;
573     unsigned i;
574     MemTxResult r = MEMTX_OK;
575
576     if (!access_size_min) {
577         access_size_min = 1;
578     }
579     if (!access_size_max) {
580         access_size_max = 4;
581     }
582
583     /* FIXME: support unaligned access? */
584     access_size = MAX(MIN(size, access_size_max), access_size_min);
585     access_mask = -1ULL >> (64 - access_size * 8);
586     if (memory_region_big_endian(mr)) {
587         for (i = 0; i < size; i += access_size) {
588             r |= access(mr, addr + i, value, access_size,
589                         (size - access_size - i) * 8, access_mask, attrs);
590         }
591     } else {
592         for (i = 0; i < size; i += access_size) {
593             r |= access(mr, addr + i, value, access_size, i * 8,
594                         access_mask, attrs);
595         }
596     }
597     return r;
598 }
599
600 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
601 {
602     AddressSpace *as;
603
604     while (mr->container) {
605         mr = mr->container;
606     }
607     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
608         if (mr == as->root) {
609             return as;
610         }
611     }
612     return NULL;
613 }
614
615 /* Render a memory region into the global view.  Ranges in @view obscure
616  * ranges in @mr.
617  */
618 static void render_memory_region(FlatView *view,
619                                  MemoryRegion *mr,
620                                  Int128 base,
621                                  AddrRange clip,
622                                  bool readonly)
623 {
624     MemoryRegion *subregion;
625     unsigned i;
626     hwaddr offset_in_region;
627     Int128 remain;
628     Int128 now;
629     FlatRange fr;
630     AddrRange tmp;
631
632     if (!mr->enabled) {
633         return;
634     }
635
636     int128_addto(&base, int128_make64(mr->addr));
637     readonly |= mr->readonly;
638
639     tmp = addrrange_make(base, mr->size);
640
641     if (!addrrange_intersects(tmp, clip)) {
642         return;
643     }
644
645     clip = addrrange_intersection(tmp, clip);
646
647     if (mr->alias) {
648         int128_subfrom(&base, int128_make64(mr->alias->addr));
649         int128_subfrom(&base, int128_make64(mr->alias_offset));
650         render_memory_region(view, mr->alias, base, clip, readonly);
651         return;
652     }
653
654     /* Render subregions in priority order. */
655     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
656         render_memory_region(view, subregion, base, clip, readonly);
657     }
658
659     if (!mr->terminates) {
660         return;
661     }
662
663     offset_in_region = int128_get64(int128_sub(clip.start, base));
664     base = clip.start;
665     remain = clip.size;
666
667     fr.mr = mr;
668     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
669     fr.romd_mode = mr->romd_mode;
670     fr.readonly = readonly;
671
672     /* Render the region itself into any gaps left by the current view. */
673     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
674         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
675             continue;
676         }
677         if (int128_lt(base, view->ranges[i].addr.start)) {
678             now = int128_min(remain,
679                              int128_sub(view->ranges[i].addr.start, base));
680             fr.offset_in_region = offset_in_region;
681             fr.addr = addrrange_make(base, now);
682             flatview_insert(view, i, &fr);
683             ++i;
684             int128_addto(&base, now);
685             offset_in_region += int128_get64(now);
686             int128_subfrom(&remain, now);
687         }
688         now = int128_sub(int128_min(int128_add(base, remain),
689                                     addrrange_end(view->ranges[i].addr)),
690                          base);
691         int128_addto(&base, now);
692         offset_in_region += int128_get64(now);
693         int128_subfrom(&remain, now);
694     }
695     if (int128_nz(remain)) {
696         fr.offset_in_region = offset_in_region;
697         fr.addr = addrrange_make(base, remain);
698         flatview_insert(view, i, &fr);
699     }
700 }
701
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView *generate_memory_topology(MemoryRegion *mr)
704 {
705     FlatView *view;
706
707     view = g_new(FlatView, 1);
708     flatview_init(view);
709
710     if (mr) {
711         render_memory_region(view, mr, int128_zero(),
712                              addrrange_make(int128_zero(), int128_2_64()), false);
713     }
714     flatview_simplify(view);
715
716     return view;
717 }
718
719 static void address_space_add_del_ioeventfds(AddressSpace *as,
720                                              MemoryRegionIoeventfd *fds_new,
721                                              unsigned fds_new_nb,
722                                              MemoryRegionIoeventfd *fds_old,
723                                              unsigned fds_old_nb)
724 {
725     unsigned iold, inew;
726     MemoryRegionIoeventfd *fd;
727     MemoryRegionSection section;
728
729     /* Generate a symmetric difference of the old and new fd sets, adding
730      * and deleting as necessary.
731      */
732
733     iold = inew = 0;
734     while (iold < fds_old_nb || inew < fds_new_nb) {
735         if (iold < fds_old_nb
736             && (inew == fds_new_nb
737                 || memory_region_ioeventfd_before(fds_old[iold],
738                                                   fds_new[inew]))) {
739             fd = &fds_old[iold];
740             section = (MemoryRegionSection) {
741                 .address_space = as,
742                 .offset_within_address_space = int128_get64(fd->addr.start),
743                 .size = fd->addr.size,
744             };
745             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
746                                  fd->match_data, fd->data, fd->e);
747             ++iold;
748         } else if (inew < fds_new_nb
749                    && (iold == fds_old_nb
750                        || memory_region_ioeventfd_before(fds_new[inew],
751                                                          fds_old[iold]))) {
752             fd = &fds_new[inew];
753             section = (MemoryRegionSection) {
754                 .address_space = as,
755                 .offset_within_address_space = int128_get64(fd->addr.start),
756                 .size = fd->addr.size,
757             };
758             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
759                                  fd->match_data, fd->data, fd->e);
760             ++inew;
761         } else {
762             ++iold;
763             ++inew;
764         }
765     }
766 }
767
768 static FlatView *address_space_get_flatview(AddressSpace *as)
769 {
770     FlatView *view;
771
772     rcu_read_lock();
773     view = atomic_rcu_read(&as->current_map);
774     flatview_ref(view);
775     rcu_read_unlock();
776     return view;
777 }
778
779 static void address_space_update_ioeventfds(AddressSpace *as)
780 {
781     FlatView *view;
782     FlatRange *fr;
783     unsigned ioeventfd_nb = 0;
784     MemoryRegionIoeventfd *ioeventfds = NULL;
785     AddrRange tmp;
786     unsigned i;
787
788     view = address_space_get_flatview(as);
789     FOR_EACH_FLAT_RANGE(fr, view) {
790         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
791             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
792                                   int128_sub(fr->addr.start,
793                                              int128_make64(fr->offset_in_region)));
794             if (addrrange_intersects(fr->addr, tmp)) {
795                 ++ioeventfd_nb;
796                 ioeventfds = g_realloc(ioeventfds,
797                                           ioeventfd_nb * sizeof(*ioeventfds));
798                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
799                 ioeventfds[ioeventfd_nb-1].addr = tmp;
800             }
801         }
802     }
803
804     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
805                                      as->ioeventfds, as->ioeventfd_nb);
806
807     g_free(as->ioeventfds);
808     as->ioeventfds = ioeventfds;
809     as->ioeventfd_nb = ioeventfd_nb;
810     flatview_unref(view);
811 }
812
813 static void address_space_update_topology_pass(AddressSpace *as,
814                                                const FlatView *old_view,
815                                                const FlatView *new_view,
816                                                bool adding)
817 {
818     unsigned iold, inew;
819     FlatRange *frold, *frnew;
820
821     /* Generate a symmetric difference of the old and new memory maps.
822      * Kill ranges in the old map, and instantiate ranges in the new map.
823      */
824     iold = inew = 0;
825     while (iold < old_view->nr || inew < new_view->nr) {
826         if (iold < old_view->nr) {
827             frold = &old_view->ranges[iold];
828         } else {
829             frold = NULL;
830         }
831         if (inew < new_view->nr) {
832             frnew = &new_view->ranges[inew];
833         } else {
834             frnew = NULL;
835         }
836
837         if (frold
838             && (!frnew
839                 || int128_lt(frold->addr.start, frnew->addr.start)
840                 || (int128_eq(frold->addr.start, frnew->addr.start)
841                     && !flatrange_equal(frold, frnew)))) {
842             /* In old but not in new, or in both but attributes changed. */
843
844             if (!adding) {
845                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
846             }
847
848             ++iold;
849         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
850             /* In both and unchanged (except logging may have changed) */
851
852             if (adding) {
853                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
854                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
855                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
856                                                   frold->dirty_log_mask,
857                                                   frnew->dirty_log_mask);
858                 }
859                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
860                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
861                                                   frold->dirty_log_mask,
862                                                   frnew->dirty_log_mask);
863                 }
864             }
865
866             ++iold;
867             ++inew;
868         } else {
869             /* In new */
870
871             if (adding) {
872                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
873             }
874
875             ++inew;
876         }
877     }
878 }
879
880
881 static void address_space_update_topology(AddressSpace *as)
882 {
883     FlatView *old_view = address_space_get_flatview(as);
884     FlatView *new_view = generate_memory_topology(as->root);
885
886     address_space_update_topology_pass(as, old_view, new_view, false);
887     address_space_update_topology_pass(as, old_view, new_view, true);
888
889     /* Writes are protected by the BQL.  */
890     atomic_rcu_set(&as->current_map, new_view);
891     call_rcu(old_view, flatview_unref, rcu);
892
893     /* Note that all the old MemoryRegions are still alive up to this
894      * point.  This relieves most MemoryListeners from the need to
895      * ref/unref the MemoryRegions they get---unless they use them
896      * outside the iothread mutex, in which case precise reference
897      * counting is necessary.
898      */
899     flatview_unref(old_view);
900
901     address_space_update_ioeventfds(as);
902 }
903
904 void memory_region_transaction_begin(void)
905 {
906     qemu_flush_coalesced_mmio_buffer();
907     ++memory_region_transaction_depth;
908 }
909
910 static void memory_region_clear_pending(void)
911 {
912     memory_region_update_pending = false;
913     ioeventfd_update_pending = false;
914 }
915
916 void memory_region_transaction_commit(void)
917 {
918     AddressSpace *as;
919
920     assert(memory_region_transaction_depth);
921     --memory_region_transaction_depth;
922     if (!memory_region_transaction_depth) {
923         if (memory_region_update_pending) {
924             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
925
926             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
927                 address_space_update_topology(as);
928             }
929
930             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
931         } else if (ioeventfd_update_pending) {
932             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
933                 address_space_update_ioeventfds(as);
934             }
935         }
936         memory_region_clear_pending();
937    }
938 }
939
940 static void memory_region_destructor_none(MemoryRegion *mr)
941 {
942 }
943
944 static void memory_region_destructor_ram(MemoryRegion *mr)
945 {
946     qemu_ram_free(mr->ram_block);
947 }
948
949 static void memory_region_destructor_rom_device(MemoryRegion *mr)
950 {
951     qemu_ram_free(mr->ram_block);
952 }
953
954 static bool memory_region_need_escape(char c)
955 {
956     return c == '/' || c == '[' || c == '\\' || c == ']';
957 }
958
959 static char *memory_region_escape_name(const char *name)
960 {
961     const char *p;
962     char *escaped, *q;
963     uint8_t c;
964     size_t bytes = 0;
965
966     for (p = name; *p; p++) {
967         bytes += memory_region_need_escape(*p) ? 4 : 1;
968     }
969     if (bytes == p - name) {
970        return g_memdup(name, bytes + 1);
971     }
972
973     escaped = g_malloc(bytes + 1);
974     for (p = name, q = escaped; *p; p++) {
975         c = *p;
976         if (unlikely(memory_region_need_escape(c))) {
977             *q++ = '\\';
978             *q++ = 'x';
979             *q++ = "0123456789abcdef"[c >> 4];
980             c = "0123456789abcdef"[c & 15];
981         }
982         *q++ = c;
983     }
984     *q = 0;
985     return escaped;
986 }
987
988 void memory_region_init(MemoryRegion *mr,
989                         Object *owner,
990                         const char *name,
991                         uint64_t size)
992 {
993     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
994     mr->size = int128_make64(size);
995     if (size == UINT64_MAX) {
996         mr->size = int128_2_64();
997     }
998     mr->name = g_strdup(name);
999     mr->owner = owner;
1000     mr->ram_block = NULL;
1001
1002     if (name) {
1003         char *escaped_name = memory_region_escape_name(name);
1004         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1005
1006         if (!owner) {
1007             owner = container_get(qdev_get_machine(), "/unattached");
1008         }
1009
1010         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1011         object_unref(OBJECT(mr));
1012         g_free(name_array);
1013         g_free(escaped_name);
1014     }
1015 }
1016
1017 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1018                                    void *opaque, Error **errp)
1019 {
1020     MemoryRegion *mr = MEMORY_REGION(obj);
1021     uint64_t value = mr->addr;
1022
1023     visit_type_uint64(v, name, &value, errp);
1024 }
1025
1026 static void memory_region_get_container(Object *obj, Visitor *v,
1027                                         const char *name, void *opaque,
1028                                         Error **errp)
1029 {
1030     MemoryRegion *mr = MEMORY_REGION(obj);
1031     gchar *path = (gchar *)"";
1032
1033     if (mr->container) {
1034         path = object_get_canonical_path(OBJECT(mr->container));
1035     }
1036     visit_type_str(v, name, &path, errp);
1037     if (mr->container) {
1038         g_free(path);
1039     }
1040 }
1041
1042 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1043                                                const char *part)
1044 {
1045     MemoryRegion *mr = MEMORY_REGION(obj);
1046
1047     return OBJECT(mr->container);
1048 }
1049
1050 static void memory_region_get_priority(Object *obj, Visitor *v,
1051                                        const char *name, void *opaque,
1052                                        Error **errp)
1053 {
1054     MemoryRegion *mr = MEMORY_REGION(obj);
1055     int32_t value = mr->priority;
1056
1057     visit_type_int32(v, name, &value, errp);
1058 }
1059
1060 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
1061 {
1062     MemoryRegion *mr = MEMORY_REGION(obj);
1063
1064     return mr->may_overlap;
1065 }
1066
1067 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1068                                    void *opaque, Error **errp)
1069 {
1070     MemoryRegion *mr = MEMORY_REGION(obj);
1071     uint64_t value = memory_region_size(mr);
1072
1073     visit_type_uint64(v, name, &value, errp);
1074 }
1075
1076 static void memory_region_initfn(Object *obj)
1077 {
1078     MemoryRegion *mr = MEMORY_REGION(obj);
1079     ObjectProperty *op;
1080
1081     mr->ops = &unassigned_mem_ops;
1082     mr->enabled = true;
1083     mr->romd_mode = true;
1084     mr->global_locking = true;
1085     mr->destructor = memory_region_destructor_none;
1086     QTAILQ_INIT(&mr->subregions);
1087     QTAILQ_INIT(&mr->coalesced);
1088
1089     op = object_property_add(OBJECT(mr), "container",
1090                              "link<" TYPE_MEMORY_REGION ">",
1091                              memory_region_get_container,
1092                              NULL, /* memory_region_set_container */
1093                              NULL, NULL, &error_abort);
1094     op->resolve = memory_region_resolve_container;
1095
1096     object_property_add(OBJECT(mr), "addr", "uint64",
1097                         memory_region_get_addr,
1098                         NULL, /* memory_region_set_addr */
1099                         NULL, NULL, &error_abort);
1100     object_property_add(OBJECT(mr), "priority", "uint32",
1101                         memory_region_get_priority,
1102                         NULL, /* memory_region_set_priority */
1103                         NULL, NULL, &error_abort);
1104     object_property_add_bool(OBJECT(mr), "may-overlap",
1105                              memory_region_get_may_overlap,
1106                              NULL, /* memory_region_set_may_overlap */
1107                              &error_abort);
1108     object_property_add(OBJECT(mr), "size", "uint64",
1109                         memory_region_get_size,
1110                         NULL, /* memory_region_set_size, */
1111                         NULL, NULL, &error_abort);
1112 }
1113
1114 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1115                                     unsigned size)
1116 {
1117 #ifdef DEBUG_UNASSIGNED
1118     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1119 #endif
1120     if (current_cpu != NULL) {
1121         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1122     }
1123     return 0;
1124 }
1125
1126 static void unassigned_mem_write(void *opaque, hwaddr addr,
1127                                  uint64_t val, unsigned size)
1128 {
1129 #ifdef DEBUG_UNASSIGNED
1130     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1131 #endif
1132     if (current_cpu != NULL) {
1133         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1134     }
1135 }
1136
1137 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1138                                    unsigned size, bool is_write)
1139 {
1140     return false;
1141 }
1142
1143 const MemoryRegionOps unassigned_mem_ops = {
1144     .valid.accepts = unassigned_mem_accepts,
1145     .endianness = DEVICE_NATIVE_ENDIAN,
1146 };
1147
1148 bool memory_region_access_valid(MemoryRegion *mr,
1149                                 hwaddr addr,
1150                                 unsigned size,
1151                                 bool is_write)
1152 {
1153     int access_size_min, access_size_max;
1154     int access_size, i;
1155
1156     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1157         return false;
1158     }
1159
1160     if (!mr->ops->valid.accepts) {
1161         return true;
1162     }
1163
1164     access_size_min = mr->ops->valid.min_access_size;
1165     if (!mr->ops->valid.min_access_size) {
1166         access_size_min = 1;
1167     }
1168
1169     access_size_max = mr->ops->valid.max_access_size;
1170     if (!mr->ops->valid.max_access_size) {
1171         access_size_max = 4;
1172     }
1173
1174     access_size = MAX(MIN(size, access_size_max), access_size_min);
1175     for (i = 0; i < size; i += access_size) {
1176         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1177                                     is_write)) {
1178             return false;
1179         }
1180     }
1181
1182     return true;
1183 }
1184
1185 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1186                                                 hwaddr addr,
1187                                                 uint64_t *pval,
1188                                                 unsigned size,
1189                                                 MemTxAttrs attrs)
1190 {
1191     *pval = 0;
1192
1193     if (mr->ops->read) {
1194         return access_with_adjusted_size(addr, pval, size,
1195                                          mr->ops->impl.min_access_size,
1196                                          mr->ops->impl.max_access_size,
1197                                          memory_region_read_accessor,
1198                                          mr, attrs);
1199     } else if (mr->ops->read_with_attrs) {
1200         return access_with_adjusted_size(addr, pval, size,
1201                                          mr->ops->impl.min_access_size,
1202                                          mr->ops->impl.max_access_size,
1203                                          memory_region_read_with_attrs_accessor,
1204                                          mr, attrs);
1205     } else {
1206         return access_with_adjusted_size(addr, pval, size, 1, 4,
1207                                          memory_region_oldmmio_read_accessor,
1208                                          mr, attrs);
1209     }
1210 }
1211
1212 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1213                                         hwaddr addr,
1214                                         uint64_t *pval,
1215                                         unsigned size,
1216                                         MemTxAttrs attrs)
1217 {
1218     MemTxResult r;
1219
1220     if (!memory_region_access_valid(mr, addr, size, false)) {
1221         *pval = unassigned_mem_read(mr, addr, size);
1222         return MEMTX_DECODE_ERROR;
1223     }
1224
1225     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1226     adjust_endianness(mr, pval, size);
1227     return r;
1228 }
1229
1230 /* Return true if an eventfd was signalled */
1231 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1232                                                     hwaddr addr,
1233                                                     uint64_t data,
1234                                                     unsigned size,
1235                                                     MemTxAttrs attrs)
1236 {
1237     MemoryRegionIoeventfd ioeventfd = {
1238         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1239         .data = data,
1240     };
1241     unsigned i;
1242
1243     for (i = 0; i < mr->ioeventfd_nb; i++) {
1244         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1245         ioeventfd.e = mr->ioeventfds[i].e;
1246
1247         if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1248             event_notifier_set(ioeventfd.e);
1249             return true;
1250         }
1251     }
1252
1253     return false;
1254 }
1255
1256 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1257                                          hwaddr addr,
1258                                          uint64_t data,
1259                                          unsigned size,
1260                                          MemTxAttrs attrs)
1261 {
1262     if (!memory_region_access_valid(mr, addr, size, true)) {
1263         unassigned_mem_write(mr, addr, data, size);
1264         return MEMTX_DECODE_ERROR;
1265     }
1266
1267     adjust_endianness(mr, &data, size);
1268
1269     if ((!kvm_eventfds_enabled()) &&
1270         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1271         return MEMTX_OK;
1272     }
1273
1274     if (mr->ops->write) {
1275         return access_with_adjusted_size(addr, &data, size,
1276                                          mr->ops->impl.min_access_size,
1277                                          mr->ops->impl.max_access_size,
1278                                          memory_region_write_accessor, mr,
1279                                          attrs);
1280     } else if (mr->ops->write_with_attrs) {
1281         return
1282             access_with_adjusted_size(addr, &data, size,
1283                                       mr->ops->impl.min_access_size,
1284                                       mr->ops->impl.max_access_size,
1285                                       memory_region_write_with_attrs_accessor,
1286                                       mr, attrs);
1287     } else {
1288         return access_with_adjusted_size(addr, &data, size, 1, 4,
1289                                          memory_region_oldmmio_write_accessor,
1290                                          mr, attrs);
1291     }
1292 }
1293
1294 void memory_region_init_io(MemoryRegion *mr,
1295                            Object *owner,
1296                            const MemoryRegionOps *ops,
1297                            void *opaque,
1298                            const char *name,
1299                            uint64_t size)
1300 {
1301     memory_region_init(mr, owner, name, size);
1302     mr->ops = ops ? ops : &unassigned_mem_ops;
1303     mr->opaque = opaque;
1304     mr->terminates = true;
1305 }
1306
1307 void memory_region_init_ram(MemoryRegion *mr,
1308                             Object *owner,
1309                             const char *name,
1310                             uint64_t size,
1311                             Error **errp)
1312 {
1313     memory_region_init(mr, owner, name, size);
1314     mr->ram = true;
1315     mr->terminates = true;
1316     mr->destructor = memory_region_destructor_ram;
1317     mr->ram_block = qemu_ram_alloc(size, mr, errp);
1318     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1319 }
1320
1321 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1322                                        Object *owner,
1323                                        const char *name,
1324                                        uint64_t size,
1325                                        uint64_t max_size,
1326                                        void (*resized)(const char*,
1327                                                        uint64_t length,
1328                                                        void *host),
1329                                        Error **errp)
1330 {
1331     memory_region_init(mr, owner, name, size);
1332     mr->ram = true;
1333     mr->terminates = true;
1334     mr->destructor = memory_region_destructor_ram;
1335     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1336                                               mr, errp);
1337     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1338 }
1339
1340 #ifdef __linux__
1341 void memory_region_init_ram_from_file(MemoryRegion *mr,
1342                                       struct Object *owner,
1343                                       const char *name,
1344                                       uint64_t size,
1345                                       bool share,
1346                                       const char *path,
1347                                       Error **errp)
1348 {
1349     memory_region_init(mr, owner, name, size);
1350     mr->ram = true;
1351     mr->terminates = true;
1352     mr->destructor = memory_region_destructor_ram;
1353     mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1354     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1355 }
1356 #endif
1357
1358 void memory_region_init_ram_ptr(MemoryRegion *mr,
1359                                 Object *owner,
1360                                 const char *name,
1361                                 uint64_t size,
1362                                 void *ptr)
1363 {
1364     memory_region_init(mr, owner, name, size);
1365     mr->ram = true;
1366     mr->terminates = true;
1367     mr->destructor = memory_region_destructor_ram;
1368     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1369
1370     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1371     assert(ptr != NULL);
1372     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1373 }
1374
1375 void memory_region_set_skip_dump(MemoryRegion *mr)
1376 {
1377     mr->skip_dump = true;
1378 }
1379
1380 void memory_region_init_alias(MemoryRegion *mr,
1381                               Object *owner,
1382                               const char *name,
1383                               MemoryRegion *orig,
1384                               hwaddr offset,
1385                               uint64_t size)
1386 {
1387     memory_region_init(mr, owner, name, size);
1388     mr->alias = orig;
1389     mr->alias_offset = offset;
1390 }
1391
1392 void memory_region_init_rom_device(MemoryRegion *mr,
1393                                    Object *owner,
1394                                    const MemoryRegionOps *ops,
1395                                    void *opaque,
1396                                    const char *name,
1397                                    uint64_t size,
1398                                    Error **errp)
1399 {
1400     memory_region_init(mr, owner, name, size);
1401     mr->ops = ops;
1402     mr->opaque = opaque;
1403     mr->terminates = true;
1404     mr->rom_device = true;
1405     mr->destructor = memory_region_destructor_rom_device;
1406     mr->ram_block = qemu_ram_alloc(size, mr, errp);
1407 }
1408
1409 void memory_region_init_iommu(MemoryRegion *mr,
1410                               Object *owner,
1411                               const MemoryRegionIOMMUOps *ops,
1412                               const char *name,
1413                               uint64_t size)
1414 {
1415     memory_region_init(mr, owner, name, size);
1416     mr->iommu_ops = ops,
1417     mr->terminates = true;  /* then re-forwards */
1418     notifier_list_init(&mr->iommu_notify);
1419 }
1420
1421 static void memory_region_finalize(Object *obj)
1422 {
1423     MemoryRegion *mr = MEMORY_REGION(obj);
1424
1425     assert(!mr->container);
1426
1427     /* We know the region is not visible in any address space (it
1428      * does not have a container and cannot be a root either because
1429      * it has no references, so we can blindly clear mr->enabled.
1430      * memory_region_set_enabled instead could trigger a transaction
1431      * and cause an infinite loop.
1432      */
1433     mr->enabled = false;
1434     memory_region_transaction_begin();
1435     while (!QTAILQ_EMPTY(&mr->subregions)) {
1436         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1437         memory_region_del_subregion(mr, subregion);
1438     }
1439     memory_region_transaction_commit();
1440
1441     mr->destructor(mr);
1442     memory_region_clear_coalescing(mr);
1443     g_free((char *)mr->name);
1444     g_free(mr->ioeventfds);
1445 }
1446
1447 Object *memory_region_owner(MemoryRegion *mr)
1448 {
1449     Object *obj = OBJECT(mr);
1450     return obj->parent;
1451 }
1452
1453 void memory_region_ref(MemoryRegion *mr)
1454 {
1455     /* MMIO callbacks most likely will access data that belongs
1456      * to the owner, hence the need to ref/unref the owner whenever
1457      * the memory region is in use.
1458      *
1459      * The memory region is a child of its owner.  As long as the
1460      * owner doesn't call unparent itself on the memory region,
1461      * ref-ing the owner will also keep the memory region alive.
1462      * Memory regions without an owner are supposed to never go away;
1463      * we do not ref/unref them because it slows down DMA sensibly.
1464      */
1465     if (mr && mr->owner) {
1466         object_ref(mr->owner);
1467     }
1468 }
1469
1470 void memory_region_unref(MemoryRegion *mr)
1471 {
1472     if (mr && mr->owner) {
1473         object_unref(mr->owner);
1474     }
1475 }
1476
1477 uint64_t memory_region_size(MemoryRegion *mr)
1478 {
1479     if (int128_eq(mr->size, int128_2_64())) {
1480         return UINT64_MAX;
1481     }
1482     return int128_get64(mr->size);
1483 }
1484
1485 const char *memory_region_name(const MemoryRegion *mr)
1486 {
1487     if (!mr->name) {
1488         ((MemoryRegion *)mr)->name =
1489             object_get_canonical_path_component(OBJECT(mr));
1490     }
1491     return mr->name;
1492 }
1493
1494 bool memory_region_is_skip_dump(MemoryRegion *mr)
1495 {
1496     return mr->skip_dump;
1497 }
1498
1499 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1500 {
1501     uint8_t mask = mr->dirty_log_mask;
1502     if (global_dirty_log) {
1503         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1504     }
1505     return mask;
1506 }
1507
1508 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1509 {
1510     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1511 }
1512
1513 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1514 {
1515     notifier_list_add(&mr->iommu_notify, n);
1516 }
1517
1518 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1519                                 hwaddr granularity, bool is_write)
1520 {
1521     hwaddr addr;
1522     IOMMUTLBEntry iotlb;
1523
1524     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1525         iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1526         if (iotlb.perm != IOMMU_NONE) {
1527             n->notify(n, &iotlb);
1528         }
1529
1530         /* if (2^64 - MR size) < granularity, it's possible to get an
1531          * infinite loop here.  This should catch such a wraparound */
1532         if ((addr + granularity) < addr) {
1533             break;
1534         }
1535     }
1536 }
1537
1538 void memory_region_unregister_iommu_notifier(Notifier *n)
1539 {
1540     notifier_remove(n);
1541 }
1542
1543 void memory_region_notify_iommu(MemoryRegion *mr,
1544                                 IOMMUTLBEntry entry)
1545 {
1546     assert(memory_region_is_iommu(mr));
1547     notifier_list_notify(&mr->iommu_notify, &entry);
1548 }
1549
1550 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1551 {
1552     uint8_t mask = 1 << client;
1553     uint8_t old_logging;
1554
1555     assert(client == DIRTY_MEMORY_VGA);
1556     old_logging = mr->vga_logging_count;
1557     mr->vga_logging_count += log ? 1 : -1;
1558     if (!!old_logging == !!mr->vga_logging_count) {
1559         return;
1560     }
1561
1562     memory_region_transaction_begin();
1563     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1564     memory_region_update_pending |= mr->enabled;
1565     memory_region_transaction_commit();
1566 }
1567
1568 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1569                              hwaddr size, unsigned client)
1570 {
1571     assert(mr->ram_block);
1572     return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1573                                          size, client);
1574 }
1575
1576 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1577                              hwaddr size)
1578 {
1579     assert(mr->ram_block);
1580     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1581                                         size,
1582                                         memory_region_get_dirty_log_mask(mr));
1583 }
1584
1585 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1586                                         hwaddr size, unsigned client)
1587 {
1588     assert(mr->ram_block);
1589     return cpu_physical_memory_test_and_clear_dirty(
1590                 memory_region_get_ram_addr(mr) + addr, size, client);
1591 }
1592
1593
1594 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1595 {
1596     AddressSpace *as;
1597     FlatRange *fr;
1598
1599     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1600         FlatView *view = address_space_get_flatview(as);
1601         FOR_EACH_FLAT_RANGE(fr, view) {
1602             if (fr->mr == mr) {
1603                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1604             }
1605         }
1606         flatview_unref(view);
1607     }
1608 }
1609
1610 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1611 {
1612     if (mr->readonly != readonly) {
1613         memory_region_transaction_begin();
1614         mr->readonly = readonly;
1615         memory_region_update_pending |= mr->enabled;
1616         memory_region_transaction_commit();
1617     }
1618 }
1619
1620 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1621 {
1622     if (mr->romd_mode != romd_mode) {
1623         memory_region_transaction_begin();
1624         mr->romd_mode = romd_mode;
1625         memory_region_update_pending |= mr->enabled;
1626         memory_region_transaction_commit();
1627     }
1628 }
1629
1630 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1631                                hwaddr size, unsigned client)
1632 {
1633     assert(mr->ram_block);
1634     cpu_physical_memory_test_and_clear_dirty(
1635         memory_region_get_ram_addr(mr) + addr, size, client);
1636 }
1637
1638 int memory_region_get_fd(MemoryRegion *mr)
1639 {
1640     if (mr->alias) {
1641         return memory_region_get_fd(mr->alias);
1642     }
1643
1644     assert(mr->ram_block);
1645
1646     return qemu_get_ram_fd(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1647 }
1648
1649 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1650 {
1651     void *ptr;
1652     uint64_t offset = 0;
1653
1654     rcu_read_lock();
1655     while (mr->alias) {
1656         offset += mr->alias_offset;
1657         mr = mr->alias;
1658     }
1659     assert(mr->ram_block);
1660     ptr = qemu_get_ram_ptr(mr->ram_block,
1661                            memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1662     rcu_read_unlock();
1663
1664     return ptr + offset;
1665 }
1666
1667 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1668 {
1669     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1670 }
1671
1672 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1673 {
1674     assert(mr->ram_block);
1675
1676     qemu_ram_resize(memory_region_get_ram_addr(mr), newsize, errp);
1677 }
1678
1679 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1680 {
1681     FlatView *view;
1682     FlatRange *fr;
1683     CoalescedMemoryRange *cmr;
1684     AddrRange tmp;
1685     MemoryRegionSection section;
1686
1687     view = address_space_get_flatview(as);
1688     FOR_EACH_FLAT_RANGE(fr, view) {
1689         if (fr->mr == mr) {
1690             section = (MemoryRegionSection) {
1691                 .address_space = as,
1692                 .offset_within_address_space = int128_get64(fr->addr.start),
1693                 .size = fr->addr.size,
1694             };
1695
1696             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1697                                  int128_get64(fr->addr.start),
1698                                  int128_get64(fr->addr.size));
1699             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1700                 tmp = addrrange_shift(cmr->addr,
1701                                       int128_sub(fr->addr.start,
1702                                                  int128_make64(fr->offset_in_region)));
1703                 if (!addrrange_intersects(tmp, fr->addr)) {
1704                     continue;
1705                 }
1706                 tmp = addrrange_intersection(tmp, fr->addr);
1707                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1708                                      int128_get64(tmp.start),
1709                                      int128_get64(tmp.size));
1710             }
1711         }
1712     }
1713     flatview_unref(view);
1714 }
1715
1716 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1717 {
1718     AddressSpace *as;
1719
1720     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1721         memory_region_update_coalesced_range_as(mr, as);
1722     }
1723 }
1724
1725 void memory_region_set_coalescing(MemoryRegion *mr)
1726 {
1727     memory_region_clear_coalescing(mr);
1728     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1729 }
1730
1731 void memory_region_add_coalescing(MemoryRegion *mr,
1732                                   hwaddr offset,
1733                                   uint64_t size)
1734 {
1735     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1736
1737     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1738     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1739     memory_region_update_coalesced_range(mr);
1740     memory_region_set_flush_coalesced(mr);
1741 }
1742
1743 void memory_region_clear_coalescing(MemoryRegion *mr)
1744 {
1745     CoalescedMemoryRange *cmr;
1746     bool updated = false;
1747
1748     qemu_flush_coalesced_mmio_buffer();
1749     mr->flush_coalesced_mmio = false;
1750
1751     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1752         cmr = QTAILQ_FIRST(&mr->coalesced);
1753         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1754         g_free(cmr);
1755         updated = true;
1756     }
1757
1758     if (updated) {
1759         memory_region_update_coalesced_range(mr);
1760     }
1761 }
1762
1763 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1764 {
1765     mr->flush_coalesced_mmio = true;
1766 }
1767
1768 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1769 {
1770     qemu_flush_coalesced_mmio_buffer();
1771     if (QTAILQ_EMPTY(&mr->coalesced)) {
1772         mr->flush_coalesced_mmio = false;
1773     }
1774 }
1775
1776 void memory_region_set_global_locking(MemoryRegion *mr)
1777 {
1778     mr->global_locking = true;
1779 }
1780
1781 void memory_region_clear_global_locking(MemoryRegion *mr)
1782 {
1783     mr->global_locking = false;
1784 }
1785
1786 static bool userspace_eventfd_warning;
1787
1788 void memory_region_add_eventfd(MemoryRegion *mr,
1789                                hwaddr addr,
1790                                unsigned size,
1791                                bool match_data,
1792                                uint64_t data,
1793                                EventNotifier *e)
1794 {
1795     MemoryRegionIoeventfd mrfd = {
1796         .addr.start = int128_make64(addr),
1797         .addr.size = int128_make64(size),
1798         .match_data = match_data,
1799         .data = data,
1800         .e = e,
1801     };
1802     unsigned i;
1803
1804     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1805                             userspace_eventfd_warning))) {
1806         userspace_eventfd_warning = true;
1807         error_report("Using eventfd without MMIO binding in KVM. "
1808                      "Suboptimal performance expected");
1809     }
1810
1811     if (size) {
1812         adjust_endianness(mr, &mrfd.data, size);
1813     }
1814     memory_region_transaction_begin();
1815     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1816         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1817             break;
1818         }
1819     }
1820     ++mr->ioeventfd_nb;
1821     mr->ioeventfds = g_realloc(mr->ioeventfds,
1822                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1823     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1824             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1825     mr->ioeventfds[i] = mrfd;
1826     ioeventfd_update_pending |= mr->enabled;
1827     memory_region_transaction_commit();
1828 }
1829
1830 void memory_region_del_eventfd(MemoryRegion *mr,
1831                                hwaddr addr,
1832                                unsigned size,
1833                                bool match_data,
1834                                uint64_t data,
1835                                EventNotifier *e)
1836 {
1837     MemoryRegionIoeventfd mrfd = {
1838         .addr.start = int128_make64(addr),
1839         .addr.size = int128_make64(size),
1840         .match_data = match_data,
1841         .data = data,
1842         .e = e,
1843     };
1844     unsigned i;
1845
1846     if (size) {
1847         adjust_endianness(mr, &mrfd.data, size);
1848     }
1849     memory_region_transaction_begin();
1850     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1851         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1852             break;
1853         }
1854     }
1855     assert(i != mr->ioeventfd_nb);
1856     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1857             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1858     --mr->ioeventfd_nb;
1859     mr->ioeventfds = g_realloc(mr->ioeventfds,
1860                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1861     ioeventfd_update_pending |= mr->enabled;
1862     memory_region_transaction_commit();
1863 }
1864
1865 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1866 {
1867     hwaddr offset = subregion->addr;
1868     MemoryRegion *mr = subregion->container;
1869     MemoryRegion *other;
1870
1871     memory_region_transaction_begin();
1872
1873     memory_region_ref(subregion);
1874     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1875         if (subregion->may_overlap || other->may_overlap) {
1876             continue;
1877         }
1878         if (int128_ge(int128_make64(offset),
1879                       int128_add(int128_make64(other->addr), other->size))
1880             || int128_le(int128_add(int128_make64(offset), subregion->size),
1881                          int128_make64(other->addr))) {
1882             continue;
1883         }
1884 #if 0
1885         printf("warning: subregion collision %llx/%llx (%s) "
1886                "vs %llx/%llx (%s)\n",
1887                (unsigned long long)offset,
1888                (unsigned long long)int128_get64(subregion->size),
1889                subregion->name,
1890                (unsigned long long)other->addr,
1891                (unsigned long long)int128_get64(other->size),
1892                other->name);
1893 #endif
1894     }
1895     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1896         if (subregion->priority >= other->priority) {
1897             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1898             goto done;
1899         }
1900     }
1901     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1902 done:
1903     memory_region_update_pending |= mr->enabled && subregion->enabled;
1904     memory_region_transaction_commit();
1905 }
1906
1907 static void memory_region_add_subregion_common(MemoryRegion *mr,
1908                                                hwaddr offset,
1909                                                MemoryRegion *subregion)
1910 {
1911     assert(!subregion->container);
1912     subregion->container = mr;
1913     subregion->addr = offset;
1914     memory_region_update_container_subregions(subregion);
1915 }
1916
1917 void memory_region_add_subregion(MemoryRegion *mr,
1918                                  hwaddr offset,
1919                                  MemoryRegion *subregion)
1920 {
1921     subregion->may_overlap = false;
1922     subregion->priority = 0;
1923     memory_region_add_subregion_common(mr, offset, subregion);
1924 }
1925
1926 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1927                                          hwaddr offset,
1928                                          MemoryRegion *subregion,
1929                                          int priority)
1930 {
1931     subregion->may_overlap = true;
1932     subregion->priority = priority;
1933     memory_region_add_subregion_common(mr, offset, subregion);
1934 }
1935
1936 void memory_region_del_subregion(MemoryRegion *mr,
1937                                  MemoryRegion *subregion)
1938 {
1939     memory_region_transaction_begin();
1940     assert(subregion->container == mr);
1941     subregion->container = NULL;
1942     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1943     memory_region_unref(subregion);
1944     memory_region_update_pending |= mr->enabled && subregion->enabled;
1945     memory_region_transaction_commit();
1946 }
1947
1948 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1949 {
1950     if (enabled == mr->enabled) {
1951         return;
1952     }
1953     memory_region_transaction_begin();
1954     mr->enabled = enabled;
1955     memory_region_update_pending = true;
1956     memory_region_transaction_commit();
1957 }
1958
1959 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1960 {
1961     Int128 s = int128_make64(size);
1962
1963     if (size == UINT64_MAX) {
1964         s = int128_2_64();
1965     }
1966     if (int128_eq(s, mr->size)) {
1967         return;
1968     }
1969     memory_region_transaction_begin();
1970     mr->size = s;
1971     memory_region_update_pending = true;
1972     memory_region_transaction_commit();
1973 }
1974
1975 static void memory_region_readd_subregion(MemoryRegion *mr)
1976 {
1977     MemoryRegion *container = mr->container;
1978
1979     if (container) {
1980         memory_region_transaction_begin();
1981         memory_region_ref(mr);
1982         memory_region_del_subregion(container, mr);
1983         mr->container = container;
1984         memory_region_update_container_subregions(mr);
1985         memory_region_unref(mr);
1986         memory_region_transaction_commit();
1987     }
1988 }
1989
1990 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1991 {
1992     if (addr != mr->addr) {
1993         mr->addr = addr;
1994         memory_region_readd_subregion(mr);
1995     }
1996 }
1997
1998 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1999 {
2000     assert(mr->alias);
2001
2002     if (offset == mr->alias_offset) {
2003         return;
2004     }
2005
2006     memory_region_transaction_begin();
2007     mr->alias_offset = offset;
2008     memory_region_update_pending |= mr->enabled;
2009     memory_region_transaction_commit();
2010 }
2011
2012 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2013 {
2014     return mr->align;
2015 }
2016
2017 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2018 {
2019     const AddrRange *addr = addr_;
2020     const FlatRange *fr = fr_;
2021
2022     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2023         return -1;
2024     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2025         return 1;
2026     }
2027     return 0;
2028 }
2029
2030 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2031 {
2032     return bsearch(&addr, view->ranges, view->nr,
2033                    sizeof(FlatRange), cmp_flatrange_addr);
2034 }
2035
2036 bool memory_region_is_mapped(MemoryRegion *mr)
2037 {
2038     return mr->container ? true : false;
2039 }
2040
2041 /* Same as memory_region_find, but it does not add a reference to the
2042  * returned region.  It must be called from an RCU critical section.
2043  */
2044 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2045                                                   hwaddr addr, uint64_t size)
2046 {
2047     MemoryRegionSection ret = { .mr = NULL };
2048     MemoryRegion *root;
2049     AddressSpace *as;
2050     AddrRange range;
2051     FlatView *view;
2052     FlatRange *fr;
2053
2054     addr += mr->addr;
2055     for (root = mr; root->container; ) {
2056         root = root->container;
2057         addr += root->addr;
2058     }
2059
2060     as = memory_region_to_address_space(root);
2061     if (!as) {
2062         return ret;
2063     }
2064     range = addrrange_make(int128_make64(addr), int128_make64(size));
2065
2066     view = atomic_rcu_read(&as->current_map);
2067     fr = flatview_lookup(view, range);
2068     if (!fr) {
2069         return ret;
2070     }
2071
2072     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2073         --fr;
2074     }
2075
2076     ret.mr = fr->mr;
2077     ret.address_space = as;
2078     range = addrrange_intersection(range, fr->addr);
2079     ret.offset_within_region = fr->offset_in_region;
2080     ret.offset_within_region += int128_get64(int128_sub(range.start,
2081                                                         fr->addr.start));
2082     ret.size = range.size;
2083     ret.offset_within_address_space = int128_get64(range.start);
2084     ret.readonly = fr->readonly;
2085     return ret;
2086 }
2087
2088 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2089                                        hwaddr addr, uint64_t size)
2090 {
2091     MemoryRegionSection ret;
2092     rcu_read_lock();
2093     ret = memory_region_find_rcu(mr, addr, size);
2094     if (ret.mr) {
2095         memory_region_ref(ret.mr);
2096     }
2097     rcu_read_unlock();
2098     return ret;
2099 }
2100
2101 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2102 {
2103     MemoryRegion *mr;
2104
2105     rcu_read_lock();
2106     mr = memory_region_find_rcu(container, addr, 1).mr;
2107     rcu_read_unlock();
2108     return mr && mr != container;
2109 }
2110
2111 void address_space_sync_dirty_bitmap(AddressSpace *as)
2112 {
2113     FlatView *view;
2114     FlatRange *fr;
2115
2116     view = address_space_get_flatview(as);
2117     FOR_EACH_FLAT_RANGE(fr, view) {
2118         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2119     }
2120     flatview_unref(view);
2121 }
2122
2123 void memory_global_dirty_log_start(void)
2124 {
2125     global_dirty_log = true;
2126
2127     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2128
2129     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2130     memory_region_transaction_begin();
2131     memory_region_update_pending = true;
2132     memory_region_transaction_commit();
2133 }
2134
2135 void memory_global_dirty_log_stop(void)
2136 {
2137     global_dirty_log = false;
2138
2139     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2140     memory_region_transaction_begin();
2141     memory_region_update_pending = true;
2142     memory_region_transaction_commit();
2143
2144     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2145 }
2146
2147 static void listener_add_address_space(MemoryListener *listener,
2148                                        AddressSpace *as)
2149 {
2150     FlatView *view;
2151     FlatRange *fr;
2152
2153     if (listener->address_space_filter
2154         && listener->address_space_filter != as) {
2155         return;
2156     }
2157
2158     if (listener->begin) {
2159         listener->begin(listener);
2160     }
2161     if (global_dirty_log) {
2162         if (listener->log_global_start) {
2163             listener->log_global_start(listener);
2164         }
2165     }
2166
2167     view = address_space_get_flatview(as);
2168     FOR_EACH_FLAT_RANGE(fr, view) {
2169         MemoryRegionSection section = {
2170             .mr = fr->mr,
2171             .address_space = as,
2172             .offset_within_region = fr->offset_in_region,
2173             .size = fr->addr.size,
2174             .offset_within_address_space = int128_get64(fr->addr.start),
2175             .readonly = fr->readonly,
2176         };
2177         if (fr->dirty_log_mask && listener->log_start) {
2178             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2179         }
2180         if (listener->region_add) {
2181             listener->region_add(listener, &section);
2182         }
2183     }
2184     if (listener->commit) {
2185         listener->commit(listener);
2186     }
2187     flatview_unref(view);
2188 }
2189
2190 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2191 {
2192     MemoryListener *other = NULL;
2193     AddressSpace *as;
2194
2195     listener->address_space_filter = filter;
2196     if (QTAILQ_EMPTY(&memory_listeners)
2197         || listener->priority >= QTAILQ_LAST(&memory_listeners,
2198                                              memory_listeners)->priority) {
2199         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2200     } else {
2201         QTAILQ_FOREACH(other, &memory_listeners, link) {
2202             if (listener->priority < other->priority) {
2203                 break;
2204             }
2205         }
2206         QTAILQ_INSERT_BEFORE(other, listener, link);
2207     }
2208
2209     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2210         listener_add_address_space(listener, as);
2211     }
2212 }
2213
2214 void memory_listener_unregister(MemoryListener *listener)
2215 {
2216     QTAILQ_REMOVE(&memory_listeners, listener, link);
2217 }
2218
2219 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2220 {
2221     memory_region_ref(root);
2222     memory_region_transaction_begin();
2223     as->ref_count = 1;
2224     as->root = root;
2225     as->malloced = false;
2226     as->current_map = g_new(FlatView, 1);
2227     flatview_init(as->current_map);
2228     as->ioeventfd_nb = 0;
2229     as->ioeventfds = NULL;
2230     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2231     as->name = g_strdup(name ? name : "anonymous");
2232     address_space_init_dispatch(as);
2233     memory_region_update_pending |= root->enabled;
2234     memory_region_transaction_commit();
2235 }
2236
2237 static void do_address_space_destroy(AddressSpace *as)
2238 {
2239     MemoryListener *listener;
2240     bool do_free = as->malloced;
2241
2242     address_space_destroy_dispatch(as);
2243
2244     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2245         assert(listener->address_space_filter != as);
2246     }
2247
2248     flatview_unref(as->current_map);
2249     g_free(as->name);
2250     g_free(as->ioeventfds);
2251     memory_region_unref(as->root);
2252     if (do_free) {
2253         g_free(as);
2254     }
2255 }
2256
2257 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2258 {
2259     AddressSpace *as;
2260
2261     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2262         if (root == as->root && as->malloced) {
2263             as->ref_count++;
2264             return as;
2265         }
2266     }
2267
2268     as = g_malloc0(sizeof *as);
2269     address_space_init(as, root, name);
2270     as->malloced = true;
2271     return as;
2272 }
2273
2274 void address_space_destroy(AddressSpace *as)
2275 {
2276     MemoryRegion *root = as->root;
2277
2278     as->ref_count--;
2279     if (as->ref_count) {
2280         return;
2281     }
2282     /* Flush out anything from MemoryListeners listening in on this */
2283     memory_region_transaction_begin();
2284     as->root = NULL;
2285     memory_region_transaction_commit();
2286     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2287     address_space_unregister(as);
2288
2289     /* At this point, as->dispatch and as->current_map are dummy
2290      * entries that the guest should never use.  Wait for the old
2291      * values to expire before freeing the data.
2292      */
2293     as->root = root;
2294     call_rcu(as, do_address_space_destroy, rcu);
2295 }
2296
2297 typedef struct MemoryRegionList MemoryRegionList;
2298
2299 struct MemoryRegionList {
2300     const MemoryRegion *mr;
2301     QTAILQ_ENTRY(MemoryRegionList) queue;
2302 };
2303
2304 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2305
2306 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2307                            const MemoryRegion *mr, unsigned int level,
2308                            hwaddr base,
2309                            MemoryRegionListHead *alias_print_queue)
2310 {
2311     MemoryRegionList *new_ml, *ml, *next_ml;
2312     MemoryRegionListHead submr_print_queue;
2313     const MemoryRegion *submr;
2314     unsigned int i;
2315
2316     if (!mr) {
2317         return;
2318     }
2319
2320     for (i = 0; i < level; i++) {
2321         mon_printf(f, "  ");
2322     }
2323
2324     if (mr->alias) {
2325         MemoryRegionList *ml;
2326         bool found = false;
2327
2328         /* check if the alias is already in the queue */
2329         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2330             if (ml->mr == mr->alias) {
2331                 found = true;
2332             }
2333         }
2334
2335         if (!found) {
2336             ml = g_new(MemoryRegionList, 1);
2337             ml->mr = mr->alias;
2338             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2339         }
2340         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2341                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2342                    "-" TARGET_FMT_plx "%s\n",
2343                    base + mr->addr,
2344                    base + mr->addr
2345                    + (int128_nz(mr->size) ?
2346                       (hwaddr)int128_get64(int128_sub(mr->size,
2347                                                       int128_one())) : 0),
2348                    mr->priority,
2349                    mr->romd_mode ? 'R' : '-',
2350                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2351                                                                        : '-',
2352                    memory_region_name(mr),
2353                    memory_region_name(mr->alias),
2354                    mr->alias_offset,
2355                    mr->alias_offset
2356                    + (int128_nz(mr->size) ?
2357                       (hwaddr)int128_get64(int128_sub(mr->size,
2358                                                       int128_one())) : 0),
2359                    mr->enabled ? "" : " [disabled]");
2360     } else {
2361         mon_printf(f,
2362                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2363                    base + mr->addr,
2364                    base + mr->addr
2365                    + (int128_nz(mr->size) ?
2366                       (hwaddr)int128_get64(int128_sub(mr->size,
2367                                                       int128_one())) : 0),
2368                    mr->priority,
2369                    mr->romd_mode ? 'R' : '-',
2370                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2371                                                                        : '-',
2372                    memory_region_name(mr),
2373                    mr->enabled ? "" : " [disabled]");
2374     }
2375
2376     QTAILQ_INIT(&submr_print_queue);
2377
2378     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2379         new_ml = g_new(MemoryRegionList, 1);
2380         new_ml->mr = submr;
2381         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2382             if (new_ml->mr->addr < ml->mr->addr ||
2383                 (new_ml->mr->addr == ml->mr->addr &&
2384                  new_ml->mr->priority > ml->mr->priority)) {
2385                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2386                 new_ml = NULL;
2387                 break;
2388             }
2389         }
2390         if (new_ml) {
2391             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2392         }
2393     }
2394
2395     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2396         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2397                        alias_print_queue);
2398     }
2399
2400     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2401         g_free(ml);
2402     }
2403 }
2404
2405 void mtree_info(fprintf_function mon_printf, void *f)
2406 {
2407     MemoryRegionListHead ml_head;
2408     MemoryRegionList *ml, *ml2;
2409     AddressSpace *as;
2410
2411     QTAILQ_INIT(&ml_head);
2412
2413     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2414         mon_printf(f, "address-space: %s\n", as->name);
2415         mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2416         mon_printf(f, "\n");
2417     }
2418
2419     /* print aliased regions */
2420     QTAILQ_FOREACH(ml, &ml_head, queue) {
2421         mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2422         mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2423         mon_printf(f, "\n");
2424     }
2425
2426     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2427         g_free(ml);
2428     }
2429 }
2430
2431 static const TypeInfo memory_region_info = {
2432     .parent             = TYPE_OBJECT,
2433     .name               = TYPE_MEMORY_REGION,
2434     .instance_size      = sizeof(MemoryRegion),
2435     .instance_init      = memory_region_initfn,
2436     .instance_finalize  = memory_region_finalize,
2437 };
2438
2439 static void memory_register_types(void)
2440 {
2441     type_register_static(&memory_region_info);
2442 }
2443
2444 type_init(memory_register_types)