OSDN Git Service

Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[qmiga/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "qemu/osdep.h"
17 #include "exec/memory.h"
18 #include "exec/address-spaces.h"
19 #include "exec/ioport.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qom/object.h"
24 #include "trace.h"
25
26 #include "exec/memory-internal.h"
27 #include "exec/ram_addr.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/sysemu.h"
30
31 //#define DEBUG_UNASSIGNED
32
33 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
34
35 static unsigned memory_region_transaction_depth;
36 static bool memory_region_update_pending;
37 static bool ioeventfd_update_pending;
38 static bool global_dirty_log = false;
39
40 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
41     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
42
43 static QTAILQ_HEAD(, AddressSpace) address_spaces
44     = QTAILQ_HEAD_INITIALIZER(address_spaces);
45
46 typedef struct AddrRange AddrRange;
47
48 /*
49  * Note that signed integers are needed for negative offsetting in aliases
50  * (large MemoryRegion::alias_offset).
51  */
52 struct AddrRange {
53     Int128 start;
54     Int128 size;
55 };
56
57 static AddrRange addrrange_make(Int128 start, Int128 size)
58 {
59     return (AddrRange) { start, size };
60 }
61
62 static bool addrrange_equal(AddrRange r1, AddrRange r2)
63 {
64     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
65 }
66
67 static Int128 addrrange_end(AddrRange r)
68 {
69     return int128_add(r.start, r.size);
70 }
71
72 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
73 {
74     int128_addto(&range.start, delta);
75     return range;
76 }
77
78 static bool addrrange_contains(AddrRange range, Int128 addr)
79 {
80     return int128_ge(addr, range.start)
81         && int128_lt(addr, addrrange_end(range));
82 }
83
84 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
85 {
86     return addrrange_contains(r1, r2.start)
87         || addrrange_contains(r2, r1.start);
88 }
89
90 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
91 {
92     Int128 start = int128_max(r1.start, r2.start);
93     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
94     return addrrange_make(start, int128_sub(end, start));
95 }
96
97 enum ListenerDirection { Forward, Reverse };
98
99 static bool memory_listener_match(MemoryListener *listener,
100                                   MemoryRegionSection *section)
101 {
102     return !listener->address_space_filter
103         || listener->address_space_filter == section->address_space;
104 }
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
107     do {                                                                \
108         MemoryListener *_listener;                                      \
109                                                                         \
110         switch (_direction) {                                           \
111         case Forward:                                                   \
112             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         case Reverse:                                                   \
119             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
120                                    memory_listeners, link) {            \
121                 if (_listener->_callback) {                             \
122                     _listener->_callback(_listener, ##_args);           \
123                 }                                                       \
124             }                                                           \
125             break;                                                      \
126         default:                                                        \
127             abort();                                                    \
128         }                                                               \
129     } while (0)
130
131 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
132     do {                                                                \
133         MemoryListener *_listener;                                      \
134                                                                         \
135         switch (_direction) {                                           \
136         case Forward:                                                   \
137             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
138                 if (_listener->_callback                                \
139                     && memory_listener_match(_listener, _section)) {    \
140                     _listener->_callback(_listener, _section, ##_args); \
141                 }                                                       \
142             }                                                           \
143             break;                                                      \
144         case Reverse:                                                   \
145             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
146                                    memory_listeners, link) {            \
147                 if (_listener->_callback                                \
148                     && memory_listener_match(_listener, _section)) {    \
149                     _listener->_callback(_listener, _section, ##_args); \
150                 }                                                       \
151             }                                                           \
152             break;                                                      \
153         default:                                                        \
154             abort();                                                    \
155         }                                                               \
156     } while (0)
157
158 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
159 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
160     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
161         .mr = (fr)->mr,                                                 \
162         .address_space = (as),                                          \
163         .offset_within_region = (fr)->offset_in_region,                 \
164         .size = (fr)->addr.size,                                        \
165         .offset_within_address_space = int128_get64((fr)->addr.start),  \
166         .readonly = (fr)->readonly,                                     \
167               }), ##_args)
168
169 struct CoalescedMemoryRange {
170     AddrRange addr;
171     QTAILQ_ENTRY(CoalescedMemoryRange) link;
172 };
173
174 struct MemoryRegionIoeventfd {
175     AddrRange addr;
176     bool match_data;
177     uint64_t data;
178     EventNotifier *e;
179 };
180
181 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
182                                            MemoryRegionIoeventfd b)
183 {
184     if (int128_lt(a.addr.start, b.addr.start)) {
185         return true;
186     } else if (int128_gt(a.addr.start, b.addr.start)) {
187         return false;
188     } else if (int128_lt(a.addr.size, b.addr.size)) {
189         return true;
190     } else if (int128_gt(a.addr.size, b.addr.size)) {
191         return false;
192     } else if (a.match_data < b.match_data) {
193         return true;
194     } else  if (a.match_data > b.match_data) {
195         return false;
196     } else if (a.match_data) {
197         if (a.data < b.data) {
198             return true;
199         } else if (a.data > b.data) {
200             return false;
201         }
202     }
203     if (a.e < b.e) {
204         return true;
205     } else if (a.e > b.e) {
206         return false;
207     }
208     return false;
209 }
210
211 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
212                                           MemoryRegionIoeventfd b)
213 {
214     return !memory_region_ioeventfd_before(a, b)
215         && !memory_region_ioeventfd_before(b, a);
216 }
217
218 typedef struct FlatRange FlatRange;
219 typedef struct FlatView FlatView;
220
221 /* Range of memory in the global map.  Addresses are absolute. */
222 struct FlatRange {
223     MemoryRegion *mr;
224     hwaddr offset_in_region;
225     AddrRange addr;
226     uint8_t dirty_log_mask;
227     bool romd_mode;
228     bool readonly;
229 };
230
231 /* Flattened global view of current active memory hierarchy.  Kept in sorted
232  * order.
233  */
234 struct FlatView {
235     struct rcu_head rcu;
236     unsigned ref;
237     FlatRange *ranges;
238     unsigned nr;
239     unsigned nr_allocated;
240 };
241
242 typedef struct AddressSpaceOps AddressSpaceOps;
243
244 #define FOR_EACH_FLAT_RANGE(var, view)          \
245     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
246
247 static bool flatrange_equal(FlatRange *a, FlatRange *b)
248 {
249     return a->mr == b->mr
250         && addrrange_equal(a->addr, b->addr)
251         && a->offset_in_region == b->offset_in_region
252         && a->romd_mode == b->romd_mode
253         && a->readonly == b->readonly;
254 }
255
256 static void flatview_init(FlatView *view)
257 {
258     view->ref = 1;
259     view->ranges = NULL;
260     view->nr = 0;
261     view->nr_allocated = 0;
262 }
263
264 /* Insert a range into a given position.  Caller is responsible for maintaining
265  * sorting order.
266  */
267 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
268 {
269     if (view->nr == view->nr_allocated) {
270         view->nr_allocated = MAX(2 * view->nr, 10);
271         view->ranges = g_realloc(view->ranges,
272                                     view->nr_allocated * sizeof(*view->ranges));
273     }
274     memmove(view->ranges + pos + 1, view->ranges + pos,
275             (view->nr - pos) * sizeof(FlatRange));
276     view->ranges[pos] = *range;
277     memory_region_ref(range->mr);
278     ++view->nr;
279 }
280
281 static void flatview_destroy(FlatView *view)
282 {
283     int i;
284
285     for (i = 0; i < view->nr; i++) {
286         memory_region_unref(view->ranges[i].mr);
287     }
288     g_free(view->ranges);
289     g_free(view);
290 }
291
292 static void flatview_ref(FlatView *view)
293 {
294     atomic_inc(&view->ref);
295 }
296
297 static void flatview_unref(FlatView *view)
298 {
299     if (atomic_fetch_dec(&view->ref) == 1) {
300         flatview_destroy(view);
301     }
302 }
303
304 static bool can_merge(FlatRange *r1, FlatRange *r2)
305 {
306     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
307         && r1->mr == r2->mr
308         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
309                                 r1->addr.size),
310                      int128_make64(r2->offset_in_region))
311         && r1->dirty_log_mask == r2->dirty_log_mask
312         && r1->romd_mode == r2->romd_mode
313         && r1->readonly == r2->readonly;
314 }
315
316 /* Attempt to simplify a view by merging adjacent ranges */
317 static void flatview_simplify(FlatView *view)
318 {
319     unsigned i, j;
320
321     i = 0;
322     while (i < view->nr) {
323         j = i + 1;
324         while (j < view->nr
325                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
326             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
327             ++j;
328         }
329         ++i;
330         memmove(&view->ranges[i], &view->ranges[j],
331                 (view->nr - j) * sizeof(view->ranges[j]));
332         view->nr -= j - i;
333     }
334 }
335
336 static bool memory_region_big_endian(MemoryRegion *mr)
337 {
338 #ifdef TARGET_WORDS_BIGENDIAN
339     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
340 #else
341     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
342 #endif
343 }
344
345 static bool memory_region_wrong_endianness(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
349 #else
350     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
355 {
356     if (memory_region_wrong_endianness(mr)) {
357         switch (size) {
358         case 1:
359             break;
360         case 2:
361             *data = bswap16(*data);
362             break;
363         case 4:
364             *data = bswap32(*data);
365             break;
366         case 8:
367             *data = bswap64(*data);
368             break;
369         default:
370             abort();
371         }
372     }
373 }
374
375 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
376 {
377     MemoryRegion *root;
378     hwaddr abs_addr = offset;
379
380     abs_addr += mr->addr;
381     for (root = mr; root->container; ) {
382         root = root->container;
383         abs_addr += root->addr;
384     }
385
386     return abs_addr;
387 }
388
389 static int get_cpu_index(void)
390 {
391     if (current_cpu) {
392         return current_cpu->cpu_index;
393     }
394     return -1;
395 }
396
397 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
398                                                        hwaddr addr,
399                                                        uint64_t *value,
400                                                        unsigned size,
401                                                        unsigned shift,
402                                                        uint64_t mask,
403                                                        MemTxAttrs attrs)
404 {
405     uint64_t tmp;
406
407     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
408     if (mr->subpage) {
409         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
410     } else if (mr == &io_mem_notdirty) {
411         /* Accesses to code which has previously been translated into a TB show
412          * up in the MMIO path, as accesses to the io_mem_notdirty
413          * MemoryRegion. */
414         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
415     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
416         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
417         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
418     }
419     *value |= (tmp & mask) << shift;
420     return MEMTX_OK;
421 }
422
423 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
424                                                 hwaddr addr,
425                                                 uint64_t *value,
426                                                 unsigned size,
427                                                 unsigned shift,
428                                                 uint64_t mask,
429                                                 MemTxAttrs attrs)
430 {
431     uint64_t tmp;
432
433     tmp = mr->ops->read(mr->opaque, addr, size);
434     if (mr->subpage) {
435         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
436     } else if (mr == &io_mem_notdirty) {
437         /* Accesses to code which has previously been translated into a TB show
438          * up in the MMIO path, as accesses to the io_mem_notdirty
439          * MemoryRegion. */
440         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
441     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
442         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
443         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
444     }
445     *value |= (tmp & mask) << shift;
446     return MEMTX_OK;
447 }
448
449 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
450                                                           hwaddr addr,
451                                                           uint64_t *value,
452                                                           unsigned size,
453                                                           unsigned shift,
454                                                           uint64_t mask,
455                                                           MemTxAttrs attrs)
456 {
457     uint64_t tmp = 0;
458     MemTxResult r;
459
460     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
461     if (mr->subpage) {
462         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
463     } else if (mr == &io_mem_notdirty) {
464         /* Accesses to code which has previously been translated into a TB show
465          * up in the MMIO path, as accesses to the io_mem_notdirty
466          * MemoryRegion. */
467         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
468     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
469         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
470         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
471     }
472     *value |= (tmp & mask) << shift;
473     return r;
474 }
475
476 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
477                                                         hwaddr addr,
478                                                         uint64_t *value,
479                                                         unsigned size,
480                                                         unsigned shift,
481                                                         uint64_t mask,
482                                                         MemTxAttrs attrs)
483 {
484     uint64_t tmp;
485
486     tmp = (*value >> shift) & mask;
487     if (mr->subpage) {
488         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
489     } else if (mr == &io_mem_notdirty) {
490         /* Accesses to code which has previously been translated into a TB show
491          * up in the MMIO path, as accesses to the io_mem_notdirty
492          * MemoryRegion. */
493         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
494     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
495         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
496         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
497     }
498     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
499     return MEMTX_OK;
500 }
501
502 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
503                                                 hwaddr addr,
504                                                 uint64_t *value,
505                                                 unsigned size,
506                                                 unsigned shift,
507                                                 uint64_t mask,
508                                                 MemTxAttrs attrs)
509 {
510     uint64_t tmp;
511
512     tmp = (*value >> shift) & mask;
513     if (mr->subpage) {
514         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
515     } else if (mr == &io_mem_notdirty) {
516         /* Accesses to code which has previously been translated into a TB show
517          * up in the MMIO path, as accesses to the io_mem_notdirty
518          * MemoryRegion. */
519         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
520     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
521         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
522         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
523     }
524     mr->ops->write(mr->opaque, addr, tmp, size);
525     return MEMTX_OK;
526 }
527
528 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
529                                                            hwaddr addr,
530                                                            uint64_t *value,
531                                                            unsigned size,
532                                                            unsigned shift,
533                                                            uint64_t mask,
534                                                            MemTxAttrs attrs)
535 {
536     uint64_t tmp;
537
538     tmp = (*value >> shift) & mask;
539     if (mr->subpage) {
540         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
541     } else if (mr == &io_mem_notdirty) {
542         /* Accesses to code which has previously been translated into a TB show
543          * up in the MMIO path, as accesses to the io_mem_notdirty
544          * MemoryRegion. */
545         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
546     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
547         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
548         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
549     }
550     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
551 }
552
553 static MemTxResult access_with_adjusted_size(hwaddr addr,
554                                       uint64_t *value,
555                                       unsigned size,
556                                       unsigned access_size_min,
557                                       unsigned access_size_max,
558                                       MemTxResult (*access)(MemoryRegion *mr,
559                                                             hwaddr addr,
560                                                             uint64_t *value,
561                                                             unsigned size,
562                                                             unsigned shift,
563                                                             uint64_t mask,
564                                                             MemTxAttrs attrs),
565                                       MemoryRegion *mr,
566                                       MemTxAttrs attrs)
567 {
568     uint64_t access_mask;
569     unsigned access_size;
570     unsigned i;
571     MemTxResult r = MEMTX_OK;
572
573     if (!access_size_min) {
574         access_size_min = 1;
575     }
576     if (!access_size_max) {
577         access_size_max = 4;
578     }
579
580     /* FIXME: support unaligned access? */
581     access_size = MAX(MIN(size, access_size_max), access_size_min);
582     access_mask = -1ULL >> (64 - access_size * 8);
583     if (memory_region_big_endian(mr)) {
584         for (i = 0; i < size; i += access_size) {
585             r |= access(mr, addr + i, value, access_size,
586                         (size - access_size - i) * 8, access_mask, attrs);
587         }
588     } else {
589         for (i = 0; i < size; i += access_size) {
590             r |= access(mr, addr + i, value, access_size, i * 8,
591                         access_mask, attrs);
592         }
593     }
594     return r;
595 }
596
597 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
598 {
599     AddressSpace *as;
600
601     while (mr->container) {
602         mr = mr->container;
603     }
604     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
605         if (mr == as->root) {
606             return as;
607         }
608     }
609     return NULL;
610 }
611
612 /* Render a memory region into the global view.  Ranges in @view obscure
613  * ranges in @mr.
614  */
615 static void render_memory_region(FlatView *view,
616                                  MemoryRegion *mr,
617                                  Int128 base,
618                                  AddrRange clip,
619                                  bool readonly)
620 {
621     MemoryRegion *subregion;
622     unsigned i;
623     hwaddr offset_in_region;
624     Int128 remain;
625     Int128 now;
626     FlatRange fr;
627     AddrRange tmp;
628
629     if (!mr->enabled) {
630         return;
631     }
632
633     int128_addto(&base, int128_make64(mr->addr));
634     readonly |= mr->readonly;
635
636     tmp = addrrange_make(base, mr->size);
637
638     if (!addrrange_intersects(tmp, clip)) {
639         return;
640     }
641
642     clip = addrrange_intersection(tmp, clip);
643
644     if (mr->alias) {
645         int128_subfrom(&base, int128_make64(mr->alias->addr));
646         int128_subfrom(&base, int128_make64(mr->alias_offset));
647         render_memory_region(view, mr->alias, base, clip, readonly);
648         return;
649     }
650
651     /* Render subregions in priority order. */
652     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
653         render_memory_region(view, subregion, base, clip, readonly);
654     }
655
656     if (!mr->terminates) {
657         return;
658     }
659
660     offset_in_region = int128_get64(int128_sub(clip.start, base));
661     base = clip.start;
662     remain = clip.size;
663
664     fr.mr = mr;
665     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
666     fr.romd_mode = mr->romd_mode;
667     fr.readonly = readonly;
668
669     /* Render the region itself into any gaps left by the current view. */
670     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
671         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
672             continue;
673         }
674         if (int128_lt(base, view->ranges[i].addr.start)) {
675             now = int128_min(remain,
676                              int128_sub(view->ranges[i].addr.start, base));
677             fr.offset_in_region = offset_in_region;
678             fr.addr = addrrange_make(base, now);
679             flatview_insert(view, i, &fr);
680             ++i;
681             int128_addto(&base, now);
682             offset_in_region += int128_get64(now);
683             int128_subfrom(&remain, now);
684         }
685         now = int128_sub(int128_min(int128_add(base, remain),
686                                     addrrange_end(view->ranges[i].addr)),
687                          base);
688         int128_addto(&base, now);
689         offset_in_region += int128_get64(now);
690         int128_subfrom(&remain, now);
691     }
692     if (int128_nz(remain)) {
693         fr.offset_in_region = offset_in_region;
694         fr.addr = addrrange_make(base, remain);
695         flatview_insert(view, i, &fr);
696     }
697 }
698
699 /* Render a memory topology into a list of disjoint absolute ranges. */
700 static FlatView *generate_memory_topology(MemoryRegion *mr)
701 {
702     FlatView *view;
703
704     view = g_new(FlatView, 1);
705     flatview_init(view);
706
707     if (mr) {
708         render_memory_region(view, mr, int128_zero(),
709                              addrrange_make(int128_zero(), int128_2_64()), false);
710     }
711     flatview_simplify(view);
712
713     return view;
714 }
715
716 static void address_space_add_del_ioeventfds(AddressSpace *as,
717                                              MemoryRegionIoeventfd *fds_new,
718                                              unsigned fds_new_nb,
719                                              MemoryRegionIoeventfd *fds_old,
720                                              unsigned fds_old_nb)
721 {
722     unsigned iold, inew;
723     MemoryRegionIoeventfd *fd;
724     MemoryRegionSection section;
725
726     /* Generate a symmetric difference of the old and new fd sets, adding
727      * and deleting as necessary.
728      */
729
730     iold = inew = 0;
731     while (iold < fds_old_nb || inew < fds_new_nb) {
732         if (iold < fds_old_nb
733             && (inew == fds_new_nb
734                 || memory_region_ioeventfd_before(fds_old[iold],
735                                                   fds_new[inew]))) {
736             fd = &fds_old[iold];
737             section = (MemoryRegionSection) {
738                 .address_space = as,
739                 .offset_within_address_space = int128_get64(fd->addr.start),
740                 .size = fd->addr.size,
741             };
742             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
743                                  fd->match_data, fd->data, fd->e);
744             ++iold;
745         } else if (inew < fds_new_nb
746                    && (iold == fds_old_nb
747                        || memory_region_ioeventfd_before(fds_new[inew],
748                                                          fds_old[iold]))) {
749             fd = &fds_new[inew];
750             section = (MemoryRegionSection) {
751                 .address_space = as,
752                 .offset_within_address_space = int128_get64(fd->addr.start),
753                 .size = fd->addr.size,
754             };
755             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
756                                  fd->match_data, fd->data, fd->e);
757             ++inew;
758         } else {
759             ++iold;
760             ++inew;
761         }
762     }
763 }
764
765 static FlatView *address_space_get_flatview(AddressSpace *as)
766 {
767     FlatView *view;
768
769     rcu_read_lock();
770     view = atomic_rcu_read(&as->current_map);
771     flatview_ref(view);
772     rcu_read_unlock();
773     return view;
774 }
775
776 static void address_space_update_ioeventfds(AddressSpace *as)
777 {
778     FlatView *view;
779     FlatRange *fr;
780     unsigned ioeventfd_nb = 0;
781     MemoryRegionIoeventfd *ioeventfds = NULL;
782     AddrRange tmp;
783     unsigned i;
784
785     view = address_space_get_flatview(as);
786     FOR_EACH_FLAT_RANGE(fr, view) {
787         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
788             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
789                                   int128_sub(fr->addr.start,
790                                              int128_make64(fr->offset_in_region)));
791             if (addrrange_intersects(fr->addr, tmp)) {
792                 ++ioeventfd_nb;
793                 ioeventfds = g_realloc(ioeventfds,
794                                           ioeventfd_nb * sizeof(*ioeventfds));
795                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
796                 ioeventfds[ioeventfd_nb-1].addr = tmp;
797             }
798         }
799     }
800
801     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
802                                      as->ioeventfds, as->ioeventfd_nb);
803
804     g_free(as->ioeventfds);
805     as->ioeventfds = ioeventfds;
806     as->ioeventfd_nb = ioeventfd_nb;
807     flatview_unref(view);
808 }
809
810 static void address_space_update_topology_pass(AddressSpace *as,
811                                                const FlatView *old_view,
812                                                const FlatView *new_view,
813                                                bool adding)
814 {
815     unsigned iold, inew;
816     FlatRange *frold, *frnew;
817
818     /* Generate a symmetric difference of the old and new memory maps.
819      * Kill ranges in the old map, and instantiate ranges in the new map.
820      */
821     iold = inew = 0;
822     while (iold < old_view->nr || inew < new_view->nr) {
823         if (iold < old_view->nr) {
824             frold = &old_view->ranges[iold];
825         } else {
826             frold = NULL;
827         }
828         if (inew < new_view->nr) {
829             frnew = &new_view->ranges[inew];
830         } else {
831             frnew = NULL;
832         }
833
834         if (frold
835             && (!frnew
836                 || int128_lt(frold->addr.start, frnew->addr.start)
837                 || (int128_eq(frold->addr.start, frnew->addr.start)
838                     && !flatrange_equal(frold, frnew)))) {
839             /* In old but not in new, or in both but attributes changed. */
840
841             if (!adding) {
842                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
843             }
844
845             ++iold;
846         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
847             /* In both and unchanged (except logging may have changed) */
848
849             if (adding) {
850                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
851                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
852                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
853                                                   frold->dirty_log_mask,
854                                                   frnew->dirty_log_mask);
855                 }
856                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
857                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
858                                                   frold->dirty_log_mask,
859                                                   frnew->dirty_log_mask);
860                 }
861             }
862
863             ++iold;
864             ++inew;
865         } else {
866             /* In new */
867
868             if (adding) {
869                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
870             }
871
872             ++inew;
873         }
874     }
875 }
876
877
878 static void address_space_update_topology(AddressSpace *as)
879 {
880     FlatView *old_view = address_space_get_flatview(as);
881     FlatView *new_view = generate_memory_topology(as->root);
882
883     address_space_update_topology_pass(as, old_view, new_view, false);
884     address_space_update_topology_pass(as, old_view, new_view, true);
885
886     /* Writes are protected by the BQL.  */
887     atomic_rcu_set(&as->current_map, new_view);
888     call_rcu(old_view, flatview_unref, rcu);
889
890     /* Note that all the old MemoryRegions are still alive up to this
891      * point.  This relieves most MemoryListeners from the need to
892      * ref/unref the MemoryRegions they get---unless they use them
893      * outside the iothread mutex, in which case precise reference
894      * counting is necessary.
895      */
896     flatview_unref(old_view);
897
898     address_space_update_ioeventfds(as);
899 }
900
901 void memory_region_transaction_begin(void)
902 {
903     qemu_flush_coalesced_mmio_buffer();
904     ++memory_region_transaction_depth;
905 }
906
907 static void memory_region_clear_pending(void)
908 {
909     memory_region_update_pending = false;
910     ioeventfd_update_pending = false;
911 }
912
913 void memory_region_transaction_commit(void)
914 {
915     AddressSpace *as;
916
917     assert(memory_region_transaction_depth);
918     --memory_region_transaction_depth;
919     if (!memory_region_transaction_depth) {
920         if (memory_region_update_pending) {
921             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
922
923             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
924                 address_space_update_topology(as);
925             }
926
927             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
928         } else if (ioeventfd_update_pending) {
929             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
930                 address_space_update_ioeventfds(as);
931             }
932         }
933         memory_region_clear_pending();
934    }
935 }
936
937 static void memory_region_destructor_none(MemoryRegion *mr)
938 {
939 }
940
941 static void memory_region_destructor_ram(MemoryRegion *mr)
942 {
943     qemu_ram_free(mr->ram_block);
944 }
945
946 static void memory_region_destructor_rom_device(MemoryRegion *mr)
947 {
948     qemu_ram_free(mr->ram_block);
949 }
950
951 static bool memory_region_need_escape(char c)
952 {
953     return c == '/' || c == '[' || c == '\\' || c == ']';
954 }
955
956 static char *memory_region_escape_name(const char *name)
957 {
958     const char *p;
959     char *escaped, *q;
960     uint8_t c;
961     size_t bytes = 0;
962
963     for (p = name; *p; p++) {
964         bytes += memory_region_need_escape(*p) ? 4 : 1;
965     }
966     if (bytes == p - name) {
967        return g_memdup(name, bytes + 1);
968     }
969
970     escaped = g_malloc(bytes + 1);
971     for (p = name, q = escaped; *p; p++) {
972         c = *p;
973         if (unlikely(memory_region_need_escape(c))) {
974             *q++ = '\\';
975             *q++ = 'x';
976             *q++ = "0123456789abcdef"[c >> 4];
977             c = "0123456789abcdef"[c & 15];
978         }
979         *q++ = c;
980     }
981     *q = 0;
982     return escaped;
983 }
984
985 void memory_region_init(MemoryRegion *mr,
986                         Object *owner,
987                         const char *name,
988                         uint64_t size)
989 {
990     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
991     mr->size = int128_make64(size);
992     if (size == UINT64_MAX) {
993         mr->size = int128_2_64();
994     }
995     mr->name = g_strdup(name);
996     mr->owner = owner;
997     mr->ram_block = NULL;
998
999     if (name) {
1000         char *escaped_name = memory_region_escape_name(name);
1001         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1002
1003         if (!owner) {
1004             owner = container_get(qdev_get_machine(), "/unattached");
1005         }
1006
1007         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1008         object_unref(OBJECT(mr));
1009         g_free(name_array);
1010         g_free(escaped_name);
1011     }
1012 }
1013
1014 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1015                                    void *opaque, Error **errp)
1016 {
1017     MemoryRegion *mr = MEMORY_REGION(obj);
1018     uint64_t value = mr->addr;
1019
1020     visit_type_uint64(v, name, &value, errp);
1021 }
1022
1023 static void memory_region_get_container(Object *obj, Visitor *v,
1024                                         const char *name, void *opaque,
1025                                         Error **errp)
1026 {
1027     MemoryRegion *mr = MEMORY_REGION(obj);
1028     gchar *path = (gchar *)"";
1029
1030     if (mr->container) {
1031         path = object_get_canonical_path(OBJECT(mr->container));
1032     }
1033     visit_type_str(v, name, &path, errp);
1034     if (mr->container) {
1035         g_free(path);
1036     }
1037 }
1038
1039 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1040                                                const char *part)
1041 {
1042     MemoryRegion *mr = MEMORY_REGION(obj);
1043
1044     return OBJECT(mr->container);
1045 }
1046
1047 static void memory_region_get_priority(Object *obj, Visitor *v,
1048                                        const char *name, void *opaque,
1049                                        Error **errp)
1050 {
1051     MemoryRegion *mr = MEMORY_REGION(obj);
1052     int32_t value = mr->priority;
1053
1054     visit_type_int32(v, name, &value, errp);
1055 }
1056
1057 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
1058 {
1059     MemoryRegion *mr = MEMORY_REGION(obj);
1060
1061     return mr->may_overlap;
1062 }
1063
1064 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1065                                    void *opaque, Error **errp)
1066 {
1067     MemoryRegion *mr = MEMORY_REGION(obj);
1068     uint64_t value = memory_region_size(mr);
1069
1070     visit_type_uint64(v, name, &value, errp);
1071 }
1072
1073 static void memory_region_initfn(Object *obj)
1074 {
1075     MemoryRegion *mr = MEMORY_REGION(obj);
1076     ObjectProperty *op;
1077
1078     mr->ops = &unassigned_mem_ops;
1079     mr->enabled = true;
1080     mr->romd_mode = true;
1081     mr->global_locking = true;
1082     mr->destructor = memory_region_destructor_none;
1083     QTAILQ_INIT(&mr->subregions);
1084     QTAILQ_INIT(&mr->coalesced);
1085
1086     op = object_property_add(OBJECT(mr), "container",
1087                              "link<" TYPE_MEMORY_REGION ">",
1088                              memory_region_get_container,
1089                              NULL, /* memory_region_set_container */
1090                              NULL, NULL, &error_abort);
1091     op->resolve = memory_region_resolve_container;
1092
1093     object_property_add(OBJECT(mr), "addr", "uint64",
1094                         memory_region_get_addr,
1095                         NULL, /* memory_region_set_addr */
1096                         NULL, NULL, &error_abort);
1097     object_property_add(OBJECT(mr), "priority", "uint32",
1098                         memory_region_get_priority,
1099                         NULL, /* memory_region_set_priority */
1100                         NULL, NULL, &error_abort);
1101     object_property_add_bool(OBJECT(mr), "may-overlap",
1102                              memory_region_get_may_overlap,
1103                              NULL, /* memory_region_set_may_overlap */
1104                              &error_abort);
1105     object_property_add(OBJECT(mr), "size", "uint64",
1106                         memory_region_get_size,
1107                         NULL, /* memory_region_set_size, */
1108                         NULL, NULL, &error_abort);
1109 }
1110
1111 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1112                                     unsigned size)
1113 {
1114 #ifdef DEBUG_UNASSIGNED
1115     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1116 #endif
1117     if (current_cpu != NULL) {
1118         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1119     }
1120     return 0;
1121 }
1122
1123 static void unassigned_mem_write(void *opaque, hwaddr addr,
1124                                  uint64_t val, unsigned size)
1125 {
1126 #ifdef DEBUG_UNASSIGNED
1127     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1128 #endif
1129     if (current_cpu != NULL) {
1130         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1131     }
1132 }
1133
1134 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1135                                    unsigned size, bool is_write)
1136 {
1137     return false;
1138 }
1139
1140 const MemoryRegionOps unassigned_mem_ops = {
1141     .valid.accepts = unassigned_mem_accepts,
1142     .endianness = DEVICE_NATIVE_ENDIAN,
1143 };
1144
1145 bool memory_region_access_valid(MemoryRegion *mr,
1146                                 hwaddr addr,
1147                                 unsigned size,
1148                                 bool is_write)
1149 {
1150     int access_size_min, access_size_max;
1151     int access_size, i;
1152
1153     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1154         return false;
1155     }
1156
1157     if (!mr->ops->valid.accepts) {
1158         return true;
1159     }
1160
1161     access_size_min = mr->ops->valid.min_access_size;
1162     if (!mr->ops->valid.min_access_size) {
1163         access_size_min = 1;
1164     }
1165
1166     access_size_max = mr->ops->valid.max_access_size;
1167     if (!mr->ops->valid.max_access_size) {
1168         access_size_max = 4;
1169     }
1170
1171     access_size = MAX(MIN(size, access_size_max), access_size_min);
1172     for (i = 0; i < size; i += access_size) {
1173         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1174                                     is_write)) {
1175             return false;
1176         }
1177     }
1178
1179     return true;
1180 }
1181
1182 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1183                                                 hwaddr addr,
1184                                                 uint64_t *pval,
1185                                                 unsigned size,
1186                                                 MemTxAttrs attrs)
1187 {
1188     *pval = 0;
1189
1190     if (mr->ops->read) {
1191         return access_with_adjusted_size(addr, pval, size,
1192                                          mr->ops->impl.min_access_size,
1193                                          mr->ops->impl.max_access_size,
1194                                          memory_region_read_accessor,
1195                                          mr, attrs);
1196     } else if (mr->ops->read_with_attrs) {
1197         return access_with_adjusted_size(addr, pval, size,
1198                                          mr->ops->impl.min_access_size,
1199                                          mr->ops->impl.max_access_size,
1200                                          memory_region_read_with_attrs_accessor,
1201                                          mr, attrs);
1202     } else {
1203         return access_with_adjusted_size(addr, pval, size, 1, 4,
1204                                          memory_region_oldmmio_read_accessor,
1205                                          mr, attrs);
1206     }
1207 }
1208
1209 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1210                                         hwaddr addr,
1211                                         uint64_t *pval,
1212                                         unsigned size,
1213                                         MemTxAttrs attrs)
1214 {
1215     MemTxResult r;
1216
1217     if (!memory_region_access_valid(mr, addr, size, false)) {
1218         *pval = unassigned_mem_read(mr, addr, size);
1219         return MEMTX_DECODE_ERROR;
1220     }
1221
1222     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1223     adjust_endianness(mr, pval, size);
1224     return r;
1225 }
1226
1227 /* Return true if an eventfd was signalled */
1228 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1229                                                     hwaddr addr,
1230                                                     uint64_t data,
1231                                                     unsigned size,
1232                                                     MemTxAttrs attrs)
1233 {
1234     MemoryRegionIoeventfd ioeventfd = {
1235         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1236         .data = data,
1237     };
1238     unsigned i;
1239
1240     for (i = 0; i < mr->ioeventfd_nb; i++) {
1241         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1242         ioeventfd.e = mr->ioeventfds[i].e;
1243
1244         if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1245             event_notifier_set(ioeventfd.e);
1246             return true;
1247         }
1248     }
1249
1250     return false;
1251 }
1252
1253 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1254                                          hwaddr addr,
1255                                          uint64_t data,
1256                                          unsigned size,
1257                                          MemTxAttrs attrs)
1258 {
1259     if (!memory_region_access_valid(mr, addr, size, true)) {
1260         unassigned_mem_write(mr, addr, data, size);
1261         return MEMTX_DECODE_ERROR;
1262     }
1263
1264     adjust_endianness(mr, &data, size);
1265
1266     if ((!kvm_eventfds_enabled()) &&
1267         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1268         return MEMTX_OK;
1269     }
1270
1271     if (mr->ops->write) {
1272         return access_with_adjusted_size(addr, &data, size,
1273                                          mr->ops->impl.min_access_size,
1274                                          mr->ops->impl.max_access_size,
1275                                          memory_region_write_accessor, mr,
1276                                          attrs);
1277     } else if (mr->ops->write_with_attrs) {
1278         return
1279             access_with_adjusted_size(addr, &data, size,
1280                                       mr->ops->impl.min_access_size,
1281                                       mr->ops->impl.max_access_size,
1282                                       memory_region_write_with_attrs_accessor,
1283                                       mr, attrs);
1284     } else {
1285         return access_with_adjusted_size(addr, &data, size, 1, 4,
1286                                          memory_region_oldmmio_write_accessor,
1287                                          mr, attrs);
1288     }
1289 }
1290
1291 void memory_region_init_io(MemoryRegion *mr,
1292                            Object *owner,
1293                            const MemoryRegionOps *ops,
1294                            void *opaque,
1295                            const char *name,
1296                            uint64_t size)
1297 {
1298     memory_region_init(mr, owner, name, size);
1299     mr->ops = ops ? ops : &unassigned_mem_ops;
1300     mr->opaque = opaque;
1301     mr->terminates = true;
1302 }
1303
1304 void memory_region_init_ram(MemoryRegion *mr,
1305                             Object *owner,
1306                             const char *name,
1307                             uint64_t size,
1308                             Error **errp)
1309 {
1310     memory_region_init(mr, owner, name, size);
1311     mr->ram = true;
1312     mr->terminates = true;
1313     mr->destructor = memory_region_destructor_ram;
1314     mr->ram_block = qemu_ram_alloc(size, mr, errp);
1315     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1316 }
1317
1318 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1319                                        Object *owner,
1320                                        const char *name,
1321                                        uint64_t size,
1322                                        uint64_t max_size,
1323                                        void (*resized)(const char*,
1324                                                        uint64_t length,
1325                                                        void *host),
1326                                        Error **errp)
1327 {
1328     memory_region_init(mr, owner, name, size);
1329     mr->ram = true;
1330     mr->terminates = true;
1331     mr->destructor = memory_region_destructor_ram;
1332     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1333                                               mr, errp);
1334     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1335 }
1336
1337 #ifdef __linux__
1338 void memory_region_init_ram_from_file(MemoryRegion *mr,
1339                                       struct Object *owner,
1340                                       const char *name,
1341                                       uint64_t size,
1342                                       bool share,
1343                                       const char *path,
1344                                       Error **errp)
1345 {
1346     memory_region_init(mr, owner, name, size);
1347     mr->ram = true;
1348     mr->terminates = true;
1349     mr->destructor = memory_region_destructor_ram;
1350     mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1351     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1352 }
1353 #endif
1354
1355 void memory_region_init_ram_ptr(MemoryRegion *mr,
1356                                 Object *owner,
1357                                 const char *name,
1358                                 uint64_t size,
1359                                 void *ptr)
1360 {
1361     memory_region_init(mr, owner, name, size);
1362     mr->ram = true;
1363     mr->terminates = true;
1364     mr->destructor = memory_region_destructor_ram;
1365     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1366
1367     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1368     assert(ptr != NULL);
1369     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1370 }
1371
1372 void memory_region_set_skip_dump(MemoryRegion *mr)
1373 {
1374     mr->skip_dump = true;
1375 }
1376
1377 void memory_region_init_alias(MemoryRegion *mr,
1378                               Object *owner,
1379                               const char *name,
1380                               MemoryRegion *orig,
1381                               hwaddr offset,
1382                               uint64_t size)
1383 {
1384     memory_region_init(mr, owner, name, size);
1385     mr->alias = orig;
1386     mr->alias_offset = offset;
1387 }
1388
1389 void memory_region_init_rom_device(MemoryRegion *mr,
1390                                    Object *owner,
1391                                    const MemoryRegionOps *ops,
1392                                    void *opaque,
1393                                    const char *name,
1394                                    uint64_t size,
1395                                    Error **errp)
1396 {
1397     memory_region_init(mr, owner, name, size);
1398     mr->ops = ops;
1399     mr->opaque = opaque;
1400     mr->terminates = true;
1401     mr->rom_device = true;
1402     mr->destructor = memory_region_destructor_rom_device;
1403     mr->ram_block = qemu_ram_alloc(size, mr, errp);
1404 }
1405
1406 void memory_region_init_iommu(MemoryRegion *mr,
1407                               Object *owner,
1408                               const MemoryRegionIOMMUOps *ops,
1409                               const char *name,
1410                               uint64_t size)
1411 {
1412     memory_region_init(mr, owner, name, size);
1413     mr->iommu_ops = ops,
1414     mr->terminates = true;  /* then re-forwards */
1415     notifier_list_init(&mr->iommu_notify);
1416 }
1417
1418 static void memory_region_finalize(Object *obj)
1419 {
1420     MemoryRegion *mr = MEMORY_REGION(obj);
1421
1422     assert(!mr->container);
1423
1424     /* We know the region is not visible in any address space (it
1425      * does not have a container and cannot be a root either because
1426      * it has no references, so we can blindly clear mr->enabled.
1427      * memory_region_set_enabled instead could trigger a transaction
1428      * and cause an infinite loop.
1429      */
1430     mr->enabled = false;
1431     memory_region_transaction_begin();
1432     while (!QTAILQ_EMPTY(&mr->subregions)) {
1433         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1434         memory_region_del_subregion(mr, subregion);
1435     }
1436     memory_region_transaction_commit();
1437
1438     mr->destructor(mr);
1439     memory_region_clear_coalescing(mr);
1440     g_free((char *)mr->name);
1441     g_free(mr->ioeventfds);
1442 }
1443
1444 Object *memory_region_owner(MemoryRegion *mr)
1445 {
1446     Object *obj = OBJECT(mr);
1447     return obj->parent;
1448 }
1449
1450 void memory_region_ref(MemoryRegion *mr)
1451 {
1452     /* MMIO callbacks most likely will access data that belongs
1453      * to the owner, hence the need to ref/unref the owner whenever
1454      * the memory region is in use.
1455      *
1456      * The memory region is a child of its owner.  As long as the
1457      * owner doesn't call unparent itself on the memory region,
1458      * ref-ing the owner will also keep the memory region alive.
1459      * Memory regions without an owner are supposed to never go away;
1460      * we do not ref/unref them because it slows down DMA sensibly.
1461      */
1462     if (mr && mr->owner) {
1463         object_ref(mr->owner);
1464     }
1465 }
1466
1467 void memory_region_unref(MemoryRegion *mr)
1468 {
1469     if (mr && mr->owner) {
1470         object_unref(mr->owner);
1471     }
1472 }
1473
1474 uint64_t memory_region_size(MemoryRegion *mr)
1475 {
1476     if (int128_eq(mr->size, int128_2_64())) {
1477         return UINT64_MAX;
1478     }
1479     return int128_get64(mr->size);
1480 }
1481
1482 const char *memory_region_name(const MemoryRegion *mr)
1483 {
1484     if (!mr->name) {
1485         ((MemoryRegion *)mr)->name =
1486             object_get_canonical_path_component(OBJECT(mr));
1487     }
1488     return mr->name;
1489 }
1490
1491 bool memory_region_is_skip_dump(MemoryRegion *mr)
1492 {
1493     return mr->skip_dump;
1494 }
1495
1496 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1497 {
1498     uint8_t mask = mr->dirty_log_mask;
1499     if (global_dirty_log) {
1500         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1501     }
1502     return mask;
1503 }
1504
1505 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1506 {
1507     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1508 }
1509
1510 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1511 {
1512     notifier_list_add(&mr->iommu_notify, n);
1513 }
1514
1515 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1516                                 hwaddr granularity, bool is_write)
1517 {
1518     hwaddr addr;
1519     IOMMUTLBEntry iotlb;
1520
1521     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1522         iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1523         if (iotlb.perm != IOMMU_NONE) {
1524             n->notify(n, &iotlb);
1525         }
1526
1527         /* if (2^64 - MR size) < granularity, it's possible to get an
1528          * infinite loop here.  This should catch such a wraparound */
1529         if ((addr + granularity) < addr) {
1530             break;
1531         }
1532     }
1533 }
1534
1535 void memory_region_unregister_iommu_notifier(Notifier *n)
1536 {
1537     notifier_remove(n);
1538 }
1539
1540 void memory_region_notify_iommu(MemoryRegion *mr,
1541                                 IOMMUTLBEntry entry)
1542 {
1543     assert(memory_region_is_iommu(mr));
1544     notifier_list_notify(&mr->iommu_notify, &entry);
1545 }
1546
1547 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1548 {
1549     uint8_t mask = 1 << client;
1550     uint8_t old_logging;
1551
1552     assert(client == DIRTY_MEMORY_VGA);
1553     old_logging = mr->vga_logging_count;
1554     mr->vga_logging_count += log ? 1 : -1;
1555     if (!!old_logging == !!mr->vga_logging_count) {
1556         return;
1557     }
1558
1559     memory_region_transaction_begin();
1560     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1561     memory_region_update_pending |= mr->enabled;
1562     memory_region_transaction_commit();
1563 }
1564
1565 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1566                              hwaddr size, unsigned client)
1567 {
1568     assert(mr->ram_block);
1569     return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1570                                          size, client);
1571 }
1572
1573 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1574                              hwaddr size)
1575 {
1576     assert(mr->ram_block);
1577     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1578                                         size,
1579                                         memory_region_get_dirty_log_mask(mr));
1580 }
1581
1582 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1583                                         hwaddr size, unsigned client)
1584 {
1585     assert(mr->ram_block);
1586     return cpu_physical_memory_test_and_clear_dirty(
1587                 memory_region_get_ram_addr(mr) + addr, size, client);
1588 }
1589
1590
1591 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1592 {
1593     AddressSpace *as;
1594     FlatRange *fr;
1595
1596     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1597         FlatView *view = address_space_get_flatview(as);
1598         FOR_EACH_FLAT_RANGE(fr, view) {
1599             if (fr->mr == mr) {
1600                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1601             }
1602         }
1603         flatview_unref(view);
1604     }
1605 }
1606
1607 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1608 {
1609     if (mr->readonly != readonly) {
1610         memory_region_transaction_begin();
1611         mr->readonly = readonly;
1612         memory_region_update_pending |= mr->enabled;
1613         memory_region_transaction_commit();
1614     }
1615 }
1616
1617 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1618 {
1619     if (mr->romd_mode != romd_mode) {
1620         memory_region_transaction_begin();
1621         mr->romd_mode = romd_mode;
1622         memory_region_update_pending |= mr->enabled;
1623         memory_region_transaction_commit();
1624     }
1625 }
1626
1627 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1628                                hwaddr size, unsigned client)
1629 {
1630     assert(mr->ram_block);
1631     cpu_physical_memory_test_and_clear_dirty(
1632         memory_region_get_ram_addr(mr) + addr, size, client);
1633 }
1634
1635 int memory_region_get_fd(MemoryRegion *mr)
1636 {
1637     if (mr->alias) {
1638         return memory_region_get_fd(mr->alias);
1639     }
1640
1641     assert(mr->ram_block);
1642
1643     return qemu_get_ram_fd(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1644 }
1645
1646 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1647 {
1648     void *ptr;
1649     uint64_t offset = 0;
1650
1651     rcu_read_lock();
1652     while (mr->alias) {
1653         offset += mr->alias_offset;
1654         mr = mr->alias;
1655     }
1656     assert(mr->ram_block);
1657     ptr = qemu_get_ram_ptr(mr->ram_block,
1658                            memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1659     rcu_read_unlock();
1660
1661     return ptr + offset;
1662 }
1663
1664 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1665 {
1666     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1667 }
1668
1669 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1670 {
1671     assert(mr->ram_block);
1672
1673     qemu_ram_resize(memory_region_get_ram_addr(mr), newsize, errp);
1674 }
1675
1676 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1677 {
1678     FlatView *view;
1679     FlatRange *fr;
1680     CoalescedMemoryRange *cmr;
1681     AddrRange tmp;
1682     MemoryRegionSection section;
1683
1684     view = address_space_get_flatview(as);
1685     FOR_EACH_FLAT_RANGE(fr, view) {
1686         if (fr->mr == mr) {
1687             section = (MemoryRegionSection) {
1688                 .address_space = as,
1689                 .offset_within_address_space = int128_get64(fr->addr.start),
1690                 .size = fr->addr.size,
1691             };
1692
1693             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1694                                  int128_get64(fr->addr.start),
1695                                  int128_get64(fr->addr.size));
1696             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1697                 tmp = addrrange_shift(cmr->addr,
1698                                       int128_sub(fr->addr.start,
1699                                                  int128_make64(fr->offset_in_region)));
1700                 if (!addrrange_intersects(tmp, fr->addr)) {
1701                     continue;
1702                 }
1703                 tmp = addrrange_intersection(tmp, fr->addr);
1704                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1705                                      int128_get64(tmp.start),
1706                                      int128_get64(tmp.size));
1707             }
1708         }
1709     }
1710     flatview_unref(view);
1711 }
1712
1713 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1714 {
1715     AddressSpace *as;
1716
1717     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1718         memory_region_update_coalesced_range_as(mr, as);
1719     }
1720 }
1721
1722 void memory_region_set_coalescing(MemoryRegion *mr)
1723 {
1724     memory_region_clear_coalescing(mr);
1725     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1726 }
1727
1728 void memory_region_add_coalescing(MemoryRegion *mr,
1729                                   hwaddr offset,
1730                                   uint64_t size)
1731 {
1732     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1733
1734     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1735     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1736     memory_region_update_coalesced_range(mr);
1737     memory_region_set_flush_coalesced(mr);
1738 }
1739
1740 void memory_region_clear_coalescing(MemoryRegion *mr)
1741 {
1742     CoalescedMemoryRange *cmr;
1743     bool updated = false;
1744
1745     qemu_flush_coalesced_mmio_buffer();
1746     mr->flush_coalesced_mmio = false;
1747
1748     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1749         cmr = QTAILQ_FIRST(&mr->coalesced);
1750         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1751         g_free(cmr);
1752         updated = true;
1753     }
1754
1755     if (updated) {
1756         memory_region_update_coalesced_range(mr);
1757     }
1758 }
1759
1760 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1761 {
1762     mr->flush_coalesced_mmio = true;
1763 }
1764
1765 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1766 {
1767     qemu_flush_coalesced_mmio_buffer();
1768     if (QTAILQ_EMPTY(&mr->coalesced)) {
1769         mr->flush_coalesced_mmio = false;
1770     }
1771 }
1772
1773 void memory_region_set_global_locking(MemoryRegion *mr)
1774 {
1775     mr->global_locking = true;
1776 }
1777
1778 void memory_region_clear_global_locking(MemoryRegion *mr)
1779 {
1780     mr->global_locking = false;
1781 }
1782
1783 static bool userspace_eventfd_warning;
1784
1785 void memory_region_add_eventfd(MemoryRegion *mr,
1786                                hwaddr addr,
1787                                unsigned size,
1788                                bool match_data,
1789                                uint64_t data,
1790                                EventNotifier *e)
1791 {
1792     MemoryRegionIoeventfd mrfd = {
1793         .addr.start = int128_make64(addr),
1794         .addr.size = int128_make64(size),
1795         .match_data = match_data,
1796         .data = data,
1797         .e = e,
1798     };
1799     unsigned i;
1800
1801     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1802                             userspace_eventfd_warning))) {
1803         userspace_eventfd_warning = true;
1804         error_report("Using eventfd without MMIO binding in KVM. "
1805                      "Suboptimal performance expected");
1806     }
1807
1808     if (size) {
1809         adjust_endianness(mr, &mrfd.data, size);
1810     }
1811     memory_region_transaction_begin();
1812     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1813         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1814             break;
1815         }
1816     }
1817     ++mr->ioeventfd_nb;
1818     mr->ioeventfds = g_realloc(mr->ioeventfds,
1819                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1820     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1821             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1822     mr->ioeventfds[i] = mrfd;
1823     ioeventfd_update_pending |= mr->enabled;
1824     memory_region_transaction_commit();
1825 }
1826
1827 void memory_region_del_eventfd(MemoryRegion *mr,
1828                                hwaddr addr,
1829                                unsigned size,
1830                                bool match_data,
1831                                uint64_t data,
1832                                EventNotifier *e)
1833 {
1834     MemoryRegionIoeventfd mrfd = {
1835         .addr.start = int128_make64(addr),
1836         .addr.size = int128_make64(size),
1837         .match_data = match_data,
1838         .data = data,
1839         .e = e,
1840     };
1841     unsigned i;
1842
1843     if (size) {
1844         adjust_endianness(mr, &mrfd.data, size);
1845     }
1846     memory_region_transaction_begin();
1847     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1848         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1849             break;
1850         }
1851     }
1852     assert(i != mr->ioeventfd_nb);
1853     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1854             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1855     --mr->ioeventfd_nb;
1856     mr->ioeventfds = g_realloc(mr->ioeventfds,
1857                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1858     ioeventfd_update_pending |= mr->enabled;
1859     memory_region_transaction_commit();
1860 }
1861
1862 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1863 {
1864     hwaddr offset = subregion->addr;
1865     MemoryRegion *mr = subregion->container;
1866     MemoryRegion *other;
1867
1868     memory_region_transaction_begin();
1869
1870     memory_region_ref(subregion);
1871     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1872         if (subregion->may_overlap || other->may_overlap) {
1873             continue;
1874         }
1875         if (int128_ge(int128_make64(offset),
1876                       int128_add(int128_make64(other->addr), other->size))
1877             || int128_le(int128_add(int128_make64(offset), subregion->size),
1878                          int128_make64(other->addr))) {
1879             continue;
1880         }
1881 #if 0
1882         printf("warning: subregion collision %llx/%llx (%s) "
1883                "vs %llx/%llx (%s)\n",
1884                (unsigned long long)offset,
1885                (unsigned long long)int128_get64(subregion->size),
1886                subregion->name,
1887                (unsigned long long)other->addr,
1888                (unsigned long long)int128_get64(other->size),
1889                other->name);
1890 #endif
1891     }
1892     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1893         if (subregion->priority >= other->priority) {
1894             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1895             goto done;
1896         }
1897     }
1898     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1899 done:
1900     memory_region_update_pending |= mr->enabled && subregion->enabled;
1901     memory_region_transaction_commit();
1902 }
1903
1904 static void memory_region_add_subregion_common(MemoryRegion *mr,
1905                                                hwaddr offset,
1906                                                MemoryRegion *subregion)
1907 {
1908     assert(!subregion->container);
1909     subregion->container = mr;
1910     subregion->addr = offset;
1911     memory_region_update_container_subregions(subregion);
1912 }
1913
1914 void memory_region_add_subregion(MemoryRegion *mr,
1915                                  hwaddr offset,
1916                                  MemoryRegion *subregion)
1917 {
1918     subregion->may_overlap = false;
1919     subregion->priority = 0;
1920     memory_region_add_subregion_common(mr, offset, subregion);
1921 }
1922
1923 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1924                                          hwaddr offset,
1925                                          MemoryRegion *subregion,
1926                                          int priority)
1927 {
1928     subregion->may_overlap = true;
1929     subregion->priority = priority;
1930     memory_region_add_subregion_common(mr, offset, subregion);
1931 }
1932
1933 void memory_region_del_subregion(MemoryRegion *mr,
1934                                  MemoryRegion *subregion)
1935 {
1936     memory_region_transaction_begin();
1937     assert(subregion->container == mr);
1938     subregion->container = NULL;
1939     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1940     memory_region_unref(subregion);
1941     memory_region_update_pending |= mr->enabled && subregion->enabled;
1942     memory_region_transaction_commit();
1943 }
1944
1945 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1946 {
1947     if (enabled == mr->enabled) {
1948         return;
1949     }
1950     memory_region_transaction_begin();
1951     mr->enabled = enabled;
1952     memory_region_update_pending = true;
1953     memory_region_transaction_commit();
1954 }
1955
1956 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1957 {
1958     Int128 s = int128_make64(size);
1959
1960     if (size == UINT64_MAX) {
1961         s = int128_2_64();
1962     }
1963     if (int128_eq(s, mr->size)) {
1964         return;
1965     }
1966     memory_region_transaction_begin();
1967     mr->size = s;
1968     memory_region_update_pending = true;
1969     memory_region_transaction_commit();
1970 }
1971
1972 static void memory_region_readd_subregion(MemoryRegion *mr)
1973 {
1974     MemoryRegion *container = mr->container;
1975
1976     if (container) {
1977         memory_region_transaction_begin();
1978         memory_region_ref(mr);
1979         memory_region_del_subregion(container, mr);
1980         mr->container = container;
1981         memory_region_update_container_subregions(mr);
1982         memory_region_unref(mr);
1983         memory_region_transaction_commit();
1984     }
1985 }
1986
1987 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1988 {
1989     if (addr != mr->addr) {
1990         mr->addr = addr;
1991         memory_region_readd_subregion(mr);
1992     }
1993 }
1994
1995 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1996 {
1997     assert(mr->alias);
1998
1999     if (offset == mr->alias_offset) {
2000         return;
2001     }
2002
2003     memory_region_transaction_begin();
2004     mr->alias_offset = offset;
2005     memory_region_update_pending |= mr->enabled;
2006     memory_region_transaction_commit();
2007 }
2008
2009 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2010 {
2011     return mr->align;
2012 }
2013
2014 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2015 {
2016     const AddrRange *addr = addr_;
2017     const FlatRange *fr = fr_;
2018
2019     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2020         return -1;
2021     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2022         return 1;
2023     }
2024     return 0;
2025 }
2026
2027 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2028 {
2029     return bsearch(&addr, view->ranges, view->nr,
2030                    sizeof(FlatRange), cmp_flatrange_addr);
2031 }
2032
2033 bool memory_region_is_mapped(MemoryRegion *mr)
2034 {
2035     return mr->container ? true : false;
2036 }
2037
2038 /* Same as memory_region_find, but it does not add a reference to the
2039  * returned region.  It must be called from an RCU critical section.
2040  */
2041 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2042                                                   hwaddr addr, uint64_t size)
2043 {
2044     MemoryRegionSection ret = { .mr = NULL };
2045     MemoryRegion *root;
2046     AddressSpace *as;
2047     AddrRange range;
2048     FlatView *view;
2049     FlatRange *fr;
2050
2051     addr += mr->addr;
2052     for (root = mr; root->container; ) {
2053         root = root->container;
2054         addr += root->addr;
2055     }
2056
2057     as = memory_region_to_address_space(root);
2058     if (!as) {
2059         return ret;
2060     }
2061     range = addrrange_make(int128_make64(addr), int128_make64(size));
2062
2063     view = atomic_rcu_read(&as->current_map);
2064     fr = flatview_lookup(view, range);
2065     if (!fr) {
2066         return ret;
2067     }
2068
2069     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2070         --fr;
2071     }
2072
2073     ret.mr = fr->mr;
2074     ret.address_space = as;
2075     range = addrrange_intersection(range, fr->addr);
2076     ret.offset_within_region = fr->offset_in_region;
2077     ret.offset_within_region += int128_get64(int128_sub(range.start,
2078                                                         fr->addr.start));
2079     ret.size = range.size;
2080     ret.offset_within_address_space = int128_get64(range.start);
2081     ret.readonly = fr->readonly;
2082     return ret;
2083 }
2084
2085 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2086                                        hwaddr addr, uint64_t size)
2087 {
2088     MemoryRegionSection ret;
2089     rcu_read_lock();
2090     ret = memory_region_find_rcu(mr, addr, size);
2091     if (ret.mr) {
2092         memory_region_ref(ret.mr);
2093     }
2094     rcu_read_unlock();
2095     return ret;
2096 }
2097
2098 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2099 {
2100     MemoryRegion *mr;
2101
2102     rcu_read_lock();
2103     mr = memory_region_find_rcu(container, addr, 1).mr;
2104     rcu_read_unlock();
2105     return mr && mr != container;
2106 }
2107
2108 void address_space_sync_dirty_bitmap(AddressSpace *as)
2109 {
2110     FlatView *view;
2111     FlatRange *fr;
2112
2113     view = address_space_get_flatview(as);
2114     FOR_EACH_FLAT_RANGE(fr, view) {
2115         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2116     }
2117     flatview_unref(view);
2118 }
2119
2120 void memory_global_dirty_log_start(void)
2121 {
2122     global_dirty_log = true;
2123
2124     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2125
2126     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2127     memory_region_transaction_begin();
2128     memory_region_update_pending = true;
2129     memory_region_transaction_commit();
2130 }
2131
2132 void memory_global_dirty_log_stop(void)
2133 {
2134     global_dirty_log = false;
2135
2136     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2137     memory_region_transaction_begin();
2138     memory_region_update_pending = true;
2139     memory_region_transaction_commit();
2140
2141     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2142 }
2143
2144 static void listener_add_address_space(MemoryListener *listener,
2145                                        AddressSpace *as)
2146 {
2147     FlatView *view;
2148     FlatRange *fr;
2149
2150     if (listener->address_space_filter
2151         && listener->address_space_filter != as) {
2152         return;
2153     }
2154
2155     if (listener->begin) {
2156         listener->begin(listener);
2157     }
2158     if (global_dirty_log) {
2159         if (listener->log_global_start) {
2160             listener->log_global_start(listener);
2161         }
2162     }
2163
2164     view = address_space_get_flatview(as);
2165     FOR_EACH_FLAT_RANGE(fr, view) {
2166         MemoryRegionSection section = {
2167             .mr = fr->mr,
2168             .address_space = as,
2169             .offset_within_region = fr->offset_in_region,
2170             .size = fr->addr.size,
2171             .offset_within_address_space = int128_get64(fr->addr.start),
2172             .readonly = fr->readonly,
2173         };
2174         if (fr->dirty_log_mask && listener->log_start) {
2175             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2176         }
2177         if (listener->region_add) {
2178             listener->region_add(listener, &section);
2179         }
2180     }
2181     if (listener->commit) {
2182         listener->commit(listener);
2183     }
2184     flatview_unref(view);
2185 }
2186
2187 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2188 {
2189     MemoryListener *other = NULL;
2190     AddressSpace *as;
2191
2192     listener->address_space_filter = filter;
2193     if (QTAILQ_EMPTY(&memory_listeners)
2194         || listener->priority >= QTAILQ_LAST(&memory_listeners,
2195                                              memory_listeners)->priority) {
2196         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2197     } else {
2198         QTAILQ_FOREACH(other, &memory_listeners, link) {
2199             if (listener->priority < other->priority) {
2200                 break;
2201             }
2202         }
2203         QTAILQ_INSERT_BEFORE(other, listener, link);
2204     }
2205
2206     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2207         listener_add_address_space(listener, as);
2208     }
2209 }
2210
2211 void memory_listener_unregister(MemoryListener *listener)
2212 {
2213     QTAILQ_REMOVE(&memory_listeners, listener, link);
2214 }
2215
2216 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2217 {
2218     memory_region_ref(root);
2219     memory_region_transaction_begin();
2220     as->ref_count = 1;
2221     as->root = root;
2222     as->malloced = false;
2223     as->current_map = g_new(FlatView, 1);
2224     flatview_init(as->current_map);
2225     as->ioeventfd_nb = 0;
2226     as->ioeventfds = NULL;
2227     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2228     as->name = g_strdup(name ? name : "anonymous");
2229     address_space_init_dispatch(as);
2230     memory_region_update_pending |= root->enabled;
2231     memory_region_transaction_commit();
2232 }
2233
2234 static void do_address_space_destroy(AddressSpace *as)
2235 {
2236     MemoryListener *listener;
2237     bool do_free = as->malloced;
2238
2239     address_space_destroy_dispatch(as);
2240
2241     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2242         assert(listener->address_space_filter != as);
2243     }
2244
2245     flatview_unref(as->current_map);
2246     g_free(as->name);
2247     g_free(as->ioeventfds);
2248     memory_region_unref(as->root);
2249     if (do_free) {
2250         g_free(as);
2251     }
2252 }
2253
2254 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2255 {
2256     AddressSpace *as;
2257
2258     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2259         if (root == as->root && as->malloced) {
2260             as->ref_count++;
2261             return as;
2262         }
2263     }
2264
2265     as = g_malloc0(sizeof *as);
2266     address_space_init(as, root, name);
2267     as->malloced = true;
2268     return as;
2269 }
2270
2271 void address_space_destroy(AddressSpace *as)
2272 {
2273     MemoryRegion *root = as->root;
2274
2275     as->ref_count--;
2276     if (as->ref_count) {
2277         return;
2278     }
2279     /* Flush out anything from MemoryListeners listening in on this */
2280     memory_region_transaction_begin();
2281     as->root = NULL;
2282     memory_region_transaction_commit();
2283     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2284     address_space_unregister(as);
2285
2286     /* At this point, as->dispatch and as->current_map are dummy
2287      * entries that the guest should never use.  Wait for the old
2288      * values to expire before freeing the data.
2289      */
2290     as->root = root;
2291     call_rcu(as, do_address_space_destroy, rcu);
2292 }
2293
2294 typedef struct MemoryRegionList MemoryRegionList;
2295
2296 struct MemoryRegionList {
2297     const MemoryRegion *mr;
2298     QTAILQ_ENTRY(MemoryRegionList) queue;
2299 };
2300
2301 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2302
2303 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2304                            const MemoryRegion *mr, unsigned int level,
2305                            hwaddr base,
2306                            MemoryRegionListHead *alias_print_queue)
2307 {
2308     MemoryRegionList *new_ml, *ml, *next_ml;
2309     MemoryRegionListHead submr_print_queue;
2310     const MemoryRegion *submr;
2311     unsigned int i;
2312
2313     if (!mr) {
2314         return;
2315     }
2316
2317     for (i = 0; i < level; i++) {
2318         mon_printf(f, "  ");
2319     }
2320
2321     if (mr->alias) {
2322         MemoryRegionList *ml;
2323         bool found = false;
2324
2325         /* check if the alias is already in the queue */
2326         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2327             if (ml->mr == mr->alias) {
2328                 found = true;
2329             }
2330         }
2331
2332         if (!found) {
2333             ml = g_new(MemoryRegionList, 1);
2334             ml->mr = mr->alias;
2335             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2336         }
2337         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2338                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2339                    "-" TARGET_FMT_plx "%s\n",
2340                    base + mr->addr,
2341                    base + mr->addr
2342                    + (int128_nz(mr->size) ?
2343                       (hwaddr)int128_get64(int128_sub(mr->size,
2344                                                       int128_one())) : 0),
2345                    mr->priority,
2346                    mr->romd_mode ? 'R' : '-',
2347                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2348                                                                        : '-',
2349                    memory_region_name(mr),
2350                    memory_region_name(mr->alias),
2351                    mr->alias_offset,
2352                    mr->alias_offset
2353                    + (int128_nz(mr->size) ?
2354                       (hwaddr)int128_get64(int128_sub(mr->size,
2355                                                       int128_one())) : 0),
2356                    mr->enabled ? "" : " [disabled]");
2357     } else {
2358         mon_printf(f,
2359                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2360                    base + mr->addr,
2361                    base + mr->addr
2362                    + (int128_nz(mr->size) ?
2363                       (hwaddr)int128_get64(int128_sub(mr->size,
2364                                                       int128_one())) : 0),
2365                    mr->priority,
2366                    mr->romd_mode ? 'R' : '-',
2367                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2368                                                                        : '-',
2369                    memory_region_name(mr),
2370                    mr->enabled ? "" : " [disabled]");
2371     }
2372
2373     QTAILQ_INIT(&submr_print_queue);
2374
2375     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2376         new_ml = g_new(MemoryRegionList, 1);
2377         new_ml->mr = submr;
2378         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2379             if (new_ml->mr->addr < ml->mr->addr ||
2380                 (new_ml->mr->addr == ml->mr->addr &&
2381                  new_ml->mr->priority > ml->mr->priority)) {
2382                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2383                 new_ml = NULL;
2384                 break;
2385             }
2386         }
2387         if (new_ml) {
2388             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2389         }
2390     }
2391
2392     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2393         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2394                        alias_print_queue);
2395     }
2396
2397     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2398         g_free(ml);
2399     }
2400 }
2401
2402 void mtree_info(fprintf_function mon_printf, void *f)
2403 {
2404     MemoryRegionListHead ml_head;
2405     MemoryRegionList *ml, *ml2;
2406     AddressSpace *as;
2407
2408     QTAILQ_INIT(&ml_head);
2409
2410     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2411         mon_printf(f, "address-space: %s\n", as->name);
2412         mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2413         mon_printf(f, "\n");
2414     }
2415
2416     /* print aliased regions */
2417     QTAILQ_FOREACH(ml, &ml_head, queue) {
2418         mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2419         mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2420         mon_printf(f, "\n");
2421     }
2422
2423     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2424         g_free(ml);
2425     }
2426 }
2427
2428 static const TypeInfo memory_region_info = {
2429     .parent             = TYPE_OBJECT,
2430     .name               = TYPE_MEMORY_REGION,
2431     .instance_size      = sizeof(MemoryRegion),
2432     .instance_init      = memory_region_initfn,
2433     .instance_finalize  = memory_region_finalize,
2434 };
2435
2436 static void memory_register_types(void)
2437 {
2438     type_register_static(&memory_region_info);
2439 }
2440
2441 type_init(memory_register_types)