OSDN Git Service

Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[qmiga/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33
34 //#define DEBUG_UNASSIGNED
35
36 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
37
38 static unsigned memory_region_transaction_depth;
39 static bool memory_region_update_pending;
40 static bool ioeventfd_update_pending;
41 static bool global_dirty_log = false;
42
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47     = QTAILQ_HEAD_INITIALIZER(address_spaces);
48
49 typedef struct AddrRange AddrRange;
50
51 /*
52  * Note that signed integers are needed for negative offsetting in aliases
53  * (large MemoryRegion::alias_offset).
54  */
55 struct AddrRange {
56     Int128 start;
57     Int128 size;
58 };
59
60 static AddrRange addrrange_make(Int128 start, Int128 size)
61 {
62     return (AddrRange) { start, size };
63 }
64
65 static bool addrrange_equal(AddrRange r1, AddrRange r2)
66 {
67     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
68 }
69
70 static Int128 addrrange_end(AddrRange r)
71 {
72     return int128_add(r.start, r.size);
73 }
74
75 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
76 {
77     int128_addto(&range.start, delta);
78     return range;
79 }
80
81 static bool addrrange_contains(AddrRange range, Int128 addr)
82 {
83     return int128_ge(addr, range.start)
84         && int128_lt(addr, addrrange_end(range));
85 }
86
87 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
88 {
89     return addrrange_contains(r1, r2.start)
90         || addrrange_contains(r2, r1.start);
91 }
92
93 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
94 {
95     Int128 start = int128_max(r1.start, r2.start);
96     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
97     return addrrange_make(start, int128_sub(end, start));
98 }
99
100 enum ListenerDirection { Forward, Reverse };
101
102 static bool memory_listener_match(MemoryListener *listener,
103                                   MemoryRegionSection *section)
104 {
105     return !listener->address_space_filter
106         || listener->address_space_filter == section->address_space;
107 }
108
109 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
110     do {                                                                \
111         MemoryListener *_listener;                                      \
112                                                                         \
113         switch (_direction) {                                           \
114         case Forward:                                                   \
115             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
116                 if (_listener->_callback) {                             \
117                     _listener->_callback(_listener, ##_args);           \
118                 }                                                       \
119             }                                                           \
120             break;                                                      \
121         case Reverse:                                                   \
122             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
123                                    memory_listeners, link) {            \
124                 if (_listener->_callback) {                             \
125                     _listener->_callback(_listener, ##_args);           \
126                 }                                                       \
127             }                                                           \
128             break;                                                      \
129         default:                                                        \
130             abort();                                                    \
131         }                                                               \
132     } while (0)
133
134 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
135     do {                                                                \
136         MemoryListener *_listener;                                      \
137                                                                         \
138         switch (_direction) {                                           \
139         case Forward:                                                   \
140             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
141                 if (_listener->_callback                                \
142                     && memory_listener_match(_listener, _section)) {    \
143                     _listener->_callback(_listener, _section, ##_args); \
144                 }                                                       \
145             }                                                           \
146             break;                                                      \
147         case Reverse:                                                   \
148             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
149                                    memory_listeners, link) {            \
150                 if (_listener->_callback                                \
151                     && memory_listener_match(_listener, _section)) {    \
152                     _listener->_callback(_listener, _section, ##_args); \
153                 }                                                       \
154             }                                                           \
155             break;                                                      \
156         default:                                                        \
157             abort();                                                    \
158         }                                                               \
159     } while (0)
160
161 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
162 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
163     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
164         .mr = (fr)->mr,                                                 \
165         .address_space = (as),                                          \
166         .offset_within_region = (fr)->offset_in_region,                 \
167         .size = (fr)->addr.size,                                        \
168         .offset_within_address_space = int128_get64((fr)->addr.start),  \
169         .readonly = (fr)->readonly,                                     \
170               }), ##_args)
171
172 struct CoalescedMemoryRange {
173     AddrRange addr;
174     QTAILQ_ENTRY(CoalescedMemoryRange) link;
175 };
176
177 struct MemoryRegionIoeventfd {
178     AddrRange addr;
179     bool match_data;
180     uint64_t data;
181     EventNotifier *e;
182 };
183
184 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
185                                            MemoryRegionIoeventfd b)
186 {
187     if (int128_lt(a.addr.start, b.addr.start)) {
188         return true;
189     } else if (int128_gt(a.addr.start, b.addr.start)) {
190         return false;
191     } else if (int128_lt(a.addr.size, b.addr.size)) {
192         return true;
193     } else if (int128_gt(a.addr.size, b.addr.size)) {
194         return false;
195     } else if (a.match_data < b.match_data) {
196         return true;
197     } else  if (a.match_data > b.match_data) {
198         return false;
199     } else if (a.match_data) {
200         if (a.data < b.data) {
201             return true;
202         } else if (a.data > b.data) {
203             return false;
204         }
205     }
206     if (a.e < b.e) {
207         return true;
208     } else if (a.e > b.e) {
209         return false;
210     }
211     return false;
212 }
213
214 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
215                                           MemoryRegionIoeventfd b)
216 {
217     return !memory_region_ioeventfd_before(a, b)
218         && !memory_region_ioeventfd_before(b, a);
219 }
220
221 typedef struct FlatRange FlatRange;
222 typedef struct FlatView FlatView;
223
224 /* Range of memory in the global map.  Addresses are absolute. */
225 struct FlatRange {
226     MemoryRegion *mr;
227     hwaddr offset_in_region;
228     AddrRange addr;
229     uint8_t dirty_log_mask;
230     bool readonly;
231 };
232
233 /* Flattened global view of current active memory hierarchy.  Kept in sorted
234  * order.
235  */
236 struct FlatView {
237     struct rcu_head rcu;
238     unsigned ref;
239     FlatRange *ranges;
240     unsigned nr;
241     unsigned nr_allocated;
242 };
243
244 typedef struct AddressSpaceOps AddressSpaceOps;
245
246 #define FOR_EACH_FLAT_RANGE(var, view)          \
247     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
248
249 static bool flatrange_equal(FlatRange *a, FlatRange *b)
250 {
251     return a->mr == b->mr
252         && addrrange_equal(a->addr, b->addr)
253         && a->offset_in_region == b->offset_in_region
254         && a->readonly == b->readonly;
255 }
256
257 static void flatview_init(FlatView *view)
258 {
259     view->ref = 1;
260     view->ranges = NULL;
261     view->nr = 0;
262     view->nr_allocated = 0;
263 }
264
265 /* Insert a range into a given position.  Caller is responsible for maintaining
266  * sorting order.
267  */
268 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
269 {
270     if (view->nr == view->nr_allocated) {
271         view->nr_allocated = MAX(2 * view->nr, 10);
272         view->ranges = g_realloc(view->ranges,
273                                     view->nr_allocated * sizeof(*view->ranges));
274     }
275     memmove(view->ranges + pos + 1, view->ranges + pos,
276             (view->nr - pos) * sizeof(FlatRange));
277     view->ranges[pos] = *range;
278     memory_region_ref(range->mr);
279     ++view->nr;
280 }
281
282 static void flatview_destroy(FlatView *view)
283 {
284     int i;
285
286     for (i = 0; i < view->nr; i++) {
287         memory_region_unref(view->ranges[i].mr);
288     }
289     g_free(view->ranges);
290     g_free(view);
291 }
292
293 static void flatview_ref(FlatView *view)
294 {
295     atomic_inc(&view->ref);
296 }
297
298 static void flatview_unref(FlatView *view)
299 {
300     if (atomic_fetch_dec(&view->ref) == 1) {
301         flatview_destroy(view);
302     }
303 }
304
305 static bool can_merge(FlatRange *r1, FlatRange *r2)
306 {
307     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
308         && r1->mr == r2->mr
309         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
310                                 r1->addr.size),
311                      int128_make64(r2->offset_in_region))
312         && r1->dirty_log_mask == r2->dirty_log_mask
313         && r1->readonly == r2->readonly;
314 }
315
316 /* Attempt to simplify a view by merging adjacent ranges */
317 static void flatview_simplify(FlatView *view)
318 {
319     unsigned i, j;
320
321     i = 0;
322     while (i < view->nr) {
323         j = i + 1;
324         while (j < view->nr
325                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
326             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
327             ++j;
328         }
329         ++i;
330         memmove(&view->ranges[i], &view->ranges[j],
331                 (view->nr - j) * sizeof(view->ranges[j]));
332         view->nr -= j - i;
333     }
334 }
335
336 static bool memory_region_big_endian(MemoryRegion *mr)
337 {
338 #ifdef TARGET_WORDS_BIGENDIAN
339     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
340 #else
341     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
342 #endif
343 }
344
345 static bool memory_region_wrong_endianness(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
349 #else
350     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
355 {
356     if (memory_region_wrong_endianness(mr)) {
357         switch (size) {
358         case 1:
359             break;
360         case 2:
361             *data = bswap16(*data);
362             break;
363         case 4:
364             *data = bswap32(*data);
365             break;
366         case 8:
367             *data = bswap64(*data);
368             break;
369         default:
370             abort();
371         }
372     }
373 }
374
375 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
376 {
377     MemoryRegion *root;
378     hwaddr abs_addr = offset;
379
380     abs_addr += mr->addr;
381     for (root = mr; root->container; ) {
382         root = root->container;
383         abs_addr += root->addr;
384     }
385
386     return abs_addr;
387 }
388
389 static int get_cpu_index(void)
390 {
391     if (current_cpu) {
392         return current_cpu->cpu_index;
393     }
394     return -1;
395 }
396
397 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
398                                                        hwaddr addr,
399                                                        uint64_t *value,
400                                                        unsigned size,
401                                                        unsigned shift,
402                                                        uint64_t mask,
403                                                        MemTxAttrs attrs)
404 {
405     uint64_t tmp;
406
407     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
408     if (mr->subpage) {
409         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
410     } else if (mr == &io_mem_notdirty) {
411         /* Accesses to code which has previously been translated into a TB show
412          * up in the MMIO path, as accesses to the io_mem_notdirty
413          * MemoryRegion. */
414         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
415     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
416         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
417         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
418     }
419     *value |= (tmp & mask) << shift;
420     return MEMTX_OK;
421 }
422
423 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
424                                                 hwaddr addr,
425                                                 uint64_t *value,
426                                                 unsigned size,
427                                                 unsigned shift,
428                                                 uint64_t mask,
429                                                 MemTxAttrs attrs)
430 {
431     uint64_t tmp;
432
433     tmp = mr->ops->read(mr->opaque, addr, size);
434     if (mr->subpage) {
435         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
436     } else if (mr == &io_mem_notdirty) {
437         /* Accesses to code which has previously been translated into a TB show
438          * up in the MMIO path, as accesses to the io_mem_notdirty
439          * MemoryRegion. */
440         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
441     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
442         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
443         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
444     }
445     *value |= (tmp & mask) << shift;
446     return MEMTX_OK;
447 }
448
449 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
450                                                           hwaddr addr,
451                                                           uint64_t *value,
452                                                           unsigned size,
453                                                           unsigned shift,
454                                                           uint64_t mask,
455                                                           MemTxAttrs attrs)
456 {
457     uint64_t tmp = 0;
458     MemTxResult r;
459
460     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
461     if (mr->subpage) {
462         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
463     } else if (mr == &io_mem_notdirty) {
464         /* Accesses to code which has previously been translated into a TB show
465          * up in the MMIO path, as accesses to the io_mem_notdirty
466          * MemoryRegion. */
467         trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
468     } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
469         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
470         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
471     }
472     *value |= (tmp & mask) << shift;
473     return r;
474 }
475
476 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
477                                                         hwaddr addr,
478                                                         uint64_t *value,
479                                                         unsigned size,
480                                                         unsigned shift,
481                                                         uint64_t mask,
482                                                         MemTxAttrs attrs)
483 {
484     uint64_t tmp;
485
486     tmp = (*value >> shift) & mask;
487     if (mr->subpage) {
488         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
489     } else if (mr == &io_mem_notdirty) {
490         /* Accesses to code which has previously been translated into a TB show
491          * up in the MMIO path, as accesses to the io_mem_notdirty
492          * MemoryRegion. */
493         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
494     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
495         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
496         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
497     }
498     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
499     return MEMTX_OK;
500 }
501
502 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
503                                                 hwaddr addr,
504                                                 uint64_t *value,
505                                                 unsigned size,
506                                                 unsigned shift,
507                                                 uint64_t mask,
508                                                 MemTxAttrs attrs)
509 {
510     uint64_t tmp;
511
512     tmp = (*value >> shift) & mask;
513     if (mr->subpage) {
514         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
515     } else if (mr == &io_mem_notdirty) {
516         /* Accesses to code which has previously been translated into a TB show
517          * up in the MMIO path, as accesses to the io_mem_notdirty
518          * MemoryRegion. */
519         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
520     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
521         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
522         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
523     }
524     mr->ops->write(mr->opaque, addr, tmp, size);
525     return MEMTX_OK;
526 }
527
528 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
529                                                            hwaddr addr,
530                                                            uint64_t *value,
531                                                            unsigned size,
532                                                            unsigned shift,
533                                                            uint64_t mask,
534                                                            MemTxAttrs attrs)
535 {
536     uint64_t tmp;
537
538     tmp = (*value >> shift) & mask;
539     if (mr->subpage) {
540         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
541     } else if (mr == &io_mem_notdirty) {
542         /* Accesses to code which has previously been translated into a TB show
543          * up in the MMIO path, as accesses to the io_mem_notdirty
544          * MemoryRegion. */
545         trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
546     } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
547         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
548         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
549     }
550     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
551 }
552
553 static MemTxResult access_with_adjusted_size(hwaddr addr,
554                                       uint64_t *value,
555                                       unsigned size,
556                                       unsigned access_size_min,
557                                       unsigned access_size_max,
558                                       MemTxResult (*access)(MemoryRegion *mr,
559                                                             hwaddr addr,
560                                                             uint64_t *value,
561                                                             unsigned size,
562                                                             unsigned shift,
563                                                             uint64_t mask,
564                                                             MemTxAttrs attrs),
565                                       MemoryRegion *mr,
566                                       MemTxAttrs attrs)
567 {
568     uint64_t access_mask;
569     unsigned access_size;
570     unsigned i;
571     MemTxResult r = MEMTX_OK;
572
573     if (!access_size_min) {
574         access_size_min = 1;
575     }
576     if (!access_size_max) {
577         access_size_max = 4;
578     }
579
580     /* FIXME: support unaligned access? */
581     access_size = MAX(MIN(size, access_size_max), access_size_min);
582     access_mask = -1ULL >> (64 - access_size * 8);
583     if (memory_region_big_endian(mr)) {
584         for (i = 0; i < size; i += access_size) {
585             r |= access(mr, addr + i, value, access_size,
586                         (size - access_size - i) * 8, access_mask, attrs);
587         }
588     } else {
589         for (i = 0; i < size; i += access_size) {
590             r |= access(mr, addr + i, value, access_size, i * 8,
591                         access_mask, attrs);
592         }
593     }
594     return r;
595 }
596
597 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
598 {
599     AddressSpace *as;
600
601     while (mr->container) {
602         mr = mr->container;
603     }
604     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
605         if (mr == as->root) {
606             return as;
607         }
608     }
609     return NULL;
610 }
611
612 /* Render a memory region into the global view.  Ranges in @view obscure
613  * ranges in @mr.
614  */
615 static void render_memory_region(FlatView *view,
616                                  MemoryRegion *mr,
617                                  Int128 base,
618                                  AddrRange clip,
619                                  bool readonly)
620 {
621     MemoryRegion *subregion;
622     unsigned i;
623     hwaddr offset_in_region;
624     Int128 remain;
625     Int128 now;
626     FlatRange fr;
627     AddrRange tmp;
628
629     if (!mr->enabled) {
630         return;
631     }
632
633     int128_addto(&base, int128_make64(mr->addr));
634     readonly |= mr->readonly;
635
636     tmp = addrrange_make(base, mr->size);
637
638     if (!addrrange_intersects(tmp, clip)) {
639         return;
640     }
641
642     clip = addrrange_intersection(tmp, clip);
643
644     if (mr->alias) {
645         int128_subfrom(&base, int128_make64(mr->alias->addr));
646         int128_subfrom(&base, int128_make64(mr->alias_offset));
647         render_memory_region(view, mr->alias, base, clip, readonly);
648         return;
649     }
650
651     /* Render subregions in priority order. */
652     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
653         render_memory_region(view, subregion, base, clip, readonly);
654     }
655
656     if (!mr->terminates) {
657         return;
658     }
659
660     offset_in_region = int128_get64(int128_sub(clip.start, base));
661     base = clip.start;
662     remain = clip.size;
663
664     fr.mr = mr;
665     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
666     fr.readonly = readonly;
667
668     /* Render the region itself into any gaps left by the current view. */
669     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
670         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
671             continue;
672         }
673         if (int128_lt(base, view->ranges[i].addr.start)) {
674             now = int128_min(remain,
675                              int128_sub(view->ranges[i].addr.start, base));
676             fr.offset_in_region = offset_in_region;
677             fr.addr = addrrange_make(base, now);
678             flatview_insert(view, i, &fr);
679             ++i;
680             int128_addto(&base, now);
681             offset_in_region += int128_get64(now);
682             int128_subfrom(&remain, now);
683         }
684         now = int128_sub(int128_min(int128_add(base, remain),
685                                     addrrange_end(view->ranges[i].addr)),
686                          base);
687         int128_addto(&base, now);
688         offset_in_region += int128_get64(now);
689         int128_subfrom(&remain, now);
690     }
691     if (int128_nz(remain)) {
692         fr.offset_in_region = offset_in_region;
693         fr.addr = addrrange_make(base, remain);
694         flatview_insert(view, i, &fr);
695     }
696 }
697
698 /* Render a memory topology into a list of disjoint absolute ranges. */
699 static FlatView *generate_memory_topology(MemoryRegion *mr)
700 {
701     FlatView *view;
702
703     view = g_new(FlatView, 1);
704     flatview_init(view);
705
706     if (mr) {
707         render_memory_region(view, mr, int128_zero(),
708                              addrrange_make(int128_zero(), int128_2_64()), false);
709     }
710     flatview_simplify(view);
711
712     return view;
713 }
714
715 static void address_space_add_del_ioeventfds(AddressSpace *as,
716                                              MemoryRegionIoeventfd *fds_new,
717                                              unsigned fds_new_nb,
718                                              MemoryRegionIoeventfd *fds_old,
719                                              unsigned fds_old_nb)
720 {
721     unsigned iold, inew;
722     MemoryRegionIoeventfd *fd;
723     MemoryRegionSection section;
724
725     /* Generate a symmetric difference of the old and new fd sets, adding
726      * and deleting as necessary.
727      */
728
729     iold = inew = 0;
730     while (iold < fds_old_nb || inew < fds_new_nb) {
731         if (iold < fds_old_nb
732             && (inew == fds_new_nb
733                 || memory_region_ioeventfd_before(fds_old[iold],
734                                                   fds_new[inew]))) {
735             fd = &fds_old[iold];
736             section = (MemoryRegionSection) {
737                 .address_space = as,
738                 .offset_within_address_space = int128_get64(fd->addr.start),
739                 .size = fd->addr.size,
740             };
741             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
742                                  fd->match_data, fd->data, fd->e);
743             ++iold;
744         } else if (inew < fds_new_nb
745                    && (iold == fds_old_nb
746                        || memory_region_ioeventfd_before(fds_new[inew],
747                                                          fds_old[iold]))) {
748             fd = &fds_new[inew];
749             section = (MemoryRegionSection) {
750                 .address_space = as,
751                 .offset_within_address_space = int128_get64(fd->addr.start),
752                 .size = fd->addr.size,
753             };
754             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
755                                  fd->match_data, fd->data, fd->e);
756             ++inew;
757         } else {
758             ++iold;
759             ++inew;
760         }
761     }
762 }
763
764 static FlatView *address_space_get_flatview(AddressSpace *as)
765 {
766     FlatView *view;
767
768     rcu_read_lock();
769     view = atomic_rcu_read(&as->current_map);
770     flatview_ref(view);
771     rcu_read_unlock();
772     return view;
773 }
774
775 static void address_space_update_ioeventfds(AddressSpace *as)
776 {
777     FlatView *view;
778     FlatRange *fr;
779     unsigned ioeventfd_nb = 0;
780     MemoryRegionIoeventfd *ioeventfds = NULL;
781     AddrRange tmp;
782     unsigned i;
783
784     view = address_space_get_flatview(as);
785     FOR_EACH_FLAT_RANGE(fr, view) {
786         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
787             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
788                                   int128_sub(fr->addr.start,
789                                              int128_make64(fr->offset_in_region)));
790             if (addrrange_intersects(fr->addr, tmp)) {
791                 ++ioeventfd_nb;
792                 ioeventfds = g_realloc(ioeventfds,
793                                           ioeventfd_nb * sizeof(*ioeventfds));
794                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
795                 ioeventfds[ioeventfd_nb-1].addr = tmp;
796             }
797         }
798     }
799
800     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
801                                      as->ioeventfds, as->ioeventfd_nb);
802
803     g_free(as->ioeventfds);
804     as->ioeventfds = ioeventfds;
805     as->ioeventfd_nb = ioeventfd_nb;
806     flatview_unref(view);
807 }
808
809 static void address_space_update_topology_pass(AddressSpace *as,
810                                                const FlatView *old_view,
811                                                const FlatView *new_view,
812                                                bool adding)
813 {
814     unsigned iold, inew;
815     FlatRange *frold, *frnew;
816
817     /* Generate a symmetric difference of the old and new memory maps.
818      * Kill ranges in the old map, and instantiate ranges in the new map.
819      */
820     iold = inew = 0;
821     while (iold < old_view->nr || inew < new_view->nr) {
822         if (iold < old_view->nr) {
823             frold = &old_view->ranges[iold];
824         } else {
825             frold = NULL;
826         }
827         if (inew < new_view->nr) {
828             frnew = &new_view->ranges[inew];
829         } else {
830             frnew = NULL;
831         }
832
833         if (frold
834             && (!frnew
835                 || int128_lt(frold->addr.start, frnew->addr.start)
836                 || (int128_eq(frold->addr.start, frnew->addr.start)
837                     && !flatrange_equal(frold, frnew)))) {
838             /* In old but not in new, or in both but attributes changed. */
839
840             if (!adding) {
841                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
842             }
843
844             ++iold;
845         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
846             /* In both and unchanged (except logging may have changed) */
847
848             if (adding) {
849                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
850                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
851                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
852                                                   frold->dirty_log_mask,
853                                                   frnew->dirty_log_mask);
854                 }
855                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
856                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
857                                                   frold->dirty_log_mask,
858                                                   frnew->dirty_log_mask);
859                 }
860             }
861
862             ++iold;
863             ++inew;
864         } else {
865             /* In new */
866
867             if (adding) {
868                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
869             }
870
871             ++inew;
872         }
873     }
874 }
875
876
877 static void address_space_update_topology(AddressSpace *as)
878 {
879     FlatView *old_view = address_space_get_flatview(as);
880     FlatView *new_view = generate_memory_topology(as->root);
881
882     address_space_update_topology_pass(as, old_view, new_view, false);
883     address_space_update_topology_pass(as, old_view, new_view, true);
884
885     /* Writes are protected by the BQL.  */
886     atomic_rcu_set(&as->current_map, new_view);
887     call_rcu(old_view, flatview_unref, rcu);
888
889     /* Note that all the old MemoryRegions are still alive up to this
890      * point.  This relieves most MemoryListeners from the need to
891      * ref/unref the MemoryRegions they get---unless they use them
892      * outside the iothread mutex, in which case precise reference
893      * counting is necessary.
894      */
895     flatview_unref(old_view);
896
897     address_space_update_ioeventfds(as);
898 }
899
900 void memory_region_transaction_begin(void)
901 {
902     qemu_flush_coalesced_mmio_buffer();
903     ++memory_region_transaction_depth;
904 }
905
906 static void memory_region_clear_pending(void)
907 {
908     memory_region_update_pending = false;
909     ioeventfd_update_pending = false;
910 }
911
912 void memory_region_transaction_commit(void)
913 {
914     AddressSpace *as;
915
916     assert(memory_region_transaction_depth);
917     --memory_region_transaction_depth;
918     if (!memory_region_transaction_depth) {
919         if (memory_region_update_pending) {
920             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
921
922             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
923                 address_space_update_topology(as);
924             }
925
926             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
927         } else if (ioeventfd_update_pending) {
928             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
929                 address_space_update_ioeventfds(as);
930             }
931         }
932         memory_region_clear_pending();
933    }
934 }
935
936 static void memory_region_destructor_none(MemoryRegion *mr)
937 {
938 }
939
940 static void memory_region_destructor_ram(MemoryRegion *mr)
941 {
942     qemu_ram_free(mr->ram_block);
943 }
944
945 static void memory_region_destructor_rom_device(MemoryRegion *mr)
946 {
947     qemu_ram_free(mr->ram_block);
948 }
949
950 static bool memory_region_need_escape(char c)
951 {
952     return c == '/' || c == '[' || c == '\\' || c == ']';
953 }
954
955 static char *memory_region_escape_name(const char *name)
956 {
957     const char *p;
958     char *escaped, *q;
959     uint8_t c;
960     size_t bytes = 0;
961
962     for (p = name; *p; p++) {
963         bytes += memory_region_need_escape(*p) ? 4 : 1;
964     }
965     if (bytes == p - name) {
966        return g_memdup(name, bytes + 1);
967     }
968
969     escaped = g_malloc(bytes + 1);
970     for (p = name, q = escaped; *p; p++) {
971         c = *p;
972         if (unlikely(memory_region_need_escape(c))) {
973             *q++ = '\\';
974             *q++ = 'x';
975             *q++ = "0123456789abcdef"[c >> 4];
976             c = "0123456789abcdef"[c & 15];
977         }
978         *q++ = c;
979     }
980     *q = 0;
981     return escaped;
982 }
983
984 void memory_region_init(MemoryRegion *mr,
985                         Object *owner,
986                         const char *name,
987                         uint64_t size)
988 {
989     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
990     mr->size = int128_make64(size);
991     if (size == UINT64_MAX) {
992         mr->size = int128_2_64();
993     }
994     mr->name = g_strdup(name);
995     mr->owner = owner;
996     mr->ram_block = NULL;
997
998     if (name) {
999         char *escaped_name = memory_region_escape_name(name);
1000         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1001
1002         if (!owner) {
1003             owner = container_get(qdev_get_machine(), "/unattached");
1004         }
1005
1006         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1007         object_unref(OBJECT(mr));
1008         g_free(name_array);
1009         g_free(escaped_name);
1010     }
1011 }
1012
1013 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1014                                    void *opaque, Error **errp)
1015 {
1016     MemoryRegion *mr = MEMORY_REGION(obj);
1017     uint64_t value = mr->addr;
1018
1019     visit_type_uint64(v, name, &value, errp);
1020 }
1021
1022 static void memory_region_get_container(Object *obj, Visitor *v,
1023                                         const char *name, void *opaque,
1024                                         Error **errp)
1025 {
1026     MemoryRegion *mr = MEMORY_REGION(obj);
1027     gchar *path = (gchar *)"";
1028
1029     if (mr->container) {
1030         path = object_get_canonical_path(OBJECT(mr->container));
1031     }
1032     visit_type_str(v, name, &path, errp);
1033     if (mr->container) {
1034         g_free(path);
1035     }
1036 }
1037
1038 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1039                                                const char *part)
1040 {
1041     MemoryRegion *mr = MEMORY_REGION(obj);
1042
1043     return OBJECT(mr->container);
1044 }
1045
1046 static void memory_region_get_priority(Object *obj, Visitor *v,
1047                                        const char *name, void *opaque,
1048                                        Error **errp)
1049 {
1050     MemoryRegion *mr = MEMORY_REGION(obj);
1051     int32_t value = mr->priority;
1052
1053     visit_type_int32(v, name, &value, errp);
1054 }
1055
1056 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1057                                    void *opaque, Error **errp)
1058 {
1059     MemoryRegion *mr = MEMORY_REGION(obj);
1060     uint64_t value = memory_region_size(mr);
1061
1062     visit_type_uint64(v, name, &value, errp);
1063 }
1064
1065 static void memory_region_initfn(Object *obj)
1066 {
1067     MemoryRegion *mr = MEMORY_REGION(obj);
1068     ObjectProperty *op;
1069
1070     mr->ops = &unassigned_mem_ops;
1071     mr->enabled = true;
1072     mr->romd_mode = true;
1073     mr->global_locking = true;
1074     mr->destructor = memory_region_destructor_none;
1075     QTAILQ_INIT(&mr->subregions);
1076     QTAILQ_INIT(&mr->coalesced);
1077
1078     op = object_property_add(OBJECT(mr), "container",
1079                              "link<" TYPE_MEMORY_REGION ">",
1080                              memory_region_get_container,
1081                              NULL, /* memory_region_set_container */
1082                              NULL, NULL, &error_abort);
1083     op->resolve = memory_region_resolve_container;
1084
1085     object_property_add(OBJECT(mr), "addr", "uint64",
1086                         memory_region_get_addr,
1087                         NULL, /* memory_region_set_addr */
1088                         NULL, NULL, &error_abort);
1089     object_property_add(OBJECT(mr), "priority", "uint32",
1090                         memory_region_get_priority,
1091                         NULL, /* memory_region_set_priority */
1092                         NULL, NULL, &error_abort);
1093     object_property_add(OBJECT(mr), "size", "uint64",
1094                         memory_region_get_size,
1095                         NULL, /* memory_region_set_size, */
1096                         NULL, NULL, &error_abort);
1097 }
1098
1099 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1100                                     unsigned size)
1101 {
1102 #ifdef DEBUG_UNASSIGNED
1103     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1104 #endif
1105     if (current_cpu != NULL) {
1106         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1107     }
1108     return 0;
1109 }
1110
1111 static void unassigned_mem_write(void *opaque, hwaddr addr,
1112                                  uint64_t val, unsigned size)
1113 {
1114 #ifdef DEBUG_UNASSIGNED
1115     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1116 #endif
1117     if (current_cpu != NULL) {
1118         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1119     }
1120 }
1121
1122 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1123                                    unsigned size, bool is_write)
1124 {
1125     return false;
1126 }
1127
1128 const MemoryRegionOps unassigned_mem_ops = {
1129     .valid.accepts = unassigned_mem_accepts,
1130     .endianness = DEVICE_NATIVE_ENDIAN,
1131 };
1132
1133 bool memory_region_access_valid(MemoryRegion *mr,
1134                                 hwaddr addr,
1135                                 unsigned size,
1136                                 bool is_write)
1137 {
1138     int access_size_min, access_size_max;
1139     int access_size, i;
1140
1141     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1142         return false;
1143     }
1144
1145     if (!mr->ops->valid.accepts) {
1146         return true;
1147     }
1148
1149     access_size_min = mr->ops->valid.min_access_size;
1150     if (!mr->ops->valid.min_access_size) {
1151         access_size_min = 1;
1152     }
1153
1154     access_size_max = mr->ops->valid.max_access_size;
1155     if (!mr->ops->valid.max_access_size) {
1156         access_size_max = 4;
1157     }
1158
1159     access_size = MAX(MIN(size, access_size_max), access_size_min);
1160     for (i = 0; i < size; i += access_size) {
1161         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1162                                     is_write)) {
1163             return false;
1164         }
1165     }
1166
1167     return true;
1168 }
1169
1170 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1171                                                 hwaddr addr,
1172                                                 uint64_t *pval,
1173                                                 unsigned size,
1174                                                 MemTxAttrs attrs)
1175 {
1176     *pval = 0;
1177
1178     if (mr->ops->read) {
1179         return access_with_adjusted_size(addr, pval, size,
1180                                          mr->ops->impl.min_access_size,
1181                                          mr->ops->impl.max_access_size,
1182                                          memory_region_read_accessor,
1183                                          mr, attrs);
1184     } else if (mr->ops->read_with_attrs) {
1185         return access_with_adjusted_size(addr, pval, size,
1186                                          mr->ops->impl.min_access_size,
1187                                          mr->ops->impl.max_access_size,
1188                                          memory_region_read_with_attrs_accessor,
1189                                          mr, attrs);
1190     } else {
1191         return access_with_adjusted_size(addr, pval, size, 1, 4,
1192                                          memory_region_oldmmio_read_accessor,
1193                                          mr, attrs);
1194     }
1195 }
1196
1197 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1198                                         hwaddr addr,
1199                                         uint64_t *pval,
1200                                         unsigned size,
1201                                         MemTxAttrs attrs)
1202 {
1203     MemTxResult r;
1204
1205     if (!memory_region_access_valid(mr, addr, size, false)) {
1206         *pval = unassigned_mem_read(mr, addr, size);
1207         return MEMTX_DECODE_ERROR;
1208     }
1209
1210     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1211     adjust_endianness(mr, pval, size);
1212     return r;
1213 }
1214
1215 /* Return true if an eventfd was signalled */
1216 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1217                                                     hwaddr addr,
1218                                                     uint64_t data,
1219                                                     unsigned size,
1220                                                     MemTxAttrs attrs)
1221 {
1222     MemoryRegionIoeventfd ioeventfd = {
1223         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1224         .data = data,
1225     };
1226     unsigned i;
1227
1228     for (i = 0; i < mr->ioeventfd_nb; i++) {
1229         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1230         ioeventfd.e = mr->ioeventfds[i].e;
1231
1232         if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1233             event_notifier_set(ioeventfd.e);
1234             return true;
1235         }
1236     }
1237
1238     return false;
1239 }
1240
1241 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1242                                          hwaddr addr,
1243                                          uint64_t data,
1244                                          unsigned size,
1245                                          MemTxAttrs attrs)
1246 {
1247     if (!memory_region_access_valid(mr, addr, size, true)) {
1248         unassigned_mem_write(mr, addr, data, size);
1249         return MEMTX_DECODE_ERROR;
1250     }
1251
1252     adjust_endianness(mr, &data, size);
1253
1254     if ((!kvm_eventfds_enabled()) &&
1255         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1256         return MEMTX_OK;
1257     }
1258
1259     if (mr->ops->write) {
1260         return access_with_adjusted_size(addr, &data, size,
1261                                          mr->ops->impl.min_access_size,
1262                                          mr->ops->impl.max_access_size,
1263                                          memory_region_write_accessor, mr,
1264                                          attrs);
1265     } else if (mr->ops->write_with_attrs) {
1266         return
1267             access_with_adjusted_size(addr, &data, size,
1268                                       mr->ops->impl.min_access_size,
1269                                       mr->ops->impl.max_access_size,
1270                                       memory_region_write_with_attrs_accessor,
1271                                       mr, attrs);
1272     } else {
1273         return access_with_adjusted_size(addr, &data, size, 1, 4,
1274                                          memory_region_oldmmio_write_accessor,
1275                                          mr, attrs);
1276     }
1277 }
1278
1279 void memory_region_init_io(MemoryRegion *mr,
1280                            Object *owner,
1281                            const MemoryRegionOps *ops,
1282                            void *opaque,
1283                            const char *name,
1284                            uint64_t size)
1285 {
1286     memory_region_init(mr, owner, name, size);
1287     mr->ops = ops ? ops : &unassigned_mem_ops;
1288     mr->opaque = opaque;
1289     mr->terminates = true;
1290 }
1291
1292 void memory_region_init_ram(MemoryRegion *mr,
1293                             Object *owner,
1294                             const char *name,
1295                             uint64_t size,
1296                             Error **errp)
1297 {
1298     memory_region_init(mr, owner, name, size);
1299     mr->ram = true;
1300     mr->terminates = true;
1301     mr->destructor = memory_region_destructor_ram;
1302     mr->ram_block = qemu_ram_alloc(size, mr, errp);
1303     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1304 }
1305
1306 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1307                                        Object *owner,
1308                                        const char *name,
1309                                        uint64_t size,
1310                                        uint64_t max_size,
1311                                        void (*resized)(const char*,
1312                                                        uint64_t length,
1313                                                        void *host),
1314                                        Error **errp)
1315 {
1316     memory_region_init(mr, owner, name, size);
1317     mr->ram = true;
1318     mr->terminates = true;
1319     mr->destructor = memory_region_destructor_ram;
1320     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1321                                               mr, errp);
1322     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1323 }
1324
1325 #ifdef __linux__
1326 void memory_region_init_ram_from_file(MemoryRegion *mr,
1327                                       struct Object *owner,
1328                                       const char *name,
1329                                       uint64_t size,
1330                                       bool share,
1331                                       const char *path,
1332                                       Error **errp)
1333 {
1334     memory_region_init(mr, owner, name, size);
1335     mr->ram = true;
1336     mr->terminates = true;
1337     mr->destructor = memory_region_destructor_ram;
1338     mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1339     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1340 }
1341 #endif
1342
1343 void memory_region_init_ram_ptr(MemoryRegion *mr,
1344                                 Object *owner,
1345                                 const char *name,
1346                                 uint64_t size,
1347                                 void *ptr)
1348 {
1349     memory_region_init(mr, owner, name, size);
1350     mr->ram = true;
1351     mr->terminates = true;
1352     mr->destructor = memory_region_destructor_ram;
1353     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1354
1355     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1356     assert(ptr != NULL);
1357     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1358 }
1359
1360 void memory_region_set_skip_dump(MemoryRegion *mr)
1361 {
1362     mr->skip_dump = true;
1363 }
1364
1365 void memory_region_init_alias(MemoryRegion *mr,
1366                               Object *owner,
1367                               const char *name,
1368                               MemoryRegion *orig,
1369                               hwaddr offset,
1370                               uint64_t size)
1371 {
1372     memory_region_init(mr, owner, name, size);
1373     mr->alias = orig;
1374     mr->alias_offset = offset;
1375 }
1376
1377 void memory_region_init_rom_device(MemoryRegion *mr,
1378                                    Object *owner,
1379                                    const MemoryRegionOps *ops,
1380                                    void *opaque,
1381                                    const char *name,
1382                                    uint64_t size,
1383                                    Error **errp)
1384 {
1385     memory_region_init(mr, owner, name, size);
1386     mr->ops = ops;
1387     mr->opaque = opaque;
1388     mr->terminates = true;
1389     mr->rom_device = true;
1390     mr->destructor = memory_region_destructor_rom_device;
1391     mr->ram_block = qemu_ram_alloc(size, mr, errp);
1392 }
1393
1394 void memory_region_init_iommu(MemoryRegion *mr,
1395                               Object *owner,
1396                               const MemoryRegionIOMMUOps *ops,
1397                               const char *name,
1398                               uint64_t size)
1399 {
1400     memory_region_init(mr, owner, name, size);
1401     mr->iommu_ops = ops,
1402     mr->terminates = true;  /* then re-forwards */
1403     notifier_list_init(&mr->iommu_notify);
1404 }
1405
1406 static void memory_region_finalize(Object *obj)
1407 {
1408     MemoryRegion *mr = MEMORY_REGION(obj);
1409
1410     assert(!mr->container);
1411
1412     /* We know the region is not visible in any address space (it
1413      * does not have a container and cannot be a root either because
1414      * it has no references, so we can blindly clear mr->enabled.
1415      * memory_region_set_enabled instead could trigger a transaction
1416      * and cause an infinite loop.
1417      */
1418     mr->enabled = false;
1419     memory_region_transaction_begin();
1420     while (!QTAILQ_EMPTY(&mr->subregions)) {
1421         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1422         memory_region_del_subregion(mr, subregion);
1423     }
1424     memory_region_transaction_commit();
1425
1426     mr->destructor(mr);
1427     memory_region_clear_coalescing(mr);
1428     g_free((char *)mr->name);
1429     g_free(mr->ioeventfds);
1430 }
1431
1432 Object *memory_region_owner(MemoryRegion *mr)
1433 {
1434     Object *obj = OBJECT(mr);
1435     return obj->parent;
1436 }
1437
1438 void memory_region_ref(MemoryRegion *mr)
1439 {
1440     /* MMIO callbacks most likely will access data that belongs
1441      * to the owner, hence the need to ref/unref the owner whenever
1442      * the memory region is in use.
1443      *
1444      * The memory region is a child of its owner.  As long as the
1445      * owner doesn't call unparent itself on the memory region,
1446      * ref-ing the owner will also keep the memory region alive.
1447      * Memory regions without an owner are supposed to never go away;
1448      * we do not ref/unref them because it slows down DMA sensibly.
1449      */
1450     if (mr && mr->owner) {
1451         object_ref(mr->owner);
1452     }
1453 }
1454
1455 void memory_region_unref(MemoryRegion *mr)
1456 {
1457     if (mr && mr->owner) {
1458         object_unref(mr->owner);
1459     }
1460 }
1461
1462 uint64_t memory_region_size(MemoryRegion *mr)
1463 {
1464     if (int128_eq(mr->size, int128_2_64())) {
1465         return UINT64_MAX;
1466     }
1467     return int128_get64(mr->size);
1468 }
1469
1470 const char *memory_region_name(const MemoryRegion *mr)
1471 {
1472     if (!mr->name) {
1473         ((MemoryRegion *)mr)->name =
1474             object_get_canonical_path_component(OBJECT(mr));
1475     }
1476     return mr->name;
1477 }
1478
1479 bool memory_region_is_skip_dump(MemoryRegion *mr)
1480 {
1481     return mr->skip_dump;
1482 }
1483
1484 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1485 {
1486     uint8_t mask = mr->dirty_log_mask;
1487     if (global_dirty_log) {
1488         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1489     }
1490     return mask;
1491 }
1492
1493 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1494 {
1495     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1496 }
1497
1498 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1499 {
1500     notifier_list_add(&mr->iommu_notify, n);
1501 }
1502
1503 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1504                                 hwaddr granularity, bool is_write)
1505 {
1506     hwaddr addr;
1507     IOMMUTLBEntry iotlb;
1508
1509     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1510         iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1511         if (iotlb.perm != IOMMU_NONE) {
1512             n->notify(n, &iotlb);
1513         }
1514
1515         /* if (2^64 - MR size) < granularity, it's possible to get an
1516          * infinite loop here.  This should catch such a wraparound */
1517         if ((addr + granularity) < addr) {
1518             break;
1519         }
1520     }
1521 }
1522
1523 void memory_region_unregister_iommu_notifier(Notifier *n)
1524 {
1525     notifier_remove(n);
1526 }
1527
1528 void memory_region_notify_iommu(MemoryRegion *mr,
1529                                 IOMMUTLBEntry entry)
1530 {
1531     assert(memory_region_is_iommu(mr));
1532     notifier_list_notify(&mr->iommu_notify, &entry);
1533 }
1534
1535 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1536 {
1537     uint8_t mask = 1 << client;
1538     uint8_t old_logging;
1539
1540     assert(client == DIRTY_MEMORY_VGA);
1541     old_logging = mr->vga_logging_count;
1542     mr->vga_logging_count += log ? 1 : -1;
1543     if (!!old_logging == !!mr->vga_logging_count) {
1544         return;
1545     }
1546
1547     memory_region_transaction_begin();
1548     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1549     memory_region_update_pending |= mr->enabled;
1550     memory_region_transaction_commit();
1551 }
1552
1553 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1554                              hwaddr size, unsigned client)
1555 {
1556     assert(mr->ram_block);
1557     return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1558                                          size, client);
1559 }
1560
1561 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1562                              hwaddr size)
1563 {
1564     assert(mr->ram_block);
1565     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1566                                         size,
1567                                         memory_region_get_dirty_log_mask(mr));
1568 }
1569
1570 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1571                                         hwaddr size, unsigned client)
1572 {
1573     assert(mr->ram_block);
1574     return cpu_physical_memory_test_and_clear_dirty(
1575                 memory_region_get_ram_addr(mr) + addr, size, client);
1576 }
1577
1578
1579 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1580 {
1581     AddressSpace *as;
1582     FlatRange *fr;
1583
1584     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1585         FlatView *view = address_space_get_flatview(as);
1586         FOR_EACH_FLAT_RANGE(fr, view) {
1587             if (fr->mr == mr) {
1588                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1589             }
1590         }
1591         flatview_unref(view);
1592     }
1593 }
1594
1595 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1596 {
1597     if (mr->readonly != readonly) {
1598         memory_region_transaction_begin();
1599         mr->readonly = readonly;
1600         memory_region_update_pending |= mr->enabled;
1601         memory_region_transaction_commit();
1602     }
1603 }
1604
1605 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1606 {
1607     if (mr->romd_mode != romd_mode) {
1608         memory_region_transaction_begin();
1609         mr->romd_mode = romd_mode;
1610         memory_region_update_pending |= mr->enabled;
1611         memory_region_transaction_commit();
1612     }
1613 }
1614
1615 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1616                                hwaddr size, unsigned client)
1617 {
1618     assert(mr->ram_block);
1619     cpu_physical_memory_test_and_clear_dirty(
1620         memory_region_get_ram_addr(mr) + addr, size, client);
1621 }
1622
1623 int memory_region_get_fd(MemoryRegion *mr)
1624 {
1625     if (mr->alias) {
1626         return memory_region_get_fd(mr->alias);
1627     }
1628
1629     assert(mr->ram_block);
1630
1631     return qemu_get_ram_fd(memory_region_get_ram_addr(mr));
1632 }
1633
1634 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1635 {
1636     void *ptr;
1637     uint64_t offset = 0;
1638
1639     rcu_read_lock();
1640     while (mr->alias) {
1641         offset += mr->alias_offset;
1642         mr = mr->alias;
1643     }
1644     assert(mr->ram_block);
1645     ptr = qemu_get_ram_ptr(mr->ram_block, memory_region_get_ram_addr(mr));
1646     rcu_read_unlock();
1647
1648     return ptr + offset;
1649 }
1650
1651 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1652 {
1653     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1654 }
1655
1656 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1657 {
1658     assert(mr->ram_block);
1659
1660     qemu_ram_resize(mr->ram_block, newsize, errp);
1661 }
1662
1663 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1664 {
1665     FlatView *view;
1666     FlatRange *fr;
1667     CoalescedMemoryRange *cmr;
1668     AddrRange tmp;
1669     MemoryRegionSection section;
1670
1671     view = address_space_get_flatview(as);
1672     FOR_EACH_FLAT_RANGE(fr, view) {
1673         if (fr->mr == mr) {
1674             section = (MemoryRegionSection) {
1675                 .address_space = as,
1676                 .offset_within_address_space = int128_get64(fr->addr.start),
1677                 .size = fr->addr.size,
1678             };
1679
1680             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1681                                  int128_get64(fr->addr.start),
1682                                  int128_get64(fr->addr.size));
1683             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1684                 tmp = addrrange_shift(cmr->addr,
1685                                       int128_sub(fr->addr.start,
1686                                                  int128_make64(fr->offset_in_region)));
1687                 if (!addrrange_intersects(tmp, fr->addr)) {
1688                     continue;
1689                 }
1690                 tmp = addrrange_intersection(tmp, fr->addr);
1691                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1692                                      int128_get64(tmp.start),
1693                                      int128_get64(tmp.size));
1694             }
1695         }
1696     }
1697     flatview_unref(view);
1698 }
1699
1700 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1701 {
1702     AddressSpace *as;
1703
1704     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1705         memory_region_update_coalesced_range_as(mr, as);
1706     }
1707 }
1708
1709 void memory_region_set_coalescing(MemoryRegion *mr)
1710 {
1711     memory_region_clear_coalescing(mr);
1712     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1713 }
1714
1715 void memory_region_add_coalescing(MemoryRegion *mr,
1716                                   hwaddr offset,
1717                                   uint64_t size)
1718 {
1719     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1720
1721     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1722     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1723     memory_region_update_coalesced_range(mr);
1724     memory_region_set_flush_coalesced(mr);
1725 }
1726
1727 void memory_region_clear_coalescing(MemoryRegion *mr)
1728 {
1729     CoalescedMemoryRange *cmr;
1730     bool updated = false;
1731
1732     qemu_flush_coalesced_mmio_buffer();
1733     mr->flush_coalesced_mmio = false;
1734
1735     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1736         cmr = QTAILQ_FIRST(&mr->coalesced);
1737         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1738         g_free(cmr);
1739         updated = true;
1740     }
1741
1742     if (updated) {
1743         memory_region_update_coalesced_range(mr);
1744     }
1745 }
1746
1747 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1748 {
1749     mr->flush_coalesced_mmio = true;
1750 }
1751
1752 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1753 {
1754     qemu_flush_coalesced_mmio_buffer();
1755     if (QTAILQ_EMPTY(&mr->coalesced)) {
1756         mr->flush_coalesced_mmio = false;
1757     }
1758 }
1759
1760 void memory_region_set_global_locking(MemoryRegion *mr)
1761 {
1762     mr->global_locking = true;
1763 }
1764
1765 void memory_region_clear_global_locking(MemoryRegion *mr)
1766 {
1767     mr->global_locking = false;
1768 }
1769
1770 static bool userspace_eventfd_warning;
1771
1772 void memory_region_add_eventfd(MemoryRegion *mr,
1773                                hwaddr addr,
1774                                unsigned size,
1775                                bool match_data,
1776                                uint64_t data,
1777                                EventNotifier *e)
1778 {
1779     MemoryRegionIoeventfd mrfd = {
1780         .addr.start = int128_make64(addr),
1781         .addr.size = int128_make64(size),
1782         .match_data = match_data,
1783         .data = data,
1784         .e = e,
1785     };
1786     unsigned i;
1787
1788     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1789                             userspace_eventfd_warning))) {
1790         userspace_eventfd_warning = true;
1791         error_report("Using eventfd without MMIO binding in KVM. "
1792                      "Suboptimal performance expected");
1793     }
1794
1795     if (size) {
1796         adjust_endianness(mr, &mrfd.data, size);
1797     }
1798     memory_region_transaction_begin();
1799     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1800         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1801             break;
1802         }
1803     }
1804     ++mr->ioeventfd_nb;
1805     mr->ioeventfds = g_realloc(mr->ioeventfds,
1806                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1807     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1808             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1809     mr->ioeventfds[i] = mrfd;
1810     ioeventfd_update_pending |= mr->enabled;
1811     memory_region_transaction_commit();
1812 }
1813
1814 void memory_region_del_eventfd(MemoryRegion *mr,
1815                                hwaddr addr,
1816                                unsigned size,
1817                                bool match_data,
1818                                uint64_t data,
1819                                EventNotifier *e)
1820 {
1821     MemoryRegionIoeventfd mrfd = {
1822         .addr.start = int128_make64(addr),
1823         .addr.size = int128_make64(size),
1824         .match_data = match_data,
1825         .data = data,
1826         .e = e,
1827     };
1828     unsigned i;
1829
1830     if (size) {
1831         adjust_endianness(mr, &mrfd.data, size);
1832     }
1833     memory_region_transaction_begin();
1834     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1835         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1836             break;
1837         }
1838     }
1839     assert(i != mr->ioeventfd_nb);
1840     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1841             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1842     --mr->ioeventfd_nb;
1843     mr->ioeventfds = g_realloc(mr->ioeventfds,
1844                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1845     ioeventfd_update_pending |= mr->enabled;
1846     memory_region_transaction_commit();
1847 }
1848
1849 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1850 {
1851     MemoryRegion *mr = subregion->container;
1852     MemoryRegion *other;
1853
1854     memory_region_transaction_begin();
1855
1856     memory_region_ref(subregion);
1857     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1858         if (subregion->priority >= other->priority) {
1859             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1860             goto done;
1861         }
1862     }
1863     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1864 done:
1865     memory_region_update_pending |= mr->enabled && subregion->enabled;
1866     memory_region_transaction_commit();
1867 }
1868
1869 static void memory_region_add_subregion_common(MemoryRegion *mr,
1870                                                hwaddr offset,
1871                                                MemoryRegion *subregion)
1872 {
1873     assert(!subregion->container);
1874     subregion->container = mr;
1875     subregion->addr = offset;
1876     memory_region_update_container_subregions(subregion);
1877 }
1878
1879 void memory_region_add_subregion(MemoryRegion *mr,
1880                                  hwaddr offset,
1881                                  MemoryRegion *subregion)
1882 {
1883     subregion->priority = 0;
1884     memory_region_add_subregion_common(mr, offset, subregion);
1885 }
1886
1887 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1888                                          hwaddr offset,
1889                                          MemoryRegion *subregion,
1890                                          int priority)
1891 {
1892     subregion->priority = priority;
1893     memory_region_add_subregion_common(mr, offset, subregion);
1894 }
1895
1896 void memory_region_del_subregion(MemoryRegion *mr,
1897                                  MemoryRegion *subregion)
1898 {
1899     memory_region_transaction_begin();
1900     assert(subregion->container == mr);
1901     subregion->container = NULL;
1902     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1903     memory_region_unref(subregion);
1904     memory_region_update_pending |= mr->enabled && subregion->enabled;
1905     memory_region_transaction_commit();
1906 }
1907
1908 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1909 {
1910     if (enabled == mr->enabled) {
1911         return;
1912     }
1913     memory_region_transaction_begin();
1914     mr->enabled = enabled;
1915     memory_region_update_pending = true;
1916     memory_region_transaction_commit();
1917 }
1918
1919 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1920 {
1921     Int128 s = int128_make64(size);
1922
1923     if (size == UINT64_MAX) {
1924         s = int128_2_64();
1925     }
1926     if (int128_eq(s, mr->size)) {
1927         return;
1928     }
1929     memory_region_transaction_begin();
1930     mr->size = s;
1931     memory_region_update_pending = true;
1932     memory_region_transaction_commit();
1933 }
1934
1935 static void memory_region_readd_subregion(MemoryRegion *mr)
1936 {
1937     MemoryRegion *container = mr->container;
1938
1939     if (container) {
1940         memory_region_transaction_begin();
1941         memory_region_ref(mr);
1942         memory_region_del_subregion(container, mr);
1943         mr->container = container;
1944         memory_region_update_container_subregions(mr);
1945         memory_region_unref(mr);
1946         memory_region_transaction_commit();
1947     }
1948 }
1949
1950 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1951 {
1952     if (addr != mr->addr) {
1953         mr->addr = addr;
1954         memory_region_readd_subregion(mr);
1955     }
1956 }
1957
1958 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1959 {
1960     assert(mr->alias);
1961
1962     if (offset == mr->alias_offset) {
1963         return;
1964     }
1965
1966     memory_region_transaction_begin();
1967     mr->alias_offset = offset;
1968     memory_region_update_pending |= mr->enabled;
1969     memory_region_transaction_commit();
1970 }
1971
1972 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1973 {
1974     return mr->align;
1975 }
1976
1977 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1978 {
1979     const AddrRange *addr = addr_;
1980     const FlatRange *fr = fr_;
1981
1982     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1983         return -1;
1984     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1985         return 1;
1986     }
1987     return 0;
1988 }
1989
1990 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1991 {
1992     return bsearch(&addr, view->ranges, view->nr,
1993                    sizeof(FlatRange), cmp_flatrange_addr);
1994 }
1995
1996 bool memory_region_is_mapped(MemoryRegion *mr)
1997 {
1998     return mr->container ? true : false;
1999 }
2000
2001 /* Same as memory_region_find, but it does not add a reference to the
2002  * returned region.  It must be called from an RCU critical section.
2003  */
2004 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2005                                                   hwaddr addr, uint64_t size)
2006 {
2007     MemoryRegionSection ret = { .mr = NULL };
2008     MemoryRegion *root;
2009     AddressSpace *as;
2010     AddrRange range;
2011     FlatView *view;
2012     FlatRange *fr;
2013
2014     addr += mr->addr;
2015     for (root = mr; root->container; ) {
2016         root = root->container;
2017         addr += root->addr;
2018     }
2019
2020     as = memory_region_to_address_space(root);
2021     if (!as) {
2022         return ret;
2023     }
2024     range = addrrange_make(int128_make64(addr), int128_make64(size));
2025
2026     view = atomic_rcu_read(&as->current_map);
2027     fr = flatview_lookup(view, range);
2028     if (!fr) {
2029         return ret;
2030     }
2031
2032     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2033         --fr;
2034     }
2035
2036     ret.mr = fr->mr;
2037     ret.address_space = as;
2038     range = addrrange_intersection(range, fr->addr);
2039     ret.offset_within_region = fr->offset_in_region;
2040     ret.offset_within_region += int128_get64(int128_sub(range.start,
2041                                                         fr->addr.start));
2042     ret.size = range.size;
2043     ret.offset_within_address_space = int128_get64(range.start);
2044     ret.readonly = fr->readonly;
2045     return ret;
2046 }
2047
2048 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2049                                        hwaddr addr, uint64_t size)
2050 {
2051     MemoryRegionSection ret;
2052     rcu_read_lock();
2053     ret = memory_region_find_rcu(mr, addr, size);
2054     if (ret.mr) {
2055         memory_region_ref(ret.mr);
2056     }
2057     rcu_read_unlock();
2058     return ret;
2059 }
2060
2061 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2062 {
2063     MemoryRegion *mr;
2064
2065     rcu_read_lock();
2066     mr = memory_region_find_rcu(container, addr, 1).mr;
2067     rcu_read_unlock();
2068     return mr && mr != container;
2069 }
2070
2071 void address_space_sync_dirty_bitmap(AddressSpace *as)
2072 {
2073     FlatView *view;
2074     FlatRange *fr;
2075
2076     view = address_space_get_flatview(as);
2077     FOR_EACH_FLAT_RANGE(fr, view) {
2078         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2079     }
2080     flatview_unref(view);
2081 }
2082
2083 void memory_global_dirty_log_start(void)
2084 {
2085     global_dirty_log = true;
2086
2087     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2088
2089     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2090     memory_region_transaction_begin();
2091     memory_region_update_pending = true;
2092     memory_region_transaction_commit();
2093 }
2094
2095 void memory_global_dirty_log_stop(void)
2096 {
2097     global_dirty_log = false;
2098
2099     /* Refresh DIRTY_LOG_MIGRATION bit.  */
2100     memory_region_transaction_begin();
2101     memory_region_update_pending = true;
2102     memory_region_transaction_commit();
2103
2104     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2105 }
2106
2107 static void listener_add_address_space(MemoryListener *listener,
2108                                        AddressSpace *as)
2109 {
2110     FlatView *view;
2111     FlatRange *fr;
2112
2113     if (listener->address_space_filter
2114         && listener->address_space_filter != as) {
2115         return;
2116     }
2117
2118     if (listener->begin) {
2119         listener->begin(listener);
2120     }
2121     if (global_dirty_log) {
2122         if (listener->log_global_start) {
2123             listener->log_global_start(listener);
2124         }
2125     }
2126
2127     view = address_space_get_flatview(as);
2128     FOR_EACH_FLAT_RANGE(fr, view) {
2129         MemoryRegionSection section = {
2130             .mr = fr->mr,
2131             .address_space = as,
2132             .offset_within_region = fr->offset_in_region,
2133             .size = fr->addr.size,
2134             .offset_within_address_space = int128_get64(fr->addr.start),
2135             .readonly = fr->readonly,
2136         };
2137         if (fr->dirty_log_mask && listener->log_start) {
2138             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2139         }
2140         if (listener->region_add) {
2141             listener->region_add(listener, &section);
2142         }
2143     }
2144     if (listener->commit) {
2145         listener->commit(listener);
2146     }
2147     flatview_unref(view);
2148 }
2149
2150 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2151 {
2152     MemoryListener *other = NULL;
2153     AddressSpace *as;
2154
2155     listener->address_space_filter = filter;
2156     if (QTAILQ_EMPTY(&memory_listeners)
2157         || listener->priority >= QTAILQ_LAST(&memory_listeners,
2158                                              memory_listeners)->priority) {
2159         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2160     } else {
2161         QTAILQ_FOREACH(other, &memory_listeners, link) {
2162             if (listener->priority < other->priority) {
2163                 break;
2164             }
2165         }
2166         QTAILQ_INSERT_BEFORE(other, listener, link);
2167     }
2168
2169     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2170         listener_add_address_space(listener, as);
2171     }
2172 }
2173
2174 void memory_listener_unregister(MemoryListener *listener)
2175 {
2176     QTAILQ_REMOVE(&memory_listeners, listener, link);
2177 }
2178
2179 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2180 {
2181     memory_region_ref(root);
2182     memory_region_transaction_begin();
2183     as->ref_count = 1;
2184     as->root = root;
2185     as->malloced = false;
2186     as->current_map = g_new(FlatView, 1);
2187     flatview_init(as->current_map);
2188     as->ioeventfd_nb = 0;
2189     as->ioeventfds = NULL;
2190     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2191     as->name = g_strdup(name ? name : "anonymous");
2192     address_space_init_dispatch(as);
2193     memory_region_update_pending |= root->enabled;
2194     memory_region_transaction_commit();
2195 }
2196
2197 static void do_address_space_destroy(AddressSpace *as)
2198 {
2199     MemoryListener *listener;
2200     bool do_free = as->malloced;
2201
2202     address_space_destroy_dispatch(as);
2203
2204     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2205         assert(listener->address_space_filter != as);
2206     }
2207
2208     flatview_unref(as->current_map);
2209     g_free(as->name);
2210     g_free(as->ioeventfds);
2211     memory_region_unref(as->root);
2212     if (do_free) {
2213         g_free(as);
2214     }
2215 }
2216
2217 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2218 {
2219     AddressSpace *as;
2220
2221     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2222         if (root == as->root && as->malloced) {
2223             as->ref_count++;
2224             return as;
2225         }
2226     }
2227
2228     as = g_malloc0(sizeof *as);
2229     address_space_init(as, root, name);
2230     as->malloced = true;
2231     return as;
2232 }
2233
2234 void address_space_destroy(AddressSpace *as)
2235 {
2236     MemoryRegion *root = as->root;
2237
2238     as->ref_count--;
2239     if (as->ref_count) {
2240         return;
2241     }
2242     /* Flush out anything from MemoryListeners listening in on this */
2243     memory_region_transaction_begin();
2244     as->root = NULL;
2245     memory_region_transaction_commit();
2246     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2247     address_space_unregister(as);
2248
2249     /* At this point, as->dispatch and as->current_map are dummy
2250      * entries that the guest should never use.  Wait for the old
2251      * values to expire before freeing the data.
2252      */
2253     as->root = root;
2254     call_rcu(as, do_address_space_destroy, rcu);
2255 }
2256
2257 typedef struct MemoryRegionList MemoryRegionList;
2258
2259 struct MemoryRegionList {
2260     const MemoryRegion *mr;
2261     QTAILQ_ENTRY(MemoryRegionList) queue;
2262 };
2263
2264 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2265
2266 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2267                            const MemoryRegion *mr, unsigned int level,
2268                            hwaddr base,
2269                            MemoryRegionListHead *alias_print_queue)
2270 {
2271     MemoryRegionList *new_ml, *ml, *next_ml;
2272     MemoryRegionListHead submr_print_queue;
2273     const MemoryRegion *submr;
2274     unsigned int i;
2275
2276     if (!mr) {
2277         return;
2278     }
2279
2280     for (i = 0; i < level; i++) {
2281         mon_printf(f, "  ");
2282     }
2283
2284     if (mr->alias) {
2285         MemoryRegionList *ml;
2286         bool found = false;
2287
2288         /* check if the alias is already in the queue */
2289         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2290             if (ml->mr == mr->alias) {
2291                 found = true;
2292             }
2293         }
2294
2295         if (!found) {
2296             ml = g_new(MemoryRegionList, 1);
2297             ml->mr = mr->alias;
2298             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2299         }
2300         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2301                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2302                    "-" TARGET_FMT_plx "%s\n",
2303                    base + mr->addr,
2304                    base + mr->addr
2305                    + (int128_nz(mr->size) ?
2306                       (hwaddr)int128_get64(int128_sub(mr->size,
2307                                                       int128_one())) : 0),
2308                    mr->priority,
2309                    mr->romd_mode ? 'R' : '-',
2310                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2311                                                                        : '-',
2312                    memory_region_name(mr),
2313                    memory_region_name(mr->alias),
2314                    mr->alias_offset,
2315                    mr->alias_offset
2316                    + (int128_nz(mr->size) ?
2317                       (hwaddr)int128_get64(int128_sub(mr->size,
2318                                                       int128_one())) : 0),
2319                    mr->enabled ? "" : " [disabled]");
2320     } else {
2321         mon_printf(f,
2322                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2323                    base + mr->addr,
2324                    base + mr->addr
2325                    + (int128_nz(mr->size) ?
2326                       (hwaddr)int128_get64(int128_sub(mr->size,
2327                                                       int128_one())) : 0),
2328                    mr->priority,
2329                    mr->romd_mode ? 'R' : '-',
2330                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2331                                                                        : '-',
2332                    memory_region_name(mr),
2333                    mr->enabled ? "" : " [disabled]");
2334     }
2335
2336     QTAILQ_INIT(&submr_print_queue);
2337
2338     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2339         new_ml = g_new(MemoryRegionList, 1);
2340         new_ml->mr = submr;
2341         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2342             if (new_ml->mr->addr < ml->mr->addr ||
2343                 (new_ml->mr->addr == ml->mr->addr &&
2344                  new_ml->mr->priority > ml->mr->priority)) {
2345                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2346                 new_ml = NULL;
2347                 break;
2348             }
2349         }
2350         if (new_ml) {
2351             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2352         }
2353     }
2354
2355     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2356         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2357                        alias_print_queue);
2358     }
2359
2360     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2361         g_free(ml);
2362     }
2363 }
2364
2365 void mtree_info(fprintf_function mon_printf, void *f)
2366 {
2367     MemoryRegionListHead ml_head;
2368     MemoryRegionList *ml, *ml2;
2369     AddressSpace *as;
2370
2371     QTAILQ_INIT(&ml_head);
2372
2373     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2374         mon_printf(f, "address-space: %s\n", as->name);
2375         mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2376         mon_printf(f, "\n");
2377     }
2378
2379     /* print aliased regions */
2380     QTAILQ_FOREACH(ml, &ml_head, queue) {
2381         mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2382         mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2383         mon_printf(f, "\n");
2384     }
2385
2386     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2387         g_free(ml);
2388     }
2389 }
2390
2391 static const TypeInfo memory_region_info = {
2392     .parent             = TYPE_OBJECT,
2393     .name               = TYPE_MEMORY_REGION,
2394     .instance_size      = sizeof(MemoryRegion),
2395     .instance_init      = memory_region_initfn,
2396     .instance_finalize  = memory_region_finalize,
2397 };
2398
2399 static void memory_register_types(void)
2400 {
2401     type_register_static(&memory_region_info);
2402 }
2403
2404 type_init(memory_register_types)