OSDN Git Service

mksquashfsimge.sh: Support creating a sparse image
[android-x86/system-extras.git] / micro_bench / micro_bench.cpp
1 /*
2 ** Copyright 2010 The Android Open Source Project
3 **
4 ** Licensed under the Apache License, Version 2.0 (the "License");
5 ** you may not use this file except in compliance with the License.
6 ** You may obtain a copy of the License at
7 **
8 **     http://www.apache.org/licenses/LICENSE-2.0
9 **
10 ** Unless required by applicable law or agreed to in writing, software
11 ** distributed under the License is distributed on an "AS IS" BASIS,
12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 ** See the License for the specific language governing permissions and
14 ** limitations under the License.
15 */
16
17 /*
18  * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
19  */
20
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <ctype.h>
24 #include <math.h>
25 #include <sched.h>
26 #include <sys/resource.h>
27 #include <time.h>
28 #include <unistd.h>
29
30 // The default size of data that will be manipulated in each iteration of
31 // a memory benchmark. Can be modified with the --data_size option.
32 #define DEFAULT_DATA_SIZE       1000000000
33
34 // The amount of memory allocated for the cold benchmarks to use.
35 #define DEFAULT_COLD_DATA_SIZE  128*1024*1024
36
37 // The default size of the stride between each buffer for cold benchmarks.
38 #define DEFAULT_COLD_STRIDE_SIZE  4096
39
40 // Number of nanoseconds in a second.
41 #define NS_PER_SEC              1000000000
42
43 // The maximum number of arguments that a benchmark will accept.
44 #define MAX_ARGS    2
45
46 // Default memory alignment of malloc.
47 #define DEFAULT_MALLOC_MEMORY_ALIGNMENT   8
48
49 // Contains information about benchmark options.
50 typedef struct {
51     bool print_average;
52     bool print_each_iter;
53
54     int dst_align;
55     int dst_or_mask;
56     int src_align;
57     int src_or_mask;
58
59     int cpu_to_lock;
60
61     int data_size;
62     int dst_str_size;
63     int cold_data_size;
64     int cold_stride_size;
65
66     int args[MAX_ARGS];
67     int num_args;
68 } command_data_t;
69
70 typedef void *(*void_func_t)();
71 typedef void *(*memcpy_func_t)(void *, const void *, size_t);
72 typedef void *(*memset_func_t)(void *, int, size_t);
73 typedef int (*strcmp_func_t)(const char *, const char *);
74 typedef char *(*str_func_t)(char *, const char *);
75 typedef size_t (*strlen_func_t)(const char *);
76
77 // Struct that contains a mapping of benchmark name to benchmark function.
78 typedef struct {
79     const char *name;
80     int (*ptr)(const char *, const command_data_t &, void_func_t func);
81     void_func_t func;
82 } function_t;
83
84 // Get the current time in nanoseconds.
85 uint64_t nanoTime() {
86   struct timespec t;
87
88   t.tv_sec = t.tv_nsec = 0;
89   clock_gettime(CLOCK_MONOTONIC, &t);
90   return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
91 }
92
93 // Allocate memory with a specific alignment and return that pointer.
94 // This function assumes an alignment value that is a power of 2.
95 // If the alignment is 0, then use the pointer returned by malloc.
96 uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
97   uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
98   if (alignment > 0) {
99       // When setting the alignment, set it to exactly the alignment chosen.
100       // The pointer returned will be guaranteed not to be aligned to anything
101       // more than that.
102       ptr += alignment - (ptr & (alignment - 1));
103       ptr |= alignment | or_mask;
104   }
105
106   return reinterpret_cast<uint8_t*>(ptr);
107 }
108
109 // Allocate memory with a specific alignment and return that pointer.
110 // This function assumes an alignment value that is a power of 2.
111 // If the alignment is 0, then use the pointer returned by malloc.
112 uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
113   uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
114   if (!ptr)
115       return NULL;
116   return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
117 }
118
119 void initString(uint8_t *buf, size_t size) {
120     for (size_t i = 0; i < size - 1; i++) {
121         buf[i] = static_cast<char>(32 + (i % 96));
122     }
123     buf[size-1] = '\0';
124 }
125
126 static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
127     return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
128 }
129
130 static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
131     return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
132 }
133
134 static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
135     return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
136 }
137
138 static inline double computeStdDev(double square_avg, double running_avg) {
139     return sqrt(square_avg - running_avg * running_avg);
140 }
141
142 static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
143     printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n",
144            name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
145 }
146
147 static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
148     printf("  %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
149            name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
150            max/1024.0);
151 }
152
153 // For the cold benchmarks, a large buffer will be created which
154 // contains many "size" buffers. This function will figure out the increment
155 // needed between each buffer so that each one is aligned to "alignment".
156 int getAlignmentIncrement(size_t size, int alignment) {
157     if (alignment == 0) {
158         alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
159     }
160     alignment *= 2;
161     return size + alignment - (size % alignment);
162 }
163
164 uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
165     uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
166     if (!buffers) {
167         return NULL;
168     }
169     return getAlignedMemory(buffers, alignment, or_mask);
170 }
171
172 static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
173     return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
174 }
175
176 static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
177     printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n",
178            name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
179 }
180
181 static void inline printColdSummary(
182         uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers,
183         double running_avg, double square_avg, double min, double max) {
184     printf("  %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
185            name, copies, num_buffers, size, running_avg/1024.0,
186            computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
187 }
188
189 #define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
190     uint64_t time_ns;                                                 \
191     int iters = cmd_data.args[1];                                     \
192     bool print_average = cmd_data.print_average;                      \
193     bool print_each_iter = cmd_data.print_each_iter;                  \
194     double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
195     double avg;                                                       \
196     for (int i = 0; iters == -1 || i < iters; i++) {                  \
197         time_ns = nanoTime();                                         \
198         BENCH;                                                        \
199         time_ns = nanoTime() - time_ns;                               \
200         avg = COMPUTE_AVG;                                            \
201         if (print_average) {                                          \
202             running_avg = computeRunningAvg(avg, running_avg, i);     \
203             square_avg = computeRunningSquareAvg(avg, square_avg, i); \
204             if (min == 0.0 || avg < min) {                            \
205                 min = avg;                                            \
206             }                                                         \
207             if (avg > max) {                                          \
208                 max = avg;                                            \
209             }                                                         \
210         }                                                             \
211         if (print_each_iter) {                                        \
212             PRINT_ITER;                                               \
213         }                                                             \
214     }                                                                 \
215     if (print_average) {                                              \
216         PRINT_AVG;                                                    \
217     }
218
219 #define MAINLOOP_DATA(name, cmd_data, size, BENCH)                    \
220     size_t copies = cmd_data.data_size/size;                          \
221     size_t j;                                                         \
222     MAINLOOP(cmd_data,                                                \
223              for (j = 0; j < copies; j++) {                           \
224                  BENCH;                                               \
225              },                                                       \
226              computeAverage(time_ns, size, copies),                   \
227              printIter(time_ns, name, size, copies, avg),             \
228              double std_dev = computeStdDev(square_avg, running_avg); \
229              printSummary(time_ns, name, size, copies, running_avg,   \
230                           std_dev, min, max));
231
232 #define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH)                 \
233     size_t num_strides = num_buffers / num_incrs;                             \
234     if ((num_buffers % num_incrs) != 0) {                                     \
235         num_strides--;                                                        \
236     }                                                                         \
237     size_t copies = 1;                                                        \
238     num_buffers = num_incrs * num_strides;                                    \
239     if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) {       \
240         copies = cmd_data.data_size / (num_buffers * size);                   \
241     }                                                                         \
242     if (num_strides == 0) {                                                   \
243         printf("%s: Chosen options lead to no copies, aborting.\n", name);    \
244         return -1;                                                            \
245     }                                                                         \
246     size_t j, k;                                                              \
247     MAINLOOP(cmd_data,                                                        \
248              for (j = 0; j < copies; j++) {                                   \
249                  for (k = 0; k < num_incrs; k++) {                            \
250                      BENCH;                                                   \
251                 }                                                             \
252             },                                                                \
253             computeColdAverage(time_ns, size, copies, num_buffers),           \
254             printColdIter(time_ns, name, size, copies, num_buffers, avg),     \
255             printColdSummary(time_ns, name, size, copies, num_buffers,        \
256                              running_avg, square_avg, min, max));
257
258 // This version of the macro creates a single buffer of the given size and
259 // alignment. The variable "buf" will be a pointer to the buffer and should
260 // be used by the BENCH code.
261 // INIT - Any specialized code needed to initialize the data. This will only
262 //        be executed once.
263 // BENCH - The actual code to benchmark and is timed.
264 #define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH)                            \
265     size_t size = cmd_data.args[0]; \
266     uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \
267     if (!buf)                                                                 \
268         return -1;                                                            \
269     INIT;                                                                     \
270     MAINLOOP_DATA(name, cmd_data, size, BENCH);
271
272 // This version of the macro creates two buffers of the given sizes and
273 // alignments. The variables "buf1" and "buf2" will be pointers to the
274 // buffers and should be used by the BENCH code.
275 // INIT - Any specialized code needed to initialize the data. This will only
276 //        be executed once.
277 // BENCH - The actual code to benchmark and is timed.
278 #define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH)                           \
279     size_t size = cmd_data.args[0];                                           \
280     uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \
281     if (!buf1)                                                                \
282         return -1;                                                            \
283     size_t total_size = size;                                                 \
284     if (cmd_data.dst_str_size > 0)                                            \
285         total_size += cmd_data.dst_str_size;                                  \
286     uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \
287     if (!buf2)                                                                \
288         return -1;                                                            \
289     INIT;                                                                     \
290     MAINLOOP_DATA(name, cmd_data, size, BENCH);
291
292 // This version of the macro attempts to benchmark code when the data
293 // being manipulated is not in the cache, thus the cache is cold. It does
294 // this by creating a single large buffer that is designed to be larger than
295 // the largest cache in the system. The variable "buf" will be one slice
296 // of the buffer that the BENCH code should use that is of the correct size
297 // and alignment. In order to avoid any algorithms that prefetch past the end
298 // of their "buf" and into the next sequential buffer, the code strides
299 // through the buffer. Specifically, as "buf" values are iterated in BENCH
300 // code, the end of "buf" is guaranteed to be at least "stride_size" away
301 // from the next "buf".
302 // INIT - Any specialized code needed to initialize the data. This will only
303 //        be executed once.
304 // BENCH - The actual code to benchmark and is timed.
305 #define COLD_ONE_BUF(name, cmd_data, INIT, BENCH)                             \
306     size_t size = cmd_data.args[0];                                           \
307     size_t incr = getAlignmentIncrement(size, cmd_data.dst_align);            \
308     size_t num_buffers = cmd_data.cold_data_size / incr;                      \
309     size_t buffer_size = num_buffers * incr;                                  \
310     uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
311     if (!buffer)                                                              \
312         return -1;                                                            \
313     size_t num_incrs = cmd_data.cold_stride_size / incr + 1;                  \
314     size_t stride_incr = incr * num_incrs;                                    \
315     uint8_t *buf;                                                             \
316     size_t l;                                                                 \
317     INIT;                                                                     \
318     MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
319                   buf = buffer + k * incr;                                    \
320                   for (l = 0; l < num_strides; l++) {                         \
321                       BENCH;                                                  \
322                       buf += stride_incr;                                     \
323                   });
324
325 // This version of the macro attempts to benchmark code when the data
326 // being manipulated is not in the cache, thus the cache is cold. It does
327 // this by creating two large buffers each of which is designed to be
328 // larger than the largest cache in the system. Two variables "buf1" and
329 // "buf2" will be the two buffers that BENCH code should use. In order
330 // to avoid any algorithms that prefetch past the end of either "buf1"
331 // or "buf2" and into the next sequential buffer, the code strides through
332 // both buffers. Specifically, as "buf1" and "buf2" values are iterated in
333 // BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
334 // "stride_size" away from the next "buf1" and "buf2".
335 // INIT - Any specialized code needed to initialize the data. This will only
336 //        be executed once.
337 // BENCH - The actual code to benchmark and is timed.
338 #define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH)                            \
339     size_t size = cmd_data.args[0];                                           \
340     size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align);       \
341     size_t total_size = size;                                                 \
342     if (cmd_data.dst_str_size > 0)                                            \
343         total_size += cmd_data.dst_str_size;                                  \
344     size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \
345     size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr;        \
346     size_t num_buffers = cmd_data.cold_data_size / max_incr;                  \
347     size_t buffer1_size = num_buffers * buf1_incr;                            \
348     size_t buffer2_size = num_buffers * buf2_incr;                            \
349     uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \
350     if (!buffer1)                                                             \
351         return -1;                                                            \
352     uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
353     if (!buffer2)                                                             \
354         return -1;                                                            \
355     size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr;        \
356     size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1;              \
357     size_t buf1_stride_incr = buf1_incr * num_incrs;                          \
358     size_t buf2_stride_incr = buf2_incr * num_incrs;                          \
359     size_t l;                                                                 \
360     uint8_t *buf1;                                                            \
361     uint8_t *buf2;                                                            \
362     INIT;                                                                     \
363     MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
364                   buf1 = buffer1 + k * buf1_incr;                             \
365                   buf2 = buffer2 + k * buf2_incr;                             \
366                   for (l = 0; l < num_strides; l++) {                         \
367                       BENCH;                                                  \
368                       buf1 += buf1_stride_incr;                               \
369                       buf2 += buf2_stride_incr;                               \
370                   });
371
372 int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
373     int delay = cmd_data.args[0];
374     MAINLOOP(cmd_data, sleep(delay),
375              (double)time_ns/NS_PER_SEC,
376              printf("sleep(%d) took %.06f seconds\n", delay, avg);,
377              printf("  sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
378                     delay, running_avg, computeStdDev(square_avg, running_avg), \
379                     min, max));
380
381     return 0;
382 }
383
384 int benchmarkCpu(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
385     // Use volatile so that the loop is not optimized away by the compiler.
386     volatile int cpu_foo;
387
388     MAINLOOP(cmd_data,
389              for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++),
390              (double)time_ns/NS_PER_SEC,
391              printf("cpu took %.06f seconds\n", avg),
392              printf("  cpu average %.06f seconds std dev %f min %0.6f seconds max %0.6f seconds\n", \
393                     running_avg, computeStdDev(square_avg, running_avg), min, max));
394
395     return 0;
396 }
397
398 int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
399     memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
400     BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));
401
402     return 0;
403 }
404
405 int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
406     memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
407     COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));
408
409     return 0;
410 }
411
412 int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
413     memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
414
415     BENCH_TWO_BUFS(name, cmd_data,
416                    memset(buf1, 0xff, size); \
417                    memset(buf2, 0, size),
418                    memcpy_func(buf2, buf1, size));
419
420     return 0;
421 }
422
423 int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
424     memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
425
426     COLD_TWO_BUFS(name, cmd_data,
427                   memset(buffer1, 0xff, buffer1_size); \
428                   memset(buffer2, 0x0, buffer2_size),
429                   memcpy_func(buf2, buf1, size));
430
431     return 0;
432 }
433
434 int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) {
435     int size = cmd_data.args[0];
436
437     uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
438     if (!src)
439         return -1;
440     memset(src, 0xff, size);
441
442     // Use volatile so the compiler does not optimize away the reads.
443     volatile int foo;
444     size_t k;
445     MAINLOOP_DATA(name, cmd_data, size,
446                   for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);
447
448     return 0;
449 }
450
451 int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
452     strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
453
454     int retval;
455     BENCH_TWO_BUFS(name, cmd_data,
456                    initString(buf1, size); \
457                    initString(buf2, size),
458                    retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
459                    if (retval != 0) printf("%s failed, return value %d\n", name, retval));
460
461     return 0;
462 }
463
464 int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
465     strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
466
467     int retval;
468     COLD_TWO_BUFS(name, cmd_data,
469                   memset(buffer1, 'a', buffer1_size); \
470                   memset(buffer2, 'a', buffer2_size); \
471                   for (size_t i =0; i < num_buffers; i++) { \
472                       buffer1[size-1+buf1_incr*i] = '\0'; \
473                       buffer2[size-1+buf2_incr*i] = '\0'; \
474                   },
475                   retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
476                   if (retval != 0) printf("%s failed, return value %d\n", name, retval));
477
478     return 0;
479 }
480
481 int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
482     size_t real_size;
483     strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
484     BENCH_ONE_BUF(name, cmd_data,
485                   initString(buf, size),
486                   real_size = strlen_func(reinterpret_cast<char*>(buf)); \
487                   if (real_size + 1 != size) { \
488                       printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
489                       return -1; \
490                   });
491
492     return 0;
493 }
494
495 int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
496     strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
497     size_t real_size;
498     COLD_ONE_BUF(name, cmd_data,
499                  memset(buffer, 'a', buffer_size); \
500                  for (size_t i = 0; i < num_buffers; i++) { \
501                      buffer[size-1+incr*i] = '\0'; \
502                  },
503                  real_size = strlen_func(reinterpret_cast<char*>(buf)); \
504                  if (real_size + 1 != size) { \
505                      printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
506                      return -1; \
507                  });
508     return 0;
509 }
510
511 int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
512     str_func_t str_func = reinterpret_cast<str_func_t>(func);
513
514     int dst_str_size = cmd_data.dst_str_size;
515     if (dst_str_size <= 0) {
516         printf("%s requires --dst_str_size to be set to a non-zero value.\n",
517                name);
518         return -1;
519     }
520     BENCH_TWO_BUFS(name, cmd_data,
521                    initString(buf1, size); \
522                    initString(buf2, dst_str_size),
523                    str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
524
525     return 0;
526 }
527
528 int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
529     str_func_t str_func = reinterpret_cast<str_func_t>(func);
530
531     int dst_str_size = cmd_data.dst_str_size;
532     if (dst_str_size <= 0) {
533         printf("%s requires --dst_str_size to be set to a non-zero value.\n",
534                name);
535         return -1;
536     }
537     COLD_TWO_BUFS(name, cmd_data,
538                   memset(buffer1, 'a', buffer1_size); \
539                   memset(buffer2, 'b', buffer2_size); \
540                   for (size_t i = 0; i < num_buffers; i++) { \
541                       buffer1[size-1+buf1_incr*i] = '\0'; \
542                       buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
543                   },
544                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
545
546     return 0;
547 }
548
549
550 int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
551     str_func_t str_func = reinterpret_cast<str_func_t>(func);
552
553     BENCH_TWO_BUFS(name, cmd_data,
554                    initString(buf1, size); \
555                    memset(buf2, 0, size),
556                    str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
557
558     return 0;
559 }
560
561 int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
562     str_func_t str_func = reinterpret_cast<str_func_t>(func);
563
564     COLD_TWO_BUFS(name, cmd_data,
565                   memset(buffer1, 'a', buffer1_size); \
566                   for (size_t i = 0; i < num_buffers; i++) { \
567                      buffer1[size-1+buf1_incr*i] = '\0'; \
568                   } \
569                   memset(buffer2, 0, buffer2_size),
570                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
571
572     return 0;
573 }
574
575 // Create the mapping structure.
576 function_t function_table[] = {
577     { "cpu", benchmarkCpu, NULL },
578     { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
579     { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
580     { "memread", benchmarkMemread, NULL },
581     { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
582     { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
583     { "sleep", benchmarkSleep, NULL },
584     { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
585     { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
586     { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
587     { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
588     { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
589     { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
590     { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
591     { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
592 };
593
594 void usage() {
595     printf("Usage:\n");
596     printf("  micro_bench [--data_size DATA_BYTES] [--print_average]\n");
597     printf("              [--no_print_each_iter] [--lock_to_cpu CORE]\n");
598     printf("              [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
599     printf("              [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
600     printf("              [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
601     printf("              [--cold_stride_size SIZE]\n");
602     printf("    --data_size DATA_BYTES\n");
603     printf("      For the data benchmarks (memcpy/memset/memread) the approximate\n");
604     printf("      size of data, in bytes, that will be manipulated in each iteration.\n");
605     printf("    --print_average\n");
606     printf("      Print the average and standard deviation of all iterations.\n");
607     printf("    --no_print_each_iter\n");
608     printf("      Do not print any values in each iteration.\n");
609     printf("    --lock_to_cpu CORE\n");
610     printf("      Lock to the specified CORE. The default is to use the last core found.\n");
611     printf("    --dst_align ALIGN\n");
612     printf("      If the command supports it, align the destination pointer to ALIGN.\n");
613     printf("      The default is to use the value returned by malloc.\n");
614     printf("    --dst_or_mask OR_MASK\n");
615     printf("      If the command supports it, or in the OR_MASK on to the destination pointer.\n");
616     printf("      The OR_MASK must be smaller than the dst_align value.\n");
617     printf("      The default value is 0.\n");
618
619     printf("    --src_align ALIGN\n");
620     printf("      If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
621     printf("      value returned by malloc.\n");
622     printf("    --src_or_mask OR_MASK\n");
623     printf("      If the command supports it, or in the OR_MASK on to the source pointer.\n");
624     printf("      The OR_MASK must be smaller than the src_align value.\n");
625     printf("      The default value is 0.\n");
626     printf("    --dst_str_size SIZE\n");
627     printf("      If the command supports it, create a destination string of this length.\n");
628     printf("      The default is to not update the destination string.\n");
629     printf("    --cold_data_size DATA_SIZE\n");
630     printf("      For _cold benchmarks, use this as the total amount of memory to use.\n");
631     printf("      The default is 128MB, and the number should be larger than the cache on the chip.\n");
632     printf("      This value is specified in bytes.\n");
633     printf("    --cold_stride_size SIZE\n");
634     printf("      For _cold benchmarks, use this as the minimum stride between iterations.\n");
635     printf("      The default is 4096 bytes and the number should be larger than the amount of data\n");
636     printf("      pulled in to the cache by each run of the benchmark.\n");
637     printf("    ITERS\n");
638     printf("      The number of iterations to execute each benchmark. If not\n");
639     printf("      passed in then run forever.\n");
640     printf("  micro_bench cpu UNUSED [ITERS]\n");
641     printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
642     printf("  micro_bench memread NUM_BYTES [ITERS]\n");
643     printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
644     printf("  micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
645     printf("    TIME_TO_SLEEP\n");
646     printf("      The time in seconds to sleep.\n");
647     printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
648     printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
649     printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
650     printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
651     printf("\n");
652     printf("  In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
653     printf("  that will execute the function on a buffer not in the cache.\n");
654 }
655
656 function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
657     function_t *command = NULL;
658
659     // Initialize the command_flags.
660     cmd_data->print_average = false;
661     cmd_data->print_each_iter = true;
662     cmd_data->dst_align = 0;
663     cmd_data->src_align = 0;
664     cmd_data->src_or_mask = 0;
665     cmd_data->dst_or_mask = 0;
666     cmd_data->num_args = 0;
667     cmd_data->cpu_to_lock = -1;
668     cmd_data->data_size = DEFAULT_DATA_SIZE;
669     cmd_data->dst_str_size = -1;
670     cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
671     cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
672     for (int i = 0; i < MAX_ARGS; i++) {
673         cmd_data->args[i] = -1;
674     }
675
676     for (int i = 1; i < argc; i++) {
677         if (argv[i][0] == '-') {
678             int *save_value = NULL;
679             if (strcmp(argv[i], "--print_average") == 0) {
680                 cmd_data->print_average = true;
681             } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
682                 cmd_data->print_each_iter = false;
683             } else if (strcmp(argv[i], "--dst_align") == 0) {
684                 save_value = &cmd_data->dst_align;
685             } else if (strcmp(argv[i], "--src_align") == 0) {
686                 save_value = &cmd_data->src_align;
687             } else if (strcmp(argv[i], "--dst_or_mask") == 0) {
688                 save_value = &cmd_data->dst_or_mask;
689             } else if (strcmp(argv[i], "--src_or_mask") == 0) {
690                 save_value = &cmd_data->src_or_mask;
691             } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
692                 save_value = &cmd_data->cpu_to_lock;
693             } else if (strcmp(argv[i], "--data_size") == 0) {
694                 save_value = &cmd_data->data_size;
695             } else if (strcmp(argv[i], "--dst_str_size") == 0) {
696                 save_value = &cmd_data->dst_str_size;
697             } else if (strcmp(argv[i], "--cold_data_size") == 0) {
698                 save_value = &cmd_data->cold_data_size;
699             } else if (strcmp(argv[i], "--cold_stride_size") == 0) {
700                 save_value = &cmd_data->cold_stride_size;
701             } else {
702                 printf("Unknown option %s\n", argv[i]);
703                 return NULL;
704             }
705             if (save_value) {
706                 // Checking both characters without a strlen() call should be
707                 // safe since as long as the argument exists, one character will
708                 // be present (\0). And if the first character is '-', then
709                 // there will always be a second character (\0 again).
710                 if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
711                     printf("The option %s requires one argument.\n",
712                            argv[i]);
713                     return NULL;
714                 }
715                 *save_value = (int)strtol(argv[++i], NULL, 0);
716             }
717         } else if (!command) {
718             for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
719                 if (strcmp(argv[i], function_table[j].name) == 0) {
720                     command = &function_table[j];
721                     break;
722                 }
723             }
724             if (!command) {
725                 printf("Uknown command %s\n", argv[i]);
726                 return NULL;
727             }
728         } else if (cmd_data->num_args > MAX_ARGS) {
729             printf("More than %d number arguments passed in.\n", MAX_ARGS);
730             return NULL;
731         } else {
732             cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
733         }
734     }
735
736     // Check the arguments passed in make sense.
737     if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
738         printf("Not enough arguments passed in.\n");
739         return NULL;
740     } else if (cmd_data->dst_align < 0) {
741         printf("The --dst_align option must be greater than or equal to 0.\n");
742         return NULL;
743     } else if (cmd_data->src_align < 0) {
744         printf("The --src_align option must be greater than or equal to 0.\n");
745         return NULL;
746     } else if (cmd_data->data_size <= 0) {
747         printf("The --data_size option must be a positive number.\n");
748         return NULL;
749     } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
750         printf("The --dst_align option must be a power of 2.\n");
751         return NULL;
752     } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
753         printf("The --src_align option must be a power of 2.\n");
754         return NULL;
755     } else if (!cmd_data->src_align && cmd_data->src_or_mask) {
756         printf("The --src_or_mask option requires that --src_align be set.\n");
757         return NULL;
758     } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
759         printf("The --dst_or_mask option requires that --dst_align be set.\n");
760         return NULL;
761     } else if (cmd_data->src_or_mask > cmd_data->src_align) {
762         printf("The value of --src_or_mask cannot be larger that --src_align.\n");
763         return NULL;
764     } else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
765         printf("The value of --src_or_mask cannot be larger that --src_align.\n");
766         return NULL;
767     }
768
769     return command;
770 }
771
772 bool raisePriorityAndLock(int cpu_to_lock) {
773     cpu_set_t cpuset;
774
775     if (setpriority(PRIO_PROCESS, 0, -20)) {
776         perror("Unable to raise priority of process.\n");
777         return false;
778     }
779
780     CPU_ZERO(&cpuset);
781     if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
782         perror("sched_getaffinity failed");
783         return false;
784     }
785
786     if (cpu_to_lock < 0) {
787         // Lock to the last active core we find.
788         for (int i = 0; i < CPU_SETSIZE; i++) {
789             if (CPU_ISSET(i, &cpuset)) {
790                 cpu_to_lock = i;
791             }
792         }
793     } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
794         printf("Cpu %d does not exist.\n", cpu_to_lock);
795         return false;
796     }
797
798     if (cpu_to_lock < 0) {
799         printf("Cannot find any valid cpu to lock.\n");
800         return false;
801     }
802
803     CPU_ZERO(&cpuset);
804     CPU_SET(cpu_to_lock, &cpuset);
805     if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
806         perror("sched_setaffinity failed");
807         return false;
808     }
809
810     return true;
811 }
812
813 int main(int argc, char **argv) {
814     command_data_t cmd_data;
815
816     function_t *command = processOptions(argc, argv, &cmd_data);
817     if (!command) {
818       usage();
819       return -1;
820     }
821
822     if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
823       return -1;
824     }
825
826     printf("%s\n", command->name);
827     return (*command->ptr)(command->name, cmd_data, command->func);
828 }