OSDN Git Service

mm: balloon: use general non-lru movable page feature
[uclinux-h8/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/balloon_compaction.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include "internal.h"
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28         count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33         count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52         struct page *page, *next;
53         unsigned long high_pfn = 0;
54
55         list_for_each_entry_safe(page, next, freelist, lru) {
56                 unsigned long pfn = page_to_pfn(page);
57                 list_del(&page->lru);
58                 __free_page(page);
59                 if (pfn > high_pfn)
60                         high_pfn = pfn;
61         }
62
63         return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68         struct page *page;
69
70         list_for_each_entry(page, list, lru) {
71                 arch_alloc_page(page, 0);
72                 kernel_map_pages(page, 1, 1);
73                 kasan_alloc_pages(page, 0);
74         }
75 }
76
77 static inline bool migrate_async_suitable(int migratetype)
78 {
79         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
80 }
81
82 #ifdef CONFIG_COMPACTION
83
84 int PageMovable(struct page *page)
85 {
86         struct address_space *mapping;
87
88         VM_BUG_ON_PAGE(!PageLocked(page), page);
89         if (!__PageMovable(page))
90                 return 0;
91
92         mapping = page_mapping(page);
93         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
94                 return 1;
95
96         return 0;
97 }
98 EXPORT_SYMBOL(PageMovable);
99
100 void __SetPageMovable(struct page *page, struct address_space *mapping)
101 {
102         VM_BUG_ON_PAGE(!PageLocked(page), page);
103         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
104         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
105 }
106 EXPORT_SYMBOL(__SetPageMovable);
107
108 void __ClearPageMovable(struct page *page)
109 {
110         VM_BUG_ON_PAGE(!PageLocked(page), page);
111         VM_BUG_ON_PAGE(!PageMovable(page), page);
112         /*
113          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
114          * flag so that VM can catch up released page by driver after isolation.
115          * With it, VM migration doesn't try to put it back.
116          */
117         page->mapping = (void *)((unsigned long)page->mapping &
118                                 PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__ClearPageMovable);
121
122 /* Do not skip compaction more than 64 times */
123 #define COMPACT_MAX_DEFER_SHIFT 6
124
125 /*
126  * Compaction is deferred when compaction fails to result in a page
127  * allocation success. 1 << compact_defer_limit compactions are skipped up
128  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
129  */
130 void defer_compaction(struct zone *zone, int order)
131 {
132         zone->compact_considered = 0;
133         zone->compact_defer_shift++;
134
135         if (order < zone->compact_order_failed)
136                 zone->compact_order_failed = order;
137
138         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
139                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
140
141         trace_mm_compaction_defer_compaction(zone, order);
142 }
143
144 /* Returns true if compaction should be skipped this time */
145 bool compaction_deferred(struct zone *zone, int order)
146 {
147         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
148
149         if (order < zone->compact_order_failed)
150                 return false;
151
152         /* Avoid possible overflow */
153         if (++zone->compact_considered > defer_limit)
154                 zone->compact_considered = defer_limit;
155
156         if (zone->compact_considered >= defer_limit)
157                 return false;
158
159         trace_mm_compaction_deferred(zone, order);
160
161         return true;
162 }
163
164 /*
165  * Update defer tracking counters after successful compaction of given order,
166  * which means an allocation either succeeded (alloc_success == true) or is
167  * expected to succeed.
168  */
169 void compaction_defer_reset(struct zone *zone, int order,
170                 bool alloc_success)
171 {
172         if (alloc_success) {
173                 zone->compact_considered = 0;
174                 zone->compact_defer_shift = 0;
175         }
176         if (order >= zone->compact_order_failed)
177                 zone->compact_order_failed = order + 1;
178
179         trace_mm_compaction_defer_reset(zone, order);
180 }
181
182 /* Returns true if restarting compaction after many failures */
183 bool compaction_restarting(struct zone *zone, int order)
184 {
185         if (order < zone->compact_order_failed)
186                 return false;
187
188         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
189                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
190 }
191
192 /* Returns true if the pageblock should be scanned for pages to isolate. */
193 static inline bool isolation_suitable(struct compact_control *cc,
194                                         struct page *page)
195 {
196         if (cc->ignore_skip_hint)
197                 return true;
198
199         return !get_pageblock_skip(page);
200 }
201
202 static void reset_cached_positions(struct zone *zone)
203 {
204         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
205         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
206         zone->compact_cached_free_pfn =
207                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
208 }
209
210 /*
211  * This function is called to clear all cached information on pageblocks that
212  * should be skipped for page isolation when the migrate and free page scanner
213  * meet.
214  */
215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217         unsigned long start_pfn = zone->zone_start_pfn;
218         unsigned long end_pfn = zone_end_pfn(zone);
219         unsigned long pfn;
220
221         zone->compact_blockskip_flush = false;
222
223         /* Walk the zone and mark every pageblock as suitable for isolation */
224         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
225                 struct page *page;
226
227                 cond_resched();
228
229                 if (!pfn_valid(pfn))
230                         continue;
231
232                 page = pfn_to_page(pfn);
233                 if (zone != page_zone(page))
234                         continue;
235
236                 clear_pageblock_skip(page);
237         }
238
239         reset_cached_positions(zone);
240 }
241
242 void reset_isolation_suitable(pg_data_t *pgdat)
243 {
244         int zoneid;
245
246         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
247                 struct zone *zone = &pgdat->node_zones[zoneid];
248                 if (!populated_zone(zone))
249                         continue;
250
251                 /* Only flush if a full compaction finished recently */
252                 if (zone->compact_blockskip_flush)
253                         __reset_isolation_suitable(zone);
254         }
255 }
256
257 /*
258  * If no pages were isolated then mark this pageblock to be skipped in the
259  * future. The information is later cleared by __reset_isolation_suitable().
260  */
261 static void update_pageblock_skip(struct compact_control *cc,
262                         struct page *page, unsigned long nr_isolated,
263                         bool migrate_scanner)
264 {
265         struct zone *zone = cc->zone;
266         unsigned long pfn;
267
268         if (cc->ignore_skip_hint)
269                 return;
270
271         if (!page)
272                 return;
273
274         if (nr_isolated)
275                 return;
276
277         set_pageblock_skip(page);
278
279         pfn = page_to_pfn(page);
280
281         /* Update where async and sync compaction should restart */
282         if (migrate_scanner) {
283                 if (pfn > zone->compact_cached_migrate_pfn[0])
284                         zone->compact_cached_migrate_pfn[0] = pfn;
285                 if (cc->mode != MIGRATE_ASYNC &&
286                     pfn > zone->compact_cached_migrate_pfn[1])
287                         zone->compact_cached_migrate_pfn[1] = pfn;
288         } else {
289                 if (pfn < zone->compact_cached_free_pfn)
290                         zone->compact_cached_free_pfn = pfn;
291         }
292 }
293 #else
294 static inline bool isolation_suitable(struct compact_control *cc,
295                                         struct page *page)
296 {
297         return true;
298 }
299
300 static void update_pageblock_skip(struct compact_control *cc,
301                         struct page *page, unsigned long nr_isolated,
302                         bool migrate_scanner)
303 {
304 }
305 #endif /* CONFIG_COMPACTION */
306
307 /*
308  * Compaction requires the taking of some coarse locks that are potentially
309  * very heavily contended. For async compaction, back out if the lock cannot
310  * be taken immediately. For sync compaction, spin on the lock if needed.
311  *
312  * Returns true if the lock is held
313  * Returns false if the lock is not held and compaction should abort
314  */
315 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
316                                                 struct compact_control *cc)
317 {
318         if (cc->mode == MIGRATE_ASYNC) {
319                 if (!spin_trylock_irqsave(lock, *flags)) {
320                         cc->contended = COMPACT_CONTENDED_LOCK;
321                         return false;
322                 }
323         } else {
324                 spin_lock_irqsave(lock, *flags);
325         }
326
327         return true;
328 }
329
330 /*
331  * Compaction requires the taking of some coarse locks that are potentially
332  * very heavily contended. The lock should be periodically unlocked to avoid
333  * having disabled IRQs for a long time, even when there is nobody waiting on
334  * the lock. It might also be that allowing the IRQs will result in
335  * need_resched() becoming true. If scheduling is needed, async compaction
336  * aborts. Sync compaction schedules.
337  * Either compaction type will also abort if a fatal signal is pending.
338  * In either case if the lock was locked, it is dropped and not regained.
339  *
340  * Returns true if compaction should abort due to fatal signal pending, or
341  *              async compaction due to need_resched()
342  * Returns false when compaction can continue (sync compaction might have
343  *              scheduled)
344  */
345 static bool compact_unlock_should_abort(spinlock_t *lock,
346                 unsigned long flags, bool *locked, struct compact_control *cc)
347 {
348         if (*locked) {
349                 spin_unlock_irqrestore(lock, flags);
350                 *locked = false;
351         }
352
353         if (fatal_signal_pending(current)) {
354                 cc->contended = COMPACT_CONTENDED_SCHED;
355                 return true;
356         }
357
358         if (need_resched()) {
359                 if (cc->mode == MIGRATE_ASYNC) {
360                         cc->contended = COMPACT_CONTENDED_SCHED;
361                         return true;
362                 }
363                 cond_resched();
364         }
365
366         return false;
367 }
368
369 /*
370  * Aside from avoiding lock contention, compaction also periodically checks
371  * need_resched() and either schedules in sync compaction or aborts async
372  * compaction. This is similar to what compact_unlock_should_abort() does, but
373  * is used where no lock is concerned.
374  *
375  * Returns false when no scheduling was needed, or sync compaction scheduled.
376  * Returns true when async compaction should abort.
377  */
378 static inline bool compact_should_abort(struct compact_control *cc)
379 {
380         /* async compaction aborts if contended */
381         if (need_resched()) {
382                 if (cc->mode == MIGRATE_ASYNC) {
383                         cc->contended = COMPACT_CONTENDED_SCHED;
384                         return true;
385                 }
386
387                 cond_resched();
388         }
389
390         return false;
391 }
392
393 /*
394  * Isolate free pages onto a private freelist. If @strict is true, will abort
395  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
396  * (even though it may still end up isolating some pages).
397  */
398 static unsigned long isolate_freepages_block(struct compact_control *cc,
399                                 unsigned long *start_pfn,
400                                 unsigned long end_pfn,
401                                 struct list_head *freelist,
402                                 bool strict)
403 {
404         int nr_scanned = 0, total_isolated = 0;
405         struct page *cursor, *valid_page = NULL;
406         unsigned long flags = 0;
407         bool locked = false;
408         unsigned long blockpfn = *start_pfn;
409
410         cursor = pfn_to_page(blockpfn);
411
412         /* Isolate free pages. */
413         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
414                 int isolated, i;
415                 struct page *page = cursor;
416
417                 /*
418                  * Periodically drop the lock (if held) regardless of its
419                  * contention, to give chance to IRQs. Abort if fatal signal
420                  * pending or async compaction detects need_resched()
421                  */
422                 if (!(blockpfn % SWAP_CLUSTER_MAX)
423                     && compact_unlock_should_abort(&cc->zone->lock, flags,
424                                                                 &locked, cc))
425                         break;
426
427                 nr_scanned++;
428                 if (!pfn_valid_within(blockpfn))
429                         goto isolate_fail;
430
431                 if (!valid_page)
432                         valid_page = page;
433
434                 /*
435                  * For compound pages such as THP and hugetlbfs, we can save
436                  * potentially a lot of iterations if we skip them at once.
437                  * The check is racy, but we can consider only valid values
438                  * and the only danger is skipping too much.
439                  */
440                 if (PageCompound(page)) {
441                         unsigned int comp_order = compound_order(page);
442
443                         if (likely(comp_order < MAX_ORDER)) {
444                                 blockpfn += (1UL << comp_order) - 1;
445                                 cursor += (1UL << comp_order) - 1;
446                         }
447
448                         goto isolate_fail;
449                 }
450
451                 if (!PageBuddy(page))
452                         goto isolate_fail;
453
454                 /*
455                  * If we already hold the lock, we can skip some rechecking.
456                  * Note that if we hold the lock now, checked_pageblock was
457                  * already set in some previous iteration (or strict is true),
458                  * so it is correct to skip the suitable migration target
459                  * recheck as well.
460                  */
461                 if (!locked) {
462                         /*
463                          * The zone lock must be held to isolate freepages.
464                          * Unfortunately this is a very coarse lock and can be
465                          * heavily contended if there are parallel allocations
466                          * or parallel compactions. For async compaction do not
467                          * spin on the lock and we acquire the lock as late as
468                          * possible.
469                          */
470                         locked = compact_trylock_irqsave(&cc->zone->lock,
471                                                                 &flags, cc);
472                         if (!locked)
473                                 break;
474
475                         /* Recheck this is a buddy page under lock */
476                         if (!PageBuddy(page))
477                                 goto isolate_fail;
478                 }
479
480                 /* Found a free page, break it into order-0 pages */
481                 isolated = split_free_page(page);
482                 if (!isolated)
483                         break;
484
485                 total_isolated += isolated;
486                 cc->nr_freepages += isolated;
487                 for (i = 0; i < isolated; i++) {
488                         list_add(&page->lru, freelist);
489                         page++;
490                 }
491                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
492                         blockpfn += isolated;
493                         break;
494                 }
495                 /* Advance to the end of split page */
496                 blockpfn += isolated - 1;
497                 cursor += isolated - 1;
498                 continue;
499
500 isolate_fail:
501                 if (strict)
502                         break;
503                 else
504                         continue;
505
506         }
507
508         if (locked)
509                 spin_unlock_irqrestore(&cc->zone->lock, flags);
510
511         /*
512          * There is a tiny chance that we have read bogus compound_order(),
513          * so be careful to not go outside of the pageblock.
514          */
515         if (unlikely(blockpfn > end_pfn))
516                 blockpfn = end_pfn;
517
518         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
519                                         nr_scanned, total_isolated);
520
521         /* Record how far we have got within the block */
522         *start_pfn = blockpfn;
523
524         /*
525          * If strict isolation is requested by CMA then check that all the
526          * pages requested were isolated. If there were any failures, 0 is
527          * returned and CMA will fail.
528          */
529         if (strict && blockpfn < end_pfn)
530                 total_isolated = 0;
531
532         /* Update the pageblock-skip if the whole pageblock was scanned */
533         if (blockpfn == end_pfn)
534                 update_pageblock_skip(cc, valid_page, total_isolated, false);
535
536         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
537         if (total_isolated)
538                 count_compact_events(COMPACTISOLATED, total_isolated);
539         return total_isolated;
540 }
541
542 /**
543  * isolate_freepages_range() - isolate free pages.
544  * @start_pfn: The first PFN to start isolating.
545  * @end_pfn:   The one-past-last PFN.
546  *
547  * Non-free pages, invalid PFNs, or zone boundaries within the
548  * [start_pfn, end_pfn) range are considered errors, cause function to
549  * undo its actions and return zero.
550  *
551  * Otherwise, function returns one-past-the-last PFN of isolated page
552  * (which may be greater then end_pfn if end fell in a middle of
553  * a free page).
554  */
555 unsigned long
556 isolate_freepages_range(struct compact_control *cc,
557                         unsigned long start_pfn, unsigned long end_pfn)
558 {
559         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
560         LIST_HEAD(freelist);
561
562         pfn = start_pfn;
563         block_start_pfn = pageblock_start_pfn(pfn);
564         if (block_start_pfn < cc->zone->zone_start_pfn)
565                 block_start_pfn = cc->zone->zone_start_pfn;
566         block_end_pfn = pageblock_end_pfn(pfn);
567
568         for (; pfn < end_pfn; pfn += isolated,
569                                 block_start_pfn = block_end_pfn,
570                                 block_end_pfn += pageblock_nr_pages) {
571                 /* Protect pfn from changing by isolate_freepages_block */
572                 unsigned long isolate_start_pfn = pfn;
573
574                 block_end_pfn = min(block_end_pfn, end_pfn);
575
576                 /*
577                  * pfn could pass the block_end_pfn if isolated freepage
578                  * is more than pageblock order. In this case, we adjust
579                  * scanning range to right one.
580                  */
581                 if (pfn >= block_end_pfn) {
582                         block_start_pfn = pageblock_start_pfn(pfn);
583                         block_end_pfn = pageblock_end_pfn(pfn);
584                         block_end_pfn = min(block_end_pfn, end_pfn);
585                 }
586
587                 if (!pageblock_pfn_to_page(block_start_pfn,
588                                         block_end_pfn, cc->zone))
589                         break;
590
591                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
592                                                 block_end_pfn, &freelist, true);
593
594                 /*
595                  * In strict mode, isolate_freepages_block() returns 0 if
596                  * there are any holes in the block (ie. invalid PFNs or
597                  * non-free pages).
598                  */
599                 if (!isolated)
600                         break;
601
602                 /*
603                  * If we managed to isolate pages, it is always (1 << n) *
604                  * pageblock_nr_pages for some non-negative n.  (Max order
605                  * page may span two pageblocks).
606                  */
607         }
608
609         /* split_free_page does not map the pages */
610         map_pages(&freelist);
611
612         if (pfn < end_pfn) {
613                 /* Loop terminated early, cleanup. */
614                 release_freepages(&freelist);
615                 return 0;
616         }
617
618         /* We don't use freelists for anything. */
619         return pfn;
620 }
621
622 /* Update the number of anon and file isolated pages in the zone */
623 static void acct_isolated(struct zone *zone, struct compact_control *cc)
624 {
625         struct page *page;
626         unsigned int count[2] = { 0, };
627
628         if (list_empty(&cc->migratepages))
629                 return;
630
631         list_for_each_entry(page, &cc->migratepages, lru)
632                 count[!!page_is_file_cache(page)]++;
633
634         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
635         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
636 }
637
638 /* Similar to reclaim, but different enough that they don't share logic */
639 static bool too_many_isolated(struct zone *zone)
640 {
641         unsigned long active, inactive, isolated;
642
643         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
644                                         zone_page_state(zone, NR_INACTIVE_ANON);
645         active = zone_page_state(zone, NR_ACTIVE_FILE) +
646                                         zone_page_state(zone, NR_ACTIVE_ANON);
647         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
648                                         zone_page_state(zone, NR_ISOLATED_ANON);
649
650         return isolated > (inactive + active) / 2;
651 }
652
653 /**
654  * isolate_migratepages_block() - isolate all migrate-able pages within
655  *                                a single pageblock
656  * @cc:         Compaction control structure.
657  * @low_pfn:    The first PFN to isolate
658  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
659  * @isolate_mode: Isolation mode to be used.
660  *
661  * Isolate all pages that can be migrated from the range specified by
662  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
663  * Returns zero if there is a fatal signal pending, otherwise PFN of the
664  * first page that was not scanned (which may be both less, equal to or more
665  * than end_pfn).
666  *
667  * The pages are isolated on cc->migratepages list (not required to be empty),
668  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
669  * is neither read nor updated.
670  */
671 static unsigned long
672 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
673                         unsigned long end_pfn, isolate_mode_t isolate_mode)
674 {
675         struct zone *zone = cc->zone;
676         unsigned long nr_scanned = 0, nr_isolated = 0;
677         struct lruvec *lruvec;
678         unsigned long flags = 0;
679         bool locked = false;
680         struct page *page = NULL, *valid_page = NULL;
681         unsigned long start_pfn = low_pfn;
682         bool skip_on_failure = false;
683         unsigned long next_skip_pfn = 0;
684
685         /*
686          * Ensure that there are not too many pages isolated from the LRU
687          * list by either parallel reclaimers or compaction. If there are,
688          * delay for some time until fewer pages are isolated
689          */
690         while (unlikely(too_many_isolated(zone))) {
691                 /* async migration should just abort */
692                 if (cc->mode == MIGRATE_ASYNC)
693                         return 0;
694
695                 congestion_wait(BLK_RW_ASYNC, HZ/10);
696
697                 if (fatal_signal_pending(current))
698                         return 0;
699         }
700
701         if (compact_should_abort(cc))
702                 return 0;
703
704         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
705                 skip_on_failure = true;
706                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
707         }
708
709         /* Time to isolate some pages for migration */
710         for (; low_pfn < end_pfn; low_pfn++) {
711
712                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
713                         /*
714                          * We have isolated all migration candidates in the
715                          * previous order-aligned block, and did not skip it due
716                          * to failure. We should migrate the pages now and
717                          * hopefully succeed compaction.
718                          */
719                         if (nr_isolated)
720                                 break;
721
722                         /*
723                          * We failed to isolate in the previous order-aligned
724                          * block. Set the new boundary to the end of the
725                          * current block. Note we can't simply increase
726                          * next_skip_pfn by 1 << order, as low_pfn might have
727                          * been incremented by a higher number due to skipping
728                          * a compound or a high-order buddy page in the
729                          * previous loop iteration.
730                          */
731                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
732                 }
733
734                 /*
735                  * Periodically drop the lock (if held) regardless of its
736                  * contention, to give chance to IRQs. Abort async compaction
737                  * if contended.
738                  */
739                 if (!(low_pfn % SWAP_CLUSTER_MAX)
740                     && compact_unlock_should_abort(&zone->lru_lock, flags,
741                                                                 &locked, cc))
742                         break;
743
744                 if (!pfn_valid_within(low_pfn))
745                         goto isolate_fail;
746                 nr_scanned++;
747
748                 page = pfn_to_page(low_pfn);
749
750                 if (!valid_page)
751                         valid_page = page;
752
753                 /*
754                  * Skip if free. We read page order here without zone lock
755                  * which is generally unsafe, but the race window is small and
756                  * the worst thing that can happen is that we skip some
757                  * potential isolation targets.
758                  */
759                 if (PageBuddy(page)) {
760                         unsigned long freepage_order = page_order_unsafe(page);
761
762                         /*
763                          * Without lock, we cannot be sure that what we got is
764                          * a valid page order. Consider only values in the
765                          * valid order range to prevent low_pfn overflow.
766                          */
767                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
768                                 low_pfn += (1UL << freepage_order) - 1;
769                         continue;
770                 }
771
772                 /*
773                  * Regardless of being on LRU, compound pages such as THP and
774                  * hugetlbfs are not to be compacted. We can potentially save
775                  * a lot of iterations if we skip them at once. The check is
776                  * racy, but we can consider only valid values and the only
777                  * danger is skipping too much.
778                  */
779                 if (PageCompound(page)) {
780                         unsigned int comp_order = compound_order(page);
781
782                         if (likely(comp_order < MAX_ORDER))
783                                 low_pfn += (1UL << comp_order) - 1;
784
785                         goto isolate_fail;
786                 }
787
788                 /*
789                  * Check may be lockless but that's ok as we recheck later.
790                  * It's possible to migrate LRU and non-lru movable pages.
791                  * Skip any other type of page
792                  */
793                 if (!PageLRU(page)) {
794                         /*
795                          * __PageMovable can return false positive so we need
796                          * to verify it under page_lock.
797                          */
798                         if (unlikely(__PageMovable(page)) &&
799                                         !PageIsolated(page)) {
800                                 if (locked) {
801                                         spin_unlock_irqrestore(&zone->lru_lock,
802                                                                         flags);
803                                         locked = false;
804                                 }
805
806                                 if (isolate_movable_page(page, isolate_mode))
807                                         goto isolate_success;
808                         }
809
810                         goto isolate_fail;
811                 }
812
813                 /*
814                  * Migration will fail if an anonymous page is pinned in memory,
815                  * so avoid taking lru_lock and isolating it unnecessarily in an
816                  * admittedly racy check.
817                  */
818                 if (!page_mapping(page) &&
819                     page_count(page) > page_mapcount(page))
820                         goto isolate_fail;
821
822                 /* If we already hold the lock, we can skip some rechecking */
823                 if (!locked) {
824                         locked = compact_trylock_irqsave(&zone->lru_lock,
825                                                                 &flags, cc);
826                         if (!locked)
827                                 break;
828
829                         /* Recheck PageLRU and PageCompound under lock */
830                         if (!PageLRU(page))
831                                 goto isolate_fail;
832
833                         /*
834                          * Page become compound since the non-locked check,
835                          * and it's on LRU. It can only be a THP so the order
836                          * is safe to read and it's 0 for tail pages.
837                          */
838                         if (unlikely(PageCompound(page))) {
839                                 low_pfn += (1UL << compound_order(page)) - 1;
840                                 goto isolate_fail;
841                         }
842                 }
843
844                 lruvec = mem_cgroup_page_lruvec(page, zone);
845
846                 /* Try isolate the page */
847                 if (__isolate_lru_page(page, isolate_mode) != 0)
848                         goto isolate_fail;
849
850                 VM_BUG_ON_PAGE(PageCompound(page), page);
851
852                 /* Successfully isolated */
853                 del_page_from_lru_list(page, lruvec, page_lru(page));
854
855 isolate_success:
856                 list_add(&page->lru, &cc->migratepages);
857                 cc->nr_migratepages++;
858                 nr_isolated++;
859
860                 /*
861                  * Record where we could have freed pages by migration and not
862                  * yet flushed them to buddy allocator.
863                  * - this is the lowest page that was isolated and likely be
864                  * then freed by migration.
865                  */
866                 if (!cc->last_migrated_pfn)
867                         cc->last_migrated_pfn = low_pfn;
868
869                 /* Avoid isolating too much */
870                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
871                         ++low_pfn;
872                         break;
873                 }
874
875                 continue;
876 isolate_fail:
877                 if (!skip_on_failure)
878                         continue;
879
880                 /*
881                  * We have isolated some pages, but then failed. Release them
882                  * instead of migrating, as we cannot form the cc->order buddy
883                  * page anyway.
884                  */
885                 if (nr_isolated) {
886                         if (locked) {
887                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
888                                 locked = false;
889                         }
890                         acct_isolated(zone, cc);
891                         putback_movable_pages(&cc->migratepages);
892                         cc->nr_migratepages = 0;
893                         cc->last_migrated_pfn = 0;
894                         nr_isolated = 0;
895                 }
896
897                 if (low_pfn < next_skip_pfn) {
898                         low_pfn = next_skip_pfn - 1;
899                         /*
900                          * The check near the loop beginning would have updated
901                          * next_skip_pfn too, but this is a bit simpler.
902                          */
903                         next_skip_pfn += 1UL << cc->order;
904                 }
905         }
906
907         /*
908          * The PageBuddy() check could have potentially brought us outside
909          * the range to be scanned.
910          */
911         if (unlikely(low_pfn > end_pfn))
912                 low_pfn = end_pfn;
913
914         if (locked)
915                 spin_unlock_irqrestore(&zone->lru_lock, flags);
916
917         /*
918          * Update the pageblock-skip information and cached scanner pfn,
919          * if the whole pageblock was scanned without isolating any page.
920          */
921         if (low_pfn == end_pfn)
922                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
923
924         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
925                                                 nr_scanned, nr_isolated);
926
927         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
928         if (nr_isolated)
929                 count_compact_events(COMPACTISOLATED, nr_isolated);
930
931         return low_pfn;
932 }
933
934 /**
935  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
936  * @cc:        Compaction control structure.
937  * @start_pfn: The first PFN to start isolating.
938  * @end_pfn:   The one-past-last PFN.
939  *
940  * Returns zero if isolation fails fatally due to e.g. pending signal.
941  * Otherwise, function returns one-past-the-last PFN of isolated page
942  * (which may be greater than end_pfn if end fell in a middle of a THP page).
943  */
944 unsigned long
945 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
946                                                         unsigned long end_pfn)
947 {
948         unsigned long pfn, block_start_pfn, block_end_pfn;
949
950         /* Scan block by block. First and last block may be incomplete */
951         pfn = start_pfn;
952         block_start_pfn = pageblock_start_pfn(pfn);
953         if (block_start_pfn < cc->zone->zone_start_pfn)
954                 block_start_pfn = cc->zone->zone_start_pfn;
955         block_end_pfn = pageblock_end_pfn(pfn);
956
957         for (; pfn < end_pfn; pfn = block_end_pfn,
958                                 block_start_pfn = block_end_pfn,
959                                 block_end_pfn += pageblock_nr_pages) {
960
961                 block_end_pfn = min(block_end_pfn, end_pfn);
962
963                 if (!pageblock_pfn_to_page(block_start_pfn,
964                                         block_end_pfn, cc->zone))
965                         continue;
966
967                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
968                                                         ISOLATE_UNEVICTABLE);
969
970                 if (!pfn)
971                         break;
972
973                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
974                         break;
975         }
976         acct_isolated(cc->zone, cc);
977
978         return pfn;
979 }
980
981 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
982 #ifdef CONFIG_COMPACTION
983
984 /* Returns true if the page is within a block suitable for migration to */
985 static bool suitable_migration_target(struct page *page)
986 {
987         /* If the page is a large free page, then disallow migration */
988         if (PageBuddy(page)) {
989                 /*
990                  * We are checking page_order without zone->lock taken. But
991                  * the only small danger is that we skip a potentially suitable
992                  * pageblock, so it's not worth to check order for valid range.
993                  */
994                 if (page_order_unsafe(page) >= pageblock_order)
995                         return false;
996         }
997
998         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
999         if (migrate_async_suitable(get_pageblock_migratetype(page)))
1000                 return true;
1001
1002         /* Otherwise skip the block */
1003         return false;
1004 }
1005
1006 /*
1007  * Test whether the free scanner has reached the same or lower pageblock than
1008  * the migration scanner, and compaction should thus terminate.
1009  */
1010 static inline bool compact_scanners_met(struct compact_control *cc)
1011 {
1012         return (cc->free_pfn >> pageblock_order)
1013                 <= (cc->migrate_pfn >> pageblock_order);
1014 }
1015
1016 /*
1017  * Based on information in the current compact_control, find blocks
1018  * suitable for isolating free pages from and then isolate them.
1019  */
1020 static void isolate_freepages(struct compact_control *cc)
1021 {
1022         struct zone *zone = cc->zone;
1023         struct page *page;
1024         unsigned long block_start_pfn;  /* start of current pageblock */
1025         unsigned long isolate_start_pfn; /* exact pfn we start at */
1026         unsigned long block_end_pfn;    /* end of current pageblock */
1027         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1028         struct list_head *freelist = &cc->freepages;
1029
1030         /*
1031          * Initialise the free scanner. The starting point is where we last
1032          * successfully isolated from, zone-cached value, or the end of the
1033          * zone when isolating for the first time. For looping we also need
1034          * this pfn aligned down to the pageblock boundary, because we do
1035          * block_start_pfn -= pageblock_nr_pages in the for loop.
1036          * For ending point, take care when isolating in last pageblock of a
1037          * a zone which ends in the middle of a pageblock.
1038          * The low boundary is the end of the pageblock the migration scanner
1039          * is using.
1040          */
1041         isolate_start_pfn = cc->free_pfn;
1042         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1043         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1044                                                 zone_end_pfn(zone));
1045         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1046
1047         /*
1048          * Isolate free pages until enough are available to migrate the
1049          * pages on cc->migratepages. We stop searching if the migrate
1050          * and free page scanners meet or enough free pages are isolated.
1051          */
1052         for (; block_start_pfn >= low_pfn;
1053                                 block_end_pfn = block_start_pfn,
1054                                 block_start_pfn -= pageblock_nr_pages,
1055                                 isolate_start_pfn = block_start_pfn) {
1056                 /*
1057                  * This can iterate a massively long zone without finding any
1058                  * suitable migration targets, so periodically check if we need
1059                  * to schedule, or even abort async compaction.
1060                  */
1061                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1062                                                 && compact_should_abort(cc))
1063                         break;
1064
1065                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1066                                                                         zone);
1067                 if (!page)
1068                         continue;
1069
1070                 /* Check the block is suitable for migration */
1071                 if (!suitable_migration_target(page))
1072                         continue;
1073
1074                 /* If isolation recently failed, do not retry */
1075                 if (!isolation_suitable(cc, page))
1076                         continue;
1077
1078                 /* Found a block suitable for isolating free pages from. */
1079                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1080                                         freelist, false);
1081
1082                 /*
1083                  * If we isolated enough freepages, or aborted due to lock
1084                  * contention, terminate.
1085                  */
1086                 if ((cc->nr_freepages >= cc->nr_migratepages)
1087                                                         || cc->contended) {
1088                         if (isolate_start_pfn >= block_end_pfn) {
1089                                 /*
1090                                  * Restart at previous pageblock if more
1091                                  * freepages can be isolated next time.
1092                                  */
1093                                 isolate_start_pfn =
1094                                         block_start_pfn - pageblock_nr_pages;
1095                         }
1096                         break;
1097                 } else if (isolate_start_pfn < block_end_pfn) {
1098                         /*
1099                          * If isolation failed early, do not continue
1100                          * needlessly.
1101                          */
1102                         break;
1103                 }
1104         }
1105
1106         /* split_free_page does not map the pages */
1107         map_pages(freelist);
1108
1109         /*
1110          * Record where the free scanner will restart next time. Either we
1111          * broke from the loop and set isolate_start_pfn based on the last
1112          * call to isolate_freepages_block(), or we met the migration scanner
1113          * and the loop terminated due to isolate_start_pfn < low_pfn
1114          */
1115         cc->free_pfn = isolate_start_pfn;
1116 }
1117
1118 /*
1119  * This is a migrate-callback that "allocates" freepages by taking pages
1120  * from the isolated freelists in the block we are migrating to.
1121  */
1122 static struct page *compaction_alloc(struct page *migratepage,
1123                                         unsigned long data,
1124                                         int **result)
1125 {
1126         struct compact_control *cc = (struct compact_control *)data;
1127         struct page *freepage;
1128
1129         /*
1130          * Isolate free pages if necessary, and if we are not aborting due to
1131          * contention.
1132          */
1133         if (list_empty(&cc->freepages)) {
1134                 if (!cc->contended)
1135                         isolate_freepages(cc);
1136
1137                 if (list_empty(&cc->freepages))
1138                         return NULL;
1139         }
1140
1141         freepage = list_entry(cc->freepages.next, struct page, lru);
1142         list_del(&freepage->lru);
1143         cc->nr_freepages--;
1144
1145         return freepage;
1146 }
1147
1148 /*
1149  * This is a migrate-callback that "frees" freepages back to the isolated
1150  * freelist.  All pages on the freelist are from the same zone, so there is no
1151  * special handling needed for NUMA.
1152  */
1153 static void compaction_free(struct page *page, unsigned long data)
1154 {
1155         struct compact_control *cc = (struct compact_control *)data;
1156
1157         list_add(&page->lru, &cc->freepages);
1158         cc->nr_freepages++;
1159 }
1160
1161 /* possible outcome of isolate_migratepages */
1162 typedef enum {
1163         ISOLATE_ABORT,          /* Abort compaction now */
1164         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1165         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1166 } isolate_migrate_t;
1167
1168 /*
1169  * Allow userspace to control policy on scanning the unevictable LRU for
1170  * compactable pages.
1171  */
1172 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1173
1174 /*
1175  * Isolate all pages that can be migrated from the first suitable block,
1176  * starting at the block pointed to by the migrate scanner pfn within
1177  * compact_control.
1178  */
1179 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1180                                         struct compact_control *cc)
1181 {
1182         unsigned long block_start_pfn;
1183         unsigned long block_end_pfn;
1184         unsigned long low_pfn;
1185         struct page *page;
1186         const isolate_mode_t isolate_mode =
1187                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1188                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1189
1190         /*
1191          * Start at where we last stopped, or beginning of the zone as
1192          * initialized by compact_zone()
1193          */
1194         low_pfn = cc->migrate_pfn;
1195         block_start_pfn = pageblock_start_pfn(low_pfn);
1196         if (block_start_pfn < zone->zone_start_pfn)
1197                 block_start_pfn = zone->zone_start_pfn;
1198
1199         /* Only scan within a pageblock boundary */
1200         block_end_pfn = pageblock_end_pfn(low_pfn);
1201
1202         /*
1203          * Iterate over whole pageblocks until we find the first suitable.
1204          * Do not cross the free scanner.
1205          */
1206         for (; block_end_pfn <= cc->free_pfn;
1207                         low_pfn = block_end_pfn,
1208                         block_start_pfn = block_end_pfn,
1209                         block_end_pfn += pageblock_nr_pages) {
1210
1211                 /*
1212                  * This can potentially iterate a massively long zone with
1213                  * many pageblocks unsuitable, so periodically check if we
1214                  * need to schedule, or even abort async compaction.
1215                  */
1216                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1217                                                 && compact_should_abort(cc))
1218                         break;
1219
1220                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1221                                                                         zone);
1222                 if (!page)
1223                         continue;
1224
1225                 /* If isolation recently failed, do not retry */
1226                 if (!isolation_suitable(cc, page))
1227                         continue;
1228
1229                 /*
1230                  * For async compaction, also only scan in MOVABLE blocks.
1231                  * Async compaction is optimistic to see if the minimum amount
1232                  * of work satisfies the allocation.
1233                  */
1234                 if (cc->mode == MIGRATE_ASYNC &&
1235                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1236                         continue;
1237
1238                 /* Perform the isolation */
1239                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1240                                                 block_end_pfn, isolate_mode);
1241
1242                 if (!low_pfn || cc->contended) {
1243                         acct_isolated(zone, cc);
1244                         return ISOLATE_ABORT;
1245                 }
1246
1247                 /*
1248                  * Either we isolated something and proceed with migration. Or
1249                  * we failed and compact_zone should decide if we should
1250                  * continue or not.
1251                  */
1252                 break;
1253         }
1254
1255         acct_isolated(zone, cc);
1256         /* Record where migration scanner will be restarted. */
1257         cc->migrate_pfn = low_pfn;
1258
1259         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1260 }
1261
1262 /*
1263  * order == -1 is expected when compacting via
1264  * /proc/sys/vm/compact_memory
1265  */
1266 static inline bool is_via_compact_memory(int order)
1267 {
1268         return order == -1;
1269 }
1270
1271 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1272                             const int migratetype)
1273 {
1274         unsigned int order;
1275         unsigned long watermark;
1276
1277         if (cc->contended || fatal_signal_pending(current))
1278                 return COMPACT_CONTENDED;
1279
1280         /* Compaction run completes if the migrate and free scanner meet */
1281         if (compact_scanners_met(cc)) {
1282                 /* Let the next compaction start anew. */
1283                 reset_cached_positions(zone);
1284
1285                 /*
1286                  * Mark that the PG_migrate_skip information should be cleared
1287                  * by kswapd when it goes to sleep. kcompactd does not set the
1288                  * flag itself as the decision to be clear should be directly
1289                  * based on an allocation request.
1290                  */
1291                 if (cc->direct_compaction)
1292                         zone->compact_blockskip_flush = true;
1293
1294                 if (cc->whole_zone)
1295                         return COMPACT_COMPLETE;
1296                 else
1297                         return COMPACT_PARTIAL_SKIPPED;
1298         }
1299
1300         if (is_via_compact_memory(cc->order))
1301                 return COMPACT_CONTINUE;
1302
1303         /* Compaction run is not finished if the watermark is not met */
1304         watermark = low_wmark_pages(zone);
1305
1306         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1307                                                         cc->alloc_flags))
1308                 return COMPACT_CONTINUE;
1309
1310         /* Direct compactor: Is a suitable page free? */
1311         for (order = cc->order; order < MAX_ORDER; order++) {
1312                 struct free_area *area = &zone->free_area[order];
1313                 bool can_steal;
1314
1315                 /* Job done if page is free of the right migratetype */
1316                 if (!list_empty(&area->free_list[migratetype]))
1317                         return COMPACT_PARTIAL;
1318
1319 #ifdef CONFIG_CMA
1320                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1321                 if (migratetype == MIGRATE_MOVABLE &&
1322                         !list_empty(&area->free_list[MIGRATE_CMA]))
1323                         return COMPACT_PARTIAL;
1324 #endif
1325                 /*
1326                  * Job done if allocation would steal freepages from
1327                  * other migratetype buddy lists.
1328                  */
1329                 if (find_suitable_fallback(area, order, migratetype,
1330                                                 true, &can_steal) != -1)
1331                         return COMPACT_PARTIAL;
1332         }
1333
1334         return COMPACT_NO_SUITABLE_PAGE;
1335 }
1336
1337 static enum compact_result compact_finished(struct zone *zone,
1338                         struct compact_control *cc,
1339                         const int migratetype)
1340 {
1341         int ret;
1342
1343         ret = __compact_finished(zone, cc, migratetype);
1344         trace_mm_compaction_finished(zone, cc->order, ret);
1345         if (ret == COMPACT_NO_SUITABLE_PAGE)
1346                 ret = COMPACT_CONTINUE;
1347
1348         return ret;
1349 }
1350
1351 /*
1352  * compaction_suitable: Is this suitable to run compaction on this zone now?
1353  * Returns
1354  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1355  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1356  *   COMPACT_CONTINUE - If compaction should run now
1357  */
1358 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1359                                         unsigned int alloc_flags,
1360                                         int classzone_idx,
1361                                         unsigned long wmark_target)
1362 {
1363         int fragindex;
1364         unsigned long watermark;
1365
1366         if (is_via_compact_memory(order))
1367                 return COMPACT_CONTINUE;
1368
1369         watermark = low_wmark_pages(zone);
1370         /*
1371          * If watermarks for high-order allocation are already met, there
1372          * should be no need for compaction at all.
1373          */
1374         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1375                                                                 alloc_flags))
1376                 return COMPACT_PARTIAL;
1377
1378         /*
1379          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1380          * This is because during migration, copies of pages need to be
1381          * allocated and for a short time, the footprint is higher
1382          */
1383         watermark += (2UL << order);
1384         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1385                                  alloc_flags, wmark_target))
1386                 return COMPACT_SKIPPED;
1387
1388         /*
1389          * fragmentation index determines if allocation failures are due to
1390          * low memory or external fragmentation
1391          *
1392          * index of -1000 would imply allocations might succeed depending on
1393          * watermarks, but we already failed the high-order watermark check
1394          * index towards 0 implies failure is due to lack of memory
1395          * index towards 1000 implies failure is due to fragmentation
1396          *
1397          * Only compact if a failure would be due to fragmentation.
1398          */
1399         fragindex = fragmentation_index(zone, order);
1400         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1401                 return COMPACT_NOT_SUITABLE_ZONE;
1402
1403         return COMPACT_CONTINUE;
1404 }
1405
1406 enum compact_result compaction_suitable(struct zone *zone, int order,
1407                                         unsigned int alloc_flags,
1408                                         int classzone_idx)
1409 {
1410         enum compact_result ret;
1411
1412         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1413                                     zone_page_state(zone, NR_FREE_PAGES));
1414         trace_mm_compaction_suitable(zone, order, ret);
1415         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1416                 ret = COMPACT_SKIPPED;
1417
1418         return ret;
1419 }
1420
1421 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1422                 int alloc_flags)
1423 {
1424         struct zone *zone;
1425         struct zoneref *z;
1426
1427         /*
1428          * Make sure at least one zone would pass __compaction_suitable if we continue
1429          * retrying the reclaim.
1430          */
1431         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1432                                         ac->nodemask) {
1433                 unsigned long available;
1434                 enum compact_result compact_result;
1435
1436                 /*
1437                  * Do not consider all the reclaimable memory because we do not
1438                  * want to trash just for a single high order allocation which
1439                  * is even not guaranteed to appear even if __compaction_suitable
1440                  * is happy about the watermark check.
1441                  */
1442                 available = zone_reclaimable_pages(zone) / order;
1443                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1444                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1445                                 ac_classzone_idx(ac), available);
1446                 if (compact_result != COMPACT_SKIPPED &&
1447                                 compact_result != COMPACT_NOT_SUITABLE_ZONE)
1448                         return true;
1449         }
1450
1451         return false;
1452 }
1453
1454 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1455 {
1456         enum compact_result ret;
1457         unsigned long start_pfn = zone->zone_start_pfn;
1458         unsigned long end_pfn = zone_end_pfn(zone);
1459         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1460         const bool sync = cc->mode != MIGRATE_ASYNC;
1461
1462         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1463                                                         cc->classzone_idx);
1464         /* Compaction is likely to fail */
1465         if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1466                 return ret;
1467
1468         /* huh, compaction_suitable is returning something unexpected */
1469         VM_BUG_ON(ret != COMPACT_CONTINUE);
1470
1471         /*
1472          * Clear pageblock skip if there were failures recently and compaction
1473          * is about to be retried after being deferred.
1474          */
1475         if (compaction_restarting(zone, cc->order))
1476                 __reset_isolation_suitable(zone);
1477
1478         /*
1479          * Setup to move all movable pages to the end of the zone. Used cached
1480          * information on where the scanners should start but check that it
1481          * is initialised by ensuring the values are within zone boundaries.
1482          */
1483         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1484         cc->free_pfn = zone->compact_cached_free_pfn;
1485         if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1486                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1487                 zone->compact_cached_free_pfn = cc->free_pfn;
1488         }
1489         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1490                 cc->migrate_pfn = start_pfn;
1491                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1492                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1493         }
1494
1495         if (cc->migrate_pfn == start_pfn)
1496                 cc->whole_zone = true;
1497
1498         cc->last_migrated_pfn = 0;
1499
1500         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1501                                 cc->free_pfn, end_pfn, sync);
1502
1503         migrate_prep_local();
1504
1505         while ((ret = compact_finished(zone, cc, migratetype)) ==
1506                                                 COMPACT_CONTINUE) {
1507                 int err;
1508
1509                 switch (isolate_migratepages(zone, cc)) {
1510                 case ISOLATE_ABORT:
1511                         ret = COMPACT_CONTENDED;
1512                         putback_movable_pages(&cc->migratepages);
1513                         cc->nr_migratepages = 0;
1514                         goto out;
1515                 case ISOLATE_NONE:
1516                         /*
1517                          * We haven't isolated and migrated anything, but
1518                          * there might still be unflushed migrations from
1519                          * previous cc->order aligned block.
1520                          */
1521                         goto check_drain;
1522                 case ISOLATE_SUCCESS:
1523                         ;
1524                 }
1525
1526                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1527                                 compaction_free, (unsigned long)cc, cc->mode,
1528                                 MR_COMPACTION);
1529
1530                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1531                                                         &cc->migratepages);
1532
1533                 /* All pages were either migrated or will be released */
1534                 cc->nr_migratepages = 0;
1535                 if (err) {
1536                         putback_movable_pages(&cc->migratepages);
1537                         /*
1538                          * migrate_pages() may return -ENOMEM when scanners meet
1539                          * and we want compact_finished() to detect it
1540                          */
1541                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1542                                 ret = COMPACT_CONTENDED;
1543                                 goto out;
1544                         }
1545                         /*
1546                          * We failed to migrate at least one page in the current
1547                          * order-aligned block, so skip the rest of it.
1548                          */
1549                         if (cc->direct_compaction &&
1550                                                 (cc->mode == MIGRATE_ASYNC)) {
1551                                 cc->migrate_pfn = block_end_pfn(
1552                                                 cc->migrate_pfn - 1, cc->order);
1553                                 /* Draining pcplists is useless in this case */
1554                                 cc->last_migrated_pfn = 0;
1555
1556                         }
1557                 }
1558
1559 check_drain:
1560                 /*
1561                  * Has the migration scanner moved away from the previous
1562                  * cc->order aligned block where we migrated from? If yes,
1563                  * flush the pages that were freed, so that they can merge and
1564                  * compact_finished() can detect immediately if allocation
1565                  * would succeed.
1566                  */
1567                 if (cc->order > 0 && cc->last_migrated_pfn) {
1568                         int cpu;
1569                         unsigned long current_block_start =
1570                                 block_start_pfn(cc->migrate_pfn, cc->order);
1571
1572                         if (cc->last_migrated_pfn < current_block_start) {
1573                                 cpu = get_cpu();
1574                                 lru_add_drain_cpu(cpu);
1575                                 drain_local_pages(zone);
1576                                 put_cpu();
1577                                 /* No more flushing until we migrate again */
1578                                 cc->last_migrated_pfn = 0;
1579                         }
1580                 }
1581
1582         }
1583
1584 out:
1585         /*
1586          * Release free pages and update where the free scanner should restart,
1587          * so we don't leave any returned pages behind in the next attempt.
1588          */
1589         if (cc->nr_freepages > 0) {
1590                 unsigned long free_pfn = release_freepages(&cc->freepages);
1591
1592                 cc->nr_freepages = 0;
1593                 VM_BUG_ON(free_pfn == 0);
1594                 /* The cached pfn is always the first in a pageblock */
1595                 free_pfn = pageblock_start_pfn(free_pfn);
1596                 /*
1597                  * Only go back, not forward. The cached pfn might have been
1598                  * already reset to zone end in compact_finished()
1599                  */
1600                 if (free_pfn > zone->compact_cached_free_pfn)
1601                         zone->compact_cached_free_pfn = free_pfn;
1602         }
1603
1604         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1605                                 cc->free_pfn, end_pfn, sync, ret);
1606
1607         if (ret == COMPACT_CONTENDED)
1608                 ret = COMPACT_PARTIAL;
1609
1610         return ret;
1611 }
1612
1613 static enum compact_result compact_zone_order(struct zone *zone, int order,
1614                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1615                 unsigned int alloc_flags, int classzone_idx)
1616 {
1617         enum compact_result ret;
1618         struct compact_control cc = {
1619                 .nr_freepages = 0,
1620                 .nr_migratepages = 0,
1621                 .order = order,
1622                 .gfp_mask = gfp_mask,
1623                 .zone = zone,
1624                 .mode = mode,
1625                 .alloc_flags = alloc_flags,
1626                 .classzone_idx = classzone_idx,
1627                 .direct_compaction = true,
1628         };
1629         INIT_LIST_HEAD(&cc.freepages);
1630         INIT_LIST_HEAD(&cc.migratepages);
1631
1632         ret = compact_zone(zone, &cc);
1633
1634         VM_BUG_ON(!list_empty(&cc.freepages));
1635         VM_BUG_ON(!list_empty(&cc.migratepages));
1636
1637         *contended = cc.contended;
1638         return ret;
1639 }
1640
1641 int sysctl_extfrag_threshold = 500;
1642
1643 /**
1644  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1645  * @gfp_mask: The GFP mask of the current allocation
1646  * @order: The order of the current allocation
1647  * @alloc_flags: The allocation flags of the current allocation
1648  * @ac: The context of current allocation
1649  * @mode: The migration mode for async, sync light, or sync migration
1650  * @contended: Return value that determines if compaction was aborted due to
1651  *             need_resched() or lock contention
1652  *
1653  * This is the main entry point for direct page compaction.
1654  */
1655 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1656                 unsigned int alloc_flags, const struct alloc_context *ac,
1657                 enum migrate_mode mode, int *contended)
1658 {
1659         int may_enter_fs = gfp_mask & __GFP_FS;
1660         int may_perform_io = gfp_mask & __GFP_IO;
1661         struct zoneref *z;
1662         struct zone *zone;
1663         enum compact_result rc = COMPACT_SKIPPED;
1664         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1665
1666         *contended = COMPACT_CONTENDED_NONE;
1667
1668         /* Check if the GFP flags allow compaction */
1669         if (!order || !may_enter_fs || !may_perform_io)
1670                 return COMPACT_SKIPPED;
1671
1672         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1673
1674         /* Compact each zone in the list */
1675         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1676                                                                 ac->nodemask) {
1677                 enum compact_result status;
1678                 int zone_contended;
1679
1680                 if (compaction_deferred(zone, order)) {
1681                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1682                         continue;
1683                 }
1684
1685                 status = compact_zone_order(zone, order, gfp_mask, mode,
1686                                 &zone_contended, alloc_flags,
1687                                 ac_classzone_idx(ac));
1688                 rc = max(status, rc);
1689                 /*
1690                  * It takes at least one zone that wasn't lock contended
1691                  * to clear all_zones_contended.
1692                  */
1693                 all_zones_contended &= zone_contended;
1694
1695                 /* If a normal allocation would succeed, stop compacting */
1696                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1697                                         ac_classzone_idx(ac), alloc_flags)) {
1698                         /*
1699                          * We think the allocation will succeed in this zone,
1700                          * but it is not certain, hence the false. The caller
1701                          * will repeat this with true if allocation indeed
1702                          * succeeds in this zone.
1703                          */
1704                         compaction_defer_reset(zone, order, false);
1705                         /*
1706                          * It is possible that async compaction aborted due to
1707                          * need_resched() and the watermarks were ok thanks to
1708                          * somebody else freeing memory. The allocation can
1709                          * however still fail so we better signal the
1710                          * need_resched() contention anyway (this will not
1711                          * prevent the allocation attempt).
1712                          */
1713                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1714                                 *contended = COMPACT_CONTENDED_SCHED;
1715
1716                         goto break_loop;
1717                 }
1718
1719                 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
1720                                         status == COMPACT_PARTIAL_SKIPPED)) {
1721                         /*
1722                          * We think that allocation won't succeed in this zone
1723                          * so we defer compaction there. If it ends up
1724                          * succeeding after all, it will be reset.
1725                          */
1726                         defer_compaction(zone, order);
1727                 }
1728
1729                 /*
1730                  * We might have stopped compacting due to need_resched() in
1731                  * async compaction, or due to a fatal signal detected. In that
1732                  * case do not try further zones and signal need_resched()
1733                  * contention.
1734                  */
1735                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1736                                         || fatal_signal_pending(current)) {
1737                         *contended = COMPACT_CONTENDED_SCHED;
1738                         goto break_loop;
1739                 }
1740
1741                 continue;
1742 break_loop:
1743                 /*
1744                  * We might not have tried all the zones, so  be conservative
1745                  * and assume they are not all lock contended.
1746                  */
1747                 all_zones_contended = 0;
1748                 break;
1749         }
1750
1751         /*
1752          * If at least one zone wasn't deferred or skipped, we report if all
1753          * zones that were tried were lock contended.
1754          */
1755         if (rc > COMPACT_INACTIVE && all_zones_contended)
1756                 *contended = COMPACT_CONTENDED_LOCK;
1757
1758         return rc;
1759 }
1760
1761
1762 /* Compact all zones within a node */
1763 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1764 {
1765         int zoneid;
1766         struct zone *zone;
1767
1768         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1769
1770                 zone = &pgdat->node_zones[zoneid];
1771                 if (!populated_zone(zone))
1772                         continue;
1773
1774                 cc->nr_freepages = 0;
1775                 cc->nr_migratepages = 0;
1776                 cc->zone = zone;
1777                 INIT_LIST_HEAD(&cc->freepages);
1778                 INIT_LIST_HEAD(&cc->migratepages);
1779
1780                 /*
1781                  * When called via /proc/sys/vm/compact_memory
1782                  * this makes sure we compact the whole zone regardless of
1783                  * cached scanner positions.
1784                  */
1785                 if (is_via_compact_memory(cc->order))
1786                         __reset_isolation_suitable(zone);
1787
1788                 if (is_via_compact_memory(cc->order) ||
1789                                 !compaction_deferred(zone, cc->order))
1790                         compact_zone(zone, cc);
1791
1792                 VM_BUG_ON(!list_empty(&cc->freepages));
1793                 VM_BUG_ON(!list_empty(&cc->migratepages));
1794
1795                 if (is_via_compact_memory(cc->order))
1796                         continue;
1797
1798                 if (zone_watermark_ok(zone, cc->order,
1799                                 low_wmark_pages(zone), 0, 0))
1800                         compaction_defer_reset(zone, cc->order, false);
1801         }
1802 }
1803
1804 void compact_pgdat(pg_data_t *pgdat, int order)
1805 {
1806         struct compact_control cc = {
1807                 .order = order,
1808                 .mode = MIGRATE_ASYNC,
1809         };
1810
1811         if (!order)
1812                 return;
1813
1814         __compact_pgdat(pgdat, &cc);
1815 }
1816
1817 static void compact_node(int nid)
1818 {
1819         struct compact_control cc = {
1820                 .order = -1,
1821                 .mode = MIGRATE_SYNC,
1822                 .ignore_skip_hint = true,
1823         };
1824
1825         __compact_pgdat(NODE_DATA(nid), &cc);
1826 }
1827
1828 /* Compact all nodes in the system */
1829 static void compact_nodes(void)
1830 {
1831         int nid;
1832
1833         /* Flush pending updates to the LRU lists */
1834         lru_add_drain_all();
1835
1836         for_each_online_node(nid)
1837                 compact_node(nid);
1838 }
1839
1840 /* The written value is actually unused, all memory is compacted */
1841 int sysctl_compact_memory;
1842
1843 /*
1844  * This is the entry point for compacting all nodes via
1845  * /proc/sys/vm/compact_memory
1846  */
1847 int sysctl_compaction_handler(struct ctl_table *table, int write,
1848                         void __user *buffer, size_t *length, loff_t *ppos)
1849 {
1850         if (write)
1851                 compact_nodes();
1852
1853         return 0;
1854 }
1855
1856 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1857                         void __user *buffer, size_t *length, loff_t *ppos)
1858 {
1859         proc_dointvec_minmax(table, write, buffer, length, ppos);
1860
1861         return 0;
1862 }
1863
1864 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1865 static ssize_t sysfs_compact_node(struct device *dev,
1866                         struct device_attribute *attr,
1867                         const char *buf, size_t count)
1868 {
1869         int nid = dev->id;
1870
1871         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1872                 /* Flush pending updates to the LRU lists */
1873                 lru_add_drain_all();
1874
1875                 compact_node(nid);
1876         }
1877
1878         return count;
1879 }
1880 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1881
1882 int compaction_register_node(struct node *node)
1883 {
1884         return device_create_file(&node->dev, &dev_attr_compact);
1885 }
1886
1887 void compaction_unregister_node(struct node *node)
1888 {
1889         return device_remove_file(&node->dev, &dev_attr_compact);
1890 }
1891 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1892
1893 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1894 {
1895         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1896 }
1897
1898 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1899 {
1900         int zoneid;
1901         struct zone *zone;
1902         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1903
1904         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1905                 zone = &pgdat->node_zones[zoneid];
1906
1907                 if (!populated_zone(zone))
1908                         continue;
1909
1910                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1911                                         classzone_idx) == COMPACT_CONTINUE)
1912                         return true;
1913         }
1914
1915         return false;
1916 }
1917
1918 static void kcompactd_do_work(pg_data_t *pgdat)
1919 {
1920         /*
1921          * With no special task, compact all zones so that a page of requested
1922          * order is allocatable.
1923          */
1924         int zoneid;
1925         struct zone *zone;
1926         struct compact_control cc = {
1927                 .order = pgdat->kcompactd_max_order,
1928                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1929                 .mode = MIGRATE_SYNC_LIGHT,
1930                 .ignore_skip_hint = true,
1931
1932         };
1933         bool success = false;
1934
1935         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1936                                                         cc.classzone_idx);
1937         count_vm_event(KCOMPACTD_WAKE);
1938
1939         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1940                 int status;
1941
1942                 zone = &pgdat->node_zones[zoneid];
1943                 if (!populated_zone(zone))
1944                         continue;
1945
1946                 if (compaction_deferred(zone, cc.order))
1947                         continue;
1948
1949                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1950                                                         COMPACT_CONTINUE)
1951                         continue;
1952
1953                 cc.nr_freepages = 0;
1954                 cc.nr_migratepages = 0;
1955                 cc.zone = zone;
1956                 INIT_LIST_HEAD(&cc.freepages);
1957                 INIT_LIST_HEAD(&cc.migratepages);
1958
1959                 if (kthread_should_stop())
1960                         return;
1961                 status = compact_zone(zone, &cc);
1962
1963                 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
1964                                                 cc.classzone_idx, 0)) {
1965                         success = true;
1966                         compaction_defer_reset(zone, cc.order, false);
1967                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1968                         /*
1969                          * We use sync migration mode here, so we defer like
1970                          * sync direct compaction does.
1971                          */
1972                         defer_compaction(zone, cc.order);
1973                 }
1974
1975                 VM_BUG_ON(!list_empty(&cc.freepages));
1976                 VM_BUG_ON(!list_empty(&cc.migratepages));
1977         }
1978
1979         /*
1980          * Regardless of success, we are done until woken up next. But remember
1981          * the requested order/classzone_idx in case it was higher/tighter than
1982          * our current ones
1983          */
1984         if (pgdat->kcompactd_max_order <= cc.order)
1985                 pgdat->kcompactd_max_order = 0;
1986         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1987                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1988 }
1989
1990 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1991 {
1992         if (!order)
1993                 return;
1994
1995         if (pgdat->kcompactd_max_order < order)
1996                 pgdat->kcompactd_max_order = order;
1997
1998         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1999                 pgdat->kcompactd_classzone_idx = classzone_idx;
2000
2001         if (!waitqueue_active(&pgdat->kcompactd_wait))
2002                 return;
2003
2004         if (!kcompactd_node_suitable(pgdat))
2005                 return;
2006
2007         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2008                                                         classzone_idx);
2009         wake_up_interruptible(&pgdat->kcompactd_wait);
2010 }
2011
2012 /*
2013  * The background compaction daemon, started as a kernel thread
2014  * from the init process.
2015  */
2016 static int kcompactd(void *p)
2017 {
2018         pg_data_t *pgdat = (pg_data_t*)p;
2019         struct task_struct *tsk = current;
2020
2021         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2022
2023         if (!cpumask_empty(cpumask))
2024                 set_cpus_allowed_ptr(tsk, cpumask);
2025
2026         set_freezable();
2027
2028         pgdat->kcompactd_max_order = 0;
2029         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2030
2031         while (!kthread_should_stop()) {
2032                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2033                 wait_event_freezable(pgdat->kcompactd_wait,
2034                                 kcompactd_work_requested(pgdat));
2035
2036                 kcompactd_do_work(pgdat);
2037         }
2038
2039         return 0;
2040 }
2041
2042 /*
2043  * This kcompactd start function will be called by init and node-hot-add.
2044  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2045  */
2046 int kcompactd_run(int nid)
2047 {
2048         pg_data_t *pgdat = NODE_DATA(nid);
2049         int ret = 0;
2050
2051         if (pgdat->kcompactd)
2052                 return 0;
2053
2054         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2055         if (IS_ERR(pgdat->kcompactd)) {
2056                 pr_err("Failed to start kcompactd on node %d\n", nid);
2057                 ret = PTR_ERR(pgdat->kcompactd);
2058                 pgdat->kcompactd = NULL;
2059         }
2060         return ret;
2061 }
2062
2063 /*
2064  * Called by memory hotplug when all memory in a node is offlined. Caller must
2065  * hold mem_hotplug_begin/end().
2066  */
2067 void kcompactd_stop(int nid)
2068 {
2069         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2070
2071         if (kcompactd) {
2072                 kthread_stop(kcompactd);
2073                 NODE_DATA(nid)->kcompactd = NULL;
2074         }
2075 }
2076
2077 /*
2078  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2079  * not required for correctness. So if the last cpu in a node goes
2080  * away, we get changed to run anywhere: as the first one comes back,
2081  * restore their cpu bindings.
2082  */
2083 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2084                         void *hcpu)
2085 {
2086         int nid;
2087
2088         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2089                 for_each_node_state(nid, N_MEMORY) {
2090                         pg_data_t *pgdat = NODE_DATA(nid);
2091                         const struct cpumask *mask;
2092
2093                         mask = cpumask_of_node(pgdat->node_id);
2094
2095                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2096                                 /* One of our CPUs online: restore mask */
2097                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2098                 }
2099         }
2100         return NOTIFY_OK;
2101 }
2102
2103 static int __init kcompactd_init(void)
2104 {
2105         int nid;
2106
2107         for_each_node_state(nid, N_MEMORY)
2108                 kcompactd_run(nid);
2109         hotcpu_notifier(cpu_callback, 0);
2110         return 0;
2111 }
2112 subsys_initcall(kcompactd_init)
2113
2114 #endif /* CONFIG_COMPACTION */