OSDN Git Service

mm: migrate: don't rely on __PageMovable() of newpage after unlocking it
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
104  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_rwsem
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111
112 static int page_cache_tree_insert(struct address_space *mapping,
113                                   struct page *page, void **shadowp)
114 {
115         struct radix_tree_node *node;
116         void **slot;
117         int error;
118
119         error = __radix_tree_create(&mapping->page_tree, page->index,
120                                     &node, &slot);
121         if (error)
122                 return error;
123         if (*slot) {
124                 void *p;
125
126                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
127                 if (!radix_tree_exceptional_entry(p))
128                         return -EEXIST;
129                 if (shadowp)
130                         *shadowp = p;
131                 mapping->nrshadows--;
132                 if (node)
133                         workingset_node_shadows_dec(node);
134         }
135         radix_tree_replace_slot(slot, page);
136         mapping->nrpages++;
137         if (node) {
138                 workingset_node_pages_inc(node);
139                 /*
140                  * Don't track node that contains actual pages.
141                  *
142                  * Avoid acquiring the list_lru lock if already
143                  * untracked.  The list_empty() test is safe as
144                  * node->private_list is protected by
145                  * mapping->tree_lock.
146                  */
147                 if (!list_empty(&node->private_list))
148                         list_lru_del(&workingset_shadow_nodes,
149                                      &node->private_list);
150         }
151         return 0;
152 }
153
154 static void page_cache_tree_delete(struct address_space *mapping,
155                                    struct page *page, void *shadow)
156 {
157         struct radix_tree_node *node;
158         unsigned long index;
159         unsigned int offset;
160         unsigned int tag;
161         void **slot;
162
163         VM_BUG_ON(!PageLocked(page));
164
165         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
166
167         if (!node) {
168                 /*
169                  * We need a node to properly account shadow
170                  * entries. Don't plant any without. XXX
171                  */
172                 shadow = NULL;
173         }
174
175         if (shadow) {
176                 mapping->nrshadows++;
177                 /*
178                  * Make sure the nrshadows update is committed before
179                  * the nrpages update so that final truncate racing
180                  * with reclaim does not see both counters 0 at the
181                  * same time and miss a shadow entry.
182                  */
183                 smp_wmb();
184         }
185         mapping->nrpages--;
186
187         if (!node) {
188                 /* Clear direct pointer tags in root node */
189                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
190                 radix_tree_replace_slot(slot, shadow);
191                 return;
192         }
193
194         /* Clear tree tags for the removed page */
195         index = page->index;
196         offset = index & RADIX_TREE_MAP_MASK;
197         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
198                 if (test_bit(offset, node->tags[tag]))
199                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
200         }
201
202         /* Delete page, swap shadow entry */
203         radix_tree_replace_slot(slot, shadow);
204         workingset_node_pages_dec(node);
205         if (shadow)
206                 workingset_node_shadows_inc(node);
207         else
208                 if (__radix_tree_delete_node(&mapping->page_tree, node))
209                         return;
210
211         /*
212          * Track node that only contains shadow entries.
213          *
214          * Avoid acquiring the list_lru lock if already tracked.  The
215          * list_empty() test is safe as node->private_list is
216          * protected by mapping->tree_lock.
217          */
218         if (!workingset_node_pages(node) &&
219             list_empty(&node->private_list)) {
220                 node->private_data = mapping;
221                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
222         }
223 }
224
225 /*
226  * Delete a page from the page cache and free it. Caller has to make
227  * sure the page is locked and that nobody else uses it - or that usage
228  * is safe.  The caller must hold the mapping's tree_lock and
229  * mem_cgroup_begin_page_stat().
230  */
231 void __delete_from_page_cache(struct page *page, void *shadow,
232                               struct mem_cgroup *memcg)
233 {
234         struct address_space *mapping = page->mapping;
235
236         trace_mm_filemap_delete_from_page_cache(page);
237         /*
238          * if we're uptodate, flush out into the cleancache, otherwise
239          * invalidate any existing cleancache entries.  We can't leave
240          * stale data around in the cleancache once our page is gone
241          */
242         if (PageUptodate(page) && PageMappedToDisk(page))
243                 cleancache_put_page(page);
244         else
245                 cleancache_invalidate_page(mapping, page);
246
247         page_cache_tree_delete(mapping, page, shadow);
248
249         page->mapping = NULL;
250         /* Leave page->index set: truncation lookup relies upon it */
251
252         /* hugetlb pages do not participate in page cache accounting. */
253         if (!PageHuge(page))
254                 __dec_zone_page_state(page, NR_FILE_PAGES);
255         if (PageSwapBacked(page))
256                 __dec_zone_page_state(page, NR_SHMEM);
257         BUG_ON(page_mapped(page));
258
259         /*
260          * At this point page must be either written or cleaned by truncate.
261          * Dirty page here signals a bug and loss of unwritten data.
262          *
263          * This fixes dirty accounting after removing the page entirely but
264          * leaves PageDirty set: it has no effect for truncated page and
265          * anyway will be cleared before returning page into buddy allocator.
266          */
267         if (WARN_ON_ONCE(PageDirty(page)))
268                 account_page_cleaned(page, mapping, memcg,
269                                      inode_to_wb(mapping->host));
270 }
271
272 /**
273  * delete_from_page_cache - delete page from page cache
274  * @page: the page which the kernel is trying to remove from page cache
275  *
276  * This must be called only on pages that have been verified to be in the page
277  * cache and locked.  It will never put the page into the free list, the caller
278  * has a reference on the page.
279  */
280 void delete_from_page_cache(struct page *page)
281 {
282         struct address_space *mapping = page->mapping;
283         struct mem_cgroup *memcg;
284         unsigned long flags;
285
286         void (*freepage)(struct page *);
287
288         BUG_ON(!PageLocked(page));
289
290         freepage = mapping->a_ops->freepage;
291
292         memcg = mem_cgroup_begin_page_stat(page);
293         spin_lock_irqsave(&mapping->tree_lock, flags);
294         __delete_from_page_cache(page, NULL, memcg);
295         spin_unlock_irqrestore(&mapping->tree_lock, flags);
296         mem_cgroup_end_page_stat(memcg);
297
298         if (freepage)
299                 freepage(page);
300         page_cache_release(page);
301 }
302 EXPORT_SYMBOL(delete_from_page_cache);
303
304 static int filemap_check_errors(struct address_space *mapping)
305 {
306         int ret = 0;
307         /* Check for outstanding write errors */
308         if (test_bit(AS_ENOSPC, &mapping->flags) &&
309             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310                 ret = -ENOSPC;
311         if (test_bit(AS_EIO, &mapping->flags) &&
312             test_and_clear_bit(AS_EIO, &mapping->flags))
313                 ret = -EIO;
314         return ret;
315 }
316
317 /**
318  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
319  * @mapping:    address space structure to write
320  * @start:      offset in bytes where the range starts
321  * @end:        offset in bytes where the range ends (inclusive)
322  * @sync_mode:  enable synchronous operation
323  *
324  * Start writeback against all of a mapping's dirty pages that lie
325  * within the byte offsets <start, end> inclusive.
326  *
327  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
328  * opposed to a regular memory cleansing writeback.  The difference between
329  * these two operations is that if a dirty page/buffer is encountered, it must
330  * be waited upon, and not just skipped over.
331  */
332 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333                                 loff_t end, int sync_mode)
334 {
335         int ret;
336         struct writeback_control wbc = {
337                 .sync_mode = sync_mode,
338                 .nr_to_write = LONG_MAX,
339                 .range_start = start,
340                 .range_end = end,
341         };
342
343         if (!mapping_cap_writeback_dirty(mapping))
344                 return 0;
345
346         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
347         ret = do_writepages(mapping, &wbc);
348         wbc_detach_inode(&wbc);
349         return ret;
350 }
351
352 static inline int __filemap_fdatawrite(struct address_space *mapping,
353         int sync_mode)
354 {
355         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
356 }
357
358 int filemap_fdatawrite(struct address_space *mapping)
359 {
360         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
361 }
362 EXPORT_SYMBOL(filemap_fdatawrite);
363
364 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
365                                 loff_t end)
366 {
367         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite_range);
370
371 /**
372  * filemap_flush - mostly a non-blocking flush
373  * @mapping:    target address_space
374  *
375  * This is a mostly non-blocking flush.  Not suitable for data-integrity
376  * purposes - I/O may not be started against all dirty pages.
377  */
378 int filemap_flush(struct address_space *mapping)
379 {
380         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
381 }
382 EXPORT_SYMBOL(filemap_flush);
383
384 static int __filemap_fdatawait_range(struct address_space *mapping,
385                                      loff_t start_byte, loff_t end_byte)
386 {
387         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
388         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
389         struct pagevec pvec;
390         int nr_pages;
391         int ret = 0;
392
393         if (end_byte < start_byte)
394                 goto out;
395
396         pagevec_init(&pvec, 0);
397         while ((index <= end) &&
398                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
399                         PAGECACHE_TAG_WRITEBACK,
400                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
401                 unsigned i;
402
403                 for (i = 0; i < nr_pages; i++) {
404                         struct page *page = pvec.pages[i];
405
406                         /* until radix tree lookup accepts end_index */
407                         if (page->index > end)
408                                 continue;
409
410                         wait_on_page_writeback(page);
411                         if (TestClearPageError(page))
412                                 ret = -EIO;
413                 }
414                 pagevec_release(&pvec);
415                 cond_resched();
416         }
417 out:
418         return ret;
419 }
420
421 /**
422  * filemap_fdatawait_range - wait for writeback to complete
423  * @mapping:            address space structure to wait for
424  * @start_byte:         offset in bytes where the range starts
425  * @end_byte:           offset in bytes where the range ends (inclusive)
426  *
427  * Walk the list of under-writeback pages of the given address space
428  * in the given range and wait for all of them.  Check error status of
429  * the address space and return it.
430  *
431  * Since the error status of the address space is cleared by this function,
432  * callers are responsible for checking the return value and handling and/or
433  * reporting the error.
434  */
435 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
436                             loff_t end_byte)
437 {
438         int ret, ret2;
439
440         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
441         ret2 = filemap_check_errors(mapping);
442         if (!ret)
443                 ret = ret2;
444
445         return ret;
446 }
447 EXPORT_SYMBOL(filemap_fdatawait_range);
448
449 /**
450  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
451  * @mapping: address space structure to wait for
452  *
453  * Walk the list of under-writeback pages of the given address space
454  * and wait for all of them.  Unlike filemap_fdatawait(), this function
455  * does not clear error status of the address space.
456  *
457  * Use this function if callers don't handle errors themselves.  Expected
458  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
459  * fsfreeze(8)
460  */
461 void filemap_fdatawait_keep_errors(struct address_space *mapping)
462 {
463         loff_t i_size = i_size_read(mapping->host);
464
465         if (i_size == 0)
466                 return;
467
468         __filemap_fdatawait_range(mapping, 0, i_size - 1);
469 }
470
471 /**
472  * filemap_fdatawait - wait for all under-writeback pages to complete
473  * @mapping: address space structure to wait for
474  *
475  * Walk the list of under-writeback pages of the given address space
476  * and wait for all of them.  Check error status of the address space
477  * and return it.
478  *
479  * Since the error status of the address space is cleared by this function,
480  * callers are responsible for checking the return value and handling and/or
481  * reporting the error.
482  */
483 int filemap_fdatawait(struct address_space *mapping)
484 {
485         loff_t i_size = i_size_read(mapping->host);
486
487         if (i_size == 0)
488                 return 0;
489
490         return filemap_fdatawait_range(mapping, 0, i_size - 1);
491 }
492 EXPORT_SYMBOL(filemap_fdatawait);
493
494 int filemap_write_and_wait(struct address_space *mapping)
495 {
496         int err = 0;
497
498         if (mapping->nrpages) {
499                 err = filemap_fdatawrite(mapping);
500                 /*
501                  * Even if the above returned error, the pages may be
502                  * written partially (e.g. -ENOSPC), so we wait for it.
503                  * But the -EIO is special case, it may indicate the worst
504                  * thing (e.g. bug) happened, so we avoid waiting for it.
505                  */
506                 if (err != -EIO) {
507                         int err2 = filemap_fdatawait(mapping);
508                         if (!err)
509                                 err = err2;
510                 }
511         } else {
512                 err = filemap_check_errors(mapping);
513         }
514         return err;
515 }
516 EXPORT_SYMBOL(filemap_write_and_wait);
517
518 /**
519  * filemap_write_and_wait_range - write out & wait on a file range
520  * @mapping:    the address_space for the pages
521  * @lstart:     offset in bytes where the range starts
522  * @lend:       offset in bytes where the range ends (inclusive)
523  *
524  * Write out and wait upon file offsets lstart->lend, inclusive.
525  *
526  * Note that `lend' is inclusive (describes the last byte to be written) so
527  * that this function can be used to write to the very end-of-file (end = -1).
528  */
529 int filemap_write_and_wait_range(struct address_space *mapping,
530                                  loff_t lstart, loff_t lend)
531 {
532         int err = 0;
533
534         if (mapping->nrpages) {
535                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
536                                                  WB_SYNC_ALL);
537                 /* See comment of filemap_write_and_wait() */
538                 if (err != -EIO) {
539                         int err2 = filemap_fdatawait_range(mapping,
540                                                 lstart, lend);
541                         if (!err)
542                                 err = err2;
543                 }
544         } else {
545                 err = filemap_check_errors(mapping);
546         }
547         return err;
548 }
549 EXPORT_SYMBOL(filemap_write_and_wait_range);
550
551 /**
552  * replace_page_cache_page - replace a pagecache page with a new one
553  * @old:        page to be replaced
554  * @new:        page to replace with
555  * @gfp_mask:   allocation mode
556  *
557  * This function replaces a page in the pagecache with a new one.  On
558  * success it acquires the pagecache reference for the new page and
559  * drops it for the old page.  Both the old and new pages must be
560  * locked.  This function does not add the new page to the LRU, the
561  * caller must do that.
562  *
563  * The remove + add is atomic.  The only way this function can fail is
564  * memory allocation failure.
565  */
566 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
567 {
568         int error;
569
570         VM_BUG_ON_PAGE(!PageLocked(old), old);
571         VM_BUG_ON_PAGE(!PageLocked(new), new);
572         VM_BUG_ON_PAGE(new->mapping, new);
573
574         error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
575         if (!error) {
576                 struct address_space *mapping = old->mapping;
577                 void (*freepage)(struct page *);
578                 struct mem_cgroup *memcg;
579                 unsigned long flags;
580
581                 pgoff_t offset = old->index;
582                 freepage = mapping->a_ops->freepage;
583
584                 page_cache_get(new);
585                 new->mapping = mapping;
586                 new->index = offset;
587
588                 memcg = mem_cgroup_begin_page_stat(old);
589                 spin_lock_irqsave(&mapping->tree_lock, flags);
590                 __delete_from_page_cache(old, NULL, memcg);
591                 error = page_cache_tree_insert(mapping, new, NULL);
592                 BUG_ON(error);
593
594                 /*
595                  * hugetlb pages do not participate in page cache accounting.
596                  */
597                 if (!PageHuge(new))
598                         __inc_zone_page_state(new, NR_FILE_PAGES);
599                 if (PageSwapBacked(new))
600                         __inc_zone_page_state(new, NR_SHMEM);
601                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
602                 mem_cgroup_end_page_stat(memcg);
603                 mem_cgroup_replace_page(old, new);
604                 radix_tree_preload_end();
605                 if (freepage)
606                         freepage(old);
607                 page_cache_release(old);
608         }
609
610         return error;
611 }
612 EXPORT_SYMBOL_GPL(replace_page_cache_page);
613
614 static int __add_to_page_cache_locked(struct page *page,
615                                       struct address_space *mapping,
616                                       pgoff_t offset, gfp_t gfp_mask,
617                                       void **shadowp)
618 {
619         int huge = PageHuge(page);
620         struct mem_cgroup *memcg;
621         int error;
622
623         VM_BUG_ON_PAGE(!PageLocked(page), page);
624         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
625
626         if (!huge) {
627                 error = mem_cgroup_try_charge(page, current->mm,
628                                               gfp_mask, &memcg);
629                 if (error)
630                         return error;
631         }
632
633         error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
634         if (error) {
635                 if (!huge)
636                         mem_cgroup_cancel_charge(page, memcg);
637                 return error;
638         }
639
640         page_cache_get(page);
641         page->mapping = mapping;
642         page->index = offset;
643
644         spin_lock_irq(&mapping->tree_lock);
645         error = page_cache_tree_insert(mapping, page, shadowp);
646         radix_tree_preload_end();
647         if (unlikely(error))
648                 goto err_insert;
649
650         /* hugetlb pages do not participate in page cache accounting. */
651         if (!huge)
652                 __inc_zone_page_state(page, NR_FILE_PAGES);
653         spin_unlock_irq(&mapping->tree_lock);
654         if (!huge)
655                 mem_cgroup_commit_charge(page, memcg, false);
656         trace_mm_filemap_add_to_page_cache(page);
657         return 0;
658 err_insert:
659         page->mapping = NULL;
660         /* Leave page->index set: truncation relies upon it */
661         spin_unlock_irq(&mapping->tree_lock);
662         if (!huge)
663                 mem_cgroup_cancel_charge(page, memcg);
664         page_cache_release(page);
665         return error;
666 }
667
668 /**
669  * add_to_page_cache_locked - add a locked page to the pagecache
670  * @page:       page to add
671  * @mapping:    the page's address_space
672  * @offset:     page index
673  * @gfp_mask:   page allocation mode
674  *
675  * This function is used to add a page to the pagecache. It must be locked.
676  * This function does not add the page to the LRU.  The caller must do that.
677  */
678 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
679                 pgoff_t offset, gfp_t gfp_mask)
680 {
681         return __add_to_page_cache_locked(page, mapping, offset,
682                                           gfp_mask, NULL);
683 }
684 EXPORT_SYMBOL(add_to_page_cache_locked);
685
686 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
687                                 pgoff_t offset, gfp_t gfp_mask)
688 {
689         void *shadow = NULL;
690         int ret;
691
692         __set_page_locked(page);
693         ret = __add_to_page_cache_locked(page, mapping, offset,
694                                          gfp_mask, &shadow);
695         if (unlikely(ret))
696                 __clear_page_locked(page);
697         else {
698                 /*
699                  * The page might have been evicted from cache only
700                  * recently, in which case it should be activated like
701                  * any other repeatedly accessed page.
702                  */
703                 if (shadow && workingset_refault(shadow)) {
704                         SetPageActive(page);
705                         workingset_activation(page);
706                 } else
707                         ClearPageActive(page);
708                 lru_cache_add(page);
709         }
710         return ret;
711 }
712 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
713
714 #ifdef CONFIG_NUMA
715 struct page *__page_cache_alloc(gfp_t gfp)
716 {
717         int n;
718         struct page *page;
719
720         if (cpuset_do_page_mem_spread()) {
721                 unsigned int cpuset_mems_cookie;
722                 do {
723                         cpuset_mems_cookie = read_mems_allowed_begin();
724                         n = cpuset_mem_spread_node();
725                         page = __alloc_pages_node(n, gfp, 0);
726                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
727
728                 return page;
729         }
730         return alloc_pages(gfp, 0);
731 }
732 EXPORT_SYMBOL(__page_cache_alloc);
733 #endif
734
735 /*
736  * In order to wait for pages to become available there must be
737  * waitqueues associated with pages. By using a hash table of
738  * waitqueues where the bucket discipline is to maintain all
739  * waiters on the same queue and wake all when any of the pages
740  * become available, and for the woken contexts to check to be
741  * sure the appropriate page became available, this saves space
742  * at a cost of "thundering herd" phenomena during rare hash
743  * collisions.
744  */
745 wait_queue_head_t *page_waitqueue(struct page *page)
746 {
747         const struct zone *zone = page_zone(page);
748
749         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
750 }
751 EXPORT_SYMBOL(page_waitqueue);
752
753 void wait_on_page_bit(struct page *page, int bit_nr)
754 {
755         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
756
757         if (test_bit(bit_nr, &page->flags))
758                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
759                                                         TASK_UNINTERRUPTIBLE);
760 }
761 EXPORT_SYMBOL(wait_on_page_bit);
762
763 int wait_on_page_bit_killable(struct page *page, int bit_nr)
764 {
765         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
766
767         if (!test_bit(bit_nr, &page->flags))
768                 return 0;
769
770         return __wait_on_bit(page_waitqueue(page), &wait,
771                              bit_wait_io, TASK_KILLABLE);
772 }
773
774 int wait_on_page_bit_killable_timeout(struct page *page,
775                                        int bit_nr, unsigned long timeout)
776 {
777         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
778
779         wait.key.timeout = jiffies + timeout;
780         if (!test_bit(bit_nr, &page->flags))
781                 return 0;
782         return __wait_on_bit(page_waitqueue(page), &wait,
783                              bit_wait_io_timeout, TASK_KILLABLE);
784 }
785 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
786
787 /**
788  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
789  * @page: Page defining the wait queue of interest
790  * @waiter: Waiter to add to the queue
791  *
792  * Add an arbitrary @waiter to the wait queue for the nominated @page.
793  */
794 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
795 {
796         wait_queue_head_t *q = page_waitqueue(page);
797         unsigned long flags;
798
799         spin_lock_irqsave(&q->lock, flags);
800         __add_wait_queue(q, waiter);
801         spin_unlock_irqrestore(&q->lock, flags);
802 }
803 EXPORT_SYMBOL_GPL(add_page_wait_queue);
804
805 /**
806  * unlock_page - unlock a locked page
807  * @page: the page
808  *
809  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
811  * mechanism between PageLocked pages and PageWriteback pages is shared.
812  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
813  *
814  * The mb is necessary to enforce ordering between the clear_bit and the read
815  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
816  */
817 void unlock_page(struct page *page)
818 {
819         VM_BUG_ON_PAGE(!PageLocked(page), page);
820         clear_bit_unlock(PG_locked, &page->flags);
821         smp_mb__after_atomic();
822         wake_up_page(page, PG_locked);
823 }
824 EXPORT_SYMBOL(unlock_page);
825
826 /**
827  * end_page_writeback - end writeback against a page
828  * @page: the page
829  */
830 void end_page_writeback(struct page *page)
831 {
832         /*
833          * TestClearPageReclaim could be used here but it is an atomic
834          * operation and overkill in this particular case. Failing to
835          * shuffle a page marked for immediate reclaim is too mild to
836          * justify taking an atomic operation penalty at the end of
837          * ever page writeback.
838          */
839         if (PageReclaim(page)) {
840                 ClearPageReclaim(page);
841                 rotate_reclaimable_page(page);
842         }
843
844         if (!test_clear_page_writeback(page))
845                 BUG();
846
847         smp_mb__after_atomic();
848         wake_up_page(page, PG_writeback);
849 }
850 EXPORT_SYMBOL(end_page_writeback);
851
852 /*
853  * After completing I/O on a page, call this routine to update the page
854  * flags appropriately
855  */
856 void page_endio(struct page *page, int rw, int err)
857 {
858         if (rw == READ) {
859                 if (!err) {
860                         SetPageUptodate(page);
861                 } else {
862                         ClearPageUptodate(page);
863                         SetPageError(page);
864                 }
865                 unlock_page(page);
866         } else { /* rw == WRITE */
867                 if (err) {
868                         struct address_space *mapping;
869
870                         SetPageError(page);
871                         mapping = page_mapping(page);
872                         if (mapping)
873                                 mapping_set_error(mapping, err);
874                 }
875                 end_page_writeback(page);
876         }
877 }
878 EXPORT_SYMBOL_GPL(page_endio);
879
880 /**
881  * __lock_page - get a lock on the page, assuming we need to sleep to get it
882  * @page: the page to lock
883  */
884 void __lock_page(struct page *page)
885 {
886         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
887
888         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
889                                                         TASK_UNINTERRUPTIBLE);
890 }
891 EXPORT_SYMBOL(__lock_page);
892
893 int __lock_page_killable(struct page *page)
894 {
895         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
896
897         return __wait_on_bit_lock(page_waitqueue(page), &wait,
898                                         bit_wait_io, TASK_KILLABLE);
899 }
900 EXPORT_SYMBOL_GPL(__lock_page_killable);
901
902 /*
903  * Return values:
904  * 1 - page is locked; mmap_sem is still held.
905  * 0 - page is not locked.
906  *     mmap_sem has been released (up_read()), unless flags had both
907  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908  *     which case mmap_sem is still held.
909  *
910  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911  * with the page locked and the mmap_sem unperturbed.
912  */
913 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
914                          unsigned int flags)
915 {
916         if (flags & FAULT_FLAG_ALLOW_RETRY) {
917                 /*
918                  * CAUTION! In this case, mmap_sem is not released
919                  * even though return 0.
920                  */
921                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
922                         return 0;
923
924                 up_read(&mm->mmap_sem);
925                 if (flags & FAULT_FLAG_KILLABLE)
926                         wait_on_page_locked_killable(page);
927                 else
928                         wait_on_page_locked(page);
929                 return 0;
930         } else {
931                 if (flags & FAULT_FLAG_KILLABLE) {
932                         int ret;
933
934                         ret = __lock_page_killable(page);
935                         if (ret) {
936                                 up_read(&mm->mmap_sem);
937                                 return 0;
938                         }
939                 } else
940                         __lock_page(page);
941                 return 1;
942         }
943 }
944
945 /**
946  * page_cache_next_hole - find the next hole (not-present entry)
947  * @mapping: mapping
948  * @index: index
949  * @max_scan: maximum range to search
950  *
951  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952  * lowest indexed hole.
953  *
954  * Returns: the index of the hole if found, otherwise returns an index
955  * outside of the set specified (in which case 'return - index >=
956  * max_scan' will be true). In rare cases of index wrap-around, 0 will
957  * be returned.
958  *
959  * page_cache_next_hole may be called under rcu_read_lock. However,
960  * like radix_tree_gang_lookup, this will not atomically search a
961  * snapshot of the tree at a single point in time. For example, if a
962  * hole is created at index 5, then subsequently a hole is created at
963  * index 10, page_cache_next_hole covering both indexes may return 10
964  * if called under rcu_read_lock.
965  */
966 pgoff_t page_cache_next_hole(struct address_space *mapping,
967                              pgoff_t index, unsigned long max_scan)
968 {
969         unsigned long i;
970
971         for (i = 0; i < max_scan; i++) {
972                 struct page *page;
973
974                 page = radix_tree_lookup(&mapping->page_tree, index);
975                 if (!page || radix_tree_exceptional_entry(page))
976                         break;
977                 index++;
978                 if (index == 0)
979                         break;
980         }
981
982         return index;
983 }
984 EXPORT_SYMBOL(page_cache_next_hole);
985
986 /**
987  * page_cache_prev_hole - find the prev hole (not-present entry)
988  * @mapping: mapping
989  * @index: index
990  * @max_scan: maximum range to search
991  *
992  * Search backwards in the range [max(index-max_scan+1, 0), index] for
993  * the first hole.
994  *
995  * Returns: the index of the hole if found, otherwise returns an index
996  * outside of the set specified (in which case 'index - return >=
997  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
998  * will be returned.
999  *
1000  * page_cache_prev_hole may be called under rcu_read_lock. However,
1001  * like radix_tree_gang_lookup, this will not atomically search a
1002  * snapshot of the tree at a single point in time. For example, if a
1003  * hole is created at index 10, then subsequently a hole is created at
1004  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005  * called under rcu_read_lock.
1006  */
1007 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1008                              pgoff_t index, unsigned long max_scan)
1009 {
1010         unsigned long i;
1011
1012         for (i = 0; i < max_scan; i++) {
1013                 struct page *page;
1014
1015                 page = radix_tree_lookup(&mapping->page_tree, index);
1016                 if (!page || radix_tree_exceptional_entry(page))
1017                         break;
1018                 index--;
1019                 if (index == ULONG_MAX)
1020                         break;
1021         }
1022
1023         return index;
1024 }
1025 EXPORT_SYMBOL(page_cache_prev_hole);
1026
1027 /**
1028  * find_get_entry - find and get a page cache entry
1029  * @mapping: the address_space to search
1030  * @offset: the page cache index
1031  *
1032  * Looks up the page cache slot at @mapping & @offset.  If there is a
1033  * page cache page, it is returned with an increased refcount.
1034  *
1035  * If the slot holds a shadow entry of a previously evicted page, or a
1036  * swap entry from shmem/tmpfs, it is returned.
1037  *
1038  * Otherwise, %NULL is returned.
1039  */
1040 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1041 {
1042         void **pagep;
1043         struct page *page;
1044
1045         rcu_read_lock();
1046 repeat:
1047         page = NULL;
1048         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1049         if (pagep) {
1050                 page = radix_tree_deref_slot(pagep);
1051                 if (unlikely(!page))
1052                         goto out;
1053                 if (radix_tree_exception(page)) {
1054                         if (radix_tree_deref_retry(page))
1055                                 goto repeat;
1056                         /*
1057                          * A shadow entry of a recently evicted page,
1058                          * or a swap entry from shmem/tmpfs.  Return
1059                          * it without attempting to raise page count.
1060                          */
1061                         goto out;
1062                 }
1063                 if (!page_cache_get_speculative(page))
1064                         goto repeat;
1065
1066                 /*
1067                  * Has the page moved?
1068                  * This is part of the lockless pagecache protocol. See
1069                  * include/linux/pagemap.h for details.
1070                  */
1071                 if (unlikely(page != *pagep)) {
1072                         page_cache_release(page);
1073                         goto repeat;
1074                 }
1075         }
1076 out:
1077         rcu_read_unlock();
1078
1079         return page;
1080 }
1081 EXPORT_SYMBOL(find_get_entry);
1082
1083 /**
1084  * find_lock_entry - locate, pin and lock a page cache entry
1085  * @mapping: the address_space to search
1086  * @offset: the page cache index
1087  *
1088  * Looks up the page cache slot at @mapping & @offset.  If there is a
1089  * page cache page, it is returned locked and with an increased
1090  * refcount.
1091  *
1092  * If the slot holds a shadow entry of a previously evicted page, or a
1093  * swap entry from shmem/tmpfs, it is returned.
1094  *
1095  * Otherwise, %NULL is returned.
1096  *
1097  * find_lock_entry() may sleep.
1098  */
1099 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1100 {
1101         struct page *page;
1102
1103 repeat:
1104         page = find_get_entry(mapping, offset);
1105         if (page && !radix_tree_exception(page)) {
1106                 lock_page(page);
1107                 /* Has the page been truncated? */
1108                 if (unlikely(page->mapping != mapping)) {
1109                         unlock_page(page);
1110                         page_cache_release(page);
1111                         goto repeat;
1112                 }
1113                 VM_BUG_ON_PAGE(page->index != offset, page);
1114         }
1115         return page;
1116 }
1117 EXPORT_SYMBOL(find_lock_entry);
1118
1119 /**
1120  * pagecache_get_page - find and get a page reference
1121  * @mapping: the address_space to search
1122  * @offset: the page index
1123  * @fgp_flags: PCG flags
1124  * @gfp_mask: gfp mask to use for the page cache data page allocation
1125  *
1126  * Looks up the page cache slot at @mapping & @offset.
1127  *
1128  * PCG flags modify how the page is returned.
1129  *
1130  * FGP_ACCESSED: the page will be marked accessed
1131  * FGP_LOCK: Page is return locked
1132  * FGP_CREAT: If page is not present then a new page is allocated using
1133  *              @gfp_mask and added to the page cache and the VM's LRU
1134  *              list. The page is returned locked and with an increased
1135  *              refcount. Otherwise, %NULL is returned.
1136  *
1137  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138  * if the GFP flags specified for FGP_CREAT are atomic.
1139  *
1140  * If there is a page cache page, it is returned with an increased refcount.
1141  */
1142 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1143         int fgp_flags, gfp_t gfp_mask)
1144 {
1145         struct page *page;
1146
1147 repeat:
1148         page = find_get_entry(mapping, offset);
1149         if (radix_tree_exceptional_entry(page))
1150                 page = NULL;
1151         if (!page)
1152                 goto no_page;
1153
1154         if (fgp_flags & FGP_LOCK) {
1155                 if (fgp_flags & FGP_NOWAIT) {
1156                         if (!trylock_page(page)) {
1157                                 page_cache_release(page);
1158                                 return NULL;
1159                         }
1160                 } else {
1161                         lock_page(page);
1162                 }
1163
1164                 /* Has the page been truncated? */
1165                 if (unlikely(page->mapping != mapping)) {
1166                         unlock_page(page);
1167                         page_cache_release(page);
1168                         goto repeat;
1169                 }
1170                 VM_BUG_ON_PAGE(page->index != offset, page);
1171         }
1172
1173         if (page && (fgp_flags & FGP_ACCESSED))
1174                 mark_page_accessed(page);
1175
1176 no_page:
1177         if (!page && (fgp_flags & FGP_CREAT)) {
1178                 int err;
1179                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1180                         gfp_mask |= __GFP_WRITE;
1181                 if (fgp_flags & FGP_NOFS)
1182                         gfp_mask &= ~__GFP_FS;
1183
1184                 page = __page_cache_alloc(gfp_mask);
1185                 if (!page)
1186                         return NULL;
1187
1188                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1189                         fgp_flags |= FGP_LOCK;
1190
1191                 /* Init accessed so avoid atomic mark_page_accessed later */
1192                 if (fgp_flags & FGP_ACCESSED)
1193                         __SetPageReferenced(page);
1194
1195                 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1196                 if (unlikely(err)) {
1197                         page_cache_release(page);
1198                         page = NULL;
1199                         if (err == -EEXIST)
1200                                 goto repeat;
1201                 }
1202         }
1203
1204         return page;
1205 }
1206 EXPORT_SYMBOL(pagecache_get_page);
1207
1208 /**
1209  * find_get_entries - gang pagecache lookup
1210  * @mapping:    The address_space to search
1211  * @start:      The starting page cache index
1212  * @nr_entries: The maximum number of entries
1213  * @entries:    Where the resulting entries are placed
1214  * @indices:    The cache indices corresponding to the entries in @entries
1215  *
1216  * find_get_entries() will search for and return a group of up to
1217  * @nr_entries entries in the mapping.  The entries are placed at
1218  * @entries.  find_get_entries() takes a reference against any actual
1219  * pages it returns.
1220  *
1221  * The search returns a group of mapping-contiguous page cache entries
1222  * with ascending indexes.  There may be holes in the indices due to
1223  * not-present pages.
1224  *
1225  * Any shadow entries of evicted pages, or swap entries from
1226  * shmem/tmpfs, are included in the returned array.
1227  *
1228  * find_get_entries() returns the number of pages and shadow entries
1229  * which were found.
1230  */
1231 unsigned find_get_entries(struct address_space *mapping,
1232                           pgoff_t start, unsigned int nr_entries,
1233                           struct page **entries, pgoff_t *indices)
1234 {
1235         void **slot;
1236         unsigned int ret = 0;
1237         struct radix_tree_iter iter;
1238
1239         if (!nr_entries)
1240                 return 0;
1241
1242         rcu_read_lock();
1243 restart:
1244         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1245                 struct page *page;
1246 repeat:
1247                 page = radix_tree_deref_slot(slot);
1248                 if (unlikely(!page))
1249                         continue;
1250                 if (radix_tree_exception(page)) {
1251                         if (radix_tree_deref_retry(page))
1252                                 goto restart;
1253                         /*
1254                          * A shadow entry of a recently evicted page,
1255                          * or a swap entry from shmem/tmpfs.  Return
1256                          * it without attempting to raise page count.
1257                          */
1258                         goto export;
1259                 }
1260                 if (!page_cache_get_speculative(page))
1261                         goto repeat;
1262
1263                 /* Has the page moved? */
1264                 if (unlikely(page != *slot)) {
1265                         page_cache_release(page);
1266                         goto repeat;
1267                 }
1268 export:
1269                 indices[ret] = iter.index;
1270                 entries[ret] = page;
1271                 if (++ret == nr_entries)
1272                         break;
1273         }
1274         rcu_read_unlock();
1275         return ret;
1276 }
1277
1278 /**
1279  * find_get_pages - gang pagecache lookup
1280  * @mapping:    The address_space to search
1281  * @start:      The starting page index
1282  * @nr_pages:   The maximum number of pages
1283  * @pages:      Where the resulting pages are placed
1284  *
1285  * find_get_pages() will search for and return a group of up to
1286  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1287  * find_get_pages() takes a reference against the returned pages.
1288  *
1289  * The search returns a group of mapping-contiguous pages with ascending
1290  * indexes.  There may be holes in the indices due to not-present pages.
1291  *
1292  * find_get_pages() returns the number of pages which were found.
1293  */
1294 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1295                             unsigned int nr_pages, struct page **pages)
1296 {
1297         struct radix_tree_iter iter;
1298         void **slot;
1299         unsigned ret = 0;
1300
1301         if (unlikely(!nr_pages))
1302                 return 0;
1303
1304         rcu_read_lock();
1305 restart:
1306         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1307                 struct page *page;
1308 repeat:
1309                 page = radix_tree_deref_slot(slot);
1310                 if (unlikely(!page))
1311                         continue;
1312
1313                 if (radix_tree_exception(page)) {
1314                         if (radix_tree_deref_retry(page)) {
1315                                 /*
1316                                  * Transient condition which can only trigger
1317                                  * when entry at index 0 moves out of or back
1318                                  * to root: none yet gotten, safe to restart.
1319                                  */
1320                                 WARN_ON(iter.index);
1321                                 goto restart;
1322                         }
1323                         /*
1324                          * A shadow entry of a recently evicted page,
1325                          * or a swap entry from shmem/tmpfs.  Skip
1326                          * over it.
1327                          */
1328                         continue;
1329                 }
1330
1331                 if (!page_cache_get_speculative(page))
1332                         goto repeat;
1333
1334                 /* Has the page moved? */
1335                 if (unlikely(page != *slot)) {
1336                         page_cache_release(page);
1337                         goto repeat;
1338                 }
1339
1340                 pages[ret] = page;
1341                 if (++ret == nr_pages)
1342                         break;
1343         }
1344
1345         rcu_read_unlock();
1346         return ret;
1347 }
1348
1349 /**
1350  * find_get_pages_contig - gang contiguous pagecache lookup
1351  * @mapping:    The address_space to search
1352  * @index:      The starting page index
1353  * @nr_pages:   The maximum number of pages
1354  * @pages:      Where the resulting pages are placed
1355  *
1356  * find_get_pages_contig() works exactly like find_get_pages(), except
1357  * that the returned number of pages are guaranteed to be contiguous.
1358  *
1359  * find_get_pages_contig() returns the number of pages which were found.
1360  */
1361 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1362                                unsigned int nr_pages, struct page **pages)
1363 {
1364         struct radix_tree_iter iter;
1365         void **slot;
1366         unsigned int ret = 0;
1367
1368         if (unlikely(!nr_pages))
1369                 return 0;
1370
1371         rcu_read_lock();
1372 restart:
1373         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1374                 struct page *page;
1375 repeat:
1376                 page = radix_tree_deref_slot(slot);
1377                 /* The hole, there no reason to continue */
1378                 if (unlikely(!page))
1379                         break;
1380
1381                 if (radix_tree_exception(page)) {
1382                         if (radix_tree_deref_retry(page)) {
1383                                 /*
1384                                  * Transient condition which can only trigger
1385                                  * when entry at index 0 moves out of or back
1386                                  * to root: none yet gotten, safe to restart.
1387                                  */
1388                                 goto restart;
1389                         }
1390                         /*
1391                          * A shadow entry of a recently evicted page,
1392                          * or a swap entry from shmem/tmpfs.  Stop
1393                          * looking for contiguous pages.
1394                          */
1395                         break;
1396                 }
1397
1398                 if (!page_cache_get_speculative(page))
1399                         goto repeat;
1400
1401                 /* Has the page moved? */
1402                 if (unlikely(page != *slot)) {
1403                         page_cache_release(page);
1404                         goto repeat;
1405                 }
1406
1407                 /*
1408                  * must check mapping and index after taking the ref.
1409                  * otherwise we can get both false positives and false
1410                  * negatives, which is just confusing to the caller.
1411                  */
1412                 if (page->mapping == NULL || page->index != iter.index) {
1413                         page_cache_release(page);
1414                         break;
1415                 }
1416
1417                 pages[ret] = page;
1418                 if (++ret == nr_pages)
1419                         break;
1420         }
1421         rcu_read_unlock();
1422         return ret;
1423 }
1424 EXPORT_SYMBOL(find_get_pages_contig);
1425
1426 /**
1427  * find_get_pages_tag - find and return pages that match @tag
1428  * @mapping:    the address_space to search
1429  * @index:      the starting page index
1430  * @tag:        the tag index
1431  * @nr_pages:   the maximum number of pages
1432  * @pages:      where the resulting pages are placed
1433  *
1434  * Like find_get_pages, except we only return pages which are tagged with
1435  * @tag.   We update @index to index the next page for the traversal.
1436  */
1437 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1438                         int tag, unsigned int nr_pages, struct page **pages)
1439 {
1440         struct radix_tree_iter iter;
1441         void **slot;
1442         unsigned ret = 0;
1443
1444         if (unlikely(!nr_pages))
1445                 return 0;
1446
1447         rcu_read_lock();
1448 restart:
1449         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1450                                    &iter, *index, tag) {
1451                 struct page *page;
1452 repeat:
1453                 page = radix_tree_deref_slot(slot);
1454                 if (unlikely(!page))
1455                         continue;
1456
1457                 if (radix_tree_exception(page)) {
1458                         if (radix_tree_deref_retry(page)) {
1459                                 /*
1460                                  * Transient condition which can only trigger
1461                                  * when entry at index 0 moves out of or back
1462                                  * to root: none yet gotten, safe to restart.
1463                                  */
1464                                 goto restart;
1465                         }
1466                         /*
1467                          * A shadow entry of a recently evicted page.
1468                          *
1469                          * Those entries should never be tagged, but
1470                          * this tree walk is lockless and the tags are
1471                          * looked up in bulk, one radix tree node at a
1472                          * time, so there is a sizable window for page
1473                          * reclaim to evict a page we saw tagged.
1474                          *
1475                          * Skip over it.
1476                          */
1477                         continue;
1478                 }
1479
1480                 if (!page_cache_get_speculative(page))
1481                         goto repeat;
1482
1483                 /* Has the page moved? */
1484                 if (unlikely(page != *slot)) {
1485                         page_cache_release(page);
1486                         goto repeat;
1487                 }
1488
1489                 pages[ret] = page;
1490                 if (++ret == nr_pages)
1491                         break;
1492         }
1493
1494         rcu_read_unlock();
1495
1496         if (ret)
1497                 *index = pages[ret - 1]->index + 1;
1498
1499         return ret;
1500 }
1501 EXPORT_SYMBOL(find_get_pages_tag);
1502
1503 /*
1504  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1505  * a _large_ part of the i/o request. Imagine the worst scenario:
1506  *
1507  *      ---R__________________________________________B__________
1508  *         ^ reading here                             ^ bad block(assume 4k)
1509  *
1510  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1511  * => failing the whole request => read(R) => read(R+1) =>
1512  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1513  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1514  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1515  *
1516  * It is going insane. Fix it by quickly scaling down the readahead size.
1517  */
1518 static void shrink_readahead_size_eio(struct file *filp,
1519                                         struct file_ra_state *ra)
1520 {
1521         ra->ra_pages /= 4;
1522 }
1523
1524 /**
1525  * do_generic_file_read - generic file read routine
1526  * @filp:       the file to read
1527  * @ppos:       current file position
1528  * @iter:       data destination
1529  * @written:    already copied
1530  *
1531  * This is a generic file read routine, and uses the
1532  * mapping->a_ops->readpage() function for the actual low-level stuff.
1533  *
1534  * This is really ugly. But the goto's actually try to clarify some
1535  * of the logic when it comes to error handling etc.
1536  */
1537 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1538                 struct iov_iter *iter, ssize_t written)
1539 {
1540         struct address_space *mapping = filp->f_mapping;
1541         struct inode *inode = mapping->host;
1542         struct file_ra_state *ra = &filp->f_ra;
1543         pgoff_t index;
1544         pgoff_t last_index;
1545         pgoff_t prev_index;
1546         unsigned long offset;      /* offset into pagecache page */
1547         unsigned int prev_offset;
1548         int error = 0;
1549
1550         index = *ppos >> PAGE_CACHE_SHIFT;
1551         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1552         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1553         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1554         offset = *ppos & ~PAGE_CACHE_MASK;
1555
1556         for (;;) {
1557                 struct page *page;
1558                 pgoff_t end_index;
1559                 loff_t isize;
1560                 unsigned long nr, ret;
1561
1562                 cond_resched();
1563 find_page:
1564                 if (fatal_signal_pending(current)) {
1565                         error = -EINTR;
1566                         goto out;
1567                 }
1568
1569                 page = find_get_page(mapping, index);
1570                 if (!page) {
1571                         page_cache_sync_readahead(mapping,
1572                                         ra, filp,
1573                                         index, last_index - index);
1574                         page = find_get_page(mapping, index);
1575                         if (unlikely(page == NULL))
1576                                 goto no_cached_page;
1577                 }
1578                 if (PageReadahead(page)) {
1579                         page_cache_async_readahead(mapping,
1580                                         ra, filp, page,
1581                                         index, last_index - index);
1582                 }
1583                 if (!PageUptodate(page)) {
1584                         /*
1585                          * See comment in do_read_cache_page on why
1586                          * wait_on_page_locked is used to avoid unnecessarily
1587                          * serialisations and why it's safe.
1588                          */
1589                         wait_on_page_locked_killable(page);
1590                         if (PageUptodate(page))
1591                                 goto page_ok;
1592
1593                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1594                                         !mapping->a_ops->is_partially_uptodate)
1595                                 goto page_not_up_to_date;
1596                         if (!trylock_page(page))
1597                                 goto page_not_up_to_date;
1598                         /* Did it get truncated before we got the lock? */
1599                         if (!page->mapping)
1600                                 goto page_not_up_to_date_locked;
1601                         if (!mapping->a_ops->is_partially_uptodate(page,
1602                                                         offset, iter->count))
1603                                 goto page_not_up_to_date_locked;
1604                         unlock_page(page);
1605                 }
1606 page_ok:
1607                 /*
1608                  * i_size must be checked after we know the page is Uptodate.
1609                  *
1610                  * Checking i_size after the check allows us to calculate
1611                  * the correct value for "nr", which means the zero-filled
1612                  * part of the page is not copied back to userspace (unless
1613                  * another truncate extends the file - this is desired though).
1614                  */
1615
1616                 isize = i_size_read(inode);
1617                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1618                 if (unlikely(!isize || index > end_index)) {
1619                         page_cache_release(page);
1620                         goto out;
1621                 }
1622
1623                 /* nr is the maximum number of bytes to copy from this page */
1624                 nr = PAGE_CACHE_SIZE;
1625                 if (index == end_index) {
1626                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1627                         if (nr <= offset) {
1628                                 page_cache_release(page);
1629                                 goto out;
1630                         }
1631                 }
1632                 nr = nr - offset;
1633
1634                 /* If users can be writing to this page using arbitrary
1635                  * virtual addresses, take care about potential aliasing
1636                  * before reading the page on the kernel side.
1637                  */
1638                 if (mapping_writably_mapped(mapping))
1639                         flush_dcache_page(page);
1640
1641                 /*
1642                  * When a sequential read accesses a page several times,
1643                  * only mark it as accessed the first time.
1644                  */
1645                 if (prev_index != index || offset != prev_offset)
1646                         mark_page_accessed(page);
1647                 prev_index = index;
1648
1649                 /*
1650                  * Ok, we have the page, and it's up-to-date, so
1651                  * now we can copy it to user space...
1652                  */
1653
1654                 ret = copy_page_to_iter(page, offset, nr, iter);
1655                 offset += ret;
1656                 index += offset >> PAGE_CACHE_SHIFT;
1657                 offset &= ~PAGE_CACHE_MASK;
1658                 prev_offset = offset;
1659
1660                 page_cache_release(page);
1661                 written += ret;
1662                 if (!iov_iter_count(iter))
1663                         goto out;
1664                 if (ret < nr) {
1665                         error = -EFAULT;
1666                         goto out;
1667                 }
1668                 continue;
1669
1670 page_not_up_to_date:
1671                 /* Get exclusive access to the page ... */
1672                 error = lock_page_killable(page);
1673                 if (unlikely(error))
1674                         goto readpage_error;
1675
1676 page_not_up_to_date_locked:
1677                 /* Did it get truncated before we got the lock? */
1678                 if (!page->mapping) {
1679                         unlock_page(page);
1680                         page_cache_release(page);
1681                         continue;
1682                 }
1683
1684                 /* Did somebody else fill it already? */
1685                 if (PageUptodate(page)) {
1686                         unlock_page(page);
1687                         goto page_ok;
1688                 }
1689
1690 readpage:
1691                 /*
1692                  * A previous I/O error may have been due to temporary
1693                  * failures, eg. multipath errors.
1694                  * PG_error will be set again if readpage fails.
1695                  */
1696                 ClearPageError(page);
1697                 /* Start the actual read. The read will unlock the page. */
1698                 error = mapping->a_ops->readpage(filp, page);
1699
1700                 if (unlikely(error)) {
1701                         if (error == AOP_TRUNCATED_PAGE) {
1702                                 page_cache_release(page);
1703                                 error = 0;
1704                                 goto find_page;
1705                         }
1706                         goto readpage_error;
1707                 }
1708
1709                 if (!PageUptodate(page)) {
1710                         error = lock_page_killable(page);
1711                         if (unlikely(error))
1712                                 goto readpage_error;
1713                         if (!PageUptodate(page)) {
1714                                 if (page->mapping == NULL) {
1715                                         /*
1716                                          * invalidate_mapping_pages got it
1717                                          */
1718                                         unlock_page(page);
1719                                         page_cache_release(page);
1720                                         goto find_page;
1721                                 }
1722                                 unlock_page(page);
1723                                 shrink_readahead_size_eio(filp, ra);
1724                                 error = -EIO;
1725                                 goto readpage_error;
1726                         }
1727                         unlock_page(page);
1728                 }
1729
1730                 goto page_ok;
1731
1732 readpage_error:
1733                 /* UHHUH! A synchronous read error occurred. Report it */
1734                 page_cache_release(page);
1735                 goto out;
1736
1737 no_cached_page:
1738                 /*
1739                  * Ok, it wasn't cached, so we need to create a new
1740                  * page..
1741                  */
1742                 page = page_cache_alloc_cold(mapping);
1743                 if (!page) {
1744                         error = -ENOMEM;
1745                         goto out;
1746                 }
1747                 error = add_to_page_cache_lru(page, mapping, index,
1748                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1749                 if (error) {
1750                         page_cache_release(page);
1751                         if (error == -EEXIST) {
1752                                 error = 0;
1753                                 goto find_page;
1754                         }
1755                         goto out;
1756                 }
1757                 goto readpage;
1758         }
1759
1760 out:
1761         ra->prev_pos = prev_index;
1762         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1763         ra->prev_pos |= prev_offset;
1764
1765         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1766         file_accessed(filp);
1767         return written ? written : error;
1768 }
1769
1770 /**
1771  * generic_file_read_iter - generic filesystem read routine
1772  * @iocb:       kernel I/O control block
1773  * @iter:       destination for the data read
1774  *
1775  * This is the "read_iter()" routine for all filesystems
1776  * that can use the page cache directly.
1777  */
1778 ssize_t
1779 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1780 {
1781         struct file *file = iocb->ki_filp;
1782         ssize_t retval = 0;
1783         loff_t *ppos = &iocb->ki_pos;
1784         loff_t pos = *ppos;
1785
1786         if (iocb->ki_flags & IOCB_DIRECT) {
1787                 struct address_space *mapping = file->f_mapping;
1788                 struct inode *inode = mapping->host;
1789                 size_t count = iov_iter_count(iter);
1790                 loff_t size;
1791
1792                 if (!count)
1793                         goto out; /* skip atime */
1794                 size = i_size_read(inode);
1795                 retval = filemap_write_and_wait_range(mapping, pos,
1796                                         pos + count - 1);
1797                 if (!retval) {
1798                         struct iov_iter data = *iter;
1799                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1800                 }
1801
1802                 if (retval > 0) {
1803                         *ppos = pos + retval;
1804                         iov_iter_advance(iter, retval);
1805                 }
1806
1807                 /*
1808                  * Btrfs can have a short DIO read if we encounter
1809                  * compressed extents, so if there was an error, or if
1810                  * we've already read everything we wanted to, or if
1811                  * there was a short read because we hit EOF, go ahead
1812                  * and return.  Otherwise fallthrough to buffered io for
1813                  * the rest of the read.  Buffered reads will not work for
1814                  * DAX files, so don't bother trying.
1815                  */
1816                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1817                     IS_DAX(inode)) {
1818                         file_accessed(file);
1819                         goto out;
1820                 }
1821         }
1822
1823         retval = do_generic_file_read(file, ppos, iter, retval);
1824 out:
1825         return retval;
1826 }
1827 EXPORT_SYMBOL(generic_file_read_iter);
1828
1829 #ifdef CONFIG_MMU
1830 /**
1831  * page_cache_read - adds requested page to the page cache if not already there
1832  * @file:       file to read
1833  * @offset:     page index
1834  *
1835  * This adds the requested page to the page cache if it isn't already there,
1836  * and schedules an I/O to read in its contents from disk.
1837  */
1838 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1839 {
1840         struct address_space *mapping = file->f_mapping;
1841         struct page *page;
1842         int ret;
1843
1844         do {
1845                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1846                 if (!page)
1847                         return -ENOMEM;
1848
1849                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1850                 if (ret == 0)
1851                         ret = mapping->a_ops->readpage(file, page);
1852                 else if (ret == -EEXIST)
1853                         ret = 0; /* losing race to add is OK */
1854
1855                 page_cache_release(page);
1856
1857         } while (ret == AOP_TRUNCATED_PAGE);
1858
1859         return ret;
1860 }
1861
1862 #define MMAP_LOTSAMISS  (100)
1863
1864 /*
1865  * Synchronous readahead happens when we don't even find
1866  * a page in the page cache at all.
1867  */
1868 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1869                                    struct file_ra_state *ra,
1870                                    struct file *file,
1871                                    pgoff_t offset)
1872 {
1873         struct address_space *mapping = file->f_mapping;
1874
1875         /* If we don't want any read-ahead, don't bother */
1876         if (vma->vm_flags & VM_RAND_READ)
1877                 return;
1878         if (!ra->ra_pages)
1879                 return;
1880
1881         if (vma->vm_flags & VM_SEQ_READ) {
1882                 page_cache_sync_readahead(mapping, ra, file, offset,
1883                                           ra->ra_pages);
1884                 return;
1885         }
1886
1887         /* Avoid banging the cache line if not needed */
1888         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1889                 ra->mmap_miss++;
1890
1891         /*
1892          * Do we miss much more than hit in this file? If so,
1893          * stop bothering with read-ahead. It will only hurt.
1894          */
1895         if (ra->mmap_miss > MMAP_LOTSAMISS)
1896                 return;
1897
1898         /*
1899          * mmap read-around
1900          */
1901         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1902         ra->size = ra->ra_pages;
1903         ra->async_size = ra->ra_pages / 4;
1904         ra_submit(ra, mapping, file);
1905 }
1906
1907 /*
1908  * Asynchronous readahead happens when we find the page and PG_readahead,
1909  * so we want to possibly extend the readahead further..
1910  */
1911 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1912                                     struct file_ra_state *ra,
1913                                     struct file *file,
1914                                     struct page *page,
1915                                     pgoff_t offset)
1916 {
1917         struct address_space *mapping = file->f_mapping;
1918
1919         /* If we don't want any read-ahead, don't bother */
1920         if (vma->vm_flags & VM_RAND_READ)
1921                 return;
1922         if (ra->mmap_miss > 0)
1923                 ra->mmap_miss--;
1924         if (PageReadahead(page))
1925                 page_cache_async_readahead(mapping, ra, file,
1926                                            page, offset, ra->ra_pages);
1927 }
1928
1929 /**
1930  * filemap_fault - read in file data for page fault handling
1931  * @vma:        vma in which the fault was taken
1932  * @vmf:        struct vm_fault containing details of the fault
1933  *
1934  * filemap_fault() is invoked via the vma operations vector for a
1935  * mapped memory region to read in file data during a page fault.
1936  *
1937  * The goto's are kind of ugly, but this streamlines the normal case of having
1938  * it in the page cache, and handles the special cases reasonably without
1939  * having a lot of duplicated code.
1940  *
1941  * vma->vm_mm->mmap_sem must be held on entry.
1942  *
1943  * If our return value has VM_FAULT_RETRY set, it's because
1944  * lock_page_or_retry() returned 0.
1945  * The mmap_sem has usually been released in this case.
1946  * See __lock_page_or_retry() for the exception.
1947  *
1948  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1949  * has not been released.
1950  *
1951  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1952  */
1953 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1954 {
1955         int error;
1956         struct file *file = vma->vm_file;
1957         struct address_space *mapping = file->f_mapping;
1958         struct file_ra_state *ra = &file->f_ra;
1959         struct inode *inode = mapping->host;
1960         pgoff_t offset = vmf->pgoff;
1961         struct page *page;
1962         loff_t size;
1963         int ret = 0;
1964
1965         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1966         if (offset >= size >> PAGE_CACHE_SHIFT)
1967                 return VM_FAULT_SIGBUS;
1968
1969         /*
1970          * Do we have something in the page cache already?
1971          */
1972         page = find_get_page(mapping, offset);
1973         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1974                 /*
1975                  * We found the page, so try async readahead before
1976                  * waiting for the lock.
1977                  */
1978                 do_async_mmap_readahead(vma, ra, file, page, offset);
1979         } else if (!page) {
1980                 /* No page in the page cache at all */
1981                 do_sync_mmap_readahead(vma, ra, file, offset);
1982                 count_vm_event(PGMAJFAULT);
1983                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1984                 ret = VM_FAULT_MAJOR;
1985 retry_find:
1986                 page = find_get_page(mapping, offset);
1987                 if (!page)
1988                         goto no_cached_page;
1989         }
1990
1991         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1992                 page_cache_release(page);
1993                 return ret | VM_FAULT_RETRY;
1994         }
1995
1996         /* Did it get truncated? */
1997         if (unlikely(page->mapping != mapping)) {
1998                 unlock_page(page);
1999                 put_page(page);
2000                 goto retry_find;
2001         }
2002         VM_BUG_ON_PAGE(page->index != offset, page);
2003
2004         /*
2005          * We have a locked page in the page cache, now we need to check
2006          * that it's up-to-date. If not, it is going to be due to an error.
2007          */
2008         if (unlikely(!PageUptodate(page)))
2009                 goto page_not_uptodate;
2010
2011         /*
2012          * Found the page and have a reference on it.
2013          * We must recheck i_size under page lock.
2014          */
2015         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2016         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2017                 unlock_page(page);
2018                 page_cache_release(page);
2019                 return VM_FAULT_SIGBUS;
2020         }
2021
2022         vmf->page = page;
2023         return ret | VM_FAULT_LOCKED;
2024
2025 no_cached_page:
2026         /*
2027          * We're only likely to ever get here if MADV_RANDOM is in
2028          * effect.
2029          */
2030         error = page_cache_read(file, offset, vmf->gfp_mask);
2031
2032         /*
2033          * The page we want has now been added to the page cache.
2034          * In the unlikely event that someone removed it in the
2035          * meantime, we'll just come back here and read it again.
2036          */
2037         if (error >= 0)
2038                 goto retry_find;
2039
2040         /*
2041          * An error return from page_cache_read can result if the
2042          * system is low on memory, or a problem occurs while trying
2043          * to schedule I/O.
2044          */
2045         if (error == -ENOMEM)
2046                 return VM_FAULT_OOM;
2047         return VM_FAULT_SIGBUS;
2048
2049 page_not_uptodate:
2050         /*
2051          * Umm, take care of errors if the page isn't up-to-date.
2052          * Try to re-read it _once_. We do this synchronously,
2053          * because there really aren't any performance issues here
2054          * and we need to check for errors.
2055          */
2056         ClearPageError(page);
2057         error = mapping->a_ops->readpage(file, page);
2058         if (!error) {
2059                 wait_on_page_locked(page);
2060                 if (!PageUptodate(page))
2061                         error = -EIO;
2062         }
2063         page_cache_release(page);
2064
2065         if (!error || error == AOP_TRUNCATED_PAGE)
2066                 goto retry_find;
2067
2068         /* Things didn't work out. Return zero to tell the mm layer so. */
2069         shrink_readahead_size_eio(file, ra);
2070         return VM_FAULT_SIGBUS;
2071 }
2072 EXPORT_SYMBOL(filemap_fault);
2073
2074 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2075 {
2076         struct radix_tree_iter iter;
2077         void **slot;
2078         struct file *file = vma->vm_file;
2079         struct address_space *mapping = file->f_mapping;
2080         loff_t size;
2081         struct page *page;
2082         unsigned long address = (unsigned long) vmf->virtual_address;
2083         unsigned long addr;
2084         pte_t *pte;
2085
2086         rcu_read_lock();
2087         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2088                 if (iter.index > vmf->max_pgoff)
2089                         break;
2090 repeat:
2091                 page = radix_tree_deref_slot(slot);
2092                 if (unlikely(!page))
2093                         goto next;
2094                 if (radix_tree_exception(page)) {
2095                         if (radix_tree_deref_retry(page))
2096                                 break;
2097                         else
2098                                 goto next;
2099                 }
2100
2101                 if (!page_cache_get_speculative(page))
2102                         goto repeat;
2103
2104                 /* Has the page moved? */
2105                 if (unlikely(page != *slot)) {
2106                         page_cache_release(page);
2107                         goto repeat;
2108                 }
2109
2110                 if (!PageUptodate(page) ||
2111                                 PageReadahead(page) ||
2112                                 PageHWPoison(page))
2113                         goto skip;
2114                 if (!trylock_page(page))
2115                         goto skip;
2116
2117                 if (page->mapping != mapping || !PageUptodate(page))
2118                         goto unlock;
2119
2120                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2121                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2122                         goto unlock;
2123
2124                 pte = vmf->pte + page->index - vmf->pgoff;
2125                 if (!pte_none(*pte))
2126                         goto unlock;
2127
2128                 if (file->f_ra.mmap_miss > 0)
2129                         file->f_ra.mmap_miss--;
2130                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2131                 do_set_pte(vma, addr, page, pte, false, false);
2132                 unlock_page(page);
2133                 goto next;
2134 unlock:
2135                 unlock_page(page);
2136 skip:
2137                 page_cache_release(page);
2138 next:
2139                 if (iter.index == vmf->max_pgoff)
2140                         break;
2141         }
2142         rcu_read_unlock();
2143 }
2144 EXPORT_SYMBOL(filemap_map_pages);
2145
2146 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2147 {
2148         struct page *page = vmf->page;
2149         struct inode *inode = file_inode(vma->vm_file);
2150         int ret = VM_FAULT_LOCKED;
2151
2152         sb_start_pagefault(inode->i_sb);
2153         file_update_time(vma->vm_file);
2154         lock_page(page);
2155         if (page->mapping != inode->i_mapping) {
2156                 unlock_page(page);
2157                 ret = VM_FAULT_NOPAGE;
2158                 goto out;
2159         }
2160         /*
2161          * We mark the page dirty already here so that when freeze is in
2162          * progress, we are guaranteed that writeback during freezing will
2163          * see the dirty page and writeprotect it again.
2164          */
2165         set_page_dirty(page);
2166         wait_for_stable_page(page);
2167 out:
2168         sb_end_pagefault(inode->i_sb);
2169         return ret;
2170 }
2171 EXPORT_SYMBOL(filemap_page_mkwrite);
2172
2173 const struct vm_operations_struct generic_file_vm_ops = {
2174         .fault          = filemap_fault,
2175         .map_pages      = filemap_map_pages,
2176         .page_mkwrite   = filemap_page_mkwrite,
2177 };
2178
2179 /* This is used for a general mmap of a disk file */
2180
2181 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2182 {
2183         struct address_space *mapping = file->f_mapping;
2184
2185         if (!mapping->a_ops->readpage)
2186                 return -ENOEXEC;
2187         file_accessed(file);
2188         vma->vm_ops = &generic_file_vm_ops;
2189         return 0;
2190 }
2191
2192 /*
2193  * This is for filesystems which do not implement ->writepage.
2194  */
2195 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2196 {
2197         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2198                 return -EINVAL;
2199         return generic_file_mmap(file, vma);
2200 }
2201 #else
2202 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2203 {
2204         return -ENOSYS;
2205 }
2206 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2207 {
2208         return -ENOSYS;
2209 }
2210 #endif /* CONFIG_MMU */
2211
2212 EXPORT_SYMBOL(generic_file_mmap);
2213 EXPORT_SYMBOL(generic_file_readonly_mmap);
2214
2215 static struct page *wait_on_page_read(struct page *page)
2216 {
2217         if (!IS_ERR(page)) {
2218                 wait_on_page_locked(page);
2219                 if (!PageUptodate(page)) {
2220                         page_cache_release(page);
2221                         page = ERR_PTR(-EIO);
2222                 }
2223         }
2224         return page;
2225 }
2226
2227 static struct page *do_read_cache_page(struct address_space *mapping,
2228                                 pgoff_t index,
2229                                 int (*filler)(void *, struct page *),
2230                                 void *data,
2231                                 gfp_t gfp)
2232 {
2233         struct page *page;
2234         int err;
2235 repeat:
2236         page = find_get_page(mapping, index);
2237         if (!page) {
2238                 page = __page_cache_alloc(gfp | __GFP_COLD);
2239                 if (!page)
2240                         return ERR_PTR(-ENOMEM);
2241                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2242                 if (unlikely(err)) {
2243                         page_cache_release(page);
2244                         if (err == -EEXIST)
2245                                 goto repeat;
2246                         /* Presumably ENOMEM for radix tree node */
2247                         return ERR_PTR(err);
2248                 }
2249
2250 filler:
2251                 err = filler(data, page);
2252                 if (err < 0) {
2253                         page_cache_release(page);
2254                         return ERR_PTR(err);
2255                 }
2256
2257                 page = wait_on_page_read(page);
2258                 if (IS_ERR(page))
2259                         return page;
2260                 goto out;
2261         }
2262         if (PageUptodate(page))
2263                 goto out;
2264
2265         /*
2266          * Page is not up to date and may be locked due one of the following
2267          * case a: Page is being filled and the page lock is held
2268          * case b: Read/write error clearing the page uptodate status
2269          * case c: Truncation in progress (page locked)
2270          * case d: Reclaim in progress
2271          *
2272          * Case a, the page will be up to date when the page is unlocked.
2273          *    There is no need to serialise on the page lock here as the page
2274          *    is pinned so the lock gives no additional protection. Even if the
2275          *    the page is truncated, the data is still valid if PageUptodate as
2276          *    it's a race vs truncate race.
2277          * Case b, the page will not be up to date
2278          * Case c, the page may be truncated but in itself, the data may still
2279          *    be valid after IO completes as it's a read vs truncate race. The
2280          *    operation must restart if the page is not uptodate on unlock but
2281          *    otherwise serialising on page lock to stabilise the mapping gives
2282          *    no additional guarantees to the caller as the page lock is
2283          *    released before return.
2284          * Case d, similar to truncation. If reclaim holds the page lock, it
2285          *    will be a race with remove_mapping that determines if the mapping
2286          *    is valid on unlock but otherwise the data is valid and there is
2287          *    no need to serialise with page lock.
2288          *
2289          * As the page lock gives no additional guarantee, we optimistically
2290          * wait on the page to be unlocked and check if it's up to date and
2291          * use the page if it is. Otherwise, the page lock is required to
2292          * distinguish between the different cases. The motivation is that we
2293          * avoid spurious serialisations and wakeups when multiple processes
2294          * wait on the same page for IO to complete.
2295          */
2296         wait_on_page_locked(page);
2297         if (PageUptodate(page))
2298                 goto out;
2299
2300         /* Distinguish between all the cases under the safety of the lock */
2301         lock_page(page);
2302
2303         /* Case c or d, restart the operation */
2304         if (!page->mapping) {
2305                 unlock_page(page);
2306                 page_cache_release(page);
2307                 goto repeat;
2308         }
2309
2310         /* Someone else locked and filled the page in a very small window */
2311         if (PageUptodate(page)) {
2312                 unlock_page(page);
2313                 goto out;
2314         }
2315         goto filler;
2316
2317 out:
2318         mark_page_accessed(page);
2319         return page;
2320 }
2321
2322 /**
2323  * read_cache_page - read into page cache, fill it if needed
2324  * @mapping:    the page's address_space
2325  * @index:      the page index
2326  * @filler:     function to perform the read
2327  * @data:       first arg to filler(data, page) function, often left as NULL
2328  *
2329  * Read into the page cache. If a page already exists, and PageUptodate() is
2330  * not set, try to fill the page and wait for it to become unlocked.
2331  *
2332  * If the page does not get brought uptodate, return -EIO.
2333  */
2334 struct page *read_cache_page(struct address_space *mapping,
2335                                 pgoff_t index,
2336                                 int (*filler)(void *, struct page *),
2337                                 void *data)
2338 {
2339         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2340 }
2341 EXPORT_SYMBOL(read_cache_page);
2342
2343 /**
2344  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2345  * @mapping:    the page's address_space
2346  * @index:      the page index
2347  * @gfp:        the page allocator flags to use if allocating
2348  *
2349  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2350  * any new page allocations done using the specified allocation flags.
2351  *
2352  * If the page does not get brought uptodate, return -EIO.
2353  */
2354 struct page *read_cache_page_gfp(struct address_space *mapping,
2355                                 pgoff_t index,
2356                                 gfp_t gfp)
2357 {
2358         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2359
2360         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2361 }
2362 EXPORT_SYMBOL(read_cache_page_gfp);
2363
2364 /*
2365  * Performs necessary checks before doing a write
2366  *
2367  * Can adjust writing position or amount of bytes to write.
2368  * Returns appropriate error code that caller should return or
2369  * zero in case that write should be allowed.
2370  */
2371 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2372 {
2373         struct file *file = iocb->ki_filp;
2374         struct inode *inode = file->f_mapping->host;
2375         unsigned long limit = rlimit(RLIMIT_FSIZE);
2376         loff_t pos;
2377
2378         if (!iov_iter_count(from))
2379                 return 0;
2380
2381         /* FIXME: this is for backwards compatibility with 2.4 */
2382         if (iocb->ki_flags & IOCB_APPEND)
2383                 iocb->ki_pos = i_size_read(inode);
2384
2385         pos = iocb->ki_pos;
2386
2387         if (limit != RLIM_INFINITY) {
2388                 if (iocb->ki_pos >= limit) {
2389                         send_sig(SIGXFSZ, current, 0);
2390                         return -EFBIG;
2391                 }
2392                 iov_iter_truncate(from, limit - (unsigned long)pos);
2393         }
2394
2395         /*
2396          * LFS rule
2397          */
2398         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2399                                 !(file->f_flags & O_LARGEFILE))) {
2400                 if (pos >= MAX_NON_LFS)
2401                         return -EFBIG;
2402                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2403         }
2404
2405         /*
2406          * Are we about to exceed the fs block limit ?
2407          *
2408          * If we have written data it becomes a short write.  If we have
2409          * exceeded without writing data we send a signal and return EFBIG.
2410          * Linus frestrict idea will clean these up nicely..
2411          */
2412         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2413                 return -EFBIG;
2414
2415         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2416         return iov_iter_count(from);
2417 }
2418 EXPORT_SYMBOL(generic_write_checks);
2419
2420 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2421                                 loff_t pos, unsigned len, unsigned flags,
2422                                 struct page **pagep, void **fsdata)
2423 {
2424         const struct address_space_operations *aops = mapping->a_ops;
2425
2426         return aops->write_begin(file, mapping, pos, len, flags,
2427                                                         pagep, fsdata);
2428 }
2429 EXPORT_SYMBOL(pagecache_write_begin);
2430
2431 int pagecache_write_end(struct file *file, struct address_space *mapping,
2432                                 loff_t pos, unsigned len, unsigned copied,
2433                                 struct page *page, void *fsdata)
2434 {
2435         const struct address_space_operations *aops = mapping->a_ops;
2436
2437         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2438 }
2439 EXPORT_SYMBOL(pagecache_write_end);
2440
2441 ssize_t
2442 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2443 {
2444         struct file     *file = iocb->ki_filp;
2445         struct address_space *mapping = file->f_mapping;
2446         struct inode    *inode = mapping->host;
2447         ssize_t         written;
2448         size_t          write_len;
2449         pgoff_t         end;
2450         struct iov_iter data;
2451
2452         write_len = iov_iter_count(from);
2453         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2454
2455         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2456         if (written)
2457                 goto out;
2458
2459         /*
2460          * After a write we want buffered reads to be sure to go to disk to get
2461          * the new data.  We invalidate clean cached page from the region we're
2462          * about to write.  We do this *before* the write so that we can return
2463          * without clobbering -EIOCBQUEUED from ->direct_IO().
2464          */
2465         if (mapping->nrpages) {
2466                 written = invalidate_inode_pages2_range(mapping,
2467                                         pos >> PAGE_CACHE_SHIFT, end);
2468                 /*
2469                  * If a page can not be invalidated, return 0 to fall back
2470                  * to buffered write.
2471                  */
2472                 if (written) {
2473                         if (written == -EBUSY)
2474                                 return 0;
2475                         goto out;
2476                 }
2477         }
2478
2479         data = *from;
2480         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2481
2482         /*
2483          * Finally, try again to invalidate clean pages which might have been
2484          * cached by non-direct readahead, or faulted in by get_user_pages()
2485          * if the source of the write was an mmap'ed region of the file
2486          * we're writing.  Either one is a pretty crazy thing to do,
2487          * so we don't support it 100%.  If this invalidation
2488          * fails, tough, the write still worked...
2489          */
2490         if (mapping->nrpages) {
2491                 invalidate_inode_pages2_range(mapping,
2492                                               pos >> PAGE_CACHE_SHIFT, end);
2493         }
2494
2495         if (written > 0) {
2496                 pos += written;
2497                 iov_iter_advance(from, written);
2498                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2499                         i_size_write(inode, pos);
2500                         mark_inode_dirty(inode);
2501                 }
2502                 iocb->ki_pos = pos;
2503         }
2504 out:
2505         return written;
2506 }
2507 EXPORT_SYMBOL(generic_file_direct_write);
2508
2509 /*
2510  * Find or create a page at the given pagecache position. Return the locked
2511  * page. This function is specifically for buffered writes.
2512  */
2513 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2514                                         pgoff_t index, unsigned flags)
2515 {
2516         struct page *page;
2517         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2518
2519         if (flags & AOP_FLAG_NOFS)
2520                 fgp_flags |= FGP_NOFS;
2521
2522         page = pagecache_get_page(mapping, index, fgp_flags,
2523                         mapping_gfp_mask(mapping));
2524         if (page)
2525                 wait_for_stable_page(page);
2526
2527         return page;
2528 }
2529 EXPORT_SYMBOL(grab_cache_page_write_begin);
2530
2531 ssize_t generic_perform_write(struct file *file,
2532                                 struct iov_iter *i, loff_t pos)
2533 {
2534         struct address_space *mapping = file->f_mapping;
2535         const struct address_space_operations *a_ops = mapping->a_ops;
2536         long status = 0;
2537         ssize_t written = 0;
2538         unsigned int flags = 0;
2539
2540         /*
2541          * Copies from kernel address space cannot fail (NFSD is a big user).
2542          */
2543         if (!iter_is_iovec(i))
2544                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2545
2546         do {
2547                 struct page *page;
2548                 unsigned long offset;   /* Offset into pagecache page */
2549                 unsigned long bytes;    /* Bytes to write to page */
2550                 size_t copied;          /* Bytes copied from user */
2551                 void *fsdata;
2552
2553                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2554                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2555                                                 iov_iter_count(i));
2556
2557 again:
2558                 /*
2559                  * Bring in the user page that we will copy from _first_.
2560                  * Otherwise there's a nasty deadlock on copying from the
2561                  * same page as we're writing to, without it being marked
2562                  * up-to-date.
2563                  *
2564                  * Not only is this an optimisation, but it is also required
2565                  * to check that the address is actually valid, when atomic
2566                  * usercopies are used, below.
2567                  */
2568                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2569                         status = -EFAULT;
2570                         break;
2571                 }
2572
2573                 if (fatal_signal_pending(current)) {
2574                         status = -EINTR;
2575                         break;
2576                 }
2577
2578                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2579                                                 &page, &fsdata);
2580                 if (unlikely(status < 0))
2581                         break;
2582
2583                 if (mapping_writably_mapped(mapping))
2584                         flush_dcache_page(page);
2585
2586                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2587                 flush_dcache_page(page);
2588
2589                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2590                                                 page, fsdata);
2591                 if (unlikely(status < 0))
2592                         break;
2593                 copied = status;
2594
2595                 cond_resched();
2596
2597                 iov_iter_advance(i, copied);
2598                 if (unlikely(copied == 0)) {
2599                         /*
2600                          * If we were unable to copy any data at all, we must
2601                          * fall back to a single segment length write.
2602                          *
2603                          * If we didn't fallback here, we could livelock
2604                          * because not all segments in the iov can be copied at
2605                          * once without a pagefault.
2606                          */
2607                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2608                                                 iov_iter_single_seg_count(i));
2609                         goto again;
2610                 }
2611                 pos += copied;
2612                 written += copied;
2613
2614                 balance_dirty_pages_ratelimited(mapping);
2615         } while (iov_iter_count(i));
2616
2617         return written ? written : status;
2618 }
2619 EXPORT_SYMBOL(generic_perform_write);
2620
2621 /**
2622  * __generic_file_write_iter - write data to a file
2623  * @iocb:       IO state structure (file, offset, etc.)
2624  * @from:       iov_iter with data to write
2625  *
2626  * This function does all the work needed for actually writing data to a
2627  * file. It does all basic checks, removes SUID from the file, updates
2628  * modification times and calls proper subroutines depending on whether we
2629  * do direct IO or a standard buffered write.
2630  *
2631  * It expects i_mutex to be grabbed unless we work on a block device or similar
2632  * object which does not need locking at all.
2633  *
2634  * This function does *not* take care of syncing data in case of O_SYNC write.
2635  * A caller has to handle it. This is mainly due to the fact that we want to
2636  * avoid syncing under i_mutex.
2637  */
2638 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2639 {
2640         struct file *file = iocb->ki_filp;
2641         struct address_space * mapping = file->f_mapping;
2642         struct inode    *inode = mapping->host;
2643         ssize_t         written = 0;
2644         ssize_t         err;
2645         ssize_t         status;
2646
2647         /* We can write back this queue in page reclaim */
2648         current->backing_dev_info = inode_to_bdi(inode);
2649         err = file_remove_privs(file);
2650         if (err)
2651                 goto out;
2652
2653         err = file_update_time(file);
2654         if (err)
2655                 goto out;
2656
2657         if (iocb->ki_flags & IOCB_DIRECT) {
2658                 loff_t pos, endbyte;
2659
2660                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2661                 /*
2662                  * If the write stopped short of completing, fall back to
2663                  * buffered writes.  Some filesystems do this for writes to
2664                  * holes, for example.  For DAX files, a buffered write will
2665                  * not succeed (even if it did, DAX does not handle dirty
2666                  * page-cache pages correctly).
2667                  */
2668                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2669                         goto out;
2670
2671                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2672                 /*
2673                  * If generic_perform_write() returned a synchronous error
2674                  * then we want to return the number of bytes which were
2675                  * direct-written, or the error code if that was zero.  Note
2676                  * that this differs from normal direct-io semantics, which
2677                  * will return -EFOO even if some bytes were written.
2678                  */
2679                 if (unlikely(status < 0)) {
2680                         err = status;
2681                         goto out;
2682                 }
2683                 /*
2684                  * We need to ensure that the page cache pages are written to
2685                  * disk and invalidated to preserve the expected O_DIRECT
2686                  * semantics.
2687                  */
2688                 endbyte = pos + status - 1;
2689                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2690                 if (err == 0) {
2691                         iocb->ki_pos = endbyte + 1;
2692                         written += status;
2693                         invalidate_mapping_pages(mapping,
2694                                                  pos >> PAGE_CACHE_SHIFT,
2695                                                  endbyte >> PAGE_CACHE_SHIFT);
2696                 } else {
2697                         /*
2698                          * We don't know how much we wrote, so just return
2699                          * the number of bytes which were direct-written
2700                          */
2701                 }
2702         } else {
2703                 written = generic_perform_write(file, from, iocb->ki_pos);
2704                 if (likely(written > 0))
2705                         iocb->ki_pos += written;
2706         }
2707 out:
2708         current->backing_dev_info = NULL;
2709         return written ? written : err;
2710 }
2711 EXPORT_SYMBOL(__generic_file_write_iter);
2712
2713 /**
2714  * generic_file_write_iter - write data to a file
2715  * @iocb:       IO state structure
2716  * @from:       iov_iter with data to write
2717  *
2718  * This is a wrapper around __generic_file_write_iter() to be used by most
2719  * filesystems. It takes care of syncing the file in case of O_SYNC file
2720  * and acquires i_mutex as needed.
2721  */
2722 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2723 {
2724         struct file *file = iocb->ki_filp;
2725         struct inode *inode = file->f_mapping->host;
2726         ssize_t ret;
2727
2728         mutex_lock(&inode->i_mutex);
2729         ret = generic_write_checks(iocb, from);
2730         if (ret > 0)
2731                 ret = __generic_file_write_iter(iocb, from);
2732         mutex_unlock(&inode->i_mutex);
2733
2734         if (ret > 0) {
2735                 ssize_t err;
2736
2737                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2738                 if (err < 0)
2739                         ret = err;
2740         }
2741         return ret;
2742 }
2743 EXPORT_SYMBOL(generic_file_write_iter);
2744
2745 /**
2746  * try_to_release_page() - release old fs-specific metadata on a page
2747  *
2748  * @page: the page which the kernel is trying to free
2749  * @gfp_mask: memory allocation flags (and I/O mode)
2750  *
2751  * The address_space is to try to release any data against the page
2752  * (presumably at page->private).  If the release was successful, return `1'.
2753  * Otherwise return zero.
2754  *
2755  * This may also be called if PG_fscache is set on a page, indicating that the
2756  * page is known to the local caching routines.
2757  *
2758  * The @gfp_mask argument specifies whether I/O may be performed to release
2759  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2760  *
2761  */
2762 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2763 {
2764         struct address_space * const mapping = page->mapping;
2765
2766         BUG_ON(!PageLocked(page));
2767         if (PageWriteback(page))
2768                 return 0;
2769
2770         if (mapping && mapping->a_ops->releasepage)
2771                 return mapping->a_ops->releasepage(page, gfp_mask);
2772         return try_to_free_buffers(page);
2773 }
2774
2775 EXPORT_SYMBOL(try_to_release_page);