OSDN Git Service

mm: stop leaking PageTables
[android-x86/kernel.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                         if (node)
136                                 workingset_node_shadows_dec(node);
137                 } else {
138                         /* DAX can replace empty locked entry with a hole */
139                         WARN_ON_ONCE(p !=
140                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141                                          RADIX_DAX_ENTRY_LOCK));
142                         /* DAX accounts exceptional entries as normal pages */
143                         if (node)
144                                 workingset_node_pages_dec(node);
145                         /* Wakeup waiters for exceptional entry lock */
146                         dax_wake_mapping_entry_waiter(mapping, page->index,
147                                                       true);
148                 }
149         }
150         radix_tree_replace_slot(slot, page);
151         mapping->nrpages++;
152         if (node) {
153                 workingset_node_pages_inc(node);
154                 /*
155                  * Don't track node that contains actual pages.
156                  *
157                  * Avoid acquiring the list_lru lock if already
158                  * untracked.  The list_empty() test is safe as
159                  * node->private_list is protected by
160                  * mapping->tree_lock.
161                  */
162                 if (!list_empty(&node->private_list))
163                         list_lru_del(&workingset_shadow_nodes,
164                                      &node->private_list);
165         }
166         return 0;
167 }
168
169 static void page_cache_tree_delete(struct address_space *mapping,
170                                    struct page *page, void *shadow)
171 {
172         int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
173
174         VM_BUG_ON_PAGE(!PageLocked(page), page);
175         VM_BUG_ON_PAGE(PageTail(page), page);
176         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
177
178         for (i = 0; i < nr; i++) {
179                 struct radix_tree_node *node;
180                 void **slot;
181
182                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
183                                     &node, &slot);
184
185                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
186
187                 if (!node) {
188                         VM_BUG_ON_PAGE(nr != 1, page);
189                         /*
190                          * We need a node to properly account shadow
191                          * entries. Don't plant any without. XXX
192                          */
193                         shadow = NULL;
194                 }
195
196                 radix_tree_replace_slot(slot, shadow);
197
198                 if (!node)
199                         break;
200
201                 workingset_node_pages_dec(node);
202                 if (shadow)
203                         workingset_node_shadows_inc(node);
204                 else
205                         if (__radix_tree_delete_node(&mapping->page_tree, node))
206                                 continue;
207
208                 /*
209                  * Track node that only contains shadow entries. DAX mappings
210                  * contain no shadow entries and may contain other exceptional
211                  * entries so skip those.
212                  *
213                  * Avoid acquiring the list_lru lock if already tracked.
214                  * The list_empty() test is safe as node->private_list is
215                  * protected by mapping->tree_lock.
216                  */
217                 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
218                                 list_empty(&node->private_list)) {
219                         node->private_data = mapping;
220                         list_lru_add(&workingset_shadow_nodes,
221                                         &node->private_list);
222                 }
223         }
224
225         if (shadow) {
226                 mapping->nrexceptional += nr;
227                 /*
228                  * Make sure the nrexceptional update is committed before
229                  * the nrpages update so that final truncate racing
230                  * with reclaim does not see both counters 0 at the
231                  * same time and miss a shadow entry.
232                  */
233                 smp_wmb();
234         }
235         mapping->nrpages -= nr;
236 }
237
238 /*
239  * Delete a page from the page cache and free it. Caller has to make
240  * sure the page is locked and that nobody else uses it - or that usage
241  * is safe.  The caller must hold the mapping's tree_lock.
242  */
243 void __delete_from_page_cache(struct page *page, void *shadow)
244 {
245         struct address_space *mapping = page->mapping;
246         int nr = hpage_nr_pages(page);
247
248         trace_mm_filemap_delete_from_page_cache(page);
249         /*
250          * if we're uptodate, flush out into the cleancache, otherwise
251          * invalidate any existing cleancache entries.  We can't leave
252          * stale data around in the cleancache once our page is gone
253          */
254         if (PageUptodate(page) && PageMappedToDisk(page))
255                 cleancache_put_page(page);
256         else
257                 cleancache_invalidate_page(mapping, page);
258
259         VM_BUG_ON_PAGE(PageTail(page), page);
260         VM_BUG_ON_PAGE(page_mapped(page), page);
261         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
262                 int mapcount;
263
264                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
265                          current->comm, page_to_pfn(page));
266                 dump_page(page, "still mapped when deleted");
267                 dump_stack();
268                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
269
270                 mapcount = page_mapcount(page);
271                 if (mapping_exiting(mapping) &&
272                     page_count(page) >= mapcount + 2) {
273                         /*
274                          * All vmas have already been torn down, so it's
275                          * a good bet that actually the page is unmapped,
276                          * and we'd prefer not to leak it: if we're wrong,
277                          * some other bad page check should catch it later.
278                          */
279                         page_mapcount_reset(page);
280                         page_ref_sub(page, mapcount);
281                 }
282         }
283
284         page_cache_tree_delete(mapping, page, shadow);
285
286         page->mapping = NULL;
287         /* Leave page->index set: truncation lookup relies upon it */
288
289         /* hugetlb pages do not participate in page cache accounting. */
290         if (!PageHuge(page))
291                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
292         if (PageSwapBacked(page)) {
293                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
294                 if (PageTransHuge(page))
295                         __dec_node_page_state(page, NR_SHMEM_THPS);
296         } else {
297                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
298         }
299
300         /*
301          * At this point page must be either written or cleaned by truncate.
302          * Dirty page here signals a bug and loss of unwritten data.
303          *
304          * This fixes dirty accounting after removing the page entirely but
305          * leaves PageDirty set: it has no effect for truncated page and
306          * anyway will be cleared before returning page into buddy allocator.
307          */
308         if (WARN_ON_ONCE(PageDirty(page)))
309                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
310 }
311
312 /**
313  * delete_from_page_cache - delete page from page cache
314  * @page: the page which the kernel is trying to remove from page cache
315  *
316  * This must be called only on pages that have been verified to be in the page
317  * cache and locked.  It will never put the page into the free list, the caller
318  * has a reference on the page.
319  */
320 void delete_from_page_cache(struct page *page)
321 {
322         struct address_space *mapping = page_mapping(page);
323         unsigned long flags;
324         void (*freepage)(struct page *);
325
326         BUG_ON(!PageLocked(page));
327
328         freepage = mapping->a_ops->freepage;
329
330         spin_lock_irqsave(&mapping->tree_lock, flags);
331         __delete_from_page_cache(page, NULL);
332         spin_unlock_irqrestore(&mapping->tree_lock, flags);
333
334         if (freepage)
335                 freepage(page);
336
337         if (PageTransHuge(page) && !PageHuge(page)) {
338                 page_ref_sub(page, HPAGE_PMD_NR);
339                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
340         } else {
341                 put_page(page);
342         }
343 }
344 EXPORT_SYMBOL(delete_from_page_cache);
345
346 int filemap_check_errors(struct address_space *mapping)
347 {
348         int ret = 0;
349         /* Check for outstanding write errors */
350         if (test_bit(AS_ENOSPC, &mapping->flags) &&
351             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352                 ret = -ENOSPC;
353         if (test_bit(AS_EIO, &mapping->flags) &&
354             test_and_clear_bit(AS_EIO, &mapping->flags))
355                 ret = -EIO;
356         return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
360 /**
361  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
362  * @mapping:    address space structure to write
363  * @start:      offset in bytes where the range starts
364  * @end:        offset in bytes where the range ends (inclusive)
365  * @sync_mode:  enable synchronous operation
366  *
367  * Start writeback against all of a mapping's dirty pages that lie
368  * within the byte offsets <start, end> inclusive.
369  *
370  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
371  * opposed to a regular memory cleansing writeback.  The difference between
372  * these two operations is that if a dirty page/buffer is encountered, it must
373  * be waited upon, and not just skipped over.
374  */
375 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
376                                 loff_t end, int sync_mode)
377 {
378         int ret;
379         struct writeback_control wbc = {
380                 .sync_mode = sync_mode,
381                 .nr_to_write = LONG_MAX,
382                 .range_start = start,
383                 .range_end = end,
384         };
385
386         if (!mapping_cap_writeback_dirty(mapping))
387                 return 0;
388
389         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
390         ret = do_writepages(mapping, &wbc);
391         wbc_detach_inode(&wbc);
392         return ret;
393 }
394
395 static inline int __filemap_fdatawrite(struct address_space *mapping,
396         int sync_mode)
397 {
398         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
399 }
400
401 int filemap_fdatawrite(struct address_space *mapping)
402 {
403         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
404 }
405 EXPORT_SYMBOL(filemap_fdatawrite);
406
407 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
408                                 loff_t end)
409 {
410         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_range);
413
414 /**
415  * filemap_flush - mostly a non-blocking flush
416  * @mapping:    target address_space
417  *
418  * This is a mostly non-blocking flush.  Not suitable for data-integrity
419  * purposes - I/O may not be started against all dirty pages.
420  */
421 int filemap_flush(struct address_space *mapping)
422 {
423         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
424 }
425 EXPORT_SYMBOL(filemap_flush);
426
427 static int __filemap_fdatawait_range(struct address_space *mapping,
428                                      loff_t start_byte, loff_t end_byte)
429 {
430         pgoff_t index = start_byte >> PAGE_SHIFT;
431         pgoff_t end = end_byte >> PAGE_SHIFT;
432         struct pagevec pvec;
433         int nr_pages;
434         int ret = 0;
435
436         if (end_byte < start_byte)
437                 goto out;
438
439         pagevec_init(&pvec, 0);
440         while ((index <= end) &&
441                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
442                         PAGECACHE_TAG_WRITEBACK,
443                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
444                 unsigned i;
445
446                 for (i = 0; i < nr_pages; i++) {
447                         struct page *page = pvec.pages[i];
448
449                         /* until radix tree lookup accepts end_index */
450                         if (page->index > end)
451                                 continue;
452
453                         wait_on_page_writeback(page);
454                         if (TestClearPageError(page))
455                                 ret = -EIO;
456                 }
457                 pagevec_release(&pvec);
458                 cond_resched();
459         }
460 out:
461         return ret;
462 }
463
464 /**
465  * filemap_fdatawait_range - wait for writeback to complete
466  * @mapping:            address space structure to wait for
467  * @start_byte:         offset in bytes where the range starts
468  * @end_byte:           offset in bytes where the range ends (inclusive)
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * in the given range and wait for all of them.  Check error status of
472  * the address space and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
478 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
479                             loff_t end_byte)
480 {
481         int ret, ret2;
482
483         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
484         ret2 = filemap_check_errors(mapping);
485         if (!ret)
486                 ret = ret2;
487
488         return ret;
489 }
490 EXPORT_SYMBOL(filemap_fdatawait_range);
491
492 /**
493  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
494  * @mapping: address space structure to wait for
495  *
496  * Walk the list of under-writeback pages of the given address space
497  * and wait for all of them.  Unlike filemap_fdatawait(), this function
498  * does not clear error status of the address space.
499  *
500  * Use this function if callers don't handle errors themselves.  Expected
501  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
502  * fsfreeze(8)
503  */
504 void filemap_fdatawait_keep_errors(struct address_space *mapping)
505 {
506         loff_t i_size = i_size_read(mapping->host);
507
508         if (i_size == 0)
509                 return;
510
511         __filemap_fdatawait_range(mapping, 0, i_size - 1);
512 }
513
514 /**
515  * filemap_fdatawait - wait for all under-writeback pages to complete
516  * @mapping: address space structure to wait for
517  *
518  * Walk the list of under-writeback pages of the given address space
519  * and wait for all of them.  Check error status of the address space
520  * and return it.
521  *
522  * Since the error status of the address space is cleared by this function,
523  * callers are responsible for checking the return value and handling and/or
524  * reporting the error.
525  */
526 int filemap_fdatawait(struct address_space *mapping)
527 {
528         loff_t i_size = i_size_read(mapping->host);
529
530         if (i_size == 0)
531                 return 0;
532
533         return filemap_fdatawait_range(mapping, 0, i_size - 1);
534 }
535 EXPORT_SYMBOL(filemap_fdatawait);
536
537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539         int err = 0;
540
541         if ((!dax_mapping(mapping) && mapping->nrpages) ||
542             (dax_mapping(mapping) && mapping->nrexceptional)) {
543                 err = filemap_fdatawrite(mapping);
544                 /*
545                  * Even if the above returned error, the pages may be
546                  * written partially (e.g. -ENOSPC), so we wait for it.
547                  * But the -EIO is special case, it may indicate the worst
548                  * thing (e.g. bug) happened, so we avoid waiting for it.
549                  */
550                 if (err != -EIO) {
551                         int err2 = filemap_fdatawait(mapping);
552                         if (!err)
553                                 err = err2;
554                 }
555         } else {
556                 err = filemap_check_errors(mapping);
557         }
558         return err;
559 }
560 EXPORT_SYMBOL(filemap_write_and_wait);
561
562 /**
563  * filemap_write_and_wait_range - write out & wait on a file range
564  * @mapping:    the address_space for the pages
565  * @lstart:     offset in bytes where the range starts
566  * @lend:       offset in bytes where the range ends (inclusive)
567  *
568  * Write out and wait upon file offsets lstart->lend, inclusive.
569  *
570  * Note that `lend' is inclusive (describes the last byte to be written) so
571  * that this function can be used to write to the very end-of-file (end = -1).
572  */
573 int filemap_write_and_wait_range(struct address_space *mapping,
574                                  loff_t lstart, loff_t lend)
575 {
576         int err = 0;
577
578         if ((!dax_mapping(mapping) && mapping->nrpages) ||
579             (dax_mapping(mapping) && mapping->nrexceptional)) {
580                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
581                                                  WB_SYNC_ALL);
582                 /* See comment of filemap_write_and_wait() */
583                 if (err != -EIO) {
584                         int err2 = filemap_fdatawait_range(mapping,
585                                                 lstart, lend);
586                         if (!err)
587                                 err = err2;
588                 }
589         } else {
590                 err = filemap_check_errors(mapping);
591         }
592         return err;
593 }
594 EXPORT_SYMBOL(filemap_write_and_wait_range);
595
596 /**
597  * replace_page_cache_page - replace a pagecache page with a new one
598  * @old:        page to be replaced
599  * @new:        page to replace with
600  * @gfp_mask:   allocation mode
601  *
602  * This function replaces a page in the pagecache with a new one.  On
603  * success it acquires the pagecache reference for the new page and
604  * drops it for the old page.  Both the old and new pages must be
605  * locked.  This function does not add the new page to the LRU, the
606  * caller must do that.
607  *
608  * The remove + add is atomic.  The only way this function can fail is
609  * memory allocation failure.
610  */
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
612 {
613         int error;
614
615         VM_BUG_ON_PAGE(!PageLocked(old), old);
616         VM_BUG_ON_PAGE(!PageLocked(new), new);
617         VM_BUG_ON_PAGE(new->mapping, new);
618
619         error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
620         if (!error) {
621                 struct address_space *mapping = old->mapping;
622                 void (*freepage)(struct page *);
623                 unsigned long flags;
624
625                 pgoff_t offset = old->index;
626                 freepage = mapping->a_ops->freepage;
627
628                 get_page(new);
629                 new->mapping = mapping;
630                 new->index = offset;
631
632                 spin_lock_irqsave(&mapping->tree_lock, flags);
633                 __delete_from_page_cache(old, NULL);
634                 error = page_cache_tree_insert(mapping, new, NULL);
635                 BUG_ON(error);
636
637                 /*
638                  * hugetlb pages do not participate in page cache accounting.
639                  */
640                 if (!PageHuge(new))
641                         __inc_node_page_state(new, NR_FILE_PAGES);
642                 if (PageSwapBacked(new))
643                         __inc_node_page_state(new, NR_SHMEM);
644                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
645                 mem_cgroup_migrate(old, new);
646                 radix_tree_preload_end();
647                 if (freepage)
648                         freepage(old);
649                 put_page(old);
650         }
651
652         return error;
653 }
654 EXPORT_SYMBOL_GPL(replace_page_cache_page);
655
656 static int __add_to_page_cache_locked(struct page *page,
657                                       struct address_space *mapping,
658                                       pgoff_t offset, gfp_t gfp_mask,
659                                       void **shadowp)
660 {
661         int huge = PageHuge(page);
662         struct mem_cgroup *memcg;
663         int error;
664
665         VM_BUG_ON_PAGE(!PageLocked(page), page);
666         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
667
668         if (!huge) {
669                 error = mem_cgroup_try_charge(page, current->mm,
670                                               gfp_mask, &memcg, false);
671                 if (error)
672                         return error;
673         }
674
675         error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
676         if (error) {
677                 if (!huge)
678                         mem_cgroup_cancel_charge(page, memcg, false);
679                 return error;
680         }
681
682         get_page(page);
683         page->mapping = mapping;
684         page->index = offset;
685
686         spin_lock_irq(&mapping->tree_lock);
687         error = page_cache_tree_insert(mapping, page, shadowp);
688         radix_tree_preload_end();
689         if (unlikely(error))
690                 goto err_insert;
691
692         /* hugetlb pages do not participate in page cache accounting. */
693         if (!huge)
694                 __inc_node_page_state(page, NR_FILE_PAGES);
695         spin_unlock_irq(&mapping->tree_lock);
696         if (!huge)
697                 mem_cgroup_commit_charge(page, memcg, false, false);
698         trace_mm_filemap_add_to_page_cache(page);
699         return 0;
700 err_insert:
701         page->mapping = NULL;
702         /* Leave page->index set: truncation relies upon it */
703         spin_unlock_irq(&mapping->tree_lock);
704         if (!huge)
705                 mem_cgroup_cancel_charge(page, memcg, false);
706         put_page(page);
707         return error;
708 }
709
710 /**
711  * add_to_page_cache_locked - add a locked page to the pagecache
712  * @page:       page to add
713  * @mapping:    the page's address_space
714  * @offset:     page index
715  * @gfp_mask:   page allocation mode
716  *
717  * This function is used to add a page to the pagecache. It must be locked.
718  * This function does not add the page to the LRU.  The caller must do that.
719  */
720 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
721                 pgoff_t offset, gfp_t gfp_mask)
722 {
723         return __add_to_page_cache_locked(page, mapping, offset,
724                                           gfp_mask, NULL);
725 }
726 EXPORT_SYMBOL(add_to_page_cache_locked);
727
728 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
729                                 pgoff_t offset, gfp_t gfp_mask)
730 {
731         void *shadow = NULL;
732         int ret;
733
734         __SetPageLocked(page);
735         ret = __add_to_page_cache_locked(page, mapping, offset,
736                                          gfp_mask, &shadow);
737         if (unlikely(ret))
738                 __ClearPageLocked(page);
739         else {
740                 /*
741                  * The page might have been evicted from cache only
742                  * recently, in which case it should be activated like
743                  * any other repeatedly accessed page.
744                  * The exception is pages getting rewritten; evicting other
745                  * data from the working set, only to cache data that will
746                  * get overwritten with something else, is a waste of memory.
747                  */
748                 if (!(gfp_mask & __GFP_WRITE) &&
749                     shadow && workingset_refault(shadow)) {
750                         SetPageActive(page);
751                         workingset_activation(page);
752                 } else
753                         ClearPageActive(page);
754                 lru_cache_add(page);
755         }
756         return ret;
757 }
758 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
759
760 #ifdef CONFIG_NUMA
761 struct page *__page_cache_alloc(gfp_t gfp)
762 {
763         int n;
764         struct page *page;
765
766         if (cpuset_do_page_mem_spread()) {
767                 unsigned int cpuset_mems_cookie;
768                 do {
769                         cpuset_mems_cookie = read_mems_allowed_begin();
770                         n = cpuset_mem_spread_node();
771                         page = __alloc_pages_node(n, gfp, 0);
772                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
773
774                 return page;
775         }
776         return alloc_pages(gfp, 0);
777 }
778 EXPORT_SYMBOL(__page_cache_alloc);
779 #endif
780
781 /*
782  * In order to wait for pages to become available there must be
783  * waitqueues associated with pages. By using a hash table of
784  * waitqueues where the bucket discipline is to maintain all
785  * waiters on the same queue and wake all when any of the pages
786  * become available, and for the woken contexts to check to be
787  * sure the appropriate page became available, this saves space
788  * at a cost of "thundering herd" phenomena during rare hash
789  * collisions.
790  */
791 wait_queue_head_t *page_waitqueue(struct page *page)
792 {
793         return bit_waitqueue(page, 0);
794 }
795 EXPORT_SYMBOL(page_waitqueue);
796
797 void wait_on_page_bit(struct page *page, int bit_nr)
798 {
799         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
800
801         if (test_bit(bit_nr, &page->flags))
802                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
803                                                         TASK_UNINTERRUPTIBLE);
804 }
805 EXPORT_SYMBOL(wait_on_page_bit);
806
807 int wait_on_page_bit_killable(struct page *page, int bit_nr)
808 {
809         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
810
811         if (!test_bit(bit_nr, &page->flags))
812                 return 0;
813
814         return __wait_on_bit(page_waitqueue(page), &wait,
815                              bit_wait_io, TASK_KILLABLE);
816 }
817
818 int wait_on_page_bit_killable_timeout(struct page *page,
819                                        int bit_nr, unsigned long timeout)
820 {
821         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
822
823         wait.key.timeout = jiffies + timeout;
824         if (!test_bit(bit_nr, &page->flags))
825                 return 0;
826         return __wait_on_bit(page_waitqueue(page), &wait,
827                              bit_wait_io_timeout, TASK_KILLABLE);
828 }
829 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
830
831 /**
832  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
833  * @page: Page defining the wait queue of interest
834  * @waiter: Waiter to add to the queue
835  *
836  * Add an arbitrary @waiter to the wait queue for the nominated @page.
837  */
838 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
839 {
840         wait_queue_head_t *q = page_waitqueue(page);
841         unsigned long flags;
842
843         spin_lock_irqsave(&q->lock, flags);
844         __add_wait_queue(q, waiter);
845         spin_unlock_irqrestore(&q->lock, flags);
846 }
847 EXPORT_SYMBOL_GPL(add_page_wait_queue);
848
849 /**
850  * unlock_page - unlock a locked page
851  * @page: the page
852  *
853  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
854  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
855  * mechanism between PageLocked pages and PageWriteback pages is shared.
856  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
857  *
858  * The mb is necessary to enforce ordering between the clear_bit and the read
859  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
860  */
861 void unlock_page(struct page *page)
862 {
863         page = compound_head(page);
864         VM_BUG_ON_PAGE(!PageLocked(page), page);
865         clear_bit_unlock(PG_locked, &page->flags);
866         smp_mb__after_atomic();
867         wake_up_page(page, PG_locked);
868 }
869 EXPORT_SYMBOL(unlock_page);
870
871 /**
872  * end_page_writeback - end writeback against a page
873  * @page: the page
874  */
875 void end_page_writeback(struct page *page)
876 {
877         /*
878          * TestClearPageReclaim could be used here but it is an atomic
879          * operation and overkill in this particular case. Failing to
880          * shuffle a page marked for immediate reclaim is too mild to
881          * justify taking an atomic operation penalty at the end of
882          * ever page writeback.
883          */
884         if (PageReclaim(page)) {
885                 ClearPageReclaim(page);
886                 rotate_reclaimable_page(page);
887         }
888
889         if (!test_clear_page_writeback(page))
890                 BUG();
891
892         smp_mb__after_atomic();
893         wake_up_page(page, PG_writeback);
894 }
895 EXPORT_SYMBOL(end_page_writeback);
896
897 /*
898  * After completing I/O on a page, call this routine to update the page
899  * flags appropriately
900  */
901 void page_endio(struct page *page, bool is_write, int err)
902 {
903         if (!is_write) {
904                 if (!err) {
905                         SetPageUptodate(page);
906                 } else {
907                         ClearPageUptodate(page);
908                         SetPageError(page);
909                 }
910                 unlock_page(page);
911         } else {
912                 if (err) {
913                         struct address_space *mapping;
914
915                         SetPageError(page);
916                         mapping = page_mapping(page);
917                         if (mapping)
918                                 mapping_set_error(mapping, err);
919                 }
920                 end_page_writeback(page);
921         }
922 }
923 EXPORT_SYMBOL_GPL(page_endio);
924
925 /**
926  * __lock_page - get a lock on the page, assuming we need to sleep to get it
927  * @page: the page to lock
928  */
929 void __lock_page(struct page *page)
930 {
931         struct page *page_head = compound_head(page);
932         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
933
934         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
935                                                         TASK_UNINTERRUPTIBLE);
936 }
937 EXPORT_SYMBOL(__lock_page);
938
939 int __lock_page_killable(struct page *page)
940 {
941         struct page *page_head = compound_head(page);
942         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
943
944         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
945                                         bit_wait_io, TASK_KILLABLE);
946 }
947 EXPORT_SYMBOL_GPL(__lock_page_killable);
948
949 /*
950  * Return values:
951  * 1 - page is locked; mmap_sem is still held.
952  * 0 - page is not locked.
953  *     mmap_sem has been released (up_read()), unless flags had both
954  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
955  *     which case mmap_sem is still held.
956  *
957  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
958  * with the page locked and the mmap_sem unperturbed.
959  */
960 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
961                          unsigned int flags)
962 {
963         if (flags & FAULT_FLAG_ALLOW_RETRY) {
964                 /*
965                  * CAUTION! In this case, mmap_sem is not released
966                  * even though return 0.
967                  */
968                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
969                         return 0;
970
971                 up_read(&mm->mmap_sem);
972                 if (flags & FAULT_FLAG_KILLABLE)
973                         wait_on_page_locked_killable(page);
974                 else
975                         wait_on_page_locked(page);
976                 return 0;
977         } else {
978                 if (flags & FAULT_FLAG_KILLABLE) {
979                         int ret;
980
981                         ret = __lock_page_killable(page);
982                         if (ret) {
983                                 up_read(&mm->mmap_sem);
984                                 return 0;
985                         }
986                 } else
987                         __lock_page(page);
988                 return 1;
989         }
990 }
991
992 /**
993  * page_cache_next_hole - find the next hole (not-present entry)
994  * @mapping: mapping
995  * @index: index
996  * @max_scan: maximum range to search
997  *
998  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
999  * lowest indexed hole.
1000  *
1001  * Returns: the index of the hole if found, otherwise returns an index
1002  * outside of the set specified (in which case 'return - index >=
1003  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1004  * be returned.
1005  *
1006  * page_cache_next_hole may be called under rcu_read_lock. However,
1007  * like radix_tree_gang_lookup, this will not atomically search a
1008  * snapshot of the tree at a single point in time. For example, if a
1009  * hole is created at index 5, then subsequently a hole is created at
1010  * index 10, page_cache_next_hole covering both indexes may return 10
1011  * if called under rcu_read_lock.
1012  */
1013 pgoff_t page_cache_next_hole(struct address_space *mapping,
1014                              pgoff_t index, unsigned long max_scan)
1015 {
1016         unsigned long i;
1017
1018         for (i = 0; i < max_scan; i++) {
1019                 struct page *page;
1020
1021                 page = radix_tree_lookup(&mapping->page_tree, index);
1022                 if (!page || radix_tree_exceptional_entry(page))
1023                         break;
1024                 index++;
1025                 if (index == 0)
1026                         break;
1027         }
1028
1029         return index;
1030 }
1031 EXPORT_SYMBOL(page_cache_next_hole);
1032
1033 /**
1034  * page_cache_prev_hole - find the prev hole (not-present entry)
1035  * @mapping: mapping
1036  * @index: index
1037  * @max_scan: maximum range to search
1038  *
1039  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1040  * the first hole.
1041  *
1042  * Returns: the index of the hole if found, otherwise returns an index
1043  * outside of the set specified (in which case 'index - return >=
1044  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1045  * will be returned.
1046  *
1047  * page_cache_prev_hole may be called under rcu_read_lock. However,
1048  * like radix_tree_gang_lookup, this will not atomically search a
1049  * snapshot of the tree at a single point in time. For example, if a
1050  * hole is created at index 10, then subsequently a hole is created at
1051  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1052  * called under rcu_read_lock.
1053  */
1054 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1055                              pgoff_t index, unsigned long max_scan)
1056 {
1057         unsigned long i;
1058
1059         for (i = 0; i < max_scan; i++) {
1060                 struct page *page;
1061
1062                 page = radix_tree_lookup(&mapping->page_tree, index);
1063                 if (!page || radix_tree_exceptional_entry(page))
1064                         break;
1065                 index--;
1066                 if (index == ULONG_MAX)
1067                         break;
1068         }
1069
1070         return index;
1071 }
1072 EXPORT_SYMBOL(page_cache_prev_hole);
1073
1074 /**
1075  * find_get_entry - find and get a page cache entry
1076  * @mapping: the address_space to search
1077  * @offset: the page cache index
1078  *
1079  * Looks up the page cache slot at @mapping & @offset.  If there is a
1080  * page cache page, it is returned with an increased refcount.
1081  *
1082  * If the slot holds a shadow entry of a previously evicted page, or a
1083  * swap entry from shmem/tmpfs, it is returned.
1084  *
1085  * Otherwise, %NULL is returned.
1086  */
1087 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1088 {
1089         void **pagep;
1090         struct page *head, *page;
1091
1092         rcu_read_lock();
1093 repeat:
1094         page = NULL;
1095         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1096         if (pagep) {
1097                 page = radix_tree_deref_slot(pagep);
1098                 if (unlikely(!page))
1099                         goto out;
1100                 if (radix_tree_exception(page)) {
1101                         if (radix_tree_deref_retry(page))
1102                                 goto repeat;
1103                         /*
1104                          * A shadow entry of a recently evicted page,
1105                          * or a swap entry from shmem/tmpfs.  Return
1106                          * it without attempting to raise page count.
1107                          */
1108                         goto out;
1109                 }
1110
1111                 head = compound_head(page);
1112                 if (!page_cache_get_speculative(head))
1113                         goto repeat;
1114
1115                 /* The page was split under us? */
1116                 if (compound_head(page) != head) {
1117                         put_page(head);
1118                         goto repeat;
1119                 }
1120
1121                 /*
1122                  * Has the page moved?
1123                  * This is part of the lockless pagecache protocol. See
1124                  * include/linux/pagemap.h for details.
1125                  */
1126                 if (unlikely(page != *pagep)) {
1127                         put_page(head);
1128                         goto repeat;
1129                 }
1130         }
1131 out:
1132         rcu_read_unlock();
1133
1134         return page;
1135 }
1136 EXPORT_SYMBOL(find_get_entry);
1137
1138 /**
1139  * find_lock_entry - locate, pin and lock a page cache entry
1140  * @mapping: the address_space to search
1141  * @offset: the page cache index
1142  *
1143  * Looks up the page cache slot at @mapping & @offset.  If there is a
1144  * page cache page, it is returned locked and with an increased
1145  * refcount.
1146  *
1147  * If the slot holds a shadow entry of a previously evicted page, or a
1148  * swap entry from shmem/tmpfs, it is returned.
1149  *
1150  * Otherwise, %NULL is returned.
1151  *
1152  * find_lock_entry() may sleep.
1153  */
1154 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1155 {
1156         struct page *page;
1157
1158 repeat:
1159         page = find_get_entry(mapping, offset);
1160         if (page && !radix_tree_exception(page)) {
1161                 lock_page(page);
1162                 /* Has the page been truncated? */
1163                 if (unlikely(page_mapping(page) != mapping)) {
1164                         unlock_page(page);
1165                         put_page(page);
1166                         goto repeat;
1167                 }
1168                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1169         }
1170         return page;
1171 }
1172 EXPORT_SYMBOL(find_lock_entry);
1173
1174 /**
1175  * pagecache_get_page - find and get a page reference
1176  * @mapping: the address_space to search
1177  * @offset: the page index
1178  * @fgp_flags: PCG flags
1179  * @gfp_mask: gfp mask to use for the page cache data page allocation
1180  *
1181  * Looks up the page cache slot at @mapping & @offset.
1182  *
1183  * PCG flags modify how the page is returned.
1184  *
1185  * FGP_ACCESSED: the page will be marked accessed
1186  * FGP_LOCK: Page is return locked
1187  * FGP_CREAT: If page is not present then a new page is allocated using
1188  *              @gfp_mask and added to the page cache and the VM's LRU
1189  *              list. The page is returned locked and with an increased
1190  *              refcount. Otherwise, %NULL is returned.
1191  *
1192  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1193  * if the GFP flags specified for FGP_CREAT are atomic.
1194  *
1195  * If there is a page cache page, it is returned with an increased refcount.
1196  */
1197 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1198         int fgp_flags, gfp_t gfp_mask)
1199 {
1200         struct page *page;
1201
1202 repeat:
1203         page = find_get_entry(mapping, offset);
1204         if (radix_tree_exceptional_entry(page))
1205                 page = NULL;
1206         if (!page)
1207                 goto no_page;
1208
1209         if (fgp_flags & FGP_LOCK) {
1210                 if (fgp_flags & FGP_NOWAIT) {
1211                         if (!trylock_page(page)) {
1212                                 put_page(page);
1213                                 return NULL;
1214                         }
1215                 } else {
1216                         lock_page(page);
1217                 }
1218
1219                 /* Has the page been truncated? */
1220                 if (unlikely(page->mapping != mapping)) {
1221                         unlock_page(page);
1222                         put_page(page);
1223                         goto repeat;
1224                 }
1225                 VM_BUG_ON_PAGE(page->index != offset, page);
1226         }
1227
1228         if (page && (fgp_flags & FGP_ACCESSED))
1229                 mark_page_accessed(page);
1230
1231 no_page:
1232         if (!page && (fgp_flags & FGP_CREAT)) {
1233                 int err;
1234                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1235                         gfp_mask |= __GFP_WRITE;
1236                 if (fgp_flags & FGP_NOFS)
1237                         gfp_mask &= ~__GFP_FS;
1238
1239                 page = __page_cache_alloc(gfp_mask);
1240                 if (!page)
1241                         return NULL;
1242
1243                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1244                         fgp_flags |= FGP_LOCK;
1245
1246                 /* Init accessed so avoid atomic mark_page_accessed later */
1247                 if (fgp_flags & FGP_ACCESSED)
1248                         __SetPageReferenced(page);
1249
1250                 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1251                 if (unlikely(err)) {
1252                         put_page(page);
1253                         page = NULL;
1254                         if (err == -EEXIST)
1255                                 goto repeat;
1256                 }
1257         }
1258
1259         return page;
1260 }
1261 EXPORT_SYMBOL(pagecache_get_page);
1262
1263 /**
1264  * find_get_entries - gang pagecache lookup
1265  * @mapping:    The address_space to search
1266  * @start:      The starting page cache index
1267  * @nr_entries: The maximum number of entries
1268  * @entries:    Where the resulting entries are placed
1269  * @indices:    The cache indices corresponding to the entries in @entries
1270  *
1271  * find_get_entries() will search for and return a group of up to
1272  * @nr_entries entries in the mapping.  The entries are placed at
1273  * @entries.  find_get_entries() takes a reference against any actual
1274  * pages it returns.
1275  *
1276  * The search returns a group of mapping-contiguous page cache entries
1277  * with ascending indexes.  There may be holes in the indices due to
1278  * not-present pages.
1279  *
1280  * Any shadow entries of evicted pages, or swap entries from
1281  * shmem/tmpfs, are included in the returned array.
1282  *
1283  * find_get_entries() returns the number of pages and shadow entries
1284  * which were found.
1285  */
1286 unsigned find_get_entries(struct address_space *mapping,
1287                           pgoff_t start, unsigned int nr_entries,
1288                           struct page **entries, pgoff_t *indices)
1289 {
1290         void **slot;
1291         unsigned int ret = 0;
1292         struct radix_tree_iter iter;
1293
1294         if (!nr_entries)
1295                 return 0;
1296
1297         rcu_read_lock();
1298         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1299                 struct page *head, *page;
1300 repeat:
1301                 page = radix_tree_deref_slot(slot);
1302                 if (unlikely(!page))
1303                         continue;
1304                 if (radix_tree_exception(page)) {
1305                         if (radix_tree_deref_retry(page)) {
1306                                 slot = radix_tree_iter_retry(&iter);
1307                                 continue;
1308                         }
1309                         /*
1310                          * A shadow entry of a recently evicted page, a swap
1311                          * entry from shmem/tmpfs or a DAX entry.  Return it
1312                          * without attempting to raise page count.
1313                          */
1314                         goto export;
1315                 }
1316
1317                 head = compound_head(page);
1318                 if (!page_cache_get_speculative(head))
1319                         goto repeat;
1320
1321                 /* The page was split under us? */
1322                 if (compound_head(page) != head) {
1323                         put_page(head);
1324                         goto repeat;
1325                 }
1326
1327                 /* Has the page moved? */
1328                 if (unlikely(page != *slot)) {
1329                         put_page(head);
1330                         goto repeat;
1331                 }
1332 export:
1333                 indices[ret] = iter.index;
1334                 entries[ret] = page;
1335                 if (++ret == nr_entries)
1336                         break;
1337         }
1338         rcu_read_unlock();
1339         return ret;
1340 }
1341
1342 /**
1343  * find_get_pages - gang pagecache lookup
1344  * @mapping:    The address_space to search
1345  * @start:      The starting page index
1346  * @nr_pages:   The maximum number of pages
1347  * @pages:      Where the resulting pages are placed
1348  *
1349  * find_get_pages() will search for and return a group of up to
1350  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1351  * find_get_pages() takes a reference against the returned pages.
1352  *
1353  * The search returns a group of mapping-contiguous pages with ascending
1354  * indexes.  There may be holes in the indices due to not-present pages.
1355  *
1356  * find_get_pages() returns the number of pages which were found.
1357  */
1358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1359                             unsigned int nr_pages, struct page **pages)
1360 {
1361         struct radix_tree_iter iter;
1362         void **slot;
1363         unsigned ret = 0;
1364
1365         if (unlikely(!nr_pages))
1366                 return 0;
1367
1368         rcu_read_lock();
1369         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1370                 struct page *head, *page;
1371 repeat:
1372                 page = radix_tree_deref_slot(slot);
1373                 if (unlikely(!page))
1374                         continue;
1375
1376                 if (radix_tree_exception(page)) {
1377                         if (radix_tree_deref_retry(page)) {
1378                                 slot = radix_tree_iter_retry(&iter);
1379                                 continue;
1380                         }
1381                         /*
1382                          * A shadow entry of a recently evicted page,
1383                          * or a swap entry from shmem/tmpfs.  Skip
1384                          * over it.
1385                          */
1386                         continue;
1387                 }
1388
1389                 head = compound_head(page);
1390                 if (!page_cache_get_speculative(head))
1391                         goto repeat;
1392
1393                 /* The page was split under us? */
1394                 if (compound_head(page) != head) {
1395                         put_page(head);
1396                         goto repeat;
1397                 }
1398
1399                 /* Has the page moved? */
1400                 if (unlikely(page != *slot)) {
1401                         put_page(head);
1402                         goto repeat;
1403                 }
1404
1405                 pages[ret] = page;
1406                 if (++ret == nr_pages)
1407                         break;
1408         }
1409
1410         rcu_read_unlock();
1411         return ret;
1412 }
1413
1414 /**
1415  * find_get_pages_contig - gang contiguous pagecache lookup
1416  * @mapping:    The address_space to search
1417  * @index:      The starting page index
1418  * @nr_pages:   The maximum number of pages
1419  * @pages:      Where the resulting pages are placed
1420  *
1421  * find_get_pages_contig() works exactly like find_get_pages(), except
1422  * that the returned number of pages are guaranteed to be contiguous.
1423  *
1424  * find_get_pages_contig() returns the number of pages which were found.
1425  */
1426 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1427                                unsigned int nr_pages, struct page **pages)
1428 {
1429         struct radix_tree_iter iter;
1430         void **slot;
1431         unsigned int ret = 0;
1432
1433         if (unlikely(!nr_pages))
1434                 return 0;
1435
1436         rcu_read_lock();
1437         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1438                 struct page *head, *page;
1439 repeat:
1440                 page = radix_tree_deref_slot(slot);
1441                 /* The hole, there no reason to continue */
1442                 if (unlikely(!page))
1443                         break;
1444
1445                 if (radix_tree_exception(page)) {
1446                         if (radix_tree_deref_retry(page)) {
1447                                 slot = radix_tree_iter_retry(&iter);
1448                                 continue;
1449                         }
1450                         /*
1451                          * A shadow entry of a recently evicted page,
1452                          * or a swap entry from shmem/tmpfs.  Stop
1453                          * looking for contiguous pages.
1454                          */
1455                         break;
1456                 }
1457
1458                 head = compound_head(page);
1459                 if (!page_cache_get_speculative(head))
1460                         goto repeat;
1461
1462                 /* The page was split under us? */
1463                 if (compound_head(page) != head) {
1464                         put_page(head);
1465                         goto repeat;
1466                 }
1467
1468                 /* Has the page moved? */
1469                 if (unlikely(page != *slot)) {
1470                         put_page(head);
1471                         goto repeat;
1472                 }
1473
1474                 /*
1475                  * must check mapping and index after taking the ref.
1476                  * otherwise we can get both false positives and false
1477                  * negatives, which is just confusing to the caller.
1478                  */
1479                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1480                         put_page(page);
1481                         break;
1482                 }
1483
1484                 pages[ret] = page;
1485                 if (++ret == nr_pages)
1486                         break;
1487         }
1488         rcu_read_unlock();
1489         return ret;
1490 }
1491 EXPORT_SYMBOL(find_get_pages_contig);
1492
1493 /**
1494  * find_get_pages_tag - find and return pages that match @tag
1495  * @mapping:    the address_space to search
1496  * @index:      the starting page index
1497  * @tag:        the tag index
1498  * @nr_pages:   the maximum number of pages
1499  * @pages:      where the resulting pages are placed
1500  *
1501  * Like find_get_pages, except we only return pages which are tagged with
1502  * @tag.   We update @index to index the next page for the traversal.
1503  */
1504 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1505                         int tag, unsigned int nr_pages, struct page **pages)
1506 {
1507         struct radix_tree_iter iter;
1508         void **slot;
1509         unsigned ret = 0;
1510
1511         if (unlikely(!nr_pages))
1512                 return 0;
1513
1514         rcu_read_lock();
1515         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1516                                    &iter, *index, tag) {
1517                 struct page *head, *page;
1518 repeat:
1519                 page = radix_tree_deref_slot(slot);
1520                 if (unlikely(!page))
1521                         continue;
1522
1523                 if (radix_tree_exception(page)) {
1524                         if (radix_tree_deref_retry(page)) {
1525                                 slot = radix_tree_iter_retry(&iter);
1526                                 continue;
1527                         }
1528                         /*
1529                          * A shadow entry of a recently evicted page.
1530                          *
1531                          * Those entries should never be tagged, but
1532                          * this tree walk is lockless and the tags are
1533                          * looked up in bulk, one radix tree node at a
1534                          * time, so there is a sizable window for page
1535                          * reclaim to evict a page we saw tagged.
1536                          *
1537                          * Skip over it.
1538                          */
1539                         continue;
1540                 }
1541
1542                 head = compound_head(page);
1543                 if (!page_cache_get_speculative(head))
1544                         goto repeat;
1545
1546                 /* The page was split under us? */
1547                 if (compound_head(page) != head) {
1548                         put_page(head);
1549                         goto repeat;
1550                 }
1551
1552                 /* Has the page moved? */
1553                 if (unlikely(page != *slot)) {
1554                         put_page(head);
1555                         goto repeat;
1556                 }
1557
1558                 pages[ret] = page;
1559                 if (++ret == nr_pages)
1560                         break;
1561         }
1562
1563         rcu_read_unlock();
1564
1565         if (ret)
1566                 *index = pages[ret - 1]->index + 1;
1567
1568         return ret;
1569 }
1570 EXPORT_SYMBOL(find_get_pages_tag);
1571
1572 /**
1573  * find_get_entries_tag - find and return entries that match @tag
1574  * @mapping:    the address_space to search
1575  * @start:      the starting page cache index
1576  * @tag:        the tag index
1577  * @nr_entries: the maximum number of entries
1578  * @entries:    where the resulting entries are placed
1579  * @indices:    the cache indices corresponding to the entries in @entries
1580  *
1581  * Like find_get_entries, except we only return entries which are tagged with
1582  * @tag.
1583  */
1584 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1585                         int tag, unsigned int nr_entries,
1586                         struct page **entries, pgoff_t *indices)
1587 {
1588         void **slot;
1589         unsigned int ret = 0;
1590         struct radix_tree_iter iter;
1591
1592         if (!nr_entries)
1593                 return 0;
1594
1595         rcu_read_lock();
1596         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1597                                    &iter, start, tag) {
1598                 struct page *head, *page;
1599 repeat:
1600                 page = radix_tree_deref_slot(slot);
1601                 if (unlikely(!page))
1602                         continue;
1603                 if (radix_tree_exception(page)) {
1604                         if (radix_tree_deref_retry(page)) {
1605                                 slot = radix_tree_iter_retry(&iter);
1606                                 continue;
1607                         }
1608
1609                         /*
1610                          * A shadow entry of a recently evicted page, a swap
1611                          * entry from shmem/tmpfs or a DAX entry.  Return it
1612                          * without attempting to raise page count.
1613                          */
1614                         goto export;
1615                 }
1616
1617                 head = compound_head(page);
1618                 if (!page_cache_get_speculative(head))
1619                         goto repeat;
1620
1621                 /* The page was split under us? */
1622                 if (compound_head(page) != head) {
1623                         put_page(head);
1624                         goto repeat;
1625                 }
1626
1627                 /* Has the page moved? */
1628                 if (unlikely(page != *slot)) {
1629                         put_page(head);
1630                         goto repeat;
1631                 }
1632 export:
1633                 indices[ret] = iter.index;
1634                 entries[ret] = page;
1635                 if (++ret == nr_entries)
1636                         break;
1637         }
1638         rcu_read_unlock();
1639         return ret;
1640 }
1641 EXPORT_SYMBOL(find_get_entries_tag);
1642
1643 /*
1644  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1645  * a _large_ part of the i/o request. Imagine the worst scenario:
1646  *
1647  *      ---R__________________________________________B__________
1648  *         ^ reading here                             ^ bad block(assume 4k)
1649  *
1650  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1651  * => failing the whole request => read(R) => read(R+1) =>
1652  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1653  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1654  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1655  *
1656  * It is going insane. Fix it by quickly scaling down the readahead size.
1657  */
1658 static void shrink_readahead_size_eio(struct file *filp,
1659                                         struct file_ra_state *ra)
1660 {
1661         ra->ra_pages /= 4;
1662 }
1663
1664 /**
1665  * do_generic_file_read - generic file read routine
1666  * @filp:       the file to read
1667  * @ppos:       current file position
1668  * @iter:       data destination
1669  * @written:    already copied
1670  *
1671  * This is a generic file read routine, and uses the
1672  * mapping->a_ops->readpage() function for the actual low-level stuff.
1673  *
1674  * This is really ugly. But the goto's actually try to clarify some
1675  * of the logic when it comes to error handling etc.
1676  */
1677 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1678                 struct iov_iter *iter, ssize_t written)
1679 {
1680         struct address_space *mapping = filp->f_mapping;
1681         struct inode *inode = mapping->host;
1682         struct file_ra_state *ra = &filp->f_ra;
1683         pgoff_t index;
1684         pgoff_t last_index;
1685         pgoff_t prev_index;
1686         unsigned long offset;      /* offset into pagecache page */
1687         unsigned int prev_offset;
1688         int error = 0;
1689
1690         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1691                 return 0;
1692         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1693
1694         index = *ppos >> PAGE_SHIFT;
1695         prev_index = ra->prev_pos >> PAGE_SHIFT;
1696         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1697         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1698         offset = *ppos & ~PAGE_MASK;
1699
1700         for (;;) {
1701                 struct page *page;
1702                 pgoff_t end_index;
1703                 loff_t isize;
1704                 unsigned long nr, ret;
1705
1706                 cond_resched();
1707 find_page:
1708                 if (fatal_signal_pending(current)) {
1709                         error = -EINTR;
1710                         goto out;
1711                 }
1712
1713                 page = find_get_page(mapping, index);
1714                 if (!page) {
1715                         page_cache_sync_readahead(mapping,
1716                                         ra, filp,
1717                                         index, last_index - index);
1718                         page = find_get_page(mapping, index);
1719                         if (unlikely(page == NULL))
1720                                 goto no_cached_page;
1721                 }
1722                 if (PageReadahead(page)) {
1723                         page_cache_async_readahead(mapping,
1724                                         ra, filp, page,
1725                                         index, last_index - index);
1726                 }
1727                 if (!PageUptodate(page)) {
1728                         /*
1729                          * See comment in do_read_cache_page on why
1730                          * wait_on_page_locked is used to avoid unnecessarily
1731                          * serialisations and why it's safe.
1732                          */
1733                         error = wait_on_page_locked_killable(page);
1734                         if (unlikely(error))
1735                                 goto readpage_error;
1736                         if (PageUptodate(page))
1737                                 goto page_ok;
1738
1739                         if (inode->i_blkbits == PAGE_SHIFT ||
1740                                         !mapping->a_ops->is_partially_uptodate)
1741                                 goto page_not_up_to_date;
1742                         /* pipes can't handle partially uptodate pages */
1743                         if (unlikely(iter->type & ITER_PIPE))
1744                                 goto page_not_up_to_date;
1745                         if (!trylock_page(page))
1746                                 goto page_not_up_to_date;
1747                         /* Did it get truncated before we got the lock? */
1748                         if (!page->mapping)
1749                                 goto page_not_up_to_date_locked;
1750                         if (!mapping->a_ops->is_partially_uptodate(page,
1751                                                         offset, iter->count))
1752                                 goto page_not_up_to_date_locked;
1753                         unlock_page(page);
1754                 }
1755 page_ok:
1756                 /*
1757                  * i_size must be checked after we know the page is Uptodate.
1758                  *
1759                  * Checking i_size after the check allows us to calculate
1760                  * the correct value for "nr", which means the zero-filled
1761                  * part of the page is not copied back to userspace (unless
1762                  * another truncate extends the file - this is desired though).
1763                  */
1764
1765                 isize = i_size_read(inode);
1766                 end_index = (isize - 1) >> PAGE_SHIFT;
1767                 if (unlikely(!isize || index > end_index)) {
1768                         put_page(page);
1769                         goto out;
1770                 }
1771
1772                 /* nr is the maximum number of bytes to copy from this page */
1773                 nr = PAGE_SIZE;
1774                 if (index == end_index) {
1775                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1776                         if (nr <= offset) {
1777                                 put_page(page);
1778                                 goto out;
1779                         }
1780                 }
1781                 nr = nr - offset;
1782
1783                 /* If users can be writing to this page using arbitrary
1784                  * virtual addresses, take care about potential aliasing
1785                  * before reading the page on the kernel side.
1786                  */
1787                 if (mapping_writably_mapped(mapping))
1788                         flush_dcache_page(page);
1789
1790                 /*
1791                  * When a sequential read accesses a page several times,
1792                  * only mark it as accessed the first time.
1793                  */
1794                 if (prev_index != index || offset != prev_offset)
1795                         mark_page_accessed(page);
1796                 prev_index = index;
1797
1798                 /*
1799                  * Ok, we have the page, and it's up-to-date, so
1800                  * now we can copy it to user space...
1801                  */
1802
1803                 ret = copy_page_to_iter(page, offset, nr, iter);
1804                 offset += ret;
1805                 index += offset >> PAGE_SHIFT;
1806                 offset &= ~PAGE_MASK;
1807                 prev_offset = offset;
1808
1809                 put_page(page);
1810                 written += ret;
1811                 if (!iov_iter_count(iter))
1812                         goto out;
1813                 if (ret < nr) {
1814                         error = -EFAULT;
1815                         goto out;
1816                 }
1817                 continue;
1818
1819 page_not_up_to_date:
1820                 /* Get exclusive access to the page ... */
1821                 error = lock_page_killable(page);
1822                 if (unlikely(error))
1823                         goto readpage_error;
1824
1825 page_not_up_to_date_locked:
1826                 /* Did it get truncated before we got the lock? */
1827                 if (!page->mapping) {
1828                         unlock_page(page);
1829                         put_page(page);
1830                         continue;
1831                 }
1832
1833                 /* Did somebody else fill it already? */
1834                 if (PageUptodate(page)) {
1835                         unlock_page(page);
1836                         goto page_ok;
1837                 }
1838
1839 readpage:
1840                 /*
1841                  * A previous I/O error may have been due to temporary
1842                  * failures, eg. multipath errors.
1843                  * PG_error will be set again if readpage fails.
1844                  */
1845                 ClearPageError(page);
1846                 /* Start the actual read. The read will unlock the page. */
1847                 error = mapping->a_ops->readpage(filp, page);
1848
1849                 if (unlikely(error)) {
1850                         if (error == AOP_TRUNCATED_PAGE) {
1851                                 put_page(page);
1852                                 error = 0;
1853                                 goto find_page;
1854                         }
1855                         goto readpage_error;
1856                 }
1857
1858                 if (!PageUptodate(page)) {
1859                         error = lock_page_killable(page);
1860                         if (unlikely(error))
1861                                 goto readpage_error;
1862                         if (!PageUptodate(page)) {
1863                                 if (page->mapping == NULL) {
1864                                         /*
1865                                          * invalidate_mapping_pages got it
1866                                          */
1867                                         unlock_page(page);
1868                                         put_page(page);
1869                                         goto find_page;
1870                                 }
1871                                 unlock_page(page);
1872                                 shrink_readahead_size_eio(filp, ra);
1873                                 error = -EIO;
1874                                 goto readpage_error;
1875                         }
1876                         unlock_page(page);
1877                 }
1878
1879                 goto page_ok;
1880
1881 readpage_error:
1882                 /* UHHUH! A synchronous read error occurred. Report it */
1883                 put_page(page);
1884                 goto out;
1885
1886 no_cached_page:
1887                 /*
1888                  * Ok, it wasn't cached, so we need to create a new
1889                  * page..
1890                  */
1891                 page = page_cache_alloc_cold(mapping);
1892                 if (!page) {
1893                         error = -ENOMEM;
1894                         goto out;
1895                 }
1896                 error = add_to_page_cache_lru(page, mapping, index,
1897                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1898                 if (error) {
1899                         put_page(page);
1900                         if (error == -EEXIST) {
1901                                 error = 0;
1902                                 goto find_page;
1903                         }
1904                         goto out;
1905                 }
1906                 goto readpage;
1907         }
1908
1909 out:
1910         ra->prev_pos = prev_index;
1911         ra->prev_pos <<= PAGE_SHIFT;
1912         ra->prev_pos |= prev_offset;
1913
1914         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1915         file_accessed(filp);
1916         return written ? written : error;
1917 }
1918
1919 /**
1920  * generic_file_read_iter - generic filesystem read routine
1921  * @iocb:       kernel I/O control block
1922  * @iter:       destination for the data read
1923  *
1924  * This is the "read_iter()" routine for all filesystems
1925  * that can use the page cache directly.
1926  */
1927 ssize_t
1928 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1929 {
1930         struct file *file = iocb->ki_filp;
1931         ssize_t retval = 0;
1932         size_t count = iov_iter_count(iter);
1933
1934         if (!count)
1935                 goto out; /* skip atime */
1936
1937         if (iocb->ki_flags & IOCB_DIRECT) {
1938                 struct address_space *mapping = file->f_mapping;
1939                 struct inode *inode = mapping->host;
1940                 struct iov_iter data = *iter;
1941                 loff_t size;
1942
1943                 size = i_size_read(inode);
1944                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1945                                         iocb->ki_pos + count - 1);
1946                 if (retval < 0)
1947                         goto out;
1948
1949                 file_accessed(file);
1950
1951                 retval = mapping->a_ops->direct_IO(iocb, &data);
1952                 if (retval >= 0) {
1953                         iocb->ki_pos += retval;
1954                         iov_iter_advance(iter, retval);
1955                 }
1956
1957                 /*
1958                  * Btrfs can have a short DIO read if we encounter
1959                  * compressed extents, so if there was an error, or if
1960                  * we've already read everything we wanted to, or if
1961                  * there was a short read because we hit EOF, go ahead
1962                  * and return.  Otherwise fallthrough to buffered io for
1963                  * the rest of the read.  Buffered reads will not work for
1964                  * DAX files, so don't bother trying.
1965                  */
1966                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1967                     IS_DAX(inode))
1968                         goto out;
1969         }
1970
1971         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1972 out:
1973         return retval;
1974 }
1975 EXPORT_SYMBOL(generic_file_read_iter);
1976
1977 #ifdef CONFIG_MMU
1978 /**
1979  * page_cache_read - adds requested page to the page cache if not already there
1980  * @file:       file to read
1981  * @offset:     page index
1982  * @gfp_mask:   memory allocation flags
1983  *
1984  * This adds the requested page to the page cache if it isn't already there,
1985  * and schedules an I/O to read in its contents from disk.
1986  */
1987 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1988 {
1989         struct address_space *mapping = file->f_mapping;
1990         struct page *page;
1991         int ret;
1992
1993         do {
1994                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1995                 if (!page)
1996                         return -ENOMEM;
1997
1998                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1999                 if (ret == 0)
2000                         ret = mapping->a_ops->readpage(file, page);
2001                 else if (ret == -EEXIST)
2002                         ret = 0; /* losing race to add is OK */
2003
2004                 put_page(page);
2005
2006         } while (ret == AOP_TRUNCATED_PAGE);
2007
2008         return ret;
2009 }
2010
2011 #define MMAP_LOTSAMISS  (100)
2012
2013 /*
2014  * Synchronous readahead happens when we don't even find
2015  * a page in the page cache at all.
2016  */
2017 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2018                                    struct file_ra_state *ra,
2019                                    struct file *file,
2020                                    pgoff_t offset)
2021 {
2022         struct address_space *mapping = file->f_mapping;
2023
2024         /* If we don't want any read-ahead, don't bother */
2025         if (vma->vm_flags & VM_RAND_READ)
2026                 return;
2027         if (!ra->ra_pages)
2028                 return;
2029
2030         if (vma->vm_flags & VM_SEQ_READ) {
2031                 page_cache_sync_readahead(mapping, ra, file, offset,
2032                                           ra->ra_pages);
2033                 return;
2034         }
2035
2036         /* Avoid banging the cache line if not needed */
2037         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2038                 ra->mmap_miss++;
2039
2040         /*
2041          * Do we miss much more than hit in this file? If so,
2042          * stop bothering with read-ahead. It will only hurt.
2043          */
2044         if (ra->mmap_miss > MMAP_LOTSAMISS)
2045                 return;
2046
2047         /*
2048          * mmap read-around
2049          */
2050         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2051         ra->size = ra->ra_pages;
2052         ra->async_size = ra->ra_pages / 4;
2053         ra_submit(ra, mapping, file);
2054 }
2055
2056 /*
2057  * Asynchronous readahead happens when we find the page and PG_readahead,
2058  * so we want to possibly extend the readahead further..
2059  */
2060 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2061                                     struct file_ra_state *ra,
2062                                     struct file *file,
2063                                     struct page *page,
2064                                     pgoff_t offset)
2065 {
2066         struct address_space *mapping = file->f_mapping;
2067
2068         /* If we don't want any read-ahead, don't bother */
2069         if (vma->vm_flags & VM_RAND_READ)
2070                 return;
2071         if (ra->mmap_miss > 0)
2072                 ra->mmap_miss--;
2073         if (PageReadahead(page))
2074                 page_cache_async_readahead(mapping, ra, file,
2075                                            page, offset, ra->ra_pages);
2076 }
2077
2078 /**
2079  * filemap_fault - read in file data for page fault handling
2080  * @vma:        vma in which the fault was taken
2081  * @vmf:        struct vm_fault containing details of the fault
2082  *
2083  * filemap_fault() is invoked via the vma operations vector for a
2084  * mapped memory region to read in file data during a page fault.
2085  *
2086  * The goto's are kind of ugly, but this streamlines the normal case of having
2087  * it in the page cache, and handles the special cases reasonably without
2088  * having a lot of duplicated code.
2089  *
2090  * vma->vm_mm->mmap_sem must be held on entry.
2091  *
2092  * If our return value has VM_FAULT_RETRY set, it's because
2093  * lock_page_or_retry() returned 0.
2094  * The mmap_sem has usually been released in this case.
2095  * See __lock_page_or_retry() for the exception.
2096  *
2097  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2098  * has not been released.
2099  *
2100  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2101  */
2102 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2103 {
2104         int error;
2105         struct file *file = vma->vm_file;
2106         struct address_space *mapping = file->f_mapping;
2107         struct file_ra_state *ra = &file->f_ra;
2108         struct inode *inode = mapping->host;
2109         pgoff_t offset = vmf->pgoff;
2110         struct page *page;
2111         loff_t size;
2112         int ret = 0;
2113
2114         size = round_up(i_size_read(inode), PAGE_SIZE);
2115         if (offset >= size >> PAGE_SHIFT)
2116                 return VM_FAULT_SIGBUS;
2117
2118         /*
2119          * Do we have something in the page cache already?
2120          */
2121         page = find_get_page(mapping, offset);
2122         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2123                 /*
2124                  * We found the page, so try async readahead before
2125                  * waiting for the lock.
2126                  */
2127                 do_async_mmap_readahead(vma, ra, file, page, offset);
2128         } else if (!page) {
2129                 /* No page in the page cache at all */
2130                 do_sync_mmap_readahead(vma, ra, file, offset);
2131                 count_vm_event(PGMAJFAULT);
2132                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2133                 ret = VM_FAULT_MAJOR;
2134 retry_find:
2135                 page = find_get_page(mapping, offset);
2136                 if (!page)
2137                         goto no_cached_page;
2138         }
2139
2140         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2141                 put_page(page);
2142                 return ret | VM_FAULT_RETRY;
2143         }
2144
2145         /* Did it get truncated? */
2146         if (unlikely(page->mapping != mapping)) {
2147                 unlock_page(page);
2148                 put_page(page);
2149                 goto retry_find;
2150         }
2151         VM_BUG_ON_PAGE(page->index != offset, page);
2152
2153         /*
2154          * We have a locked page in the page cache, now we need to check
2155          * that it's up-to-date. If not, it is going to be due to an error.
2156          */
2157         if (unlikely(!PageUptodate(page)))
2158                 goto page_not_uptodate;
2159
2160         /*
2161          * Found the page and have a reference on it.
2162          * We must recheck i_size under page lock.
2163          */
2164         size = round_up(i_size_read(inode), PAGE_SIZE);
2165         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2166                 unlock_page(page);
2167                 put_page(page);
2168                 return VM_FAULT_SIGBUS;
2169         }
2170
2171         vmf->page = page;
2172         return ret | VM_FAULT_LOCKED;
2173
2174 no_cached_page:
2175         /*
2176          * We're only likely to ever get here if MADV_RANDOM is in
2177          * effect.
2178          */
2179         error = page_cache_read(file, offset, vmf->gfp_mask);
2180
2181         /*
2182          * The page we want has now been added to the page cache.
2183          * In the unlikely event that someone removed it in the
2184          * meantime, we'll just come back here and read it again.
2185          */
2186         if (error >= 0)
2187                 goto retry_find;
2188
2189         /*
2190          * An error return from page_cache_read can result if the
2191          * system is low on memory, or a problem occurs while trying
2192          * to schedule I/O.
2193          */
2194         if (error == -ENOMEM)
2195                 return VM_FAULT_OOM;
2196         return VM_FAULT_SIGBUS;
2197
2198 page_not_uptodate:
2199         /*
2200          * Umm, take care of errors if the page isn't up-to-date.
2201          * Try to re-read it _once_. We do this synchronously,
2202          * because there really aren't any performance issues here
2203          * and we need to check for errors.
2204          */
2205         ClearPageError(page);
2206         error = mapping->a_ops->readpage(file, page);
2207         if (!error) {
2208                 wait_on_page_locked(page);
2209                 if (!PageUptodate(page))
2210                         error = -EIO;
2211         }
2212         put_page(page);
2213
2214         if (!error || error == AOP_TRUNCATED_PAGE)
2215                 goto retry_find;
2216
2217         /* Things didn't work out. Return zero to tell the mm layer so. */
2218         shrink_readahead_size_eio(file, ra);
2219         return VM_FAULT_SIGBUS;
2220 }
2221 EXPORT_SYMBOL(filemap_fault);
2222
2223 void filemap_map_pages(struct fault_env *fe,
2224                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2225 {
2226         struct radix_tree_iter iter;
2227         void **slot;
2228         struct file *file = fe->vma->vm_file;
2229         struct address_space *mapping = file->f_mapping;
2230         pgoff_t last_pgoff = start_pgoff;
2231         loff_t size;
2232         struct page *head, *page;
2233
2234         rcu_read_lock();
2235         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2236                         start_pgoff) {
2237                 if (iter.index > end_pgoff)
2238                         break;
2239 repeat:
2240                 page = radix_tree_deref_slot(slot);
2241                 if (unlikely(!page))
2242                         goto next;
2243                 if (radix_tree_exception(page)) {
2244                         if (radix_tree_deref_retry(page)) {
2245                                 slot = radix_tree_iter_retry(&iter);
2246                                 continue;
2247                         }
2248                         goto next;
2249                 }
2250
2251                 head = compound_head(page);
2252                 if (!page_cache_get_speculative(head))
2253                         goto repeat;
2254
2255                 /* The page was split under us? */
2256                 if (compound_head(page) != head) {
2257                         put_page(head);
2258                         goto repeat;
2259                 }
2260
2261                 /* Has the page moved? */
2262                 if (unlikely(page != *slot)) {
2263                         put_page(head);
2264                         goto repeat;
2265                 }
2266
2267                 if (!PageUptodate(page) ||
2268                                 PageReadahead(page) ||
2269                                 PageHWPoison(page))
2270                         goto skip;
2271                 if (!trylock_page(page))
2272                         goto skip;
2273
2274                 if (page->mapping != mapping || !PageUptodate(page))
2275                         goto unlock;
2276
2277                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2278                 if (page->index >= size >> PAGE_SHIFT)
2279                         goto unlock;
2280
2281                 if (file->f_ra.mmap_miss > 0)
2282                         file->f_ra.mmap_miss--;
2283
2284                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2285                 if (fe->pte)
2286                         fe->pte += iter.index - last_pgoff;
2287                 last_pgoff = iter.index;
2288                 if (alloc_set_pte(fe, NULL, page))
2289                         goto unlock;
2290                 unlock_page(page);
2291                 goto next;
2292 unlock:
2293                 unlock_page(page);
2294 skip:
2295                 put_page(page);
2296 next:
2297                 /* Huge page is mapped? No need to proceed. */
2298                 if (pmd_trans_huge(*fe->pmd))
2299                         break;
2300                 if (iter.index == end_pgoff)
2301                         break;
2302         }
2303         rcu_read_unlock();
2304 }
2305 EXPORT_SYMBOL(filemap_map_pages);
2306
2307 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2308 {
2309         struct page *page = vmf->page;
2310         struct inode *inode = file_inode(vma->vm_file);
2311         int ret = VM_FAULT_LOCKED;
2312
2313         sb_start_pagefault(inode->i_sb);
2314         file_update_time(vma->vm_file);
2315         lock_page(page);
2316         if (page->mapping != inode->i_mapping) {
2317                 unlock_page(page);
2318                 ret = VM_FAULT_NOPAGE;
2319                 goto out;
2320         }
2321         /*
2322          * We mark the page dirty already here so that when freeze is in
2323          * progress, we are guaranteed that writeback during freezing will
2324          * see the dirty page and writeprotect it again.
2325          */
2326         set_page_dirty(page);
2327         wait_for_stable_page(page);
2328 out:
2329         sb_end_pagefault(inode->i_sb);
2330         return ret;
2331 }
2332 EXPORT_SYMBOL(filemap_page_mkwrite);
2333
2334 const struct vm_operations_struct generic_file_vm_ops = {
2335         .fault          = filemap_fault,
2336         .map_pages      = filemap_map_pages,
2337         .page_mkwrite   = filemap_page_mkwrite,
2338 };
2339
2340 /* This is used for a general mmap of a disk file */
2341
2342 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2343 {
2344         struct address_space *mapping = file->f_mapping;
2345
2346         if (!mapping->a_ops->readpage)
2347                 return -ENOEXEC;
2348         file_accessed(file);
2349         vma->vm_ops = &generic_file_vm_ops;
2350         return 0;
2351 }
2352
2353 /*
2354  * This is for filesystems which do not implement ->writepage.
2355  */
2356 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2357 {
2358         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2359                 return -EINVAL;
2360         return generic_file_mmap(file, vma);
2361 }
2362 #else
2363 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2364 {
2365         return -ENOSYS;
2366 }
2367 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2368 {
2369         return -ENOSYS;
2370 }
2371 #endif /* CONFIG_MMU */
2372
2373 EXPORT_SYMBOL(generic_file_mmap);
2374 EXPORT_SYMBOL(generic_file_readonly_mmap);
2375
2376 static struct page *wait_on_page_read(struct page *page)
2377 {
2378         if (!IS_ERR(page)) {
2379                 wait_on_page_locked(page);
2380                 if (!PageUptodate(page)) {
2381                         put_page(page);
2382                         page = ERR_PTR(-EIO);
2383                 }
2384         }
2385         return page;
2386 }
2387
2388 static struct page *do_read_cache_page(struct address_space *mapping,
2389                                 pgoff_t index,
2390                                 int (*filler)(void *, struct page *),
2391                                 void *data,
2392                                 gfp_t gfp)
2393 {
2394         struct page *page;
2395         int err;
2396 repeat:
2397         page = find_get_page(mapping, index);
2398         if (!page) {
2399                 page = __page_cache_alloc(gfp | __GFP_COLD);
2400                 if (!page)
2401                         return ERR_PTR(-ENOMEM);
2402                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2403                 if (unlikely(err)) {
2404                         put_page(page);
2405                         if (err == -EEXIST)
2406                                 goto repeat;
2407                         /* Presumably ENOMEM for radix tree node */
2408                         return ERR_PTR(err);
2409                 }
2410
2411 filler:
2412                 err = filler(data, page);
2413                 if (err < 0) {
2414                         put_page(page);
2415                         return ERR_PTR(err);
2416                 }
2417
2418                 page = wait_on_page_read(page);
2419                 if (IS_ERR(page))
2420                         return page;
2421                 goto out;
2422         }
2423         if (PageUptodate(page))
2424                 goto out;
2425
2426         /*
2427          * Page is not up to date and may be locked due one of the following
2428          * case a: Page is being filled and the page lock is held
2429          * case b: Read/write error clearing the page uptodate status
2430          * case c: Truncation in progress (page locked)
2431          * case d: Reclaim in progress
2432          *
2433          * Case a, the page will be up to date when the page is unlocked.
2434          *    There is no need to serialise on the page lock here as the page
2435          *    is pinned so the lock gives no additional protection. Even if the
2436          *    the page is truncated, the data is still valid if PageUptodate as
2437          *    it's a race vs truncate race.
2438          * Case b, the page will not be up to date
2439          * Case c, the page may be truncated but in itself, the data may still
2440          *    be valid after IO completes as it's a read vs truncate race. The
2441          *    operation must restart if the page is not uptodate on unlock but
2442          *    otherwise serialising on page lock to stabilise the mapping gives
2443          *    no additional guarantees to the caller as the page lock is
2444          *    released before return.
2445          * Case d, similar to truncation. If reclaim holds the page lock, it
2446          *    will be a race with remove_mapping that determines if the mapping
2447          *    is valid on unlock but otherwise the data is valid and there is
2448          *    no need to serialise with page lock.
2449          *
2450          * As the page lock gives no additional guarantee, we optimistically
2451          * wait on the page to be unlocked and check if it's up to date and
2452          * use the page if it is. Otherwise, the page lock is required to
2453          * distinguish between the different cases. The motivation is that we
2454          * avoid spurious serialisations and wakeups when multiple processes
2455          * wait on the same page for IO to complete.
2456          */
2457         wait_on_page_locked(page);
2458         if (PageUptodate(page))
2459                 goto out;
2460
2461         /* Distinguish between all the cases under the safety of the lock */
2462         lock_page(page);
2463
2464         /* Case c or d, restart the operation */
2465         if (!page->mapping) {
2466                 unlock_page(page);
2467                 put_page(page);
2468                 goto repeat;
2469         }
2470
2471         /* Someone else locked and filled the page in a very small window */
2472         if (PageUptodate(page)) {
2473                 unlock_page(page);
2474                 goto out;
2475         }
2476         goto filler;
2477
2478 out:
2479         mark_page_accessed(page);
2480         return page;
2481 }
2482
2483 /**
2484  * read_cache_page - read into page cache, fill it if needed
2485  * @mapping:    the page's address_space
2486  * @index:      the page index
2487  * @filler:     function to perform the read
2488  * @data:       first arg to filler(data, page) function, often left as NULL
2489  *
2490  * Read into the page cache. If a page already exists, and PageUptodate() is
2491  * not set, try to fill the page and wait for it to become unlocked.
2492  *
2493  * If the page does not get brought uptodate, return -EIO.
2494  */
2495 struct page *read_cache_page(struct address_space *mapping,
2496                                 pgoff_t index,
2497                                 int (*filler)(void *, struct page *),
2498                                 void *data)
2499 {
2500         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2501 }
2502 EXPORT_SYMBOL(read_cache_page);
2503
2504 /**
2505  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2506  * @mapping:    the page's address_space
2507  * @index:      the page index
2508  * @gfp:        the page allocator flags to use if allocating
2509  *
2510  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2511  * any new page allocations done using the specified allocation flags.
2512  *
2513  * If the page does not get brought uptodate, return -EIO.
2514  */
2515 struct page *read_cache_page_gfp(struct address_space *mapping,
2516                                 pgoff_t index,
2517                                 gfp_t gfp)
2518 {
2519         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2520
2521         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2522 }
2523 EXPORT_SYMBOL(read_cache_page_gfp);
2524
2525 /*
2526  * Performs necessary checks before doing a write
2527  *
2528  * Can adjust writing position or amount of bytes to write.
2529  * Returns appropriate error code that caller should return or
2530  * zero in case that write should be allowed.
2531  */
2532 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2533 {
2534         struct file *file = iocb->ki_filp;
2535         struct inode *inode = file->f_mapping->host;
2536         unsigned long limit = rlimit(RLIMIT_FSIZE);
2537         loff_t pos;
2538
2539         if (!iov_iter_count(from))
2540                 return 0;
2541
2542         /* FIXME: this is for backwards compatibility with 2.4 */
2543         if (iocb->ki_flags & IOCB_APPEND)
2544                 iocb->ki_pos = i_size_read(inode);
2545
2546         pos = iocb->ki_pos;
2547
2548         if (limit != RLIM_INFINITY) {
2549                 if (iocb->ki_pos >= limit) {
2550                         send_sig(SIGXFSZ, current, 0);
2551                         return -EFBIG;
2552                 }
2553                 iov_iter_truncate(from, limit - (unsigned long)pos);
2554         }
2555
2556         /*
2557          * LFS rule
2558          */
2559         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2560                                 !(file->f_flags & O_LARGEFILE))) {
2561                 if (pos >= MAX_NON_LFS)
2562                         return -EFBIG;
2563                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2564         }
2565
2566         /*
2567          * Are we about to exceed the fs block limit ?
2568          *
2569          * If we have written data it becomes a short write.  If we have
2570          * exceeded without writing data we send a signal and return EFBIG.
2571          * Linus frestrict idea will clean these up nicely..
2572          */
2573         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2574                 return -EFBIG;
2575
2576         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2577         return iov_iter_count(from);
2578 }
2579 EXPORT_SYMBOL(generic_write_checks);
2580
2581 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2582                                 loff_t pos, unsigned len, unsigned flags,
2583                                 struct page **pagep, void **fsdata)
2584 {
2585         const struct address_space_operations *aops = mapping->a_ops;
2586
2587         return aops->write_begin(file, mapping, pos, len, flags,
2588                                                         pagep, fsdata);
2589 }
2590 EXPORT_SYMBOL(pagecache_write_begin);
2591
2592 int pagecache_write_end(struct file *file, struct address_space *mapping,
2593                                 loff_t pos, unsigned len, unsigned copied,
2594                                 struct page *page, void *fsdata)
2595 {
2596         const struct address_space_operations *aops = mapping->a_ops;
2597
2598         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2599 }
2600 EXPORT_SYMBOL(pagecache_write_end);
2601
2602 ssize_t
2603 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2604 {
2605         struct file     *file = iocb->ki_filp;
2606         struct address_space *mapping = file->f_mapping;
2607         struct inode    *inode = mapping->host;
2608         loff_t          pos = iocb->ki_pos;
2609         ssize_t         written;
2610         size_t          write_len;
2611         pgoff_t         end;
2612         struct iov_iter data;
2613
2614         write_len = iov_iter_count(from);
2615         end = (pos + write_len - 1) >> PAGE_SHIFT;
2616
2617         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2618         if (written)
2619                 goto out;
2620
2621         /*
2622          * After a write we want buffered reads to be sure to go to disk to get
2623          * the new data.  We invalidate clean cached page from the region we're
2624          * about to write.  We do this *before* the write so that we can return
2625          * without clobbering -EIOCBQUEUED from ->direct_IO().
2626          */
2627         if (mapping->nrpages) {
2628                 written = invalidate_inode_pages2_range(mapping,
2629                                         pos >> PAGE_SHIFT, end);
2630                 /*
2631                  * If a page can not be invalidated, return 0 to fall back
2632                  * to buffered write.
2633                  */
2634                 if (written) {
2635                         if (written == -EBUSY)
2636                                 return 0;
2637                         goto out;
2638                 }
2639         }
2640
2641         data = *from;
2642         written = mapping->a_ops->direct_IO(iocb, &data);
2643
2644         /*
2645          * Finally, try again to invalidate clean pages which might have been
2646          * cached by non-direct readahead, or faulted in by get_user_pages()
2647          * if the source of the write was an mmap'ed region of the file
2648          * we're writing.  Either one is a pretty crazy thing to do,
2649          * so we don't support it 100%.  If this invalidation
2650          * fails, tough, the write still worked...
2651          */
2652         if (mapping->nrpages) {
2653                 invalidate_inode_pages2_range(mapping,
2654                                               pos >> PAGE_SHIFT, end);
2655         }
2656
2657         if (written > 0) {
2658                 pos += written;
2659                 iov_iter_advance(from, written);
2660                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2661                         i_size_write(inode, pos);
2662                         mark_inode_dirty(inode);
2663                 }
2664                 iocb->ki_pos = pos;
2665         }
2666 out:
2667         return written;
2668 }
2669 EXPORT_SYMBOL(generic_file_direct_write);
2670
2671 /*
2672  * Find or create a page at the given pagecache position. Return the locked
2673  * page. This function is specifically for buffered writes.
2674  */
2675 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2676                                         pgoff_t index, unsigned flags)
2677 {
2678         struct page *page;
2679         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2680
2681         if (flags & AOP_FLAG_NOFS)
2682                 fgp_flags |= FGP_NOFS;
2683
2684         page = pagecache_get_page(mapping, index, fgp_flags,
2685                         mapping_gfp_mask(mapping));
2686         if (page)
2687                 wait_for_stable_page(page);
2688
2689         return page;
2690 }
2691 EXPORT_SYMBOL(grab_cache_page_write_begin);
2692
2693 ssize_t generic_perform_write(struct file *file,
2694                                 struct iov_iter *i, loff_t pos)
2695 {
2696         struct address_space *mapping = file->f_mapping;
2697         const struct address_space_operations *a_ops = mapping->a_ops;
2698         long status = 0;
2699         ssize_t written = 0;
2700         unsigned int flags = 0;
2701
2702         /*
2703          * Copies from kernel address space cannot fail (NFSD is a big user).
2704          */
2705         if (!iter_is_iovec(i))
2706                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2707
2708         do {
2709                 struct page *page;
2710                 unsigned long offset;   /* Offset into pagecache page */
2711                 unsigned long bytes;    /* Bytes to write to page */
2712                 size_t copied;          /* Bytes copied from user */
2713                 void *fsdata;
2714
2715                 offset = (pos & (PAGE_SIZE - 1));
2716                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2717                                                 iov_iter_count(i));
2718
2719 again:
2720                 /*
2721                  * Bring in the user page that we will copy from _first_.
2722                  * Otherwise there's a nasty deadlock on copying from the
2723                  * same page as we're writing to, without it being marked
2724                  * up-to-date.
2725                  *
2726                  * Not only is this an optimisation, but it is also required
2727                  * to check that the address is actually valid, when atomic
2728                  * usercopies are used, below.
2729                  */
2730                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2731                         status = -EFAULT;
2732                         break;
2733                 }
2734
2735                 if (fatal_signal_pending(current)) {
2736                         status = -EINTR;
2737                         break;
2738                 }
2739
2740                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2741                                                 &page, &fsdata);
2742                 if (unlikely(status < 0))
2743                         break;
2744
2745                 if (mapping_writably_mapped(mapping))
2746                         flush_dcache_page(page);
2747
2748                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2749                 flush_dcache_page(page);
2750
2751                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2752                                                 page, fsdata);
2753                 if (unlikely(status < 0))
2754                         break;
2755                 copied = status;
2756
2757                 cond_resched();
2758
2759                 iov_iter_advance(i, copied);
2760                 if (unlikely(copied == 0)) {
2761                         /*
2762                          * If we were unable to copy any data at all, we must
2763                          * fall back to a single segment length write.
2764                          *
2765                          * If we didn't fallback here, we could livelock
2766                          * because not all segments in the iov can be copied at
2767                          * once without a pagefault.
2768                          */
2769                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2770                                                 iov_iter_single_seg_count(i));
2771                         goto again;
2772                 }
2773                 pos += copied;
2774                 written += copied;
2775
2776                 balance_dirty_pages_ratelimited(mapping);
2777         } while (iov_iter_count(i));
2778
2779         return written ? written : status;
2780 }
2781 EXPORT_SYMBOL(generic_perform_write);
2782
2783 /**
2784  * __generic_file_write_iter - write data to a file
2785  * @iocb:       IO state structure (file, offset, etc.)
2786  * @from:       iov_iter with data to write
2787  *
2788  * This function does all the work needed for actually writing data to a
2789  * file. It does all basic checks, removes SUID from the file, updates
2790  * modification times and calls proper subroutines depending on whether we
2791  * do direct IO or a standard buffered write.
2792  *
2793  * It expects i_mutex to be grabbed unless we work on a block device or similar
2794  * object which does not need locking at all.
2795  *
2796  * This function does *not* take care of syncing data in case of O_SYNC write.
2797  * A caller has to handle it. This is mainly due to the fact that we want to
2798  * avoid syncing under i_mutex.
2799  */
2800 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2801 {
2802         struct file *file = iocb->ki_filp;
2803         struct address_space * mapping = file->f_mapping;
2804         struct inode    *inode = mapping->host;
2805         ssize_t         written = 0;
2806         ssize_t         err;
2807         ssize_t         status;
2808
2809         /* We can write back this queue in page reclaim */
2810         current->backing_dev_info = inode_to_bdi(inode);
2811         err = file_remove_privs(file);
2812         if (err)
2813                 goto out;
2814
2815         err = file_update_time(file);
2816         if (err)
2817                 goto out;
2818
2819         if (iocb->ki_flags & IOCB_DIRECT) {
2820                 loff_t pos, endbyte;
2821
2822                 written = generic_file_direct_write(iocb, from);
2823                 /*
2824                  * If the write stopped short of completing, fall back to
2825                  * buffered writes.  Some filesystems do this for writes to
2826                  * holes, for example.  For DAX files, a buffered write will
2827                  * not succeed (even if it did, DAX does not handle dirty
2828                  * page-cache pages correctly).
2829                  */
2830                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2831                         goto out;
2832
2833                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2834                 /*
2835                  * If generic_perform_write() returned a synchronous error
2836                  * then we want to return the number of bytes which were
2837                  * direct-written, or the error code if that was zero.  Note
2838                  * that this differs from normal direct-io semantics, which
2839                  * will return -EFOO even if some bytes were written.
2840                  */
2841                 if (unlikely(status < 0)) {
2842                         err = status;
2843                         goto out;
2844                 }
2845                 /*
2846                  * We need to ensure that the page cache pages are written to
2847                  * disk and invalidated to preserve the expected O_DIRECT
2848                  * semantics.
2849                  */
2850                 endbyte = pos + status - 1;
2851                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2852                 if (err == 0) {
2853                         iocb->ki_pos = endbyte + 1;
2854                         written += status;
2855                         invalidate_mapping_pages(mapping,
2856                                                  pos >> PAGE_SHIFT,
2857                                                  endbyte >> PAGE_SHIFT);
2858                 } else {
2859                         /*
2860                          * We don't know how much we wrote, so just return
2861                          * the number of bytes which were direct-written
2862                          */
2863                 }
2864         } else {
2865                 written = generic_perform_write(file, from, iocb->ki_pos);
2866                 if (likely(written > 0))
2867                         iocb->ki_pos += written;
2868         }
2869 out:
2870         current->backing_dev_info = NULL;
2871         return written ? written : err;
2872 }
2873 EXPORT_SYMBOL(__generic_file_write_iter);
2874
2875 /**
2876  * generic_file_write_iter - write data to a file
2877  * @iocb:       IO state structure
2878  * @from:       iov_iter with data to write
2879  *
2880  * This is a wrapper around __generic_file_write_iter() to be used by most
2881  * filesystems. It takes care of syncing the file in case of O_SYNC file
2882  * and acquires i_mutex as needed.
2883  */
2884 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2885 {
2886         struct file *file = iocb->ki_filp;
2887         struct inode *inode = file->f_mapping->host;
2888         ssize_t ret;
2889
2890         inode_lock(inode);
2891         ret = generic_write_checks(iocb, from);
2892         if (ret > 0)
2893                 ret = __generic_file_write_iter(iocb, from);
2894         inode_unlock(inode);
2895
2896         if (ret > 0)
2897                 ret = generic_write_sync(iocb, ret);
2898         return ret;
2899 }
2900 EXPORT_SYMBOL(generic_file_write_iter);
2901
2902 /**
2903  * try_to_release_page() - release old fs-specific metadata on a page
2904  *
2905  * @page: the page which the kernel is trying to free
2906  * @gfp_mask: memory allocation flags (and I/O mode)
2907  *
2908  * The address_space is to try to release any data against the page
2909  * (presumably at page->private).  If the release was successful, return `1'.
2910  * Otherwise return zero.
2911  *
2912  * This may also be called if PG_fscache is set on a page, indicating that the
2913  * page is known to the local caching routines.
2914  *
2915  * The @gfp_mask argument specifies whether I/O may be performed to release
2916  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2917  *
2918  */
2919 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2920 {
2921         struct address_space * const mapping = page->mapping;
2922
2923         BUG_ON(!PageLocked(page));
2924         if (PageWriteback(page))
2925                 return 0;
2926
2927         if (mapping && mapping->a_ops->releasepage)
2928                 return mapping->a_ops->releasepage(page, gfp_mask);
2929         return try_to_free_buffers(page);
2930 }
2931
2932 EXPORT_SYMBOL(try_to_release_page);