OSDN Git Service

sched: Fix the relax_domain_level boot parameter
[android-x86/kernel.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
39
40 /*
41  * FIXME: remove all knowledge of the buffer layer from the core VM
42  */
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44
45 #include <asm/mman.h>
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_mutex              (truncate_pagecache)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_mutex
72  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
73  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page               (access_process_vm)
77  *
78  *  ->i_mutex                   (generic_file_buffered_write)
79  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  inode_wb_list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_mutex
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    inode_wb_list_lock        (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    inode_wb_list_lock        (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_mutex
111  */
112
113 /*
114  * Delete a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __delete_from_page_cache(struct page *page)
119 {
120         struct address_space *mapping = page->mapping;
121
122         /*
123          * if we're uptodate, flush out into the cleancache, otherwise
124          * invalidate any existing cleancache entries.  We can't leave
125          * stale data around in the cleancache once our page is gone
126          */
127         if (PageUptodate(page) && PageMappedToDisk(page))
128                 cleancache_put_page(page);
129         else
130                 cleancache_flush_page(mapping, page);
131
132         radix_tree_delete(&mapping->page_tree, page->index);
133         page->mapping = NULL;
134         mapping->nrpages--;
135         __dec_zone_page_state(page, NR_FILE_PAGES);
136         if (PageSwapBacked(page))
137                 __dec_zone_page_state(page, NR_SHMEM);
138         BUG_ON(page_mapped(page));
139
140         /*
141          * Some filesystems seem to re-dirty the page even after
142          * the VM has canceled the dirty bit (eg ext3 journaling).
143          *
144          * Fix it up by doing a final dirty accounting check after
145          * having removed the page entirely.
146          */
147         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
148                 dec_zone_page_state(page, NR_FILE_DIRTY);
149                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
150         }
151 }
152
153 /**
154  * delete_from_page_cache - delete page from page cache
155  * @page: the page which the kernel is trying to remove from page cache
156  *
157  * This must be called only on pages that have been verified to be in the page
158  * cache and locked.  It will never put the page into the free list, the caller
159  * has a reference on the page.
160  */
161 void delete_from_page_cache(struct page *page)
162 {
163         struct address_space *mapping = page->mapping;
164         void (*freepage)(struct page *);
165
166         BUG_ON(!PageLocked(page));
167
168         freepage = mapping->a_ops->freepage;
169         spin_lock_irq(&mapping->tree_lock);
170         __delete_from_page_cache(page);
171         spin_unlock_irq(&mapping->tree_lock);
172         mem_cgroup_uncharge_cache_page(page);
173
174         if (freepage)
175                 freepage(page);
176         page_cache_release(page);
177 }
178 EXPORT_SYMBOL(delete_from_page_cache);
179
180 static int sleep_on_page(void *word)
181 {
182         io_schedule();
183         return 0;
184 }
185
186 static int sleep_on_page_killable(void *word)
187 {
188         sleep_on_page(word);
189         return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:    address space structure to write
195  * @start:      offset in bytes where the range starts
196  * @end:        offset in bytes where the range ends (inclusive)
197  * @sync_mode:  enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208                                 loff_t end, int sync_mode)
209 {
210         int ret;
211         struct writeback_control wbc = {
212                 .sync_mode = sync_mode,
213                 .nr_to_write = LONG_MAX,
214                 .range_start = start,
215                 .range_end = end,
216         };
217
218         if (!mapping_cap_writeback_dirty(mapping))
219                 return 0;
220
221         ret = do_writepages(mapping, &wbc);
222         return ret;
223 }
224
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226         int sync_mode)
227 {
228         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238                                 loff_t end)
239 {
240         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:    target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258  * filemap_fdatawait_range - wait for writeback to complete
259  * @mapping:            address space structure to wait for
260  * @start_byte:         offset in bytes where the range starts
261  * @end_byte:           offset in bytes where the range ends (inclusive)
262  *
263  * Walk the list of under-writeback pages of the given address space
264  * in the given range and wait for all of them.
265  */
266 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
267                             loff_t end_byte)
268 {
269         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
270         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
271         struct pagevec pvec;
272         int nr_pages;
273         int ret = 0;
274
275         if (end_byte < start_byte)
276                 return 0;
277
278         pagevec_init(&pvec, 0);
279         while ((index <= end) &&
280                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281                         PAGECACHE_TAG_WRITEBACK,
282                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283                 unsigned i;
284
285                 for (i = 0; i < nr_pages; i++) {
286                         struct page *page = pvec.pages[i];
287
288                         /* until radix tree lookup accepts end_index */
289                         if (page->index > end)
290                                 continue;
291
292                         wait_on_page_writeback(page);
293                         if (TestClearPageError(page))
294                                 ret = -EIO;
295                 }
296                 pagevec_release(&pvec);
297                 cond_resched();
298         }
299
300         /* Check for outstanding write errors */
301         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302                 ret = -ENOSPC;
303         if (test_and_clear_bit(AS_EIO, &mapping->flags))
304                 ret = -EIO;
305
306         return ret;
307 }
308 EXPORT_SYMBOL(filemap_fdatawait_range);
309
310 /**
311  * filemap_fdatawait - wait for all under-writeback pages to complete
312  * @mapping: address space structure to wait for
313  *
314  * Walk the list of under-writeback pages of the given address space
315  * and wait for all of them.
316  */
317 int filemap_fdatawait(struct address_space *mapping)
318 {
319         loff_t i_size = i_size_read(mapping->host);
320
321         if (i_size == 0)
322                 return 0;
323
324         return filemap_fdatawait_range(mapping, 0, i_size - 1);
325 }
326 EXPORT_SYMBOL(filemap_fdatawait);
327
328 int filemap_write_and_wait(struct address_space *mapping)
329 {
330         int err = 0;
331
332         if (mapping->nrpages) {
333                 err = filemap_fdatawrite(mapping);
334                 /*
335                  * Even if the above returned error, the pages may be
336                  * written partially (e.g. -ENOSPC), so we wait for it.
337                  * But the -EIO is special case, it may indicate the worst
338                  * thing (e.g. bug) happened, so we avoid waiting for it.
339                  */
340                 if (err != -EIO) {
341                         int err2 = filemap_fdatawait(mapping);
342                         if (!err)
343                                 err = err2;
344                 }
345         }
346         return err;
347 }
348 EXPORT_SYMBOL(filemap_write_and_wait);
349
350 /**
351  * filemap_write_and_wait_range - write out & wait on a file range
352  * @mapping:    the address_space for the pages
353  * @lstart:     offset in bytes where the range starts
354  * @lend:       offset in bytes where the range ends (inclusive)
355  *
356  * Write out and wait upon file offsets lstart->lend, inclusive.
357  *
358  * Note that `lend' is inclusive (describes the last byte to be written) so
359  * that this function can be used to write to the very end-of-file (end = -1).
360  */
361 int filemap_write_and_wait_range(struct address_space *mapping,
362                                  loff_t lstart, loff_t lend)
363 {
364         int err = 0;
365
366         if (mapping->nrpages) {
367                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
368                                                  WB_SYNC_ALL);
369                 /* See comment of filemap_write_and_wait() */
370                 if (err != -EIO) {
371                         int err2 = filemap_fdatawait_range(mapping,
372                                                 lstart, lend);
373                         if (!err)
374                                 err = err2;
375                 }
376         }
377         return err;
378 }
379 EXPORT_SYMBOL(filemap_write_and_wait_range);
380
381 /**
382  * replace_page_cache_page - replace a pagecache page with a new one
383  * @old:        page to be replaced
384  * @new:        page to replace with
385  * @gfp_mask:   allocation mode
386  *
387  * This function replaces a page in the pagecache with a new one.  On
388  * success it acquires the pagecache reference for the new page and
389  * drops it for the old page.  Both the old and new pages must be
390  * locked.  This function does not add the new page to the LRU, the
391  * caller must do that.
392  *
393  * The remove + add is atomic.  The only way this function can fail is
394  * memory allocation failure.
395  */
396 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
397 {
398         int error;
399
400         VM_BUG_ON(!PageLocked(old));
401         VM_BUG_ON(!PageLocked(new));
402         VM_BUG_ON(new->mapping);
403
404         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
405         if (!error) {
406                 struct address_space *mapping = old->mapping;
407                 void (*freepage)(struct page *);
408
409                 pgoff_t offset = old->index;
410                 freepage = mapping->a_ops->freepage;
411
412                 page_cache_get(new);
413                 new->mapping = mapping;
414                 new->index = offset;
415
416                 spin_lock_irq(&mapping->tree_lock);
417                 __delete_from_page_cache(old);
418                 error = radix_tree_insert(&mapping->page_tree, offset, new);
419                 BUG_ON(error);
420                 mapping->nrpages++;
421                 __inc_zone_page_state(new, NR_FILE_PAGES);
422                 if (PageSwapBacked(new))
423                         __inc_zone_page_state(new, NR_SHMEM);
424                 spin_unlock_irq(&mapping->tree_lock);
425                 /* mem_cgroup codes must not be called under tree_lock */
426                 mem_cgroup_replace_page_cache(old, new);
427                 radix_tree_preload_end();
428                 if (freepage)
429                         freepage(old);
430                 page_cache_release(old);
431         }
432
433         return error;
434 }
435 EXPORT_SYMBOL_GPL(replace_page_cache_page);
436
437 /**
438  * add_to_page_cache_locked - add a locked page to the pagecache
439  * @page:       page to add
440  * @mapping:    the page's address_space
441  * @offset:     page index
442  * @gfp_mask:   page allocation mode
443  *
444  * This function is used to add a page to the pagecache. It must be locked.
445  * This function does not add the page to the LRU.  The caller must do that.
446  */
447 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
448                 pgoff_t offset, gfp_t gfp_mask)
449 {
450         int error;
451
452         VM_BUG_ON(!PageLocked(page));
453
454         error = mem_cgroup_cache_charge(page, current->mm,
455                                         gfp_mask & GFP_RECLAIM_MASK);
456         if (error)
457                 goto out;
458
459         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
460         if (error == 0) {
461                 page_cache_get(page);
462                 page->mapping = mapping;
463                 page->index = offset;
464
465                 spin_lock_irq(&mapping->tree_lock);
466                 error = radix_tree_insert(&mapping->page_tree, offset, page);
467                 if (likely(!error)) {
468                         mapping->nrpages++;
469                         __inc_zone_page_state(page, NR_FILE_PAGES);
470                         if (PageSwapBacked(page))
471                                 __inc_zone_page_state(page, NR_SHMEM);
472                         spin_unlock_irq(&mapping->tree_lock);
473                 } else {
474                         page->mapping = NULL;
475                         spin_unlock_irq(&mapping->tree_lock);
476                         mem_cgroup_uncharge_cache_page(page);
477                         page_cache_release(page);
478                 }
479                 radix_tree_preload_end();
480         } else
481                 mem_cgroup_uncharge_cache_page(page);
482 out:
483         return error;
484 }
485 EXPORT_SYMBOL(add_to_page_cache_locked);
486
487 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
488                                 pgoff_t offset, gfp_t gfp_mask)
489 {
490         int ret;
491
492         /*
493          * Splice_read and readahead add shmem/tmpfs pages into the page cache
494          * before shmem_readpage has a chance to mark them as SwapBacked: they
495          * need to go on the anon lru below, and mem_cgroup_cache_charge
496          * (called in add_to_page_cache) needs to know where they're going too.
497          */
498         if (mapping_cap_swap_backed(mapping))
499                 SetPageSwapBacked(page);
500
501         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
502         if (ret == 0) {
503                 if (page_is_file_cache(page))
504                         lru_cache_add_file(page);
505                 else
506                         lru_cache_add_anon(page);
507         }
508         return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515         int n;
516         struct page *page;
517
518         if (cpuset_do_page_mem_spread()) {
519                 get_mems_allowed();
520                 n = cpuset_mem_spread_node();
521                 page = alloc_pages_exact_node(n, gfp, 0);
522                 put_mems_allowed();
523                 return page;
524         }
525         return alloc_pages(gfp, 0);
526 }
527 EXPORT_SYMBOL(__page_cache_alloc);
528 #endif
529
530 /*
531  * In order to wait for pages to become available there must be
532  * waitqueues associated with pages. By using a hash table of
533  * waitqueues where the bucket discipline is to maintain all
534  * waiters on the same queue and wake all when any of the pages
535  * become available, and for the woken contexts to check to be
536  * sure the appropriate page became available, this saves space
537  * at a cost of "thundering herd" phenomena during rare hash
538  * collisions.
539  */
540 static wait_queue_head_t *page_waitqueue(struct page *page)
541 {
542         const struct zone *zone = page_zone(page);
543
544         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
545 }
546
547 static inline void wake_up_page(struct page *page, int bit)
548 {
549         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
550 }
551
552 void wait_on_page_bit(struct page *page, int bit_nr)
553 {
554         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
555
556         if (test_bit(bit_nr, &page->flags))
557                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
558                                                         TASK_UNINTERRUPTIBLE);
559 }
560 EXPORT_SYMBOL(wait_on_page_bit);
561
562 int wait_on_page_bit_killable(struct page *page, int bit_nr)
563 {
564         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
565
566         if (!test_bit(bit_nr, &page->flags))
567                 return 0;
568
569         return __wait_on_bit(page_waitqueue(page), &wait,
570                              sleep_on_page_killable, TASK_KILLABLE);
571 }
572
573 /**
574  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
575  * @page: Page defining the wait queue of interest
576  * @waiter: Waiter to add to the queue
577  *
578  * Add an arbitrary @waiter to the wait queue for the nominated @page.
579  */
580 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
581 {
582         wait_queue_head_t *q = page_waitqueue(page);
583         unsigned long flags;
584
585         spin_lock_irqsave(&q->lock, flags);
586         __add_wait_queue(q, waiter);
587         spin_unlock_irqrestore(&q->lock, flags);
588 }
589 EXPORT_SYMBOL_GPL(add_page_wait_queue);
590
591 /**
592  * unlock_page - unlock a locked page
593  * @page: the page
594  *
595  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
596  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
597  * mechananism between PageLocked pages and PageWriteback pages is shared.
598  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
599  *
600  * The mb is necessary to enforce ordering between the clear_bit and the read
601  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
602  */
603 void unlock_page(struct page *page)
604 {
605         VM_BUG_ON(!PageLocked(page));
606         clear_bit_unlock(PG_locked, &page->flags);
607         smp_mb__after_clear_bit();
608         wake_up_page(page, PG_locked);
609 }
610 EXPORT_SYMBOL(unlock_page);
611
612 /**
613  * end_page_writeback - end writeback against a page
614  * @page: the page
615  */
616 void end_page_writeback(struct page *page)
617 {
618         if (TestClearPageReclaim(page))
619                 rotate_reclaimable_page(page);
620
621         if (!test_clear_page_writeback(page))
622                 BUG();
623
624         smp_mb__after_clear_bit();
625         wake_up_page(page, PG_writeback);
626 }
627 EXPORT_SYMBOL(end_page_writeback);
628
629 /**
630  * __lock_page - get a lock on the page, assuming we need to sleep to get it
631  * @page: the page to lock
632  */
633 void __lock_page(struct page *page)
634 {
635         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
636
637         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
638                                                         TASK_UNINTERRUPTIBLE);
639 }
640 EXPORT_SYMBOL(__lock_page);
641
642 int __lock_page_killable(struct page *page)
643 {
644         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
645
646         return __wait_on_bit_lock(page_waitqueue(page), &wait,
647                                         sleep_on_page_killable, TASK_KILLABLE);
648 }
649 EXPORT_SYMBOL_GPL(__lock_page_killable);
650
651 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
652                          unsigned int flags)
653 {
654         if (flags & FAULT_FLAG_ALLOW_RETRY) {
655                 /*
656                  * CAUTION! In this case, mmap_sem is not released
657                  * even though return 0.
658                  */
659                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
660                         return 0;
661
662                 up_read(&mm->mmap_sem);
663                 if (flags & FAULT_FLAG_KILLABLE)
664                         wait_on_page_locked_killable(page);
665                 else
666                         wait_on_page_locked(page);
667                 return 0;
668         } else {
669                 if (flags & FAULT_FLAG_KILLABLE) {
670                         int ret;
671
672                         ret = __lock_page_killable(page);
673                         if (ret) {
674                                 up_read(&mm->mmap_sem);
675                                 return 0;
676                         }
677                 } else
678                         __lock_page(page);
679                 return 1;
680         }
681 }
682
683 /**
684  * find_get_page - find and get a page reference
685  * @mapping: the address_space to search
686  * @offset: the page index
687  *
688  * Is there a pagecache struct page at the given (mapping, offset) tuple?
689  * If yes, increment its refcount and return it; if no, return NULL.
690  */
691 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
692 {
693         void **pagep;
694         struct page *page;
695
696         rcu_read_lock();
697 repeat:
698         page = NULL;
699         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
700         if (pagep) {
701                 page = radix_tree_deref_slot(pagep);
702                 if (unlikely(!page))
703                         goto out;
704                 if (radix_tree_deref_retry(page))
705                         goto repeat;
706
707                 if (!page_cache_get_speculative(page))
708                         goto repeat;
709
710                 /*
711                  * Has the page moved?
712                  * This is part of the lockless pagecache protocol. See
713                  * include/linux/pagemap.h for details.
714                  */
715                 if (unlikely(page != *pagep)) {
716                         page_cache_release(page);
717                         goto repeat;
718                 }
719         }
720 out:
721         rcu_read_unlock();
722
723         return page;
724 }
725 EXPORT_SYMBOL(find_get_page);
726
727 /**
728  * find_lock_page - locate, pin and lock a pagecache page
729  * @mapping: the address_space to search
730  * @offset: the page index
731  *
732  * Locates the desired pagecache page, locks it, increments its reference
733  * count and returns its address.
734  *
735  * Returns zero if the page was not present. find_lock_page() may sleep.
736  */
737 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
738 {
739         struct page *page;
740
741 repeat:
742         page = find_get_page(mapping, offset);
743         if (page) {
744                 lock_page(page);
745                 /* Has the page been truncated? */
746                 if (unlikely(page->mapping != mapping)) {
747                         unlock_page(page);
748                         page_cache_release(page);
749                         goto repeat;
750                 }
751                 VM_BUG_ON(page->index != offset);
752         }
753         return page;
754 }
755 EXPORT_SYMBOL(find_lock_page);
756
757 /**
758  * find_or_create_page - locate or add a pagecache page
759  * @mapping: the page's address_space
760  * @index: the page's index into the mapping
761  * @gfp_mask: page allocation mode
762  *
763  * Locates a page in the pagecache.  If the page is not present, a new page
764  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
765  * LRU list.  The returned page is locked and has its reference count
766  * incremented.
767  *
768  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
769  * allocation!
770  *
771  * find_or_create_page() returns the desired page's address, or zero on
772  * memory exhaustion.
773  */
774 struct page *find_or_create_page(struct address_space *mapping,
775                 pgoff_t index, gfp_t gfp_mask)
776 {
777         struct page *page;
778         int err;
779 repeat:
780         page = find_lock_page(mapping, index);
781         if (!page) {
782                 page = __page_cache_alloc(gfp_mask);
783                 if (!page)
784                         return NULL;
785                 /*
786                  * We want a regular kernel memory (not highmem or DMA etc)
787                  * allocation for the radix tree nodes, but we need to honour
788                  * the context-specific requirements the caller has asked for.
789                  * GFP_RECLAIM_MASK collects those requirements.
790                  */
791                 err = add_to_page_cache_lru(page, mapping, index,
792                         (gfp_mask & GFP_RECLAIM_MASK));
793                 if (unlikely(err)) {
794                         page_cache_release(page);
795                         page = NULL;
796                         if (err == -EEXIST)
797                                 goto repeat;
798                 }
799         }
800         return page;
801 }
802 EXPORT_SYMBOL(find_or_create_page);
803
804 /**
805  * find_get_pages - gang pagecache lookup
806  * @mapping:    The address_space to search
807  * @start:      The starting page index
808  * @nr_pages:   The maximum number of pages
809  * @pages:      Where the resulting pages are placed
810  *
811  * find_get_pages() will search for and return a group of up to
812  * @nr_pages pages in the mapping.  The pages are placed at @pages.
813  * find_get_pages() takes a reference against the returned pages.
814  *
815  * The search returns a group of mapping-contiguous pages with ascending
816  * indexes.  There may be holes in the indices due to not-present pages.
817  *
818  * find_get_pages() returns the number of pages which were found.
819  */
820 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
821                             unsigned int nr_pages, struct page **pages)
822 {
823         unsigned int i;
824         unsigned int ret;
825         unsigned int nr_found;
826
827         rcu_read_lock();
828 restart:
829         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
830                                 (void ***)pages, start, nr_pages);
831         ret = 0;
832         for (i = 0; i < nr_found; i++) {
833                 struct page *page;
834 repeat:
835                 page = radix_tree_deref_slot((void **)pages[i]);
836                 if (unlikely(!page))
837                         continue;
838
839                 /*
840                  * This can only trigger when the entry at index 0 moves out
841                  * of or back to the root: none yet gotten, safe to restart.
842                  */
843                 if (radix_tree_deref_retry(page)) {
844                         WARN_ON(start | i);
845                         goto restart;
846                 }
847
848                 if (!page_cache_get_speculative(page))
849                         goto repeat;
850
851                 /* Has the page moved? */
852                 if (unlikely(page != *((void **)pages[i]))) {
853                         page_cache_release(page);
854                         goto repeat;
855                 }
856
857                 pages[ret] = page;
858                 ret++;
859         }
860
861         /*
862          * If all entries were removed before we could secure them,
863          * try again, because callers stop trying once 0 is returned.
864          */
865         if (unlikely(!ret && nr_found))
866                 goto restart;
867         rcu_read_unlock();
868         return ret;
869 }
870
871 /**
872  * find_get_pages_contig - gang contiguous pagecache lookup
873  * @mapping:    The address_space to search
874  * @index:      The starting page index
875  * @nr_pages:   The maximum number of pages
876  * @pages:      Where the resulting pages are placed
877  *
878  * find_get_pages_contig() works exactly like find_get_pages(), except
879  * that the returned number of pages are guaranteed to be contiguous.
880  *
881  * find_get_pages_contig() returns the number of pages which were found.
882  */
883 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
884                                unsigned int nr_pages, struct page **pages)
885 {
886         unsigned int i;
887         unsigned int ret;
888         unsigned int nr_found;
889
890         rcu_read_lock();
891 restart:
892         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
893                                 (void ***)pages, index, nr_pages);
894         ret = 0;
895         for (i = 0; i < nr_found; i++) {
896                 struct page *page;
897 repeat:
898                 page = radix_tree_deref_slot((void **)pages[i]);
899                 if (unlikely(!page))
900                         continue;
901
902                 /*
903                  * This can only trigger when the entry at index 0 moves out
904                  * of or back to the root: none yet gotten, safe to restart.
905                  */
906                 if (radix_tree_deref_retry(page))
907                         goto restart;
908
909                 if (!page_cache_get_speculative(page))
910                         goto repeat;
911
912                 /* Has the page moved? */
913                 if (unlikely(page != *((void **)pages[i]))) {
914                         page_cache_release(page);
915                         goto repeat;
916                 }
917
918                 /*
919                  * must check mapping and index after taking the ref.
920                  * otherwise we can get both false positives and false
921                  * negatives, which is just confusing to the caller.
922                  */
923                 if (page->mapping == NULL || page->index != index) {
924                         page_cache_release(page);
925                         break;
926                 }
927
928                 pages[ret] = page;
929                 ret++;
930                 index++;
931         }
932         rcu_read_unlock();
933         return ret;
934 }
935 EXPORT_SYMBOL(find_get_pages_contig);
936
937 /**
938  * find_get_pages_tag - find and return pages that match @tag
939  * @mapping:    the address_space to search
940  * @index:      the starting page index
941  * @tag:        the tag index
942  * @nr_pages:   the maximum number of pages
943  * @pages:      where the resulting pages are placed
944  *
945  * Like find_get_pages, except we only return pages which are tagged with
946  * @tag.   We update @index to index the next page for the traversal.
947  */
948 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
949                         int tag, unsigned int nr_pages, struct page **pages)
950 {
951         unsigned int i;
952         unsigned int ret;
953         unsigned int nr_found;
954
955         rcu_read_lock();
956 restart:
957         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
958                                 (void ***)pages, *index, nr_pages, tag);
959         ret = 0;
960         for (i = 0; i < nr_found; i++) {
961                 struct page *page;
962 repeat:
963                 page = radix_tree_deref_slot((void **)pages[i]);
964                 if (unlikely(!page))
965                         continue;
966
967                 /*
968                  * This can only trigger when the entry at index 0 moves out
969                  * of or back to the root: none yet gotten, safe to restart.
970                  */
971                 if (radix_tree_deref_retry(page))
972                         goto restart;
973
974                 if (!page_cache_get_speculative(page))
975                         goto repeat;
976
977                 /* Has the page moved? */
978                 if (unlikely(page != *((void **)pages[i]))) {
979                         page_cache_release(page);
980                         goto repeat;
981                 }
982
983                 pages[ret] = page;
984                 ret++;
985         }
986
987         /*
988          * If all entries were removed before we could secure them,
989          * try again, because callers stop trying once 0 is returned.
990          */
991         if (unlikely(!ret && nr_found))
992                 goto restart;
993         rcu_read_unlock();
994
995         if (ret)
996                 *index = pages[ret - 1]->index + 1;
997
998         return ret;
999 }
1000 EXPORT_SYMBOL(find_get_pages_tag);
1001
1002 /**
1003  * grab_cache_page_nowait - returns locked page at given index in given cache
1004  * @mapping: target address_space
1005  * @index: the page index
1006  *
1007  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1008  * This is intended for speculative data generators, where the data can
1009  * be regenerated if the page couldn't be grabbed.  This routine should
1010  * be safe to call while holding the lock for another page.
1011  *
1012  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1013  * and deadlock against the caller's locked page.
1014  */
1015 struct page *
1016 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1017 {
1018         struct page *page = find_get_page(mapping, index);
1019
1020         if (page) {
1021                 if (trylock_page(page))
1022                         return page;
1023                 page_cache_release(page);
1024                 return NULL;
1025         }
1026         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1027         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1028                 page_cache_release(page);
1029                 page = NULL;
1030         }
1031         return page;
1032 }
1033 EXPORT_SYMBOL(grab_cache_page_nowait);
1034
1035 /*
1036  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1037  * a _large_ part of the i/o request. Imagine the worst scenario:
1038  *
1039  *      ---R__________________________________________B__________
1040  *         ^ reading here                             ^ bad block(assume 4k)
1041  *
1042  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1043  * => failing the whole request => read(R) => read(R+1) =>
1044  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1045  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1046  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1047  *
1048  * It is going insane. Fix it by quickly scaling down the readahead size.
1049  */
1050 static void shrink_readahead_size_eio(struct file *filp,
1051                                         struct file_ra_state *ra)
1052 {
1053         ra->ra_pages /= 4;
1054 }
1055
1056 /**
1057  * do_generic_file_read - generic file read routine
1058  * @filp:       the file to read
1059  * @ppos:       current file position
1060  * @desc:       read_descriptor
1061  * @actor:      read method
1062  *
1063  * This is a generic file read routine, and uses the
1064  * mapping->a_ops->readpage() function for the actual low-level stuff.
1065  *
1066  * This is really ugly. But the goto's actually try to clarify some
1067  * of the logic when it comes to error handling etc.
1068  */
1069 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1070                 read_descriptor_t *desc, read_actor_t actor)
1071 {
1072         struct address_space *mapping = filp->f_mapping;
1073         struct inode *inode = mapping->host;
1074         struct file_ra_state *ra = &filp->f_ra;
1075         pgoff_t index;
1076         pgoff_t last_index;
1077         pgoff_t prev_index;
1078         unsigned long offset;      /* offset into pagecache page */
1079         unsigned int prev_offset;
1080         int error;
1081
1082         index = *ppos >> PAGE_CACHE_SHIFT;
1083         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1084         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1085         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1086         offset = *ppos & ~PAGE_CACHE_MASK;
1087
1088         for (;;) {
1089                 struct page *page;
1090                 pgoff_t end_index;
1091                 loff_t isize;
1092                 unsigned long nr, ret;
1093
1094                 cond_resched();
1095 find_page:
1096                 page = find_get_page(mapping, index);
1097                 if (!page) {
1098                         page_cache_sync_readahead(mapping,
1099                                         ra, filp,
1100                                         index, last_index - index);
1101                         page = find_get_page(mapping, index);
1102                         if (unlikely(page == NULL))
1103                                 goto no_cached_page;
1104                 }
1105                 if (PageReadahead(page)) {
1106                         page_cache_async_readahead(mapping,
1107                                         ra, filp, page,
1108                                         index, last_index - index);
1109                 }
1110                 if (!PageUptodate(page)) {
1111                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1112                                         !mapping->a_ops->is_partially_uptodate)
1113                                 goto page_not_up_to_date;
1114                         if (!trylock_page(page))
1115                                 goto page_not_up_to_date;
1116                         /* Did it get truncated before we got the lock? */
1117                         if (!page->mapping)
1118                                 goto page_not_up_to_date_locked;
1119                         if (!mapping->a_ops->is_partially_uptodate(page,
1120                                                                 desc, offset))
1121                                 goto page_not_up_to_date_locked;
1122                         unlock_page(page);
1123                 }
1124 page_ok:
1125                 /*
1126                  * i_size must be checked after we know the page is Uptodate.
1127                  *
1128                  * Checking i_size after the check allows us to calculate
1129                  * the correct value for "nr", which means the zero-filled
1130                  * part of the page is not copied back to userspace (unless
1131                  * another truncate extends the file - this is desired though).
1132                  */
1133
1134                 isize = i_size_read(inode);
1135                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1136                 if (unlikely(!isize || index > end_index)) {
1137                         page_cache_release(page);
1138                         goto out;
1139                 }
1140
1141                 /* nr is the maximum number of bytes to copy from this page */
1142                 nr = PAGE_CACHE_SIZE;
1143                 if (index == end_index) {
1144                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1145                         if (nr <= offset) {
1146                                 page_cache_release(page);
1147                                 goto out;
1148                         }
1149                 }
1150                 nr = nr - offset;
1151
1152                 /* If users can be writing to this page using arbitrary
1153                  * virtual addresses, take care about potential aliasing
1154                  * before reading the page on the kernel side.
1155                  */
1156                 if (mapping_writably_mapped(mapping))
1157                         flush_dcache_page(page);
1158
1159                 /*
1160                  * When a sequential read accesses a page several times,
1161                  * only mark it as accessed the first time.
1162                  */
1163                 if (prev_index != index || offset != prev_offset)
1164                         mark_page_accessed(page);
1165                 prev_index = index;
1166
1167                 /*
1168                  * Ok, we have the page, and it's up-to-date, so
1169                  * now we can copy it to user space...
1170                  *
1171                  * The actor routine returns how many bytes were actually used..
1172                  * NOTE! This may not be the same as how much of a user buffer
1173                  * we filled up (we may be padding etc), so we can only update
1174                  * "pos" here (the actor routine has to update the user buffer
1175                  * pointers and the remaining count).
1176                  */
1177                 ret = actor(desc, page, offset, nr);
1178                 offset += ret;
1179                 index += offset >> PAGE_CACHE_SHIFT;
1180                 offset &= ~PAGE_CACHE_MASK;
1181                 prev_offset = offset;
1182
1183                 page_cache_release(page);
1184                 if (ret == nr && desc->count)
1185                         continue;
1186                 goto out;
1187
1188 page_not_up_to_date:
1189                 /* Get exclusive access to the page ... */
1190                 error = lock_page_killable(page);
1191                 if (unlikely(error))
1192                         goto readpage_error;
1193
1194 page_not_up_to_date_locked:
1195                 /* Did it get truncated before we got the lock? */
1196                 if (!page->mapping) {
1197                         unlock_page(page);
1198                         page_cache_release(page);
1199                         continue;
1200                 }
1201
1202                 /* Did somebody else fill it already? */
1203                 if (PageUptodate(page)) {
1204                         unlock_page(page);
1205                         goto page_ok;
1206                 }
1207
1208 readpage:
1209                 /*
1210                  * A previous I/O error may have been due to temporary
1211                  * failures, eg. multipath errors.
1212                  * PG_error will be set again if readpage fails.
1213                  */
1214                 ClearPageError(page);
1215                 /* Start the actual read. The read will unlock the page. */
1216                 error = mapping->a_ops->readpage(filp, page);
1217
1218                 if (unlikely(error)) {
1219                         if (error == AOP_TRUNCATED_PAGE) {
1220                                 page_cache_release(page);
1221                                 goto find_page;
1222                         }
1223                         goto readpage_error;
1224                 }
1225
1226                 if (!PageUptodate(page)) {
1227                         error = lock_page_killable(page);
1228                         if (unlikely(error))
1229                                 goto readpage_error;
1230                         if (!PageUptodate(page)) {
1231                                 if (page->mapping == NULL) {
1232                                         /*
1233                                          * invalidate_mapping_pages got it
1234                                          */
1235                                         unlock_page(page);
1236                                         page_cache_release(page);
1237                                         goto find_page;
1238                                 }
1239                                 unlock_page(page);
1240                                 shrink_readahead_size_eio(filp, ra);
1241                                 error = -EIO;
1242                                 goto readpage_error;
1243                         }
1244                         unlock_page(page);
1245                 }
1246
1247                 goto page_ok;
1248
1249 readpage_error:
1250                 /* UHHUH! A synchronous read error occurred. Report it */
1251                 desc->error = error;
1252                 page_cache_release(page);
1253                 goto out;
1254
1255 no_cached_page:
1256                 /*
1257                  * Ok, it wasn't cached, so we need to create a new
1258                  * page..
1259                  */
1260                 page = page_cache_alloc_cold(mapping);
1261                 if (!page) {
1262                         desc->error = -ENOMEM;
1263                         goto out;
1264                 }
1265                 error = add_to_page_cache_lru(page, mapping,
1266                                                 index, GFP_KERNEL);
1267                 if (error) {
1268                         page_cache_release(page);
1269                         if (error == -EEXIST)
1270                                 goto find_page;
1271                         desc->error = error;
1272                         goto out;
1273                 }
1274                 goto readpage;
1275         }
1276
1277 out:
1278         ra->prev_pos = prev_index;
1279         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1280         ra->prev_pos |= prev_offset;
1281
1282         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1283         file_accessed(filp);
1284 }
1285
1286 int file_read_actor(read_descriptor_t *desc, struct page *page,
1287                         unsigned long offset, unsigned long size)
1288 {
1289         char *kaddr;
1290         unsigned long left, count = desc->count;
1291
1292         if (size > count)
1293                 size = count;
1294
1295         /*
1296          * Faults on the destination of a read are common, so do it before
1297          * taking the kmap.
1298          */
1299         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1300                 kaddr = kmap_atomic(page, KM_USER0);
1301                 left = __copy_to_user_inatomic(desc->arg.buf,
1302                                                 kaddr + offset, size);
1303                 kunmap_atomic(kaddr, KM_USER0);
1304                 if (left == 0)
1305                         goto success;
1306         }
1307
1308         /* Do it the slow way */
1309         kaddr = kmap(page);
1310         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1311         kunmap(page);
1312
1313         if (left) {
1314                 size -= left;
1315                 desc->error = -EFAULT;
1316         }
1317 success:
1318         desc->count = count - size;
1319         desc->written += size;
1320         desc->arg.buf += size;
1321         return size;
1322 }
1323
1324 /*
1325  * Performs necessary checks before doing a write
1326  * @iov:        io vector request
1327  * @nr_segs:    number of segments in the iovec
1328  * @count:      number of bytes to write
1329  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1330  *
1331  * Adjust number of segments and amount of bytes to write (nr_segs should be
1332  * properly initialized first). Returns appropriate error code that caller
1333  * should return or zero in case that write should be allowed.
1334  */
1335 int generic_segment_checks(const struct iovec *iov,
1336                         unsigned long *nr_segs, size_t *count, int access_flags)
1337 {
1338         unsigned long   seg;
1339         size_t cnt = 0;
1340         for (seg = 0; seg < *nr_segs; seg++) {
1341                 const struct iovec *iv = &iov[seg];
1342
1343                 /*
1344                  * If any segment has a negative length, or the cumulative
1345                  * length ever wraps negative then return -EINVAL.
1346                  */
1347                 cnt += iv->iov_len;
1348                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1349                         return -EINVAL;
1350                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1351                         continue;
1352                 if (seg == 0)
1353                         return -EFAULT;
1354                 *nr_segs = seg;
1355                 cnt -= iv->iov_len;     /* This segment is no good */
1356                 break;
1357         }
1358         *count = cnt;
1359         return 0;
1360 }
1361 EXPORT_SYMBOL(generic_segment_checks);
1362
1363 /**
1364  * generic_file_aio_read - generic filesystem read routine
1365  * @iocb:       kernel I/O control block
1366  * @iov:        io vector request
1367  * @nr_segs:    number of segments in the iovec
1368  * @pos:        current file position
1369  *
1370  * This is the "read()" routine for all filesystems
1371  * that can use the page cache directly.
1372  */
1373 ssize_t
1374 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1375                 unsigned long nr_segs, loff_t pos)
1376 {
1377         struct file *filp = iocb->ki_filp;
1378         ssize_t retval;
1379         unsigned long seg = 0;
1380         size_t count;
1381         loff_t *ppos = &iocb->ki_pos;
1382
1383         count = 0;
1384         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1385         if (retval)
1386                 return retval;
1387
1388         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1389         if (filp->f_flags & O_DIRECT) {
1390                 loff_t size;
1391                 struct address_space *mapping;
1392                 struct inode *inode;
1393
1394                 mapping = filp->f_mapping;
1395                 inode = mapping->host;
1396                 if (!count)
1397                         goto out; /* skip atime */
1398                 size = i_size_read(inode);
1399                 if (pos < size) {
1400                         retval = filemap_write_and_wait_range(mapping, pos,
1401                                         pos + iov_length(iov, nr_segs) - 1);
1402                         if (!retval) {
1403                                 struct blk_plug plug;
1404
1405                                 blk_start_plug(&plug);
1406                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1407                                                         iov, pos, nr_segs);
1408                                 blk_finish_plug(&plug);
1409                         }
1410                         if (retval > 0) {
1411                                 *ppos = pos + retval;
1412                                 count -= retval;
1413                         }
1414
1415                         /*
1416                          * Btrfs can have a short DIO read if we encounter
1417                          * compressed extents, so if there was an error, or if
1418                          * we've already read everything we wanted to, or if
1419                          * there was a short read because we hit EOF, go ahead
1420                          * and return.  Otherwise fallthrough to buffered io for
1421                          * the rest of the read.
1422                          */
1423                         if (retval < 0 || !count || *ppos >= size) {
1424                                 file_accessed(filp);
1425                                 goto out;
1426                         }
1427                 }
1428         }
1429
1430         count = retval;
1431         for (seg = 0; seg < nr_segs; seg++) {
1432                 read_descriptor_t desc;
1433                 loff_t offset = 0;
1434
1435                 /*
1436                  * If we did a short DIO read we need to skip the section of the
1437                  * iov that we've already read data into.
1438                  */
1439                 if (count) {
1440                         if (count > iov[seg].iov_len) {
1441                                 count -= iov[seg].iov_len;
1442                                 continue;
1443                         }
1444                         offset = count;
1445                         count = 0;
1446                 }
1447
1448                 desc.written = 0;
1449                 desc.arg.buf = iov[seg].iov_base + offset;
1450                 desc.count = iov[seg].iov_len - offset;
1451                 if (desc.count == 0)
1452                         continue;
1453                 desc.error = 0;
1454                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1455                 retval += desc.written;
1456                 if (desc.error) {
1457                         retval = retval ?: desc.error;
1458                         break;
1459                 }
1460                 if (desc.count > 0)
1461                         break;
1462         }
1463 out:
1464         return retval;
1465 }
1466 EXPORT_SYMBOL(generic_file_aio_read);
1467
1468 static ssize_t
1469 do_readahead(struct address_space *mapping, struct file *filp,
1470              pgoff_t index, unsigned long nr)
1471 {
1472         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1473                 return -EINVAL;
1474
1475         force_page_cache_readahead(mapping, filp, index, nr);
1476         return 0;
1477 }
1478
1479 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1480 {
1481         ssize_t ret;
1482         struct file *file;
1483
1484         ret = -EBADF;
1485         file = fget(fd);
1486         if (file) {
1487                 if (file->f_mode & FMODE_READ) {
1488                         struct address_space *mapping = file->f_mapping;
1489                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1490                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1491                         unsigned long len = end - start + 1;
1492                         ret = do_readahead(mapping, file, start, len);
1493                 }
1494                 fput(file);
1495         }
1496         return ret;
1497 }
1498 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1499 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1500 {
1501         return SYSC_readahead((int) fd, offset, (size_t) count);
1502 }
1503 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1504 #endif
1505
1506 #ifdef CONFIG_MMU
1507 /**
1508  * page_cache_read - adds requested page to the page cache if not already there
1509  * @file:       file to read
1510  * @offset:     page index
1511  *
1512  * This adds the requested page to the page cache if it isn't already there,
1513  * and schedules an I/O to read in its contents from disk.
1514  */
1515 static int page_cache_read(struct file *file, pgoff_t offset)
1516 {
1517         struct address_space *mapping = file->f_mapping;
1518         struct page *page; 
1519         int ret;
1520
1521         do {
1522                 page = page_cache_alloc_cold(mapping);
1523                 if (!page)
1524                         return -ENOMEM;
1525
1526                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1527                 if (ret == 0)
1528                         ret = mapping->a_ops->readpage(file, page);
1529                 else if (ret == -EEXIST)
1530                         ret = 0; /* losing race to add is OK */
1531
1532                 page_cache_release(page);
1533
1534         } while (ret == AOP_TRUNCATED_PAGE);
1535                 
1536         return ret;
1537 }
1538
1539 #define MMAP_LOTSAMISS  (100)
1540
1541 /*
1542  * Synchronous readahead happens when we don't even find
1543  * a page in the page cache at all.
1544  */
1545 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1546                                    struct file_ra_state *ra,
1547                                    struct file *file,
1548                                    pgoff_t offset)
1549 {
1550         unsigned long ra_pages;
1551         struct address_space *mapping = file->f_mapping;
1552
1553         /* If we don't want any read-ahead, don't bother */
1554         if (VM_RandomReadHint(vma))
1555                 return;
1556         if (!ra->ra_pages)
1557                 return;
1558
1559         if (VM_SequentialReadHint(vma)) {
1560                 page_cache_sync_readahead(mapping, ra, file, offset,
1561                                           ra->ra_pages);
1562                 return;
1563         }
1564
1565         /* Avoid banging the cache line if not needed */
1566         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1567                 ra->mmap_miss++;
1568
1569         /*
1570          * Do we miss much more than hit in this file? If so,
1571          * stop bothering with read-ahead. It will only hurt.
1572          */
1573         if (ra->mmap_miss > MMAP_LOTSAMISS)
1574                 return;
1575
1576         /*
1577          * mmap read-around
1578          */
1579         ra_pages = max_sane_readahead(ra->ra_pages);
1580         ra->start = max_t(long, 0, offset - ra_pages / 2);
1581         ra->size = ra_pages;
1582         ra->async_size = ra_pages / 4;
1583         ra_submit(ra, mapping, file);
1584 }
1585
1586 /*
1587  * Asynchronous readahead happens when we find the page and PG_readahead,
1588  * so we want to possibly extend the readahead further..
1589  */
1590 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1591                                     struct file_ra_state *ra,
1592                                     struct file *file,
1593                                     struct page *page,
1594                                     pgoff_t offset)
1595 {
1596         struct address_space *mapping = file->f_mapping;
1597
1598         /* If we don't want any read-ahead, don't bother */
1599         if (VM_RandomReadHint(vma))
1600                 return;
1601         if (ra->mmap_miss > 0)
1602                 ra->mmap_miss--;
1603         if (PageReadahead(page))
1604                 page_cache_async_readahead(mapping, ra, file,
1605                                            page, offset, ra->ra_pages);
1606 }
1607
1608 /**
1609  * filemap_fault - read in file data for page fault handling
1610  * @vma:        vma in which the fault was taken
1611  * @vmf:        struct vm_fault containing details of the fault
1612  *
1613  * filemap_fault() is invoked via the vma operations vector for a
1614  * mapped memory region to read in file data during a page fault.
1615  *
1616  * The goto's are kind of ugly, but this streamlines the normal case of having
1617  * it in the page cache, and handles the special cases reasonably without
1618  * having a lot of duplicated code.
1619  */
1620 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1621 {
1622         int error;
1623         struct file *file = vma->vm_file;
1624         struct address_space *mapping = file->f_mapping;
1625         struct file_ra_state *ra = &file->f_ra;
1626         struct inode *inode = mapping->host;
1627         pgoff_t offset = vmf->pgoff;
1628         struct page *page;
1629         pgoff_t size;
1630         int ret = 0;
1631
1632         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1633         if (offset >= size)
1634                 return VM_FAULT_SIGBUS;
1635
1636         /*
1637          * Do we have something in the page cache already?
1638          */
1639         page = find_get_page(mapping, offset);
1640         if (likely(page)) {
1641                 /*
1642                  * We found the page, so try async readahead before
1643                  * waiting for the lock.
1644                  */
1645                 do_async_mmap_readahead(vma, ra, file, page, offset);
1646         } else {
1647                 /* No page in the page cache at all */
1648                 do_sync_mmap_readahead(vma, ra, file, offset);
1649                 count_vm_event(PGMAJFAULT);
1650                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1651                 ret = VM_FAULT_MAJOR;
1652 retry_find:
1653                 page = find_get_page(mapping, offset);
1654                 if (!page)
1655                         goto no_cached_page;
1656         }
1657
1658         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1659                 page_cache_release(page);
1660                 return ret | VM_FAULT_RETRY;
1661         }
1662
1663         /* Did it get truncated? */
1664         if (unlikely(page->mapping != mapping)) {
1665                 unlock_page(page);
1666                 put_page(page);
1667                 goto retry_find;
1668         }
1669         VM_BUG_ON(page->index != offset);
1670
1671         /*
1672          * We have a locked page in the page cache, now we need to check
1673          * that it's up-to-date. If not, it is going to be due to an error.
1674          */
1675         if (unlikely(!PageUptodate(page)))
1676                 goto page_not_uptodate;
1677
1678         /*
1679          * Found the page and have a reference on it.
1680          * We must recheck i_size under page lock.
1681          */
1682         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1683         if (unlikely(offset >= size)) {
1684                 unlock_page(page);
1685                 page_cache_release(page);
1686                 return VM_FAULT_SIGBUS;
1687         }
1688
1689         vmf->page = page;
1690         return ret | VM_FAULT_LOCKED;
1691
1692 no_cached_page:
1693         /*
1694          * We're only likely to ever get here if MADV_RANDOM is in
1695          * effect.
1696          */
1697         error = page_cache_read(file, offset);
1698
1699         /*
1700          * The page we want has now been added to the page cache.
1701          * In the unlikely event that someone removed it in the
1702          * meantime, we'll just come back here and read it again.
1703          */
1704         if (error >= 0)
1705                 goto retry_find;
1706
1707         /*
1708          * An error return from page_cache_read can result if the
1709          * system is low on memory, or a problem occurs while trying
1710          * to schedule I/O.
1711          */
1712         if (error == -ENOMEM)
1713                 return VM_FAULT_OOM;
1714         return VM_FAULT_SIGBUS;
1715
1716 page_not_uptodate:
1717         /*
1718          * Umm, take care of errors if the page isn't up-to-date.
1719          * Try to re-read it _once_. We do this synchronously,
1720          * because there really aren't any performance issues here
1721          * and we need to check for errors.
1722          */
1723         ClearPageError(page);
1724         error = mapping->a_ops->readpage(file, page);
1725         if (!error) {
1726                 wait_on_page_locked(page);
1727                 if (!PageUptodate(page))
1728                         error = -EIO;
1729         }
1730         page_cache_release(page);
1731
1732         if (!error || error == AOP_TRUNCATED_PAGE)
1733                 goto retry_find;
1734
1735         /* Things didn't work out. Return zero to tell the mm layer so. */
1736         shrink_readahead_size_eio(file, ra);
1737         return VM_FAULT_SIGBUS;
1738 }
1739 EXPORT_SYMBOL(filemap_fault);
1740
1741 const struct vm_operations_struct generic_file_vm_ops = {
1742         .fault          = filemap_fault,
1743 };
1744
1745 /* This is used for a general mmap of a disk file */
1746
1747 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1748 {
1749         struct address_space *mapping = file->f_mapping;
1750
1751         if (!mapping->a_ops->readpage)
1752                 return -ENOEXEC;
1753         file_accessed(file);
1754         vma->vm_ops = &generic_file_vm_ops;
1755         vma->vm_flags |= VM_CAN_NONLINEAR;
1756         return 0;
1757 }
1758
1759 /*
1760  * This is for filesystems which do not implement ->writepage.
1761  */
1762 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1763 {
1764         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1765                 return -EINVAL;
1766         return generic_file_mmap(file, vma);
1767 }
1768 #else
1769 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1770 {
1771         return -ENOSYS;
1772 }
1773 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1774 {
1775         return -ENOSYS;
1776 }
1777 #endif /* CONFIG_MMU */
1778
1779 EXPORT_SYMBOL(generic_file_mmap);
1780 EXPORT_SYMBOL(generic_file_readonly_mmap);
1781
1782 static struct page *__read_cache_page(struct address_space *mapping,
1783                                 pgoff_t index,
1784                                 int (*filler)(void *,struct page*),
1785                                 void *data,
1786                                 gfp_t gfp)
1787 {
1788         struct page *page;
1789         int err;
1790 repeat:
1791         page = find_get_page(mapping, index);
1792         if (!page) {
1793                 page = __page_cache_alloc(gfp | __GFP_COLD);
1794                 if (!page)
1795                         return ERR_PTR(-ENOMEM);
1796                 err = add_to_page_cache_lru(page, mapping, index, gfp);
1797                 if (unlikely(err)) {
1798                         page_cache_release(page);
1799                         if (err == -EEXIST)
1800                                 goto repeat;
1801                         /* Presumably ENOMEM for radix tree node */
1802                         return ERR_PTR(err);
1803                 }
1804                 err = filler(data, page);
1805                 if (err < 0) {
1806                         page_cache_release(page);
1807                         page = ERR_PTR(err);
1808                 }
1809         }
1810         return page;
1811 }
1812
1813 static struct page *do_read_cache_page(struct address_space *mapping,
1814                                 pgoff_t index,
1815                                 int (*filler)(void *,struct page*),
1816                                 void *data,
1817                                 gfp_t gfp)
1818
1819 {
1820         struct page *page;
1821         int err;
1822
1823 retry:
1824         page = __read_cache_page(mapping, index, filler, data, gfp);
1825         if (IS_ERR(page))
1826                 return page;
1827         if (PageUptodate(page))
1828                 goto out;
1829
1830         lock_page(page);
1831         if (!page->mapping) {
1832                 unlock_page(page);
1833                 page_cache_release(page);
1834                 goto retry;
1835         }
1836         if (PageUptodate(page)) {
1837                 unlock_page(page);
1838                 goto out;
1839         }
1840         err = filler(data, page);
1841         if (err < 0) {
1842                 page_cache_release(page);
1843                 return ERR_PTR(err);
1844         }
1845 out:
1846         mark_page_accessed(page);
1847         return page;
1848 }
1849
1850 /**
1851  * read_cache_page_async - read into page cache, fill it if needed
1852  * @mapping:    the page's address_space
1853  * @index:      the page index
1854  * @filler:     function to perform the read
1855  * @data:       destination for read data
1856  *
1857  * Same as read_cache_page, but don't wait for page to become unlocked
1858  * after submitting it to the filler.
1859  *
1860  * Read into the page cache. If a page already exists, and PageUptodate() is
1861  * not set, try to fill the page but don't wait for it to become unlocked.
1862  *
1863  * If the page does not get brought uptodate, return -EIO.
1864  */
1865 struct page *read_cache_page_async(struct address_space *mapping,
1866                                 pgoff_t index,
1867                                 int (*filler)(void *,struct page*),
1868                                 void *data)
1869 {
1870         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1871 }
1872 EXPORT_SYMBOL(read_cache_page_async);
1873
1874 static struct page *wait_on_page_read(struct page *page)
1875 {
1876         if (!IS_ERR(page)) {
1877                 wait_on_page_locked(page);
1878                 if (!PageUptodate(page)) {
1879                         page_cache_release(page);
1880                         page = ERR_PTR(-EIO);
1881                 }
1882         }
1883         return page;
1884 }
1885
1886 /**
1887  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1888  * @mapping:    the page's address_space
1889  * @index:      the page index
1890  * @gfp:        the page allocator flags to use if allocating
1891  *
1892  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1893  * any new page allocations done using the specified allocation flags.
1894  *
1895  * If the page does not get brought uptodate, return -EIO.
1896  */
1897 struct page *read_cache_page_gfp(struct address_space *mapping,
1898                                 pgoff_t index,
1899                                 gfp_t gfp)
1900 {
1901         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1902
1903         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1904 }
1905 EXPORT_SYMBOL(read_cache_page_gfp);
1906
1907 /**
1908  * read_cache_page - read into page cache, fill it if needed
1909  * @mapping:    the page's address_space
1910  * @index:      the page index
1911  * @filler:     function to perform the read
1912  * @data:       destination for read data
1913  *
1914  * Read into the page cache. If a page already exists, and PageUptodate() is
1915  * not set, try to fill the page then wait for it to become unlocked.
1916  *
1917  * If the page does not get brought uptodate, return -EIO.
1918  */
1919 struct page *read_cache_page(struct address_space *mapping,
1920                                 pgoff_t index,
1921                                 int (*filler)(void *,struct page*),
1922                                 void *data)
1923 {
1924         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1925 }
1926 EXPORT_SYMBOL(read_cache_page);
1927
1928 /*
1929  * The logic we want is
1930  *
1931  *      if suid or (sgid and xgrp)
1932  *              remove privs
1933  */
1934 int should_remove_suid(struct dentry *dentry)
1935 {
1936         mode_t mode = dentry->d_inode->i_mode;
1937         int kill = 0;
1938
1939         /* suid always must be killed */
1940         if (unlikely(mode & S_ISUID))
1941                 kill = ATTR_KILL_SUID;
1942
1943         /*
1944          * sgid without any exec bits is just a mandatory locking mark; leave
1945          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1946          */
1947         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1948                 kill |= ATTR_KILL_SGID;
1949
1950         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1951                 return kill;
1952
1953         return 0;
1954 }
1955 EXPORT_SYMBOL(should_remove_suid);
1956
1957 static int __remove_suid(struct dentry *dentry, int kill)
1958 {
1959         struct iattr newattrs;
1960
1961         newattrs.ia_valid = ATTR_FORCE | kill;
1962         return notify_change(dentry, &newattrs);
1963 }
1964
1965 int file_remove_suid(struct file *file)
1966 {
1967         struct dentry *dentry = file->f_path.dentry;
1968         struct inode *inode = dentry->d_inode;
1969         int killsuid;
1970         int killpriv;
1971         int error = 0;
1972
1973         /* Fast path for nothing security related */
1974         if (IS_NOSEC(inode))
1975                 return 0;
1976
1977         killsuid = should_remove_suid(dentry);
1978         killpriv = security_inode_need_killpriv(dentry);
1979
1980         if (killpriv < 0)
1981                 return killpriv;
1982         if (killpriv)
1983                 error = security_inode_killpriv(dentry);
1984         if (!error && killsuid)
1985                 error = __remove_suid(dentry, killsuid);
1986         if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1987                 inode->i_flags |= S_NOSEC;
1988
1989         return error;
1990 }
1991 EXPORT_SYMBOL(file_remove_suid);
1992
1993 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1994                         const struct iovec *iov, size_t base, size_t bytes)
1995 {
1996         size_t copied = 0, left = 0;
1997
1998         while (bytes) {
1999                 char __user *buf = iov->iov_base + base;
2000                 int copy = min(bytes, iov->iov_len - base);
2001
2002                 base = 0;
2003                 left = __copy_from_user_inatomic(vaddr, buf, copy);
2004                 copied += copy;
2005                 bytes -= copy;
2006                 vaddr += copy;
2007                 iov++;
2008
2009                 if (unlikely(left))
2010                         break;
2011         }
2012         return copied - left;
2013 }
2014
2015 /*
2016  * Copy as much as we can into the page and return the number of bytes which
2017  * were successfully copied.  If a fault is encountered then return the number of
2018  * bytes which were copied.
2019  */
2020 size_t iov_iter_copy_from_user_atomic(struct page *page,
2021                 struct iov_iter *i, unsigned long offset, size_t bytes)
2022 {
2023         char *kaddr;
2024         size_t copied;
2025
2026         BUG_ON(!in_atomic());
2027         kaddr = kmap_atomic(page, KM_USER0);
2028         if (likely(i->nr_segs == 1)) {
2029                 int left;
2030                 char __user *buf = i->iov->iov_base + i->iov_offset;
2031                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2032                 copied = bytes - left;
2033         } else {
2034                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2035                                                 i->iov, i->iov_offset, bytes);
2036         }
2037         kunmap_atomic(kaddr, KM_USER0);
2038
2039         return copied;
2040 }
2041 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2042
2043 /*
2044  * This has the same sideeffects and return value as
2045  * iov_iter_copy_from_user_atomic().
2046  * The difference is that it attempts to resolve faults.
2047  * Page must not be locked.
2048  */
2049 size_t iov_iter_copy_from_user(struct page *page,
2050                 struct iov_iter *i, unsigned long offset, size_t bytes)
2051 {
2052         char *kaddr;
2053         size_t copied;
2054
2055         kaddr = kmap(page);
2056         if (likely(i->nr_segs == 1)) {
2057                 int left;
2058                 char __user *buf = i->iov->iov_base + i->iov_offset;
2059                 left = __copy_from_user(kaddr + offset, buf, bytes);
2060                 copied = bytes - left;
2061         } else {
2062                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2063                                                 i->iov, i->iov_offset, bytes);
2064         }
2065         kunmap(page);
2066         return copied;
2067 }
2068 EXPORT_SYMBOL(iov_iter_copy_from_user);
2069
2070 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2071 {
2072         BUG_ON(i->count < bytes);
2073
2074         if (likely(i->nr_segs == 1)) {
2075                 i->iov_offset += bytes;
2076                 i->count -= bytes;
2077         } else {
2078                 const struct iovec *iov = i->iov;
2079                 size_t base = i->iov_offset;
2080
2081                 /*
2082                  * The !iov->iov_len check ensures we skip over unlikely
2083                  * zero-length segments (without overruning the iovec).
2084                  */
2085                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2086                         int copy;
2087
2088                         copy = min(bytes, iov->iov_len - base);
2089                         BUG_ON(!i->count || i->count < copy);
2090                         i->count -= copy;
2091                         bytes -= copy;
2092                         base += copy;
2093                         if (iov->iov_len == base) {
2094                                 iov++;
2095                                 base = 0;
2096                         }
2097                 }
2098                 i->iov = iov;
2099                 i->iov_offset = base;
2100         }
2101 }
2102 EXPORT_SYMBOL(iov_iter_advance);
2103
2104 /*
2105  * Fault in the first iovec of the given iov_iter, to a maximum length
2106  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2107  * accessed (ie. because it is an invalid address).
2108  *
2109  * writev-intensive code may want this to prefault several iovecs -- that
2110  * would be possible (callers must not rely on the fact that _only_ the
2111  * first iovec will be faulted with the current implementation).
2112  */
2113 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2114 {
2115         char __user *buf = i->iov->iov_base + i->iov_offset;
2116         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2117         return fault_in_pages_readable(buf, bytes);
2118 }
2119 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2120
2121 /*
2122  * Return the count of just the current iov_iter segment.
2123  */
2124 size_t iov_iter_single_seg_count(struct iov_iter *i)
2125 {
2126         const struct iovec *iov = i->iov;
2127         if (i->nr_segs == 1)
2128                 return i->count;
2129         else
2130                 return min(i->count, iov->iov_len - i->iov_offset);
2131 }
2132 EXPORT_SYMBOL(iov_iter_single_seg_count);
2133
2134 /*
2135  * Performs necessary checks before doing a write
2136  *
2137  * Can adjust writing position or amount of bytes to write.
2138  * Returns appropriate error code that caller should return or
2139  * zero in case that write should be allowed.
2140  */
2141 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2142 {
2143         struct inode *inode = file->f_mapping->host;
2144         unsigned long limit = rlimit(RLIMIT_FSIZE);
2145
2146         if (unlikely(*pos < 0))
2147                 return -EINVAL;
2148
2149         if (!isblk) {
2150                 /* FIXME: this is for backwards compatibility with 2.4 */
2151                 if (file->f_flags & O_APPEND)
2152                         *pos = i_size_read(inode);
2153
2154                 if (limit != RLIM_INFINITY) {
2155                         if (*pos >= limit) {
2156                                 send_sig(SIGXFSZ, current, 0);
2157                                 return -EFBIG;
2158                         }
2159                         if (*count > limit - (typeof(limit))*pos) {
2160                                 *count = limit - (typeof(limit))*pos;
2161                         }
2162                 }
2163         }
2164
2165         /*
2166          * LFS rule
2167          */
2168         if (unlikely(*pos + *count > MAX_NON_LFS &&
2169                                 !(file->f_flags & O_LARGEFILE))) {
2170                 if (*pos >= MAX_NON_LFS) {
2171                         return -EFBIG;
2172                 }
2173                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2174                         *count = MAX_NON_LFS - (unsigned long)*pos;
2175                 }
2176         }
2177
2178         /*
2179          * Are we about to exceed the fs block limit ?
2180          *
2181          * If we have written data it becomes a short write.  If we have
2182          * exceeded without writing data we send a signal and return EFBIG.
2183          * Linus frestrict idea will clean these up nicely..
2184          */
2185         if (likely(!isblk)) {
2186                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2187                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2188                                 return -EFBIG;
2189                         }
2190                         /* zero-length writes at ->s_maxbytes are OK */
2191                 }
2192
2193                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2194                         *count = inode->i_sb->s_maxbytes - *pos;
2195         } else {
2196 #ifdef CONFIG_BLOCK
2197                 loff_t isize;
2198                 if (bdev_read_only(I_BDEV(inode)))
2199                         return -EPERM;
2200                 isize = i_size_read(inode);
2201                 if (*pos >= isize) {
2202                         if (*count || *pos > isize)
2203                                 return -ENOSPC;
2204                 }
2205
2206                 if (*pos + *count > isize)
2207                         *count = isize - *pos;
2208 #else
2209                 return -EPERM;
2210 #endif
2211         }
2212         return 0;
2213 }
2214 EXPORT_SYMBOL(generic_write_checks);
2215
2216 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2217                                 loff_t pos, unsigned len, unsigned flags,
2218                                 struct page **pagep, void **fsdata)
2219 {
2220         const struct address_space_operations *aops = mapping->a_ops;
2221
2222         return aops->write_begin(file, mapping, pos, len, flags,
2223                                                         pagep, fsdata);
2224 }
2225 EXPORT_SYMBOL(pagecache_write_begin);
2226
2227 int pagecache_write_end(struct file *file, struct address_space *mapping,
2228                                 loff_t pos, unsigned len, unsigned copied,
2229                                 struct page *page, void *fsdata)
2230 {
2231         const struct address_space_operations *aops = mapping->a_ops;
2232
2233         mark_page_accessed(page);
2234         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2235 }
2236 EXPORT_SYMBOL(pagecache_write_end);
2237
2238 ssize_t
2239 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2240                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2241                 size_t count, size_t ocount)
2242 {
2243         struct file     *file = iocb->ki_filp;
2244         struct address_space *mapping = file->f_mapping;
2245         struct inode    *inode = mapping->host;
2246         ssize_t         written;
2247         size_t          write_len;
2248         pgoff_t         end;
2249
2250         if (count != ocount)
2251                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2252
2253         write_len = iov_length(iov, *nr_segs);
2254         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2255
2256         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2257         if (written)
2258                 goto out;
2259
2260         /*
2261          * After a write we want buffered reads to be sure to go to disk to get
2262          * the new data.  We invalidate clean cached page from the region we're
2263          * about to write.  We do this *before* the write so that we can return
2264          * without clobbering -EIOCBQUEUED from ->direct_IO().
2265          */
2266         if (mapping->nrpages) {
2267                 written = invalidate_inode_pages2_range(mapping,
2268                                         pos >> PAGE_CACHE_SHIFT, end);
2269                 /*
2270                  * If a page can not be invalidated, return 0 to fall back
2271                  * to buffered write.
2272                  */
2273                 if (written) {
2274                         if (written == -EBUSY)
2275                                 return 0;
2276                         goto out;
2277                 }
2278         }
2279
2280         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2281
2282         /*
2283          * Finally, try again to invalidate clean pages which might have been
2284          * cached by non-direct readahead, or faulted in by get_user_pages()
2285          * if the source of the write was an mmap'ed region of the file
2286          * we're writing.  Either one is a pretty crazy thing to do,
2287          * so we don't support it 100%.  If this invalidation
2288          * fails, tough, the write still worked...
2289          */
2290         if (mapping->nrpages) {
2291                 invalidate_inode_pages2_range(mapping,
2292                                               pos >> PAGE_CACHE_SHIFT, end);
2293         }
2294
2295         if (written > 0) {
2296                 pos += written;
2297                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2298                         i_size_write(inode, pos);
2299                         mark_inode_dirty(inode);
2300                 }
2301                 *ppos = pos;
2302         }
2303 out:
2304         return written;
2305 }
2306 EXPORT_SYMBOL(generic_file_direct_write);
2307
2308 /*
2309  * Find or create a page at the given pagecache position. Return the locked
2310  * page. This function is specifically for buffered writes.
2311  */
2312 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2313                                         pgoff_t index, unsigned flags)
2314 {
2315         int status;
2316         struct page *page;
2317         gfp_t gfp_notmask = 0;
2318         if (flags & AOP_FLAG_NOFS)
2319                 gfp_notmask = __GFP_FS;
2320 repeat:
2321         page = find_lock_page(mapping, index);
2322         if (page)
2323                 goto found;
2324
2325         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2326         if (!page)
2327                 return NULL;
2328         status = add_to_page_cache_lru(page, mapping, index,
2329                                                 GFP_KERNEL & ~gfp_notmask);
2330         if (unlikely(status)) {
2331                 page_cache_release(page);
2332                 if (status == -EEXIST)
2333                         goto repeat;
2334                 return NULL;
2335         }
2336 found:
2337         wait_on_page_writeback(page);
2338         return page;
2339 }
2340 EXPORT_SYMBOL(grab_cache_page_write_begin);
2341
2342 static ssize_t generic_perform_write(struct file *file,
2343                                 struct iov_iter *i, loff_t pos)
2344 {
2345         struct address_space *mapping = file->f_mapping;
2346         const struct address_space_operations *a_ops = mapping->a_ops;
2347         long status = 0;
2348         ssize_t written = 0;
2349         unsigned int flags = 0;
2350
2351         /*
2352          * Copies from kernel address space cannot fail (NFSD is a big user).
2353          */
2354         if (segment_eq(get_fs(), KERNEL_DS))
2355                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2356
2357         do {
2358                 struct page *page;
2359                 unsigned long offset;   /* Offset into pagecache page */
2360                 unsigned long bytes;    /* Bytes to write to page */
2361                 size_t copied;          /* Bytes copied from user */
2362                 void *fsdata;
2363
2364                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2365                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2366                                                 iov_iter_count(i));
2367
2368 again:
2369
2370                 /*
2371                  * Bring in the user page that we will copy from _first_.
2372                  * Otherwise there's a nasty deadlock on copying from the
2373                  * same page as we're writing to, without it being marked
2374                  * up-to-date.
2375                  *
2376                  * Not only is this an optimisation, but it is also required
2377                  * to check that the address is actually valid, when atomic
2378                  * usercopies are used, below.
2379                  */
2380                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2381                         status = -EFAULT;
2382                         break;
2383                 }
2384
2385                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2386                                                 &page, &fsdata);
2387                 if (unlikely(status))
2388                         break;
2389
2390                 if (mapping_writably_mapped(mapping))
2391                         flush_dcache_page(page);
2392
2393                 pagefault_disable();
2394                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2395                 pagefault_enable();
2396                 flush_dcache_page(page);
2397
2398                 mark_page_accessed(page);
2399                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2400                                                 page, fsdata);
2401                 if (unlikely(status < 0))
2402                         break;
2403                 copied = status;
2404
2405                 cond_resched();
2406
2407                 iov_iter_advance(i, copied);
2408                 if (unlikely(copied == 0)) {
2409                         /*
2410                          * If we were unable to copy any data at all, we must
2411                          * fall back to a single segment length write.
2412                          *
2413                          * If we didn't fallback here, we could livelock
2414                          * because not all segments in the iov can be copied at
2415                          * once without a pagefault.
2416                          */
2417                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2418                                                 iov_iter_single_seg_count(i));
2419                         goto again;
2420                 }
2421                 pos += copied;
2422                 written += copied;
2423
2424                 balance_dirty_pages_ratelimited(mapping);
2425
2426         } while (iov_iter_count(i));
2427
2428         return written ? written : status;
2429 }
2430
2431 ssize_t
2432 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2433                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2434                 size_t count, ssize_t written)
2435 {
2436         struct file *file = iocb->ki_filp;
2437         ssize_t status;
2438         struct iov_iter i;
2439
2440         iov_iter_init(&i, iov, nr_segs, count, written);
2441         status = generic_perform_write(file, &i, pos);
2442
2443         if (likely(status >= 0)) {
2444                 written += status;
2445                 *ppos = pos + status;
2446         }
2447         
2448         return written ? written : status;
2449 }
2450 EXPORT_SYMBOL(generic_file_buffered_write);
2451
2452 /**
2453  * __generic_file_aio_write - write data to a file
2454  * @iocb:       IO state structure (file, offset, etc.)
2455  * @iov:        vector with data to write
2456  * @nr_segs:    number of segments in the vector
2457  * @ppos:       position where to write
2458  *
2459  * This function does all the work needed for actually writing data to a
2460  * file. It does all basic checks, removes SUID from the file, updates
2461  * modification times and calls proper subroutines depending on whether we
2462  * do direct IO or a standard buffered write.
2463  *
2464  * It expects i_mutex to be grabbed unless we work on a block device or similar
2465  * object which does not need locking at all.
2466  *
2467  * This function does *not* take care of syncing data in case of O_SYNC write.
2468  * A caller has to handle it. This is mainly due to the fact that we want to
2469  * avoid syncing under i_mutex.
2470  */
2471 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2472                                  unsigned long nr_segs, loff_t *ppos)
2473 {
2474         struct file *file = iocb->ki_filp;
2475         struct address_space * mapping = file->f_mapping;
2476         size_t ocount;          /* original count */
2477         size_t count;           /* after file limit checks */
2478         struct inode    *inode = mapping->host;
2479         loff_t          pos;
2480         ssize_t         written;
2481         ssize_t         err;
2482
2483         ocount = 0;
2484         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2485         if (err)
2486                 return err;
2487
2488         count = ocount;
2489         pos = *ppos;
2490
2491         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2492
2493         /* We can write back this queue in page reclaim */
2494         current->backing_dev_info = mapping->backing_dev_info;
2495         written = 0;
2496
2497         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2498         if (err)
2499                 goto out;
2500
2501         if (count == 0)
2502                 goto out;
2503
2504         err = file_remove_suid(file);
2505         if (err)
2506                 goto out;
2507
2508         file_update_time(file);
2509
2510         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2511         if (unlikely(file->f_flags & O_DIRECT)) {
2512                 loff_t endbyte;
2513                 ssize_t written_buffered;
2514
2515                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2516                                                         ppos, count, ocount);
2517                 if (written < 0 || written == count)
2518                         goto out;
2519                 /*
2520                  * direct-io write to a hole: fall through to buffered I/O
2521                  * for completing the rest of the request.
2522                  */
2523                 pos += written;
2524                 count -= written;
2525                 written_buffered = generic_file_buffered_write(iocb, iov,
2526                                                 nr_segs, pos, ppos, count,
2527                                                 written);
2528                 /*
2529                  * If generic_file_buffered_write() retuned a synchronous error
2530                  * then we want to return the number of bytes which were
2531                  * direct-written, or the error code if that was zero.  Note
2532                  * that this differs from normal direct-io semantics, which
2533                  * will return -EFOO even if some bytes were written.
2534                  */
2535                 if (written_buffered < 0) {
2536                         err = written_buffered;
2537                         goto out;
2538                 }
2539
2540                 /*
2541                  * We need to ensure that the page cache pages are written to
2542                  * disk and invalidated to preserve the expected O_DIRECT
2543                  * semantics.
2544                  */
2545                 endbyte = pos + written_buffered - written - 1;
2546                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2547                 if (err == 0) {
2548                         written = written_buffered;
2549                         invalidate_mapping_pages(mapping,
2550                                                  pos >> PAGE_CACHE_SHIFT,
2551                                                  endbyte >> PAGE_CACHE_SHIFT);
2552                 } else {
2553                         /*
2554                          * We don't know how much we wrote, so just return
2555                          * the number of bytes which were direct-written
2556                          */
2557                 }
2558         } else {
2559                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2560                                 pos, ppos, count, written);
2561         }
2562 out:
2563         current->backing_dev_info = NULL;
2564         return written ? written : err;
2565 }
2566 EXPORT_SYMBOL(__generic_file_aio_write);
2567
2568 /**
2569  * generic_file_aio_write - write data to a file
2570  * @iocb:       IO state structure
2571  * @iov:        vector with data to write
2572  * @nr_segs:    number of segments in the vector
2573  * @pos:        position in file where to write
2574  *
2575  * This is a wrapper around __generic_file_aio_write() to be used by most
2576  * filesystems. It takes care of syncing the file in case of O_SYNC file
2577  * and acquires i_mutex as needed.
2578  */
2579 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2580                 unsigned long nr_segs, loff_t pos)
2581 {
2582         struct file *file = iocb->ki_filp;
2583         struct inode *inode = file->f_mapping->host;
2584         struct blk_plug plug;
2585         ssize_t ret;
2586
2587         BUG_ON(iocb->ki_pos != pos);
2588
2589         mutex_lock(&inode->i_mutex);
2590         blk_start_plug(&plug);
2591         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2592         mutex_unlock(&inode->i_mutex);
2593
2594         if (ret > 0 || ret == -EIOCBQUEUED) {
2595                 ssize_t err;
2596
2597                 err = generic_write_sync(file, pos, ret);
2598                 if (err < 0 && ret > 0)
2599                         ret = err;
2600         }
2601         blk_finish_plug(&plug);
2602         return ret;
2603 }
2604 EXPORT_SYMBOL(generic_file_aio_write);
2605
2606 /**
2607  * try_to_release_page() - release old fs-specific metadata on a page
2608  *
2609  * @page: the page which the kernel is trying to free
2610  * @gfp_mask: memory allocation flags (and I/O mode)
2611  *
2612  * The address_space is to try to release any data against the page
2613  * (presumably at page->private).  If the release was successful, return `1'.
2614  * Otherwise return zero.
2615  *
2616  * This may also be called if PG_fscache is set on a page, indicating that the
2617  * page is known to the local caching routines.
2618  *
2619  * The @gfp_mask argument specifies whether I/O may be performed to release
2620  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2621  *
2622  */
2623 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2624 {
2625         struct address_space * const mapping = page->mapping;
2626
2627         BUG_ON(!PageLocked(page));
2628         if (PageWriteback(page))
2629                 return 0;
2630
2631         if (mapping && mapping->a_ops->releasepage)
2632                 return mapping->a_ops->releasepage(page, gfp_mask);
2633         return try_to_free_buffers(page);
2634 }
2635
2636 EXPORT_SYMBOL(try_to_release_page);