OSDN Git Service

mm: do not ignore mapping_gfp_mask in page cache allocation paths
[uclinux-h8/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_rwsem
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         /* hugetlb pages do not participate in page cache accounting. */
200         if (!PageHuge(page))
201                 __dec_zone_page_state(page, NR_FILE_PAGES);
202         if (PageSwapBacked(page))
203                 __dec_zone_page_state(page, NR_SHMEM);
204         BUG_ON(page_mapped(page));
205
206         /*
207          * At this point page must be either written or cleaned by truncate.
208          * Dirty page here signals a bug and loss of unwritten data.
209          *
210          * This fixes dirty accounting after removing the page entirely but
211          * leaves PageDirty set: it has no effect for truncated page and
212          * anyway will be cleared before returning page into buddy allocator.
213          */
214         if (WARN_ON_ONCE(PageDirty(page)))
215                 account_page_cleaned(page, mapping);
216 }
217
218 /**
219  * delete_from_page_cache - delete page from page cache
220  * @page: the page which the kernel is trying to remove from page cache
221  *
222  * This must be called only on pages that have been verified to be in the page
223  * cache and locked.  It will never put the page into the free list, the caller
224  * has a reference on the page.
225  */
226 void delete_from_page_cache(struct page *page)
227 {
228         struct address_space *mapping = page->mapping;
229         void (*freepage)(struct page *);
230
231         BUG_ON(!PageLocked(page));
232
233         freepage = mapping->a_ops->freepage;
234         spin_lock_irq(&mapping->tree_lock);
235         __delete_from_page_cache(page, NULL);
236         spin_unlock_irq(&mapping->tree_lock);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246         int ret = 0;
247         /* Check for outstanding write errors */
248         if (test_bit(AS_ENOSPC, &mapping->flags) &&
249             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250                 ret = -ENOSPC;
251         if (test_bit(AS_EIO, &mapping->flags) &&
252             test_and_clear_bit(AS_EIO, &mapping->flags))
253                 ret = -EIO;
254         return ret;
255 }
256
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:    address space structure to write
260  * @start:      offset in bytes where the range starts
261  * @end:        offset in bytes where the range ends (inclusive)
262  * @sync_mode:  enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273                                 loff_t end, int sync_mode)
274 {
275         int ret;
276         struct writeback_control wbc = {
277                 .sync_mode = sync_mode,
278                 .nr_to_write = LONG_MAX,
279                 .range_start = start,
280                 .range_end = end,
281         };
282
283         if (!mapping_cap_writeback_dirty(mapping))
284                 return 0;
285
286         ret = do_writepages(mapping, &wbc);
287         return ret;
288 }
289
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291         int sync_mode)
292 {
293         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303                                 loff_t end)
304 {
305         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:    target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:            address space structure to wait for
325  * @start_byte:         offset in bytes where the range starts
326  * @end_byte:           offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332                             loff_t end_byte)
333 {
334         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336         struct pagevec pvec;
337         int nr_pages;
338         int ret2, ret = 0;
339
340         if (end_byte < start_byte)
341                 goto out;
342
343         pagevec_init(&pvec, 0);
344         while ((index <= end) &&
345                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346                         PAGECACHE_TAG_WRITEBACK,
347                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348                 unsigned i;
349
350                 for (i = 0; i < nr_pages; i++) {
351                         struct page *page = pvec.pages[i];
352
353                         /* until radix tree lookup accepts end_index */
354                         if (page->index > end)
355                                 continue;
356
357                         wait_on_page_writeback(page);
358                         if (TestClearPageError(page))
359                                 ret = -EIO;
360                 }
361                 pagevec_release(&pvec);
362                 cond_resched();
363         }
364 out:
365         ret2 = filemap_check_errors(mapping);
366         if (!ret)
367                 ret = ret2;
368
369         return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382         loff_t i_size = i_size_read(mapping->host);
383
384         if (i_size == 0)
385                 return 0;
386
387         return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393         int err = 0;
394
395         if (mapping->nrpages) {
396                 err = filemap_fdatawrite(mapping);
397                 /*
398                  * Even if the above returned error, the pages may be
399                  * written partially (e.g. -ENOSPC), so we wait for it.
400                  * But the -EIO is special case, it may indicate the worst
401                  * thing (e.g. bug) happened, so we avoid waiting for it.
402                  */
403                 if (err != -EIO) {
404                         int err2 = filemap_fdatawait(mapping);
405                         if (!err)
406                                 err = err2;
407                 }
408         } else {
409                 err = filemap_check_errors(mapping);
410         }
411         return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:    the address_space for the pages
418  * @lstart:     offset in bytes where the range starts
419  * @lend:       offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427                                  loff_t lstart, loff_t lend)
428 {
429         int err = 0;
430
431         if (mapping->nrpages) {
432                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433                                                  WB_SYNC_ALL);
434                 /* See comment of filemap_write_and_wait() */
435                 if (err != -EIO) {
436                         int err2 = filemap_fdatawait_range(mapping,
437                                                 lstart, lend);
438                         if (!err)
439                                 err = err2;
440                 }
441         } else {
442                 err = filemap_check_errors(mapping);
443         }
444         return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:        page to be replaced
451  * @new:        page to replace with
452  * @gfp_mask:   allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465         int error;
466
467         VM_BUG_ON_PAGE(!PageLocked(old), old);
468         VM_BUG_ON_PAGE(!PageLocked(new), new);
469         VM_BUG_ON_PAGE(new->mapping, new);
470
471         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472         if (!error) {
473                 struct address_space *mapping = old->mapping;
474                 void (*freepage)(struct page *);
475
476                 pgoff_t offset = old->index;
477                 freepage = mapping->a_ops->freepage;
478
479                 page_cache_get(new);
480                 new->mapping = mapping;
481                 new->index = offset;
482
483                 spin_lock_irq(&mapping->tree_lock);
484                 __delete_from_page_cache(old, NULL);
485                 error = radix_tree_insert(&mapping->page_tree, offset, new);
486                 BUG_ON(error);
487                 mapping->nrpages++;
488
489                 /*
490                  * hugetlb pages do not participate in page cache accounting.
491                  */
492                 if (!PageHuge(new))
493                         __inc_zone_page_state(new, NR_FILE_PAGES);
494                 if (PageSwapBacked(new))
495                         __inc_zone_page_state(new, NR_SHMEM);
496                 spin_unlock_irq(&mapping->tree_lock);
497                 mem_cgroup_migrate(old, new, true);
498                 radix_tree_preload_end();
499                 if (freepage)
500                         freepage(old);
501                 page_cache_release(old);
502         }
503
504         return error;
505 }
506 EXPORT_SYMBOL_GPL(replace_page_cache_page);
507
508 static int page_cache_tree_insert(struct address_space *mapping,
509                                   struct page *page, void **shadowp)
510 {
511         struct radix_tree_node *node;
512         void **slot;
513         int error;
514
515         error = __radix_tree_create(&mapping->page_tree, page->index,
516                                     &node, &slot);
517         if (error)
518                 return error;
519         if (*slot) {
520                 void *p;
521
522                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
523                 if (!radix_tree_exceptional_entry(p))
524                         return -EEXIST;
525                 if (shadowp)
526                         *shadowp = p;
527                 mapping->nrshadows--;
528                 if (node)
529                         workingset_node_shadows_dec(node);
530         }
531         radix_tree_replace_slot(slot, page);
532         mapping->nrpages++;
533         if (node) {
534                 workingset_node_pages_inc(node);
535                 /*
536                  * Don't track node that contains actual pages.
537                  *
538                  * Avoid acquiring the list_lru lock if already
539                  * untracked.  The list_empty() test is safe as
540                  * node->private_list is protected by
541                  * mapping->tree_lock.
542                  */
543                 if (!list_empty(&node->private_list))
544                         list_lru_del(&workingset_shadow_nodes,
545                                      &node->private_list);
546         }
547         return 0;
548 }
549
550 static int __add_to_page_cache_locked(struct page *page,
551                                       struct address_space *mapping,
552                                       pgoff_t offset, gfp_t gfp_mask,
553                                       void **shadowp)
554 {
555         int huge = PageHuge(page);
556         struct mem_cgroup *memcg;
557         int error;
558
559         VM_BUG_ON_PAGE(!PageLocked(page), page);
560         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
561
562         if (!huge) {
563                 error = mem_cgroup_try_charge(page, current->mm,
564                                               gfp_mask, &memcg);
565                 if (error)
566                         return error;
567         }
568
569         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
570         if (error) {
571                 if (!huge)
572                         mem_cgroup_cancel_charge(page, memcg);
573                 return error;
574         }
575
576         page_cache_get(page);
577         page->mapping = mapping;
578         page->index = offset;
579
580         spin_lock_irq(&mapping->tree_lock);
581         error = page_cache_tree_insert(mapping, page, shadowp);
582         radix_tree_preload_end();
583         if (unlikely(error))
584                 goto err_insert;
585
586         /* hugetlb pages do not participate in page cache accounting. */
587         if (!huge)
588                 __inc_zone_page_state(page, NR_FILE_PAGES);
589         spin_unlock_irq(&mapping->tree_lock);
590         if (!huge)
591                 mem_cgroup_commit_charge(page, memcg, false);
592         trace_mm_filemap_add_to_page_cache(page);
593         return 0;
594 err_insert:
595         page->mapping = NULL;
596         /* Leave page->index set: truncation relies upon it */
597         spin_unlock_irq(&mapping->tree_lock);
598         if (!huge)
599                 mem_cgroup_cancel_charge(page, memcg);
600         page_cache_release(page);
601         return error;
602 }
603
604 /**
605  * add_to_page_cache_locked - add a locked page to the pagecache
606  * @page:       page to add
607  * @mapping:    the page's address_space
608  * @offset:     page index
609  * @gfp_mask:   page allocation mode
610  *
611  * This function is used to add a page to the pagecache. It must be locked.
612  * This function does not add the page to the LRU.  The caller must do that.
613  */
614 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
615                 pgoff_t offset, gfp_t gfp_mask)
616 {
617         return __add_to_page_cache_locked(page, mapping, offset,
618                                           gfp_mask, NULL);
619 }
620 EXPORT_SYMBOL(add_to_page_cache_locked);
621
622 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
623                                 pgoff_t offset, gfp_t gfp_mask)
624 {
625         void *shadow = NULL;
626         int ret;
627
628         __set_page_locked(page);
629         ret = __add_to_page_cache_locked(page, mapping, offset,
630                                          gfp_mask, &shadow);
631         if (unlikely(ret))
632                 __clear_page_locked(page);
633         else {
634                 /*
635                  * The page might have been evicted from cache only
636                  * recently, in which case it should be activated like
637                  * any other repeatedly accessed page.
638                  */
639                 if (shadow && workingset_refault(shadow)) {
640                         SetPageActive(page);
641                         workingset_activation(page);
642                 } else
643                         ClearPageActive(page);
644                 lru_cache_add(page);
645         }
646         return ret;
647 }
648 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
649
650 #ifdef CONFIG_NUMA
651 struct page *__page_cache_alloc(gfp_t gfp)
652 {
653         int n;
654         struct page *page;
655
656         if (cpuset_do_page_mem_spread()) {
657                 unsigned int cpuset_mems_cookie;
658                 do {
659                         cpuset_mems_cookie = read_mems_allowed_begin();
660                         n = cpuset_mem_spread_node();
661                         page = alloc_pages_exact_node(n, gfp, 0);
662                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
663
664                 return page;
665         }
666         return alloc_pages(gfp, 0);
667 }
668 EXPORT_SYMBOL(__page_cache_alloc);
669 #endif
670
671 /*
672  * In order to wait for pages to become available there must be
673  * waitqueues associated with pages. By using a hash table of
674  * waitqueues where the bucket discipline is to maintain all
675  * waiters on the same queue and wake all when any of the pages
676  * become available, and for the woken contexts to check to be
677  * sure the appropriate page became available, this saves space
678  * at a cost of "thundering herd" phenomena during rare hash
679  * collisions.
680  */
681 wait_queue_head_t *page_waitqueue(struct page *page)
682 {
683         const struct zone *zone = page_zone(page);
684
685         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
686 }
687 EXPORT_SYMBOL(page_waitqueue);
688
689 void wait_on_page_bit(struct page *page, int bit_nr)
690 {
691         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
692
693         if (test_bit(bit_nr, &page->flags))
694                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
695                                                         TASK_UNINTERRUPTIBLE);
696 }
697 EXPORT_SYMBOL(wait_on_page_bit);
698
699 int wait_on_page_bit_killable(struct page *page, int bit_nr)
700 {
701         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
702
703         if (!test_bit(bit_nr, &page->flags))
704                 return 0;
705
706         return __wait_on_bit(page_waitqueue(page), &wait,
707                              bit_wait_io, TASK_KILLABLE);
708 }
709
710 int wait_on_page_bit_killable_timeout(struct page *page,
711                                        int bit_nr, unsigned long timeout)
712 {
713         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
714
715         wait.key.timeout = jiffies + timeout;
716         if (!test_bit(bit_nr, &page->flags))
717                 return 0;
718         return __wait_on_bit(page_waitqueue(page), &wait,
719                              bit_wait_io_timeout, TASK_KILLABLE);
720 }
721 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
722
723 /**
724  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
725  * @page: Page defining the wait queue of interest
726  * @waiter: Waiter to add to the queue
727  *
728  * Add an arbitrary @waiter to the wait queue for the nominated @page.
729  */
730 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
731 {
732         wait_queue_head_t *q = page_waitqueue(page);
733         unsigned long flags;
734
735         spin_lock_irqsave(&q->lock, flags);
736         __add_wait_queue(q, waiter);
737         spin_unlock_irqrestore(&q->lock, flags);
738 }
739 EXPORT_SYMBOL_GPL(add_page_wait_queue);
740
741 /**
742  * unlock_page - unlock a locked page
743  * @page: the page
744  *
745  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
746  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
747  * mechanism between PageLocked pages and PageWriteback pages is shared.
748  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
749  *
750  * The mb is necessary to enforce ordering between the clear_bit and the read
751  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
752  */
753 void unlock_page(struct page *page)
754 {
755         VM_BUG_ON_PAGE(!PageLocked(page), page);
756         clear_bit_unlock(PG_locked, &page->flags);
757         smp_mb__after_atomic();
758         wake_up_page(page, PG_locked);
759 }
760 EXPORT_SYMBOL(unlock_page);
761
762 /**
763  * end_page_writeback - end writeback against a page
764  * @page: the page
765  */
766 void end_page_writeback(struct page *page)
767 {
768         /*
769          * TestClearPageReclaim could be used here but it is an atomic
770          * operation and overkill in this particular case. Failing to
771          * shuffle a page marked for immediate reclaim is too mild to
772          * justify taking an atomic operation penalty at the end of
773          * ever page writeback.
774          */
775         if (PageReclaim(page)) {
776                 ClearPageReclaim(page);
777                 rotate_reclaimable_page(page);
778         }
779
780         if (!test_clear_page_writeback(page))
781                 BUG();
782
783         smp_mb__after_atomic();
784         wake_up_page(page, PG_writeback);
785 }
786 EXPORT_SYMBOL(end_page_writeback);
787
788 /*
789  * After completing I/O on a page, call this routine to update the page
790  * flags appropriately
791  */
792 void page_endio(struct page *page, int rw, int err)
793 {
794         if (rw == READ) {
795                 if (!err) {
796                         SetPageUptodate(page);
797                 } else {
798                         ClearPageUptodate(page);
799                         SetPageError(page);
800                 }
801                 unlock_page(page);
802         } else { /* rw == WRITE */
803                 if (err) {
804                         SetPageError(page);
805                         if (page->mapping)
806                                 mapping_set_error(page->mapping, err);
807                 }
808                 end_page_writeback(page);
809         }
810 }
811 EXPORT_SYMBOL_GPL(page_endio);
812
813 /**
814  * __lock_page - get a lock on the page, assuming we need to sleep to get it
815  * @page: the page to lock
816  */
817 void __lock_page(struct page *page)
818 {
819         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
820
821         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
822                                                         TASK_UNINTERRUPTIBLE);
823 }
824 EXPORT_SYMBOL(__lock_page);
825
826 int __lock_page_killable(struct page *page)
827 {
828         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
829
830         return __wait_on_bit_lock(page_waitqueue(page), &wait,
831                                         bit_wait_io, TASK_KILLABLE);
832 }
833 EXPORT_SYMBOL_GPL(__lock_page_killable);
834
835 /*
836  * Return values:
837  * 1 - page is locked; mmap_sem is still held.
838  * 0 - page is not locked.
839  *     mmap_sem has been released (up_read()), unless flags had both
840  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
841  *     which case mmap_sem is still held.
842  *
843  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
844  * with the page locked and the mmap_sem unperturbed.
845  */
846 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
847                          unsigned int flags)
848 {
849         if (flags & FAULT_FLAG_ALLOW_RETRY) {
850                 /*
851                  * CAUTION! In this case, mmap_sem is not released
852                  * even though return 0.
853                  */
854                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
855                         return 0;
856
857                 up_read(&mm->mmap_sem);
858                 if (flags & FAULT_FLAG_KILLABLE)
859                         wait_on_page_locked_killable(page);
860                 else
861                         wait_on_page_locked(page);
862                 return 0;
863         } else {
864                 if (flags & FAULT_FLAG_KILLABLE) {
865                         int ret;
866
867                         ret = __lock_page_killable(page);
868                         if (ret) {
869                                 up_read(&mm->mmap_sem);
870                                 return 0;
871                         }
872                 } else
873                         __lock_page(page);
874                 return 1;
875         }
876 }
877
878 /**
879  * page_cache_next_hole - find the next hole (not-present entry)
880  * @mapping: mapping
881  * @index: index
882  * @max_scan: maximum range to search
883  *
884  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
885  * lowest indexed hole.
886  *
887  * Returns: the index of the hole if found, otherwise returns an index
888  * outside of the set specified (in which case 'return - index >=
889  * max_scan' will be true). In rare cases of index wrap-around, 0 will
890  * be returned.
891  *
892  * page_cache_next_hole may be called under rcu_read_lock. However,
893  * like radix_tree_gang_lookup, this will not atomically search a
894  * snapshot of the tree at a single point in time. For example, if a
895  * hole is created at index 5, then subsequently a hole is created at
896  * index 10, page_cache_next_hole covering both indexes may return 10
897  * if called under rcu_read_lock.
898  */
899 pgoff_t page_cache_next_hole(struct address_space *mapping,
900                              pgoff_t index, unsigned long max_scan)
901 {
902         unsigned long i;
903
904         for (i = 0; i < max_scan; i++) {
905                 struct page *page;
906
907                 page = radix_tree_lookup(&mapping->page_tree, index);
908                 if (!page || radix_tree_exceptional_entry(page))
909                         break;
910                 index++;
911                 if (index == 0)
912                         break;
913         }
914
915         return index;
916 }
917 EXPORT_SYMBOL(page_cache_next_hole);
918
919 /**
920  * page_cache_prev_hole - find the prev hole (not-present entry)
921  * @mapping: mapping
922  * @index: index
923  * @max_scan: maximum range to search
924  *
925  * Search backwards in the range [max(index-max_scan+1, 0), index] for
926  * the first hole.
927  *
928  * Returns: the index of the hole if found, otherwise returns an index
929  * outside of the set specified (in which case 'index - return >=
930  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
931  * will be returned.
932  *
933  * page_cache_prev_hole may be called under rcu_read_lock. However,
934  * like radix_tree_gang_lookup, this will not atomically search a
935  * snapshot of the tree at a single point in time. For example, if a
936  * hole is created at index 10, then subsequently a hole is created at
937  * index 5, page_cache_prev_hole covering both indexes may return 5 if
938  * called under rcu_read_lock.
939  */
940 pgoff_t page_cache_prev_hole(struct address_space *mapping,
941                              pgoff_t index, unsigned long max_scan)
942 {
943         unsigned long i;
944
945         for (i = 0; i < max_scan; i++) {
946                 struct page *page;
947
948                 page = radix_tree_lookup(&mapping->page_tree, index);
949                 if (!page || radix_tree_exceptional_entry(page))
950                         break;
951                 index--;
952                 if (index == ULONG_MAX)
953                         break;
954         }
955
956         return index;
957 }
958 EXPORT_SYMBOL(page_cache_prev_hole);
959
960 /**
961  * find_get_entry - find and get a page cache entry
962  * @mapping: the address_space to search
963  * @offset: the page cache index
964  *
965  * Looks up the page cache slot at @mapping & @offset.  If there is a
966  * page cache page, it is returned with an increased refcount.
967  *
968  * If the slot holds a shadow entry of a previously evicted page, or a
969  * swap entry from shmem/tmpfs, it is returned.
970  *
971  * Otherwise, %NULL is returned.
972  */
973 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
974 {
975         void **pagep;
976         struct page *page;
977
978         rcu_read_lock();
979 repeat:
980         page = NULL;
981         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
982         if (pagep) {
983                 page = radix_tree_deref_slot(pagep);
984                 if (unlikely(!page))
985                         goto out;
986                 if (radix_tree_exception(page)) {
987                         if (radix_tree_deref_retry(page))
988                                 goto repeat;
989                         /*
990                          * A shadow entry of a recently evicted page,
991                          * or a swap entry from shmem/tmpfs.  Return
992                          * it without attempting to raise page count.
993                          */
994                         goto out;
995                 }
996                 if (!page_cache_get_speculative(page))
997                         goto repeat;
998
999                 /*
1000                  * Has the page moved?
1001                  * This is part of the lockless pagecache protocol. See
1002                  * include/linux/pagemap.h for details.
1003                  */
1004                 if (unlikely(page != *pagep)) {
1005                         page_cache_release(page);
1006                         goto repeat;
1007                 }
1008         }
1009 out:
1010         rcu_read_unlock();
1011
1012         return page;
1013 }
1014 EXPORT_SYMBOL(find_get_entry);
1015
1016 /**
1017  * find_lock_entry - locate, pin and lock a page cache entry
1018  * @mapping: the address_space to search
1019  * @offset: the page cache index
1020  *
1021  * Looks up the page cache slot at @mapping & @offset.  If there is a
1022  * page cache page, it is returned locked and with an increased
1023  * refcount.
1024  *
1025  * If the slot holds a shadow entry of a previously evicted page, or a
1026  * swap entry from shmem/tmpfs, it is returned.
1027  *
1028  * Otherwise, %NULL is returned.
1029  *
1030  * find_lock_entry() may sleep.
1031  */
1032 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1033 {
1034         struct page *page;
1035
1036 repeat:
1037         page = find_get_entry(mapping, offset);
1038         if (page && !radix_tree_exception(page)) {
1039                 lock_page(page);
1040                 /* Has the page been truncated? */
1041                 if (unlikely(page->mapping != mapping)) {
1042                         unlock_page(page);
1043                         page_cache_release(page);
1044                         goto repeat;
1045                 }
1046                 VM_BUG_ON_PAGE(page->index != offset, page);
1047         }
1048         return page;
1049 }
1050 EXPORT_SYMBOL(find_lock_entry);
1051
1052 /**
1053  * pagecache_get_page - find and get a page reference
1054  * @mapping: the address_space to search
1055  * @offset: the page index
1056  * @fgp_flags: PCG flags
1057  * @gfp_mask: gfp mask to use for the page cache data page allocation
1058  *
1059  * Looks up the page cache slot at @mapping & @offset.
1060  *
1061  * PCG flags modify how the page is returned.
1062  *
1063  * FGP_ACCESSED: the page will be marked accessed
1064  * FGP_LOCK: Page is return locked
1065  * FGP_CREAT: If page is not present then a new page is allocated using
1066  *              @gfp_mask and added to the page cache and the VM's LRU
1067  *              list. The page is returned locked and with an increased
1068  *              refcount. Otherwise, %NULL is returned.
1069  *
1070  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1071  * if the GFP flags specified for FGP_CREAT are atomic.
1072  *
1073  * If there is a page cache page, it is returned with an increased refcount.
1074  */
1075 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1076         int fgp_flags, gfp_t gfp_mask)
1077 {
1078         struct page *page;
1079
1080 repeat:
1081         page = find_get_entry(mapping, offset);
1082         if (radix_tree_exceptional_entry(page))
1083                 page = NULL;
1084         if (!page)
1085                 goto no_page;
1086
1087         if (fgp_flags & FGP_LOCK) {
1088                 if (fgp_flags & FGP_NOWAIT) {
1089                         if (!trylock_page(page)) {
1090                                 page_cache_release(page);
1091                                 return NULL;
1092                         }
1093                 } else {
1094                         lock_page(page);
1095                 }
1096
1097                 /* Has the page been truncated? */
1098                 if (unlikely(page->mapping != mapping)) {
1099                         unlock_page(page);
1100                         page_cache_release(page);
1101                         goto repeat;
1102                 }
1103                 VM_BUG_ON_PAGE(page->index != offset, page);
1104         }
1105
1106         if (page && (fgp_flags & FGP_ACCESSED))
1107                 mark_page_accessed(page);
1108
1109 no_page:
1110         if (!page && (fgp_flags & FGP_CREAT)) {
1111                 int err;
1112                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1113                         gfp_mask |= __GFP_WRITE;
1114                 if (fgp_flags & FGP_NOFS)
1115                         gfp_mask &= ~__GFP_FS;
1116
1117                 page = __page_cache_alloc(gfp_mask);
1118                 if (!page)
1119                         return NULL;
1120
1121                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1122                         fgp_flags |= FGP_LOCK;
1123
1124                 /* Init accessed so avoid atomic mark_page_accessed later */
1125                 if (fgp_flags & FGP_ACCESSED)
1126                         __SetPageReferenced(page);
1127
1128                 err = add_to_page_cache_lru(page, mapping, offset,
1129                                 gfp_mask & GFP_RECLAIM_MASK);
1130                 if (unlikely(err)) {
1131                         page_cache_release(page);
1132                         page = NULL;
1133                         if (err == -EEXIST)
1134                                 goto repeat;
1135                 }
1136         }
1137
1138         return page;
1139 }
1140 EXPORT_SYMBOL(pagecache_get_page);
1141
1142 /**
1143  * find_get_entries - gang pagecache lookup
1144  * @mapping:    The address_space to search
1145  * @start:      The starting page cache index
1146  * @nr_entries: The maximum number of entries
1147  * @entries:    Where the resulting entries are placed
1148  * @indices:    The cache indices corresponding to the entries in @entries
1149  *
1150  * find_get_entries() will search for and return a group of up to
1151  * @nr_entries entries in the mapping.  The entries are placed at
1152  * @entries.  find_get_entries() takes a reference against any actual
1153  * pages it returns.
1154  *
1155  * The search returns a group of mapping-contiguous page cache entries
1156  * with ascending indexes.  There may be holes in the indices due to
1157  * not-present pages.
1158  *
1159  * Any shadow entries of evicted pages, or swap entries from
1160  * shmem/tmpfs, are included in the returned array.
1161  *
1162  * find_get_entries() returns the number of pages and shadow entries
1163  * which were found.
1164  */
1165 unsigned find_get_entries(struct address_space *mapping,
1166                           pgoff_t start, unsigned int nr_entries,
1167                           struct page **entries, pgoff_t *indices)
1168 {
1169         void **slot;
1170         unsigned int ret = 0;
1171         struct radix_tree_iter iter;
1172
1173         if (!nr_entries)
1174                 return 0;
1175
1176         rcu_read_lock();
1177 restart:
1178         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1179                 struct page *page;
1180 repeat:
1181                 page = radix_tree_deref_slot(slot);
1182                 if (unlikely(!page))
1183                         continue;
1184                 if (radix_tree_exception(page)) {
1185                         if (radix_tree_deref_retry(page))
1186                                 goto restart;
1187                         /*
1188                          * A shadow entry of a recently evicted page,
1189                          * or a swap entry from shmem/tmpfs.  Return
1190                          * it without attempting to raise page count.
1191                          */
1192                         goto export;
1193                 }
1194                 if (!page_cache_get_speculative(page))
1195                         goto repeat;
1196
1197                 /* Has the page moved? */
1198                 if (unlikely(page != *slot)) {
1199                         page_cache_release(page);
1200                         goto repeat;
1201                 }
1202 export:
1203                 indices[ret] = iter.index;
1204                 entries[ret] = page;
1205                 if (++ret == nr_entries)
1206                         break;
1207         }
1208         rcu_read_unlock();
1209         return ret;
1210 }
1211
1212 /**
1213  * find_get_pages - gang pagecache lookup
1214  * @mapping:    The address_space to search
1215  * @start:      The starting page index
1216  * @nr_pages:   The maximum number of pages
1217  * @pages:      Where the resulting pages are placed
1218  *
1219  * find_get_pages() will search for and return a group of up to
1220  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1221  * find_get_pages() takes a reference against the returned pages.
1222  *
1223  * The search returns a group of mapping-contiguous pages with ascending
1224  * indexes.  There may be holes in the indices due to not-present pages.
1225  *
1226  * find_get_pages() returns the number of pages which were found.
1227  */
1228 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1229                             unsigned int nr_pages, struct page **pages)
1230 {
1231         struct radix_tree_iter iter;
1232         void **slot;
1233         unsigned ret = 0;
1234
1235         if (unlikely(!nr_pages))
1236                 return 0;
1237
1238         rcu_read_lock();
1239 restart:
1240         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1241                 struct page *page;
1242 repeat:
1243                 page = radix_tree_deref_slot(slot);
1244                 if (unlikely(!page))
1245                         continue;
1246
1247                 if (radix_tree_exception(page)) {
1248                         if (radix_tree_deref_retry(page)) {
1249                                 /*
1250                                  * Transient condition which can only trigger
1251                                  * when entry at index 0 moves out of or back
1252                                  * to root: none yet gotten, safe to restart.
1253                                  */
1254                                 WARN_ON(iter.index);
1255                                 goto restart;
1256                         }
1257                         /*
1258                          * A shadow entry of a recently evicted page,
1259                          * or a swap entry from shmem/tmpfs.  Skip
1260                          * over it.
1261                          */
1262                         continue;
1263                 }
1264
1265                 if (!page_cache_get_speculative(page))
1266                         goto repeat;
1267
1268                 /* Has the page moved? */
1269                 if (unlikely(page != *slot)) {
1270                         page_cache_release(page);
1271                         goto repeat;
1272                 }
1273
1274                 pages[ret] = page;
1275                 if (++ret == nr_pages)
1276                         break;
1277         }
1278
1279         rcu_read_unlock();
1280         return ret;
1281 }
1282
1283 /**
1284  * find_get_pages_contig - gang contiguous pagecache lookup
1285  * @mapping:    The address_space to search
1286  * @index:      The starting page index
1287  * @nr_pages:   The maximum number of pages
1288  * @pages:      Where the resulting pages are placed
1289  *
1290  * find_get_pages_contig() works exactly like find_get_pages(), except
1291  * that the returned number of pages are guaranteed to be contiguous.
1292  *
1293  * find_get_pages_contig() returns the number of pages which were found.
1294  */
1295 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1296                                unsigned int nr_pages, struct page **pages)
1297 {
1298         struct radix_tree_iter iter;
1299         void **slot;
1300         unsigned int ret = 0;
1301
1302         if (unlikely(!nr_pages))
1303                 return 0;
1304
1305         rcu_read_lock();
1306 restart:
1307         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1308                 struct page *page;
1309 repeat:
1310                 page = radix_tree_deref_slot(slot);
1311                 /* The hole, there no reason to continue */
1312                 if (unlikely(!page))
1313                         break;
1314
1315                 if (radix_tree_exception(page)) {
1316                         if (radix_tree_deref_retry(page)) {
1317                                 /*
1318                                  * Transient condition which can only trigger
1319                                  * when entry at index 0 moves out of or back
1320                                  * to root: none yet gotten, safe to restart.
1321                                  */
1322                                 goto restart;
1323                         }
1324                         /*
1325                          * A shadow entry of a recently evicted page,
1326                          * or a swap entry from shmem/tmpfs.  Stop
1327                          * looking for contiguous pages.
1328                          */
1329                         break;
1330                 }
1331
1332                 if (!page_cache_get_speculative(page))
1333                         goto repeat;
1334
1335                 /* Has the page moved? */
1336                 if (unlikely(page != *slot)) {
1337                         page_cache_release(page);
1338                         goto repeat;
1339                 }
1340
1341                 /*
1342                  * must check mapping and index after taking the ref.
1343                  * otherwise we can get both false positives and false
1344                  * negatives, which is just confusing to the caller.
1345                  */
1346                 if (page->mapping == NULL || page->index != iter.index) {
1347                         page_cache_release(page);
1348                         break;
1349                 }
1350
1351                 pages[ret] = page;
1352                 if (++ret == nr_pages)
1353                         break;
1354         }
1355         rcu_read_unlock();
1356         return ret;
1357 }
1358 EXPORT_SYMBOL(find_get_pages_contig);
1359
1360 /**
1361  * find_get_pages_tag - find and return pages that match @tag
1362  * @mapping:    the address_space to search
1363  * @index:      the starting page index
1364  * @tag:        the tag index
1365  * @nr_pages:   the maximum number of pages
1366  * @pages:      where the resulting pages are placed
1367  *
1368  * Like find_get_pages, except we only return pages which are tagged with
1369  * @tag.   We update @index to index the next page for the traversal.
1370  */
1371 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1372                         int tag, unsigned int nr_pages, struct page **pages)
1373 {
1374         struct radix_tree_iter iter;
1375         void **slot;
1376         unsigned ret = 0;
1377
1378         if (unlikely(!nr_pages))
1379                 return 0;
1380
1381         rcu_read_lock();
1382 restart:
1383         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1384                                    &iter, *index, tag) {
1385                 struct page *page;
1386 repeat:
1387                 page = radix_tree_deref_slot(slot);
1388                 if (unlikely(!page))
1389                         continue;
1390
1391                 if (radix_tree_exception(page)) {
1392                         if (radix_tree_deref_retry(page)) {
1393                                 /*
1394                                  * Transient condition which can only trigger
1395                                  * when entry at index 0 moves out of or back
1396                                  * to root: none yet gotten, safe to restart.
1397                                  */
1398                                 goto restart;
1399                         }
1400                         /*
1401                          * A shadow entry of a recently evicted page.
1402                          *
1403                          * Those entries should never be tagged, but
1404                          * this tree walk is lockless and the tags are
1405                          * looked up in bulk, one radix tree node at a
1406                          * time, so there is a sizable window for page
1407                          * reclaim to evict a page we saw tagged.
1408                          *
1409                          * Skip over it.
1410                          */
1411                         continue;
1412                 }
1413
1414                 if (!page_cache_get_speculative(page))
1415                         goto repeat;
1416
1417                 /* Has the page moved? */
1418                 if (unlikely(page != *slot)) {
1419                         page_cache_release(page);
1420                         goto repeat;
1421                 }
1422
1423                 pages[ret] = page;
1424                 if (++ret == nr_pages)
1425                         break;
1426         }
1427
1428         rcu_read_unlock();
1429
1430         if (ret)
1431                 *index = pages[ret - 1]->index + 1;
1432
1433         return ret;
1434 }
1435 EXPORT_SYMBOL(find_get_pages_tag);
1436
1437 /*
1438  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1439  * a _large_ part of the i/o request. Imagine the worst scenario:
1440  *
1441  *      ---R__________________________________________B__________
1442  *         ^ reading here                             ^ bad block(assume 4k)
1443  *
1444  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1445  * => failing the whole request => read(R) => read(R+1) =>
1446  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1447  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1448  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1449  *
1450  * It is going insane. Fix it by quickly scaling down the readahead size.
1451  */
1452 static void shrink_readahead_size_eio(struct file *filp,
1453                                         struct file_ra_state *ra)
1454 {
1455         ra->ra_pages /= 4;
1456 }
1457
1458 /**
1459  * do_generic_file_read - generic file read routine
1460  * @filp:       the file to read
1461  * @ppos:       current file position
1462  * @iter:       data destination
1463  * @written:    already copied
1464  *
1465  * This is a generic file read routine, and uses the
1466  * mapping->a_ops->readpage() function for the actual low-level stuff.
1467  *
1468  * This is really ugly. But the goto's actually try to clarify some
1469  * of the logic when it comes to error handling etc.
1470  */
1471 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1472                 struct iov_iter *iter, ssize_t written)
1473 {
1474         struct address_space *mapping = filp->f_mapping;
1475         struct inode *inode = mapping->host;
1476         struct file_ra_state *ra = &filp->f_ra;
1477         pgoff_t index;
1478         pgoff_t last_index;
1479         pgoff_t prev_index;
1480         unsigned long offset;      /* offset into pagecache page */
1481         unsigned int prev_offset;
1482         int error = 0;
1483
1484         index = *ppos >> PAGE_CACHE_SHIFT;
1485         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1486         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1487         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1488         offset = *ppos & ~PAGE_CACHE_MASK;
1489
1490         for (;;) {
1491                 struct page *page;
1492                 pgoff_t end_index;
1493                 loff_t isize;
1494                 unsigned long nr, ret;
1495
1496                 cond_resched();
1497 find_page:
1498                 page = find_get_page(mapping, index);
1499                 if (!page) {
1500                         page_cache_sync_readahead(mapping,
1501                                         ra, filp,
1502                                         index, last_index - index);
1503                         page = find_get_page(mapping, index);
1504                         if (unlikely(page == NULL))
1505                                 goto no_cached_page;
1506                 }
1507                 if (PageReadahead(page)) {
1508                         page_cache_async_readahead(mapping,
1509                                         ra, filp, page,
1510                                         index, last_index - index);
1511                 }
1512                 if (!PageUptodate(page)) {
1513                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1514                                         !mapping->a_ops->is_partially_uptodate)
1515                                 goto page_not_up_to_date;
1516                         if (!trylock_page(page))
1517                                 goto page_not_up_to_date;
1518                         /* Did it get truncated before we got the lock? */
1519                         if (!page->mapping)
1520                                 goto page_not_up_to_date_locked;
1521                         if (!mapping->a_ops->is_partially_uptodate(page,
1522                                                         offset, iter->count))
1523                                 goto page_not_up_to_date_locked;
1524                         unlock_page(page);
1525                 }
1526 page_ok:
1527                 /*
1528                  * i_size must be checked after we know the page is Uptodate.
1529                  *
1530                  * Checking i_size after the check allows us to calculate
1531                  * the correct value for "nr", which means the zero-filled
1532                  * part of the page is not copied back to userspace (unless
1533                  * another truncate extends the file - this is desired though).
1534                  */
1535
1536                 isize = i_size_read(inode);
1537                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1538                 if (unlikely(!isize || index > end_index)) {
1539                         page_cache_release(page);
1540                         goto out;
1541                 }
1542
1543                 /* nr is the maximum number of bytes to copy from this page */
1544                 nr = PAGE_CACHE_SIZE;
1545                 if (index == end_index) {
1546                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1547                         if (nr <= offset) {
1548                                 page_cache_release(page);
1549                                 goto out;
1550                         }
1551                 }
1552                 nr = nr - offset;
1553
1554                 /* If users can be writing to this page using arbitrary
1555                  * virtual addresses, take care about potential aliasing
1556                  * before reading the page on the kernel side.
1557                  */
1558                 if (mapping_writably_mapped(mapping))
1559                         flush_dcache_page(page);
1560
1561                 /*
1562                  * When a sequential read accesses a page several times,
1563                  * only mark it as accessed the first time.
1564                  */
1565                 if (prev_index != index || offset != prev_offset)
1566                         mark_page_accessed(page);
1567                 prev_index = index;
1568
1569                 /*
1570                  * Ok, we have the page, and it's up-to-date, so
1571                  * now we can copy it to user space...
1572                  */
1573
1574                 ret = copy_page_to_iter(page, offset, nr, iter);
1575                 offset += ret;
1576                 index += offset >> PAGE_CACHE_SHIFT;
1577                 offset &= ~PAGE_CACHE_MASK;
1578                 prev_offset = offset;
1579
1580                 page_cache_release(page);
1581                 written += ret;
1582                 if (!iov_iter_count(iter))
1583                         goto out;
1584                 if (ret < nr) {
1585                         error = -EFAULT;
1586                         goto out;
1587                 }
1588                 continue;
1589
1590 page_not_up_to_date:
1591                 /* Get exclusive access to the page ... */
1592                 error = lock_page_killable(page);
1593                 if (unlikely(error))
1594                         goto readpage_error;
1595
1596 page_not_up_to_date_locked:
1597                 /* Did it get truncated before we got the lock? */
1598                 if (!page->mapping) {
1599                         unlock_page(page);
1600                         page_cache_release(page);
1601                         continue;
1602                 }
1603
1604                 /* Did somebody else fill it already? */
1605                 if (PageUptodate(page)) {
1606                         unlock_page(page);
1607                         goto page_ok;
1608                 }
1609
1610 readpage:
1611                 /*
1612                  * A previous I/O error may have been due to temporary
1613                  * failures, eg. multipath errors.
1614                  * PG_error will be set again if readpage fails.
1615                  */
1616                 ClearPageError(page);
1617                 /* Start the actual read. The read will unlock the page. */
1618                 error = mapping->a_ops->readpage(filp, page);
1619
1620                 if (unlikely(error)) {
1621                         if (error == AOP_TRUNCATED_PAGE) {
1622                                 page_cache_release(page);
1623                                 error = 0;
1624                                 goto find_page;
1625                         }
1626                         goto readpage_error;
1627                 }
1628
1629                 if (!PageUptodate(page)) {
1630                         error = lock_page_killable(page);
1631                         if (unlikely(error))
1632                                 goto readpage_error;
1633                         if (!PageUptodate(page)) {
1634                                 if (page->mapping == NULL) {
1635                                         /*
1636                                          * invalidate_mapping_pages got it
1637                                          */
1638                                         unlock_page(page);
1639                                         page_cache_release(page);
1640                                         goto find_page;
1641                                 }
1642                                 unlock_page(page);
1643                                 shrink_readahead_size_eio(filp, ra);
1644                                 error = -EIO;
1645                                 goto readpage_error;
1646                         }
1647                         unlock_page(page);
1648                 }
1649
1650                 goto page_ok;
1651
1652 readpage_error:
1653                 /* UHHUH! A synchronous read error occurred. Report it */
1654                 page_cache_release(page);
1655                 goto out;
1656
1657 no_cached_page:
1658                 /*
1659                  * Ok, it wasn't cached, so we need to create a new
1660                  * page..
1661                  */
1662                 page = page_cache_alloc_cold(mapping);
1663                 if (!page) {
1664                         error = -ENOMEM;
1665                         goto out;
1666                 }
1667                 error = add_to_page_cache_lru(page, mapping, index,
1668                                         GFP_KERNEL & mapping_gfp_mask(mapping));
1669                 if (error) {
1670                         page_cache_release(page);
1671                         if (error == -EEXIST) {
1672                                 error = 0;
1673                                 goto find_page;
1674                         }
1675                         goto out;
1676                 }
1677                 goto readpage;
1678         }
1679
1680 out:
1681         ra->prev_pos = prev_index;
1682         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1683         ra->prev_pos |= prev_offset;
1684
1685         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1686         file_accessed(filp);
1687         return written ? written : error;
1688 }
1689
1690 /**
1691  * generic_file_read_iter - generic filesystem read routine
1692  * @iocb:       kernel I/O control block
1693  * @iter:       destination for the data read
1694  *
1695  * This is the "read_iter()" routine for all filesystems
1696  * that can use the page cache directly.
1697  */
1698 ssize_t
1699 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1700 {
1701         struct file *file = iocb->ki_filp;
1702         ssize_t retval = 0;
1703         loff_t *ppos = &iocb->ki_pos;
1704         loff_t pos = *ppos;
1705
1706         if (iocb->ki_flags & IOCB_DIRECT) {
1707                 struct address_space *mapping = file->f_mapping;
1708                 struct inode *inode = mapping->host;
1709                 size_t count = iov_iter_count(iter);
1710                 loff_t size;
1711
1712                 if (!count)
1713                         goto out; /* skip atime */
1714                 size = i_size_read(inode);
1715                 retval = filemap_write_and_wait_range(mapping, pos,
1716                                         pos + count - 1);
1717                 if (!retval) {
1718                         struct iov_iter data = *iter;
1719                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1720                 }
1721
1722                 if (retval > 0) {
1723                         *ppos = pos + retval;
1724                         iov_iter_advance(iter, retval);
1725                 }
1726
1727                 /*
1728                  * Btrfs can have a short DIO read if we encounter
1729                  * compressed extents, so if there was an error, or if
1730                  * we've already read everything we wanted to, or if
1731                  * there was a short read because we hit EOF, go ahead
1732                  * and return.  Otherwise fallthrough to buffered io for
1733                  * the rest of the read.  Buffered reads will not work for
1734                  * DAX files, so don't bother trying.
1735                  */
1736                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1737                     IS_DAX(inode)) {
1738                         file_accessed(file);
1739                         goto out;
1740                 }
1741         }
1742
1743         retval = do_generic_file_read(file, ppos, iter, retval);
1744 out:
1745         return retval;
1746 }
1747 EXPORT_SYMBOL(generic_file_read_iter);
1748
1749 #ifdef CONFIG_MMU
1750 /**
1751  * page_cache_read - adds requested page to the page cache if not already there
1752  * @file:       file to read
1753  * @offset:     page index
1754  *
1755  * This adds the requested page to the page cache if it isn't already there,
1756  * and schedules an I/O to read in its contents from disk.
1757  */
1758 static int page_cache_read(struct file *file, pgoff_t offset)
1759 {
1760         struct address_space *mapping = file->f_mapping;
1761         struct page *page;
1762         int ret;
1763
1764         do {
1765                 page = page_cache_alloc_cold(mapping);
1766                 if (!page)
1767                         return -ENOMEM;
1768
1769                 ret = add_to_page_cache_lru(page, mapping, offset,
1770                                 GFP_KERNEL & mapping_gfp_mask(mapping));
1771                 if (ret == 0)
1772                         ret = mapping->a_ops->readpage(file, page);
1773                 else if (ret == -EEXIST)
1774                         ret = 0; /* losing race to add is OK */
1775
1776                 page_cache_release(page);
1777
1778         } while (ret == AOP_TRUNCATED_PAGE);
1779
1780         return ret;
1781 }
1782
1783 #define MMAP_LOTSAMISS  (100)
1784
1785 /*
1786  * Synchronous readahead happens when we don't even find
1787  * a page in the page cache at all.
1788  */
1789 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1790                                    struct file_ra_state *ra,
1791                                    struct file *file,
1792                                    pgoff_t offset)
1793 {
1794         unsigned long ra_pages;
1795         struct address_space *mapping = file->f_mapping;
1796
1797         /* If we don't want any read-ahead, don't bother */
1798         if (vma->vm_flags & VM_RAND_READ)
1799                 return;
1800         if (!ra->ra_pages)
1801                 return;
1802
1803         if (vma->vm_flags & VM_SEQ_READ) {
1804                 page_cache_sync_readahead(mapping, ra, file, offset,
1805                                           ra->ra_pages);
1806                 return;
1807         }
1808
1809         /* Avoid banging the cache line if not needed */
1810         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1811                 ra->mmap_miss++;
1812
1813         /*
1814          * Do we miss much more than hit in this file? If so,
1815          * stop bothering with read-ahead. It will only hurt.
1816          */
1817         if (ra->mmap_miss > MMAP_LOTSAMISS)
1818                 return;
1819
1820         /*
1821          * mmap read-around
1822          */
1823         ra_pages = max_sane_readahead(ra->ra_pages);
1824         ra->start = max_t(long, 0, offset - ra_pages / 2);
1825         ra->size = ra_pages;
1826         ra->async_size = ra_pages / 4;
1827         ra_submit(ra, mapping, file);
1828 }
1829
1830 /*
1831  * Asynchronous readahead happens when we find the page and PG_readahead,
1832  * so we want to possibly extend the readahead further..
1833  */
1834 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1835                                     struct file_ra_state *ra,
1836                                     struct file *file,
1837                                     struct page *page,
1838                                     pgoff_t offset)
1839 {
1840         struct address_space *mapping = file->f_mapping;
1841
1842         /* If we don't want any read-ahead, don't bother */
1843         if (vma->vm_flags & VM_RAND_READ)
1844                 return;
1845         if (ra->mmap_miss > 0)
1846                 ra->mmap_miss--;
1847         if (PageReadahead(page))
1848                 page_cache_async_readahead(mapping, ra, file,
1849                                            page, offset, ra->ra_pages);
1850 }
1851
1852 /**
1853  * filemap_fault - read in file data for page fault handling
1854  * @vma:        vma in which the fault was taken
1855  * @vmf:        struct vm_fault containing details of the fault
1856  *
1857  * filemap_fault() is invoked via the vma operations vector for a
1858  * mapped memory region to read in file data during a page fault.
1859  *
1860  * The goto's are kind of ugly, but this streamlines the normal case of having
1861  * it in the page cache, and handles the special cases reasonably without
1862  * having a lot of duplicated code.
1863  *
1864  * vma->vm_mm->mmap_sem must be held on entry.
1865  *
1866  * If our return value has VM_FAULT_RETRY set, it's because
1867  * lock_page_or_retry() returned 0.
1868  * The mmap_sem has usually been released in this case.
1869  * See __lock_page_or_retry() for the exception.
1870  *
1871  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1872  * has not been released.
1873  *
1874  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1875  */
1876 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1877 {
1878         int error;
1879         struct file *file = vma->vm_file;
1880         struct address_space *mapping = file->f_mapping;
1881         struct file_ra_state *ra = &file->f_ra;
1882         struct inode *inode = mapping->host;
1883         pgoff_t offset = vmf->pgoff;
1884         struct page *page;
1885         loff_t size;
1886         int ret = 0;
1887
1888         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1889         if (offset >= size >> PAGE_CACHE_SHIFT)
1890                 return VM_FAULT_SIGBUS;
1891
1892         /*
1893          * Do we have something in the page cache already?
1894          */
1895         page = find_get_page(mapping, offset);
1896         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1897                 /*
1898                  * We found the page, so try async readahead before
1899                  * waiting for the lock.
1900                  */
1901                 do_async_mmap_readahead(vma, ra, file, page, offset);
1902         } else if (!page) {
1903                 /* No page in the page cache at all */
1904                 do_sync_mmap_readahead(vma, ra, file, offset);
1905                 count_vm_event(PGMAJFAULT);
1906                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1907                 ret = VM_FAULT_MAJOR;
1908 retry_find:
1909                 page = find_get_page(mapping, offset);
1910                 if (!page)
1911                         goto no_cached_page;
1912         }
1913
1914         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1915                 page_cache_release(page);
1916                 return ret | VM_FAULT_RETRY;
1917         }
1918
1919         /* Did it get truncated? */
1920         if (unlikely(page->mapping != mapping)) {
1921                 unlock_page(page);
1922                 put_page(page);
1923                 goto retry_find;
1924         }
1925         VM_BUG_ON_PAGE(page->index != offset, page);
1926
1927         /*
1928          * We have a locked page in the page cache, now we need to check
1929          * that it's up-to-date. If not, it is going to be due to an error.
1930          */
1931         if (unlikely(!PageUptodate(page)))
1932                 goto page_not_uptodate;
1933
1934         /*
1935          * Found the page and have a reference on it.
1936          * We must recheck i_size under page lock.
1937          */
1938         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1939         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1940                 unlock_page(page);
1941                 page_cache_release(page);
1942                 return VM_FAULT_SIGBUS;
1943         }
1944
1945         vmf->page = page;
1946         return ret | VM_FAULT_LOCKED;
1947
1948 no_cached_page:
1949         /*
1950          * We're only likely to ever get here if MADV_RANDOM is in
1951          * effect.
1952          */
1953         error = page_cache_read(file, offset);
1954
1955         /*
1956          * The page we want has now been added to the page cache.
1957          * In the unlikely event that someone removed it in the
1958          * meantime, we'll just come back here and read it again.
1959          */
1960         if (error >= 0)
1961                 goto retry_find;
1962
1963         /*
1964          * An error return from page_cache_read can result if the
1965          * system is low on memory, or a problem occurs while trying
1966          * to schedule I/O.
1967          */
1968         if (error == -ENOMEM)
1969                 return VM_FAULT_OOM;
1970         return VM_FAULT_SIGBUS;
1971
1972 page_not_uptodate:
1973         /*
1974          * Umm, take care of errors if the page isn't up-to-date.
1975          * Try to re-read it _once_. We do this synchronously,
1976          * because there really aren't any performance issues here
1977          * and we need to check for errors.
1978          */
1979         ClearPageError(page);
1980         error = mapping->a_ops->readpage(file, page);
1981         if (!error) {
1982                 wait_on_page_locked(page);
1983                 if (!PageUptodate(page))
1984                         error = -EIO;
1985         }
1986         page_cache_release(page);
1987
1988         if (!error || error == AOP_TRUNCATED_PAGE)
1989                 goto retry_find;
1990
1991         /* Things didn't work out. Return zero to tell the mm layer so. */
1992         shrink_readahead_size_eio(file, ra);
1993         return VM_FAULT_SIGBUS;
1994 }
1995 EXPORT_SYMBOL(filemap_fault);
1996
1997 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1998 {
1999         struct radix_tree_iter iter;
2000         void **slot;
2001         struct file *file = vma->vm_file;
2002         struct address_space *mapping = file->f_mapping;
2003         loff_t size;
2004         struct page *page;
2005         unsigned long address = (unsigned long) vmf->virtual_address;
2006         unsigned long addr;
2007         pte_t *pte;
2008
2009         rcu_read_lock();
2010         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2011                 if (iter.index > vmf->max_pgoff)
2012                         break;
2013 repeat:
2014                 page = radix_tree_deref_slot(slot);
2015                 if (unlikely(!page))
2016                         goto next;
2017                 if (radix_tree_exception(page)) {
2018                         if (radix_tree_deref_retry(page))
2019                                 break;
2020                         else
2021                                 goto next;
2022                 }
2023
2024                 if (!page_cache_get_speculative(page))
2025                         goto repeat;
2026
2027                 /* Has the page moved? */
2028                 if (unlikely(page != *slot)) {
2029                         page_cache_release(page);
2030                         goto repeat;
2031                 }
2032
2033                 if (!PageUptodate(page) ||
2034                                 PageReadahead(page) ||
2035                                 PageHWPoison(page))
2036                         goto skip;
2037                 if (!trylock_page(page))
2038                         goto skip;
2039
2040                 if (page->mapping != mapping || !PageUptodate(page))
2041                         goto unlock;
2042
2043                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2044                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2045                         goto unlock;
2046
2047                 pte = vmf->pte + page->index - vmf->pgoff;
2048                 if (!pte_none(*pte))
2049                         goto unlock;
2050
2051                 if (file->f_ra.mmap_miss > 0)
2052                         file->f_ra.mmap_miss--;
2053                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2054                 do_set_pte(vma, addr, page, pte, false, false);
2055                 unlock_page(page);
2056                 goto next;
2057 unlock:
2058                 unlock_page(page);
2059 skip:
2060                 page_cache_release(page);
2061 next:
2062                 if (iter.index == vmf->max_pgoff)
2063                         break;
2064         }
2065         rcu_read_unlock();
2066 }
2067 EXPORT_SYMBOL(filemap_map_pages);
2068
2069 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2070 {
2071         struct page *page = vmf->page;
2072         struct inode *inode = file_inode(vma->vm_file);
2073         int ret = VM_FAULT_LOCKED;
2074
2075         sb_start_pagefault(inode->i_sb);
2076         file_update_time(vma->vm_file);
2077         lock_page(page);
2078         if (page->mapping != inode->i_mapping) {
2079                 unlock_page(page);
2080                 ret = VM_FAULT_NOPAGE;
2081                 goto out;
2082         }
2083         /*
2084          * We mark the page dirty already here so that when freeze is in
2085          * progress, we are guaranteed that writeback during freezing will
2086          * see the dirty page and writeprotect it again.
2087          */
2088         set_page_dirty(page);
2089         wait_for_stable_page(page);
2090 out:
2091         sb_end_pagefault(inode->i_sb);
2092         return ret;
2093 }
2094 EXPORT_SYMBOL(filemap_page_mkwrite);
2095
2096 const struct vm_operations_struct generic_file_vm_ops = {
2097         .fault          = filemap_fault,
2098         .map_pages      = filemap_map_pages,
2099         .page_mkwrite   = filemap_page_mkwrite,
2100 };
2101
2102 /* This is used for a general mmap of a disk file */
2103
2104 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2105 {
2106         struct address_space *mapping = file->f_mapping;
2107
2108         if (!mapping->a_ops->readpage)
2109                 return -ENOEXEC;
2110         file_accessed(file);
2111         vma->vm_ops = &generic_file_vm_ops;
2112         return 0;
2113 }
2114
2115 /*
2116  * This is for filesystems which do not implement ->writepage.
2117  */
2118 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2119 {
2120         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2121                 return -EINVAL;
2122         return generic_file_mmap(file, vma);
2123 }
2124 #else
2125 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2126 {
2127         return -ENOSYS;
2128 }
2129 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2130 {
2131         return -ENOSYS;
2132 }
2133 #endif /* CONFIG_MMU */
2134
2135 EXPORT_SYMBOL(generic_file_mmap);
2136 EXPORT_SYMBOL(generic_file_readonly_mmap);
2137
2138 static struct page *wait_on_page_read(struct page *page)
2139 {
2140         if (!IS_ERR(page)) {
2141                 wait_on_page_locked(page);
2142                 if (!PageUptodate(page)) {
2143                         page_cache_release(page);
2144                         page = ERR_PTR(-EIO);
2145                 }
2146         }
2147         return page;
2148 }
2149
2150 static struct page *__read_cache_page(struct address_space *mapping,
2151                                 pgoff_t index,
2152                                 int (*filler)(void *, struct page *),
2153                                 void *data,
2154                                 gfp_t gfp)
2155 {
2156         struct page *page;
2157         int err;
2158 repeat:
2159         page = find_get_page(mapping, index);
2160         if (!page) {
2161                 page = __page_cache_alloc(gfp | __GFP_COLD);
2162                 if (!page)
2163                         return ERR_PTR(-ENOMEM);
2164                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2165                 if (unlikely(err)) {
2166                         page_cache_release(page);
2167                         if (err == -EEXIST)
2168                                 goto repeat;
2169                         /* Presumably ENOMEM for radix tree node */
2170                         return ERR_PTR(err);
2171                 }
2172                 err = filler(data, page);
2173                 if (err < 0) {
2174                         page_cache_release(page);
2175                         page = ERR_PTR(err);
2176                 } else {
2177                         page = wait_on_page_read(page);
2178                 }
2179         }
2180         return page;
2181 }
2182
2183 static struct page *do_read_cache_page(struct address_space *mapping,
2184                                 pgoff_t index,
2185                                 int (*filler)(void *, struct page *),
2186                                 void *data,
2187                                 gfp_t gfp)
2188
2189 {
2190         struct page *page;
2191         int err;
2192
2193 retry:
2194         page = __read_cache_page(mapping, index, filler, data, gfp);
2195         if (IS_ERR(page))
2196                 return page;
2197         if (PageUptodate(page))
2198                 goto out;
2199
2200         lock_page(page);
2201         if (!page->mapping) {
2202                 unlock_page(page);
2203                 page_cache_release(page);
2204                 goto retry;
2205         }
2206         if (PageUptodate(page)) {
2207                 unlock_page(page);
2208                 goto out;
2209         }
2210         err = filler(data, page);
2211         if (err < 0) {
2212                 page_cache_release(page);
2213                 return ERR_PTR(err);
2214         } else {
2215                 page = wait_on_page_read(page);
2216                 if (IS_ERR(page))
2217                         return page;
2218         }
2219 out:
2220         mark_page_accessed(page);
2221         return page;
2222 }
2223
2224 /**
2225  * read_cache_page - read into page cache, fill it if needed
2226  * @mapping:    the page's address_space
2227  * @index:      the page index
2228  * @filler:     function to perform the read
2229  * @data:       first arg to filler(data, page) function, often left as NULL
2230  *
2231  * Read into the page cache. If a page already exists, and PageUptodate() is
2232  * not set, try to fill the page and wait for it to become unlocked.
2233  *
2234  * If the page does not get brought uptodate, return -EIO.
2235  */
2236 struct page *read_cache_page(struct address_space *mapping,
2237                                 pgoff_t index,
2238                                 int (*filler)(void *, struct page *),
2239                                 void *data)
2240 {
2241         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2242 }
2243 EXPORT_SYMBOL(read_cache_page);
2244
2245 /**
2246  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2247  * @mapping:    the page's address_space
2248  * @index:      the page index
2249  * @gfp:        the page allocator flags to use if allocating
2250  *
2251  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2252  * any new page allocations done using the specified allocation flags.
2253  *
2254  * If the page does not get brought uptodate, return -EIO.
2255  */
2256 struct page *read_cache_page_gfp(struct address_space *mapping,
2257                                 pgoff_t index,
2258                                 gfp_t gfp)
2259 {
2260         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2261
2262         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2263 }
2264 EXPORT_SYMBOL(read_cache_page_gfp);
2265
2266 /*
2267  * Performs necessary checks before doing a write
2268  *
2269  * Can adjust writing position or amount of bytes to write.
2270  * Returns appropriate error code that caller should return or
2271  * zero in case that write should be allowed.
2272  */
2273 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2274 {
2275         struct file *file = iocb->ki_filp;
2276         struct inode *inode = file->f_mapping->host;
2277         unsigned long limit = rlimit(RLIMIT_FSIZE);
2278         loff_t pos;
2279
2280         if (!iov_iter_count(from))
2281                 return 0;
2282
2283         /* FIXME: this is for backwards compatibility with 2.4 */
2284         if (iocb->ki_flags & IOCB_APPEND)
2285                 iocb->ki_pos = i_size_read(inode);
2286
2287         pos = iocb->ki_pos;
2288
2289         if (limit != RLIM_INFINITY) {
2290                 if (iocb->ki_pos >= limit) {
2291                         send_sig(SIGXFSZ, current, 0);
2292                         return -EFBIG;
2293                 }
2294                 iov_iter_truncate(from, limit - (unsigned long)pos);
2295         }
2296
2297         /*
2298          * LFS rule
2299          */
2300         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2301                                 !(file->f_flags & O_LARGEFILE))) {
2302                 if (pos >= MAX_NON_LFS)
2303                         return -EFBIG;
2304                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2305         }
2306
2307         /*
2308          * Are we about to exceed the fs block limit ?
2309          *
2310          * If we have written data it becomes a short write.  If we have
2311          * exceeded without writing data we send a signal and return EFBIG.
2312          * Linus frestrict idea will clean these up nicely..
2313          */
2314         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2315                 return -EFBIG;
2316
2317         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2318         return iov_iter_count(from);
2319 }
2320 EXPORT_SYMBOL(generic_write_checks);
2321
2322 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2323                                 loff_t pos, unsigned len, unsigned flags,
2324                                 struct page **pagep, void **fsdata)
2325 {
2326         const struct address_space_operations *aops = mapping->a_ops;
2327
2328         return aops->write_begin(file, mapping, pos, len, flags,
2329                                                         pagep, fsdata);
2330 }
2331 EXPORT_SYMBOL(pagecache_write_begin);
2332
2333 int pagecache_write_end(struct file *file, struct address_space *mapping,
2334                                 loff_t pos, unsigned len, unsigned copied,
2335                                 struct page *page, void *fsdata)
2336 {
2337         const struct address_space_operations *aops = mapping->a_ops;
2338
2339         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2340 }
2341 EXPORT_SYMBOL(pagecache_write_end);
2342
2343 ssize_t
2344 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2345 {
2346         struct file     *file = iocb->ki_filp;
2347         struct address_space *mapping = file->f_mapping;
2348         struct inode    *inode = mapping->host;
2349         ssize_t         written;
2350         size_t          write_len;
2351         pgoff_t         end;
2352         struct iov_iter data;
2353
2354         write_len = iov_iter_count(from);
2355         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2356
2357         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2358         if (written)
2359                 goto out;
2360
2361         /*
2362          * After a write we want buffered reads to be sure to go to disk to get
2363          * the new data.  We invalidate clean cached page from the region we're
2364          * about to write.  We do this *before* the write so that we can return
2365          * without clobbering -EIOCBQUEUED from ->direct_IO().
2366          */
2367         if (mapping->nrpages) {
2368                 written = invalidate_inode_pages2_range(mapping,
2369                                         pos >> PAGE_CACHE_SHIFT, end);
2370                 /*
2371                  * If a page can not be invalidated, return 0 to fall back
2372                  * to buffered write.
2373                  */
2374                 if (written) {
2375                         if (written == -EBUSY)
2376                                 return 0;
2377                         goto out;
2378                 }
2379         }
2380
2381         data = *from;
2382         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2383
2384         /*
2385          * Finally, try again to invalidate clean pages which might have been
2386          * cached by non-direct readahead, or faulted in by get_user_pages()
2387          * if the source of the write was an mmap'ed region of the file
2388          * we're writing.  Either one is a pretty crazy thing to do,
2389          * so we don't support it 100%.  If this invalidation
2390          * fails, tough, the write still worked...
2391          */
2392         if (mapping->nrpages) {
2393                 invalidate_inode_pages2_range(mapping,
2394                                               pos >> PAGE_CACHE_SHIFT, end);
2395         }
2396
2397         if (written > 0) {
2398                 pos += written;
2399                 iov_iter_advance(from, written);
2400                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2401                         i_size_write(inode, pos);
2402                         mark_inode_dirty(inode);
2403                 }
2404                 iocb->ki_pos = pos;
2405         }
2406 out:
2407         return written;
2408 }
2409 EXPORT_SYMBOL(generic_file_direct_write);
2410
2411 /*
2412  * Find or create a page at the given pagecache position. Return the locked
2413  * page. This function is specifically for buffered writes.
2414  */
2415 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2416                                         pgoff_t index, unsigned flags)
2417 {
2418         struct page *page;
2419         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2420
2421         if (flags & AOP_FLAG_NOFS)
2422                 fgp_flags |= FGP_NOFS;
2423
2424         page = pagecache_get_page(mapping, index, fgp_flags,
2425                         mapping_gfp_mask(mapping));
2426         if (page)
2427                 wait_for_stable_page(page);
2428
2429         return page;
2430 }
2431 EXPORT_SYMBOL(grab_cache_page_write_begin);
2432
2433 ssize_t generic_perform_write(struct file *file,
2434                                 struct iov_iter *i, loff_t pos)
2435 {
2436         struct address_space *mapping = file->f_mapping;
2437         const struct address_space_operations *a_ops = mapping->a_ops;
2438         long status = 0;
2439         ssize_t written = 0;
2440         unsigned int flags = 0;
2441
2442         /*
2443          * Copies from kernel address space cannot fail (NFSD is a big user).
2444          */
2445         if (!iter_is_iovec(i))
2446                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2447
2448         do {
2449                 struct page *page;
2450                 unsigned long offset;   /* Offset into pagecache page */
2451                 unsigned long bytes;    /* Bytes to write to page */
2452                 size_t copied;          /* Bytes copied from user */
2453                 void *fsdata;
2454
2455                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2456                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2457                                                 iov_iter_count(i));
2458
2459 again:
2460                 /*
2461                  * Bring in the user page that we will copy from _first_.
2462                  * Otherwise there's a nasty deadlock on copying from the
2463                  * same page as we're writing to, without it being marked
2464                  * up-to-date.
2465                  *
2466                  * Not only is this an optimisation, but it is also required
2467                  * to check that the address is actually valid, when atomic
2468                  * usercopies are used, below.
2469                  */
2470                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2471                         status = -EFAULT;
2472                         break;
2473                 }
2474
2475                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2476                                                 &page, &fsdata);
2477                 if (unlikely(status < 0))
2478                         break;
2479
2480                 if (mapping_writably_mapped(mapping))
2481                         flush_dcache_page(page);
2482
2483                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2484                 flush_dcache_page(page);
2485
2486                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2487                                                 page, fsdata);
2488                 if (unlikely(status < 0))
2489                         break;
2490                 copied = status;
2491
2492                 cond_resched();
2493
2494                 iov_iter_advance(i, copied);
2495                 if (unlikely(copied == 0)) {
2496                         /*
2497                          * If we were unable to copy any data at all, we must
2498                          * fall back to a single segment length write.
2499                          *
2500                          * If we didn't fallback here, we could livelock
2501                          * because not all segments in the iov can be copied at
2502                          * once without a pagefault.
2503                          */
2504                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2505                                                 iov_iter_single_seg_count(i));
2506                         goto again;
2507                 }
2508                 pos += copied;
2509                 written += copied;
2510
2511                 balance_dirty_pages_ratelimited(mapping);
2512                 if (fatal_signal_pending(current)) {
2513                         status = -EINTR;
2514                         break;
2515                 }
2516         } while (iov_iter_count(i));
2517
2518         return written ? written : status;
2519 }
2520 EXPORT_SYMBOL(generic_perform_write);
2521
2522 /**
2523  * __generic_file_write_iter - write data to a file
2524  * @iocb:       IO state structure (file, offset, etc.)
2525  * @from:       iov_iter with data to write
2526  *
2527  * This function does all the work needed for actually writing data to a
2528  * file. It does all basic checks, removes SUID from the file, updates
2529  * modification times and calls proper subroutines depending on whether we
2530  * do direct IO or a standard buffered write.
2531  *
2532  * It expects i_mutex to be grabbed unless we work on a block device or similar
2533  * object which does not need locking at all.
2534  *
2535  * This function does *not* take care of syncing data in case of O_SYNC write.
2536  * A caller has to handle it. This is mainly due to the fact that we want to
2537  * avoid syncing under i_mutex.
2538  */
2539 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2540 {
2541         struct file *file = iocb->ki_filp;
2542         struct address_space * mapping = file->f_mapping;
2543         struct inode    *inode = mapping->host;
2544         ssize_t         written = 0;
2545         ssize_t         err;
2546         ssize_t         status;
2547
2548         /* We can write back this queue in page reclaim */
2549         current->backing_dev_info = inode_to_bdi(inode);
2550         err = file_remove_suid(file);
2551         if (err)
2552                 goto out;
2553
2554         err = file_update_time(file);
2555         if (err)
2556                 goto out;
2557
2558         if (iocb->ki_flags & IOCB_DIRECT) {
2559                 loff_t pos, endbyte;
2560
2561                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2562                 /*
2563                  * If the write stopped short of completing, fall back to
2564                  * buffered writes.  Some filesystems do this for writes to
2565                  * holes, for example.  For DAX files, a buffered write will
2566                  * not succeed (even if it did, DAX does not handle dirty
2567                  * page-cache pages correctly).
2568                  */
2569                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2570                         goto out;
2571
2572                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2573                 /*
2574                  * If generic_perform_write() returned a synchronous error
2575                  * then we want to return the number of bytes which were
2576                  * direct-written, or the error code if that was zero.  Note
2577                  * that this differs from normal direct-io semantics, which
2578                  * will return -EFOO even if some bytes were written.
2579                  */
2580                 if (unlikely(status < 0)) {
2581                         err = status;
2582                         goto out;
2583                 }
2584                 /*
2585                  * We need to ensure that the page cache pages are written to
2586                  * disk and invalidated to preserve the expected O_DIRECT
2587                  * semantics.
2588                  */
2589                 endbyte = pos + status - 1;
2590                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2591                 if (err == 0) {
2592                         iocb->ki_pos = endbyte + 1;
2593                         written += status;
2594                         invalidate_mapping_pages(mapping,
2595                                                  pos >> PAGE_CACHE_SHIFT,
2596                                                  endbyte >> PAGE_CACHE_SHIFT);
2597                 } else {
2598                         /*
2599                          * We don't know how much we wrote, so just return
2600                          * the number of bytes which were direct-written
2601                          */
2602                 }
2603         } else {
2604                 written = generic_perform_write(file, from, iocb->ki_pos);
2605                 if (likely(written > 0))
2606                         iocb->ki_pos += written;
2607         }
2608 out:
2609         current->backing_dev_info = NULL;
2610         return written ? written : err;
2611 }
2612 EXPORT_SYMBOL(__generic_file_write_iter);
2613
2614 /**
2615  * generic_file_write_iter - write data to a file
2616  * @iocb:       IO state structure
2617  * @from:       iov_iter with data to write
2618  *
2619  * This is a wrapper around __generic_file_write_iter() to be used by most
2620  * filesystems. It takes care of syncing the file in case of O_SYNC file
2621  * and acquires i_mutex as needed.
2622  */
2623 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2624 {
2625         struct file *file = iocb->ki_filp;
2626         struct inode *inode = file->f_mapping->host;
2627         ssize_t ret;
2628
2629         mutex_lock(&inode->i_mutex);
2630         ret = generic_write_checks(iocb, from);
2631         if (ret > 0)
2632                 ret = __generic_file_write_iter(iocb, from);
2633         mutex_unlock(&inode->i_mutex);
2634
2635         if (ret > 0) {
2636                 ssize_t err;
2637
2638                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2639                 if (err < 0)
2640                         ret = err;
2641         }
2642         return ret;
2643 }
2644 EXPORT_SYMBOL(generic_file_write_iter);
2645
2646 /**
2647  * try_to_release_page() - release old fs-specific metadata on a page
2648  *
2649  * @page: the page which the kernel is trying to free
2650  * @gfp_mask: memory allocation flags (and I/O mode)
2651  *
2652  * The address_space is to try to release any data against the page
2653  * (presumably at page->private).  If the release was successful, return `1'.
2654  * Otherwise return zero.
2655  *
2656  * This may also be called if PG_fscache is set on a page, indicating that the
2657  * page is known to the local caching routines.
2658  *
2659  * The @gfp_mask argument specifies whether I/O may be performed to release
2660  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2661  *
2662  */
2663 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2664 {
2665         struct address_space * const mapping = page->mapping;
2666
2667         BUG_ON(!PageLocked(page));
2668         if (PageWriteback(page))
2669                 return 0;
2670
2671         if (mapping && mapping->a_ops->releasepage)
2672                 return mapping->a_ops->releasepage(page, gfp_mask);
2673         return try_to_free_buffers(page);
2674 }
2675
2676 EXPORT_SYMBOL(try_to_release_page);