OSDN Git Service

hugetlb: move helpers up in the file
[uclinux-h8/linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39 unsigned long hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44
45 __initdata LIST_HEAD(huge_boot_pages);
46
47 /* for command line parsing */
48 static struct hstate * __initdata parsed_hstate;
49 static unsigned long __initdata default_hstate_max_huge_pages;
50 static unsigned long __initdata default_hstate_size;
51
52 /*
53  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54  * free_huge_pages, and surplus_huge_pages.
55  */
56 DEFINE_SPINLOCK(hugetlb_lock);
57
58 /*
59  * Serializes faults on the same logical page.  This is used to
60  * prevent spurious OOMs when the hugepage pool is fully utilized.
61  */
62 static int num_fault_mutexes;
63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66 {
67         bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69         spin_unlock(&spool->lock);
70
71         /* If no pages are used, and no other handles to the subpool
72          * remain, free the subpool the subpool remain */
73         if (free)
74                 kfree(spool);
75 }
76
77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78 {
79         struct hugepage_subpool *spool;
80
81         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82         if (!spool)
83                 return NULL;
84
85         spin_lock_init(&spool->lock);
86         spool->count = 1;
87         spool->max_hpages = nr_blocks;
88         spool->used_hpages = 0;
89
90         return spool;
91 }
92
93 void hugepage_put_subpool(struct hugepage_subpool *spool)
94 {
95         spin_lock(&spool->lock);
96         BUG_ON(!spool->count);
97         spool->count--;
98         unlock_or_release_subpool(spool);
99 }
100
101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102                                       long delta)
103 {
104         int ret = 0;
105
106         if (!spool)
107                 return 0;
108
109         spin_lock(&spool->lock);
110         if ((spool->used_hpages + delta) <= spool->max_hpages) {
111                 spool->used_hpages += delta;
112         } else {
113                 ret = -ENOMEM;
114         }
115         spin_unlock(&spool->lock);
116
117         return ret;
118 }
119
120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121                                        long delta)
122 {
123         if (!spool)
124                 return;
125
126         spin_lock(&spool->lock);
127         spool->used_hpages -= delta;
128         /* If hugetlbfs_put_super couldn't free spool due to
129         * an outstanding quota reference, free it now. */
130         unlock_or_release_subpool(spool);
131 }
132
133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134 {
135         return HUGETLBFS_SB(inode->i_sb)->spool;
136 }
137
138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139 {
140         return subpool_inode(file_inode(vma->vm_file));
141 }
142
143 /*
144  * Region tracking -- allows tracking of reservations and instantiated pages
145  *                    across the pages in a mapping.
146  *
147  * The region data structures are embedded into a resv_map and
148  * protected by a resv_map's lock
149  */
150 struct file_region {
151         struct list_head link;
152         long from;
153         long to;
154 };
155
156 static long region_add(struct resv_map *resv, long f, long t)
157 {
158         struct list_head *head = &resv->regions;
159         struct file_region *rg, *nrg, *trg;
160
161         spin_lock(&resv->lock);
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (f <= rg->to)
165                         break;
166
167         /* Round our left edge to the current segment if it encloses us. */
168         if (f > rg->from)
169                 f = rg->from;
170
171         /* Check for and consume any regions we now overlap with. */
172         nrg = rg;
173         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174                 if (&rg->link == head)
175                         break;
176                 if (rg->from > t)
177                         break;
178
179                 /* If this area reaches higher then extend our area to
180                  * include it completely.  If this is not the first area
181                  * which we intend to reuse, free it. */
182                 if (rg->to > t)
183                         t = rg->to;
184                 if (rg != nrg) {
185                         list_del(&rg->link);
186                         kfree(rg);
187                 }
188         }
189         nrg->from = f;
190         nrg->to = t;
191         spin_unlock(&resv->lock);
192         return 0;
193 }
194
195 static long region_chg(struct resv_map *resv, long f, long t)
196 {
197         struct list_head *head = &resv->regions;
198         struct file_region *rg, *nrg = NULL;
199         long chg = 0;
200
201 retry:
202         spin_lock(&resv->lock);
203         /* Locate the region we are before or in. */
204         list_for_each_entry(rg, head, link)
205                 if (f <= rg->to)
206                         break;
207
208         /* If we are below the current region then a new region is required.
209          * Subtle, allocate a new region at the position but make it zero
210          * size such that we can guarantee to record the reservation. */
211         if (&rg->link == head || t < rg->from) {
212                 if (!nrg) {
213                         spin_unlock(&resv->lock);
214                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215                         if (!nrg)
216                                 return -ENOMEM;
217
218                         nrg->from = f;
219                         nrg->to   = f;
220                         INIT_LIST_HEAD(&nrg->link);
221                         goto retry;
222                 }
223
224                 list_add(&nrg->link, rg->link.prev);
225                 chg = t - f;
226                 goto out_nrg;
227         }
228
229         /* Round our left edge to the current segment if it encloses us. */
230         if (f > rg->from)
231                 f = rg->from;
232         chg = t - f;
233
234         /* Check for and consume any regions we now overlap with. */
235         list_for_each_entry(rg, rg->link.prev, link) {
236                 if (&rg->link == head)
237                         break;
238                 if (rg->from > t)
239                         goto out;
240
241                 /* We overlap with this area, if it extends further than
242                  * us then we must extend ourselves.  Account for its
243                  * existing reservation. */
244                 if (rg->to > t) {
245                         chg += rg->to - t;
246                         t = rg->to;
247                 }
248                 chg -= rg->to - rg->from;
249         }
250
251 out:
252         spin_unlock(&resv->lock);
253         /*  We already know we raced and no longer need the new region */
254         kfree(nrg);
255         return chg;
256 out_nrg:
257         spin_unlock(&resv->lock);
258         return chg;
259 }
260
261 static long region_truncate(struct resv_map *resv, long end)
262 {
263         struct list_head *head = &resv->regions;
264         struct file_region *rg, *trg;
265         long chg = 0;
266
267         spin_lock(&resv->lock);
268         /* Locate the region we are either in or before. */
269         list_for_each_entry(rg, head, link)
270                 if (end <= rg->to)
271                         break;
272         if (&rg->link == head)
273                 goto out;
274
275         /* If we are in the middle of a region then adjust it. */
276         if (end > rg->from) {
277                 chg = rg->to - end;
278                 rg->to = end;
279                 rg = list_entry(rg->link.next, typeof(*rg), link);
280         }
281
282         /* Drop any remaining regions. */
283         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284                 if (&rg->link == head)
285                         break;
286                 chg += rg->to - rg->from;
287                 list_del(&rg->link);
288                 kfree(rg);
289         }
290
291 out:
292         spin_unlock(&resv->lock);
293         return chg;
294 }
295
296 static long region_count(struct resv_map *resv, long f, long t)
297 {
298         struct list_head *head = &resv->regions;
299         struct file_region *rg;
300         long chg = 0;
301
302         spin_lock(&resv->lock);
303         /* Locate each segment we overlap with, and count that overlap. */
304         list_for_each_entry(rg, head, link) {
305                 long seg_from;
306                 long seg_to;
307
308                 if (rg->to <= f)
309                         continue;
310                 if (rg->from >= t)
311                         break;
312
313                 seg_from = max(rg->from, f);
314                 seg_to = min(rg->to, t);
315
316                 chg += seg_to - seg_from;
317         }
318         spin_unlock(&resv->lock);
319
320         return chg;
321 }
322
323 /*
324  * Convert the address within this vma to the page offset within
325  * the mapping, in pagecache page units; huge pages here.
326  */
327 static pgoff_t vma_hugecache_offset(struct hstate *h,
328                         struct vm_area_struct *vma, unsigned long address)
329 {
330         return ((address - vma->vm_start) >> huge_page_shift(h)) +
331                         (vma->vm_pgoff >> huge_page_order(h));
332 }
333
334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335                                      unsigned long address)
336 {
337         return vma_hugecache_offset(hstate_vma(vma), vma, address);
338 }
339
340 /*
341  * Return the size of the pages allocated when backing a VMA. In the majority
342  * cases this will be same size as used by the page table entries.
343  */
344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345 {
346         struct hstate *hstate;
347
348         if (!is_vm_hugetlb_page(vma))
349                 return PAGE_SIZE;
350
351         hstate = hstate_vma(vma);
352
353         return 1UL << huge_page_shift(hstate);
354 }
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357 /*
358  * Return the page size being used by the MMU to back a VMA. In the majority
359  * of cases, the page size used by the kernel matches the MMU size. On
360  * architectures where it differs, an architecture-specific version of this
361  * function is required.
362  */
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365 {
366         return vma_kernel_pagesize(vma);
367 }
368 #endif
369
370 /*
371  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
372  * bits of the reservation map pointer, which are always clear due to
373  * alignment.
374  */
375 #define HPAGE_RESV_OWNER    (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379 /*
380  * These helpers are used to track how many pages are reserved for
381  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382  * is guaranteed to have their future faults succeed.
383  *
384  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385  * the reserve counters are updated with the hugetlb_lock held. It is safe
386  * to reset the VMA at fork() time as it is not in use yet and there is no
387  * chance of the global counters getting corrupted as a result of the values.
388  *
389  * The private mapping reservation is represented in a subtly different
390  * manner to a shared mapping.  A shared mapping has a region map associated
391  * with the underlying file, this region map represents the backing file
392  * pages which have ever had a reservation assigned which this persists even
393  * after the page is instantiated.  A private mapping has a region map
394  * associated with the original mmap which is attached to all VMAs which
395  * reference it, this region map represents those offsets which have consumed
396  * reservation ie. where pages have been instantiated.
397  */
398 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399 {
400         return (unsigned long)vma->vm_private_data;
401 }
402
403 static void set_vma_private_data(struct vm_area_struct *vma,
404                                                         unsigned long value)
405 {
406         vma->vm_private_data = (void *)value;
407 }
408
409 struct resv_map *resv_map_alloc(void)
410 {
411         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412         if (!resv_map)
413                 return NULL;
414
415         kref_init(&resv_map->refs);
416         spin_lock_init(&resv_map->lock);
417         INIT_LIST_HEAD(&resv_map->regions);
418
419         return resv_map;
420 }
421
422 void resv_map_release(struct kref *ref)
423 {
424         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426         /* Clear out any active regions before we release the map. */
427         region_truncate(resv_map, 0);
428         kfree(resv_map);
429 }
430
431 static inline struct resv_map *inode_resv_map(struct inode *inode)
432 {
433         return inode->i_mapping->private_data;
434 }
435
436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 {
438         VM_BUG_ON(!is_vm_hugetlb_page(vma));
439         if (vma->vm_flags & VM_MAYSHARE) {
440                 struct address_space *mapping = vma->vm_file->f_mapping;
441                 struct inode *inode = mapping->host;
442
443                 return inode_resv_map(inode);
444
445         } else {
446                 return (struct resv_map *)(get_vma_private_data(vma) &
447                                                         ~HPAGE_RESV_MASK);
448         }
449 }
450
451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 {
453         VM_BUG_ON(!is_vm_hugetlb_page(vma));
454         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456         set_vma_private_data(vma, (get_vma_private_data(vma) &
457                                 HPAGE_RESV_MASK) | (unsigned long)map);
458 }
459
460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461 {
462         VM_BUG_ON(!is_vm_hugetlb_page(vma));
463         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466 }
467
468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469 {
470         VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472         return (get_vma_private_data(vma) & flag) != 0;
473 }
474
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477 {
478         VM_BUG_ON(!is_vm_hugetlb_page(vma));
479         if (!(vma->vm_flags & VM_MAYSHARE))
480                 vma->vm_private_data = (void *)0;
481 }
482
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485 {
486         if (vma->vm_flags & VM_NORESERVE) {
487                 /*
488                  * This address is already reserved by other process(chg == 0),
489                  * so, we should decrement reserved count. Without decrementing,
490                  * reserve count remains after releasing inode, because this
491                  * allocated page will go into page cache and is regarded as
492                  * coming from reserved pool in releasing step.  Currently, we
493                  * don't have any other solution to deal with this situation
494                  * properly, so add work-around here.
495                  */
496                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497                         return 1;
498                 else
499                         return 0;
500         }
501
502         /* Shared mappings always use reserves */
503         if (vma->vm_flags & VM_MAYSHARE)
504                 return 1;
505
506         /*
507          * Only the process that called mmap() has reserves for
508          * private mappings.
509          */
510         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511                 return 1;
512
513         return 0;
514 }
515
516 static void enqueue_huge_page(struct hstate *h, struct page *page)
517 {
518         int nid = page_to_nid(page);
519         list_move(&page->lru, &h->hugepage_freelists[nid]);
520         h->free_huge_pages++;
521         h->free_huge_pages_node[nid]++;
522 }
523
524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525 {
526         struct page *page;
527
528         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529                 if (!is_migrate_isolate_page(page))
530                         break;
531         /*
532          * if 'non-isolated free hugepage' not found on the list,
533          * the allocation fails.
534          */
535         if (&h->hugepage_freelists[nid] == &page->lru)
536                 return NULL;
537         list_move(&page->lru, &h->hugepage_activelist);
538         set_page_refcounted(page);
539         h->free_huge_pages--;
540         h->free_huge_pages_node[nid]--;
541         return page;
542 }
543
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t htlb_alloc_mask(struct hstate *h)
546 {
547         if (hugepages_treat_as_movable || hugepage_migration_support(h))
548                 return GFP_HIGHUSER_MOVABLE;
549         else
550                 return GFP_HIGHUSER;
551 }
552
553 static struct page *dequeue_huge_page_vma(struct hstate *h,
554                                 struct vm_area_struct *vma,
555                                 unsigned long address, int avoid_reserve,
556                                 long chg)
557 {
558         struct page *page = NULL;
559         struct mempolicy *mpol;
560         nodemask_t *nodemask;
561         struct zonelist *zonelist;
562         struct zone *zone;
563         struct zoneref *z;
564         unsigned int cpuset_mems_cookie;
565
566         /*
567          * A child process with MAP_PRIVATE mappings created by their parent
568          * have no page reserves. This check ensures that reservations are
569          * not "stolen". The child may still get SIGKILLed
570          */
571         if (!vma_has_reserves(vma, chg) &&
572                         h->free_huge_pages - h->resv_huge_pages == 0)
573                 goto err;
574
575         /* If reserves cannot be used, ensure enough pages are in the pool */
576         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577                 goto err;
578
579 retry_cpuset:
580         cpuset_mems_cookie = read_mems_allowed_begin();
581         zonelist = huge_zonelist(vma, address,
582                                         htlb_alloc_mask(h), &mpol, &nodemask);
583
584         for_each_zone_zonelist_nodemask(zone, z, zonelist,
585                                                 MAX_NR_ZONES - 1, nodemask) {
586                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
588                         if (page) {
589                                 if (avoid_reserve)
590                                         break;
591                                 if (!vma_has_reserves(vma, chg))
592                                         break;
593
594                                 SetPagePrivate(page);
595                                 h->resv_huge_pages--;
596                                 break;
597                         }
598                 }
599         }
600
601         mpol_cond_put(mpol);
602         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603                 goto retry_cpuset;
604         return page;
605
606 err:
607         return NULL;
608 }
609
610 /*
611  * common helper functions for hstate_next_node_to_{alloc|free}.
612  * We may have allocated or freed a huge page based on a different
613  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
614  * be outside of *nodes_allowed.  Ensure that we use an allowed
615  * node for alloc or free.
616  */
617 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
618 {
619         nid = next_node(nid, *nodes_allowed);
620         if (nid == MAX_NUMNODES)
621                 nid = first_node(*nodes_allowed);
622         VM_BUG_ON(nid >= MAX_NUMNODES);
623
624         return nid;
625 }
626
627 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
628 {
629         if (!node_isset(nid, *nodes_allowed))
630                 nid = next_node_allowed(nid, nodes_allowed);
631         return nid;
632 }
633
634 /*
635  * returns the previously saved node ["this node"] from which to
636  * allocate a persistent huge page for the pool and advance the
637  * next node from which to allocate, handling wrap at end of node
638  * mask.
639  */
640 static int hstate_next_node_to_alloc(struct hstate *h,
641                                         nodemask_t *nodes_allowed)
642 {
643         int nid;
644
645         VM_BUG_ON(!nodes_allowed);
646
647         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
648         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
649
650         return nid;
651 }
652
653 /*
654  * helper for free_pool_huge_page() - return the previously saved
655  * node ["this node"] from which to free a huge page.  Advance the
656  * next node id whether or not we find a free huge page to free so
657  * that the next attempt to free addresses the next node.
658  */
659 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
660 {
661         int nid;
662
663         VM_BUG_ON(!nodes_allowed);
664
665         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
666         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
667
668         return nid;
669 }
670
671 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
672         for (nr_nodes = nodes_weight(*mask);                            \
673                 nr_nodes > 0 &&                                         \
674                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
675                 nr_nodes--)
676
677 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
678         for (nr_nodes = nodes_weight(*mask);                            \
679                 nr_nodes > 0 &&                                         \
680                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
681                 nr_nodes--)
682
683 static void update_and_free_page(struct hstate *h, struct page *page)
684 {
685         int i;
686
687         VM_BUG_ON(hstate_is_gigantic(h));
688
689         h->nr_huge_pages--;
690         h->nr_huge_pages_node[page_to_nid(page)]--;
691         for (i = 0; i < pages_per_huge_page(h); i++) {
692                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
693                                 1 << PG_referenced | 1 << PG_dirty |
694                                 1 << PG_active | 1 << PG_private |
695                                 1 << PG_writeback);
696         }
697         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
698         set_compound_page_dtor(page, NULL);
699         set_page_refcounted(page);
700         arch_release_hugepage(page);
701         __free_pages(page, huge_page_order(h));
702 }
703
704 struct hstate *size_to_hstate(unsigned long size)
705 {
706         struct hstate *h;
707
708         for_each_hstate(h) {
709                 if (huge_page_size(h) == size)
710                         return h;
711         }
712         return NULL;
713 }
714
715 static void free_huge_page(struct page *page)
716 {
717         /*
718          * Can't pass hstate in here because it is called from the
719          * compound page destructor.
720          */
721         struct hstate *h = page_hstate(page);
722         int nid = page_to_nid(page);
723         struct hugepage_subpool *spool =
724                 (struct hugepage_subpool *)page_private(page);
725         bool restore_reserve;
726
727         set_page_private(page, 0);
728         page->mapping = NULL;
729         BUG_ON(page_count(page));
730         BUG_ON(page_mapcount(page));
731         restore_reserve = PagePrivate(page);
732         ClearPagePrivate(page);
733
734         spin_lock(&hugetlb_lock);
735         hugetlb_cgroup_uncharge_page(hstate_index(h),
736                                      pages_per_huge_page(h), page);
737         if (restore_reserve)
738                 h->resv_huge_pages++;
739
740         if (h->surplus_huge_pages_node[nid] && !hstate_is_gigantic(h)) {
741                 /* remove the page from active list */
742                 list_del(&page->lru);
743                 update_and_free_page(h, page);
744                 h->surplus_huge_pages--;
745                 h->surplus_huge_pages_node[nid]--;
746         } else {
747                 arch_clear_hugepage_flags(page);
748                 enqueue_huge_page(h, page);
749         }
750         spin_unlock(&hugetlb_lock);
751         hugepage_subpool_put_pages(spool, 1);
752 }
753
754 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
755 {
756         INIT_LIST_HEAD(&page->lru);
757         set_compound_page_dtor(page, free_huge_page);
758         spin_lock(&hugetlb_lock);
759         set_hugetlb_cgroup(page, NULL);
760         h->nr_huge_pages++;
761         h->nr_huge_pages_node[nid]++;
762         spin_unlock(&hugetlb_lock);
763         put_page(page); /* free it into the hugepage allocator */
764 }
765
766 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
767 {
768         int i;
769         int nr_pages = 1 << order;
770         struct page *p = page + 1;
771
772         /* we rely on prep_new_huge_page to set the destructor */
773         set_compound_order(page, order);
774         __SetPageHead(page);
775         __ClearPageReserved(page);
776         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
777                 __SetPageTail(p);
778                 /*
779                  * For gigantic hugepages allocated through bootmem at
780                  * boot, it's safer to be consistent with the not-gigantic
781                  * hugepages and clear the PG_reserved bit from all tail pages
782                  * too.  Otherwse drivers using get_user_pages() to access tail
783                  * pages may get the reference counting wrong if they see
784                  * PG_reserved set on a tail page (despite the head page not
785                  * having PG_reserved set).  Enforcing this consistency between
786                  * head and tail pages allows drivers to optimize away a check
787                  * on the head page when they need know if put_page() is needed
788                  * after get_user_pages().
789                  */
790                 __ClearPageReserved(p);
791                 set_page_count(p, 0);
792                 p->first_page = page;
793         }
794 }
795
796 /*
797  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
798  * transparent huge pages.  See the PageTransHuge() documentation for more
799  * details.
800  */
801 int PageHuge(struct page *page)
802 {
803         if (!PageCompound(page))
804                 return 0;
805
806         page = compound_head(page);
807         return get_compound_page_dtor(page) == free_huge_page;
808 }
809 EXPORT_SYMBOL_GPL(PageHuge);
810
811 /*
812  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
813  * normal or transparent huge pages.
814  */
815 int PageHeadHuge(struct page *page_head)
816 {
817         if (!PageHead(page_head))
818                 return 0;
819
820         return get_compound_page_dtor(page_head) == free_huge_page;
821 }
822
823 pgoff_t __basepage_index(struct page *page)
824 {
825         struct page *page_head = compound_head(page);
826         pgoff_t index = page_index(page_head);
827         unsigned long compound_idx;
828
829         if (!PageHuge(page_head))
830                 return page_index(page);
831
832         if (compound_order(page_head) >= MAX_ORDER)
833                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
834         else
835                 compound_idx = page - page_head;
836
837         return (index << compound_order(page_head)) + compound_idx;
838 }
839
840 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
841 {
842         struct page *page;
843
844         if (hstate_is_gigantic(h))
845                 return NULL;
846
847         page = alloc_pages_exact_node(nid,
848                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
849                                                 __GFP_REPEAT|__GFP_NOWARN,
850                 huge_page_order(h));
851         if (page) {
852                 if (arch_prepare_hugepage(page)) {
853                         __free_pages(page, huge_page_order(h));
854                         return NULL;
855                 }
856                 prep_new_huge_page(h, page, nid);
857         }
858
859         return page;
860 }
861
862 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
863 {
864         struct page *page;
865         int nr_nodes, node;
866         int ret = 0;
867
868         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
869                 page = alloc_fresh_huge_page_node(h, node);
870                 if (page) {
871                         ret = 1;
872                         break;
873                 }
874         }
875
876         if (ret)
877                 count_vm_event(HTLB_BUDDY_PGALLOC);
878         else
879                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
880
881         return ret;
882 }
883
884 /*
885  * Free huge page from pool from next node to free.
886  * Attempt to keep persistent huge pages more or less
887  * balanced over allowed nodes.
888  * Called with hugetlb_lock locked.
889  */
890 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
891                                                          bool acct_surplus)
892 {
893         int nr_nodes, node;
894         int ret = 0;
895
896         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
897                 /*
898                  * If we're returning unused surplus pages, only examine
899                  * nodes with surplus pages.
900                  */
901                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
902                     !list_empty(&h->hugepage_freelists[node])) {
903                         struct page *page =
904                                 list_entry(h->hugepage_freelists[node].next,
905                                           struct page, lru);
906                         list_del(&page->lru);
907                         h->free_huge_pages--;
908                         h->free_huge_pages_node[node]--;
909                         if (acct_surplus) {
910                                 h->surplus_huge_pages--;
911                                 h->surplus_huge_pages_node[node]--;
912                         }
913                         update_and_free_page(h, page);
914                         ret = 1;
915                         break;
916                 }
917         }
918
919         return ret;
920 }
921
922 /*
923  * Dissolve a given free hugepage into free buddy pages. This function does
924  * nothing for in-use (including surplus) hugepages.
925  */
926 static void dissolve_free_huge_page(struct page *page)
927 {
928         spin_lock(&hugetlb_lock);
929         if (PageHuge(page) && !page_count(page)) {
930                 struct hstate *h = page_hstate(page);
931                 int nid = page_to_nid(page);
932                 list_del(&page->lru);
933                 h->free_huge_pages--;
934                 h->free_huge_pages_node[nid]--;
935                 update_and_free_page(h, page);
936         }
937         spin_unlock(&hugetlb_lock);
938 }
939
940 /*
941  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
942  * make specified memory blocks removable from the system.
943  * Note that start_pfn should aligned with (minimum) hugepage size.
944  */
945 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
946 {
947         unsigned int order = 8 * sizeof(void *);
948         unsigned long pfn;
949         struct hstate *h;
950
951         /* Set scan step to minimum hugepage size */
952         for_each_hstate(h)
953                 if (order > huge_page_order(h))
954                         order = huge_page_order(h);
955         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
956         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
957                 dissolve_free_huge_page(pfn_to_page(pfn));
958 }
959
960 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
961 {
962         struct page *page;
963         unsigned int r_nid;
964
965         if (hstate_is_gigantic(h))
966                 return NULL;
967
968         /*
969          * Assume we will successfully allocate the surplus page to
970          * prevent racing processes from causing the surplus to exceed
971          * overcommit
972          *
973          * This however introduces a different race, where a process B
974          * tries to grow the static hugepage pool while alloc_pages() is
975          * called by process A. B will only examine the per-node
976          * counters in determining if surplus huge pages can be
977          * converted to normal huge pages in adjust_pool_surplus(). A
978          * won't be able to increment the per-node counter, until the
979          * lock is dropped by B, but B doesn't drop hugetlb_lock until
980          * no more huge pages can be converted from surplus to normal
981          * state (and doesn't try to convert again). Thus, we have a
982          * case where a surplus huge page exists, the pool is grown, and
983          * the surplus huge page still exists after, even though it
984          * should just have been converted to a normal huge page. This
985          * does not leak memory, though, as the hugepage will be freed
986          * once it is out of use. It also does not allow the counters to
987          * go out of whack in adjust_pool_surplus() as we don't modify
988          * the node values until we've gotten the hugepage and only the
989          * per-node value is checked there.
990          */
991         spin_lock(&hugetlb_lock);
992         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
993                 spin_unlock(&hugetlb_lock);
994                 return NULL;
995         } else {
996                 h->nr_huge_pages++;
997                 h->surplus_huge_pages++;
998         }
999         spin_unlock(&hugetlb_lock);
1000
1001         if (nid == NUMA_NO_NODE)
1002                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1003                                    __GFP_REPEAT|__GFP_NOWARN,
1004                                    huge_page_order(h));
1005         else
1006                 page = alloc_pages_exact_node(nid,
1007                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1008                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1009
1010         if (page && arch_prepare_hugepage(page)) {
1011                 __free_pages(page, huge_page_order(h));
1012                 page = NULL;
1013         }
1014
1015         spin_lock(&hugetlb_lock);
1016         if (page) {
1017                 INIT_LIST_HEAD(&page->lru);
1018                 r_nid = page_to_nid(page);
1019                 set_compound_page_dtor(page, free_huge_page);
1020                 set_hugetlb_cgroup(page, NULL);
1021                 /*
1022                  * We incremented the global counters already
1023                  */
1024                 h->nr_huge_pages_node[r_nid]++;
1025                 h->surplus_huge_pages_node[r_nid]++;
1026                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1027         } else {
1028                 h->nr_huge_pages--;
1029                 h->surplus_huge_pages--;
1030                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1031         }
1032         spin_unlock(&hugetlb_lock);
1033
1034         return page;
1035 }
1036
1037 /*
1038  * This allocation function is useful in the context where vma is irrelevant.
1039  * E.g. soft-offlining uses this function because it only cares physical
1040  * address of error page.
1041  */
1042 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1043 {
1044         struct page *page = NULL;
1045
1046         spin_lock(&hugetlb_lock);
1047         if (h->free_huge_pages - h->resv_huge_pages > 0)
1048                 page = dequeue_huge_page_node(h, nid);
1049         spin_unlock(&hugetlb_lock);
1050
1051         if (!page)
1052                 page = alloc_buddy_huge_page(h, nid);
1053
1054         return page;
1055 }
1056
1057 /*
1058  * Increase the hugetlb pool such that it can accommodate a reservation
1059  * of size 'delta'.
1060  */
1061 static int gather_surplus_pages(struct hstate *h, int delta)
1062 {
1063         struct list_head surplus_list;
1064         struct page *page, *tmp;
1065         int ret, i;
1066         int needed, allocated;
1067         bool alloc_ok = true;
1068
1069         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1070         if (needed <= 0) {
1071                 h->resv_huge_pages += delta;
1072                 return 0;
1073         }
1074
1075         allocated = 0;
1076         INIT_LIST_HEAD(&surplus_list);
1077
1078         ret = -ENOMEM;
1079 retry:
1080         spin_unlock(&hugetlb_lock);
1081         for (i = 0; i < needed; i++) {
1082                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1083                 if (!page) {
1084                         alloc_ok = false;
1085                         break;
1086                 }
1087                 list_add(&page->lru, &surplus_list);
1088         }
1089         allocated += i;
1090
1091         /*
1092          * After retaking hugetlb_lock, we need to recalculate 'needed'
1093          * because either resv_huge_pages or free_huge_pages may have changed.
1094          */
1095         spin_lock(&hugetlb_lock);
1096         needed = (h->resv_huge_pages + delta) -
1097                         (h->free_huge_pages + allocated);
1098         if (needed > 0) {
1099                 if (alloc_ok)
1100                         goto retry;
1101                 /*
1102                  * We were not able to allocate enough pages to
1103                  * satisfy the entire reservation so we free what
1104                  * we've allocated so far.
1105                  */
1106                 goto free;
1107         }
1108         /*
1109          * The surplus_list now contains _at_least_ the number of extra pages
1110          * needed to accommodate the reservation.  Add the appropriate number
1111          * of pages to the hugetlb pool and free the extras back to the buddy
1112          * allocator.  Commit the entire reservation here to prevent another
1113          * process from stealing the pages as they are added to the pool but
1114          * before they are reserved.
1115          */
1116         needed += allocated;
1117         h->resv_huge_pages += delta;
1118         ret = 0;
1119
1120         /* Free the needed pages to the hugetlb pool */
1121         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1122                 if ((--needed) < 0)
1123                         break;
1124                 /*
1125                  * This page is now managed by the hugetlb allocator and has
1126                  * no users -- drop the buddy allocator's reference.
1127                  */
1128                 put_page_testzero(page);
1129                 VM_BUG_ON_PAGE(page_count(page), page);
1130                 enqueue_huge_page(h, page);
1131         }
1132 free:
1133         spin_unlock(&hugetlb_lock);
1134
1135         /* Free unnecessary surplus pages to the buddy allocator */
1136         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1137                 put_page(page);
1138         spin_lock(&hugetlb_lock);
1139
1140         return ret;
1141 }
1142
1143 /*
1144  * When releasing a hugetlb pool reservation, any surplus pages that were
1145  * allocated to satisfy the reservation must be explicitly freed if they were
1146  * never used.
1147  * Called with hugetlb_lock held.
1148  */
1149 static void return_unused_surplus_pages(struct hstate *h,
1150                                         unsigned long unused_resv_pages)
1151 {
1152         unsigned long nr_pages;
1153
1154         /* Uncommit the reservation */
1155         h->resv_huge_pages -= unused_resv_pages;
1156
1157         /* Cannot return gigantic pages currently */
1158         if (hstate_is_gigantic(h))
1159                 return;
1160
1161         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1162
1163         /*
1164          * We want to release as many surplus pages as possible, spread
1165          * evenly across all nodes with memory. Iterate across these nodes
1166          * until we can no longer free unreserved surplus pages. This occurs
1167          * when the nodes with surplus pages have no free pages.
1168          * free_pool_huge_page() will balance the the freed pages across the
1169          * on-line nodes with memory and will handle the hstate accounting.
1170          */
1171         while (nr_pages--) {
1172                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1173                         break;
1174                 cond_resched_lock(&hugetlb_lock);
1175         }
1176 }
1177
1178 /*
1179  * Determine if the huge page at addr within the vma has an associated
1180  * reservation.  Where it does not we will need to logically increase
1181  * reservation and actually increase subpool usage before an allocation
1182  * can occur.  Where any new reservation would be required the
1183  * reservation change is prepared, but not committed.  Once the page
1184  * has been allocated from the subpool and instantiated the change should
1185  * be committed via vma_commit_reservation.  No action is required on
1186  * failure.
1187  */
1188 static long vma_needs_reservation(struct hstate *h,
1189                         struct vm_area_struct *vma, unsigned long addr)
1190 {
1191         struct resv_map *resv;
1192         pgoff_t idx;
1193         long chg;
1194
1195         resv = vma_resv_map(vma);
1196         if (!resv)
1197                 return 1;
1198
1199         idx = vma_hugecache_offset(h, vma, addr);
1200         chg = region_chg(resv, idx, idx + 1);
1201
1202         if (vma->vm_flags & VM_MAYSHARE)
1203                 return chg;
1204         else
1205                 return chg < 0 ? chg : 0;
1206 }
1207 static void vma_commit_reservation(struct hstate *h,
1208                         struct vm_area_struct *vma, unsigned long addr)
1209 {
1210         struct resv_map *resv;
1211         pgoff_t idx;
1212
1213         resv = vma_resv_map(vma);
1214         if (!resv)
1215                 return;
1216
1217         idx = vma_hugecache_offset(h, vma, addr);
1218         region_add(resv, idx, idx + 1);
1219 }
1220
1221 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1222                                     unsigned long addr, int avoid_reserve)
1223 {
1224         struct hugepage_subpool *spool = subpool_vma(vma);
1225         struct hstate *h = hstate_vma(vma);
1226         struct page *page;
1227         long chg;
1228         int ret, idx;
1229         struct hugetlb_cgroup *h_cg;
1230
1231         idx = hstate_index(h);
1232         /*
1233          * Processes that did not create the mapping will have no
1234          * reserves and will not have accounted against subpool
1235          * limit. Check that the subpool limit can be made before
1236          * satisfying the allocation MAP_NORESERVE mappings may also
1237          * need pages and subpool limit allocated allocated if no reserve
1238          * mapping overlaps.
1239          */
1240         chg = vma_needs_reservation(h, vma, addr);
1241         if (chg < 0)
1242                 return ERR_PTR(-ENOMEM);
1243         if (chg || avoid_reserve)
1244                 if (hugepage_subpool_get_pages(spool, 1))
1245                         return ERR_PTR(-ENOSPC);
1246
1247         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1248         if (ret) {
1249                 if (chg || avoid_reserve)
1250                         hugepage_subpool_put_pages(spool, 1);
1251                 return ERR_PTR(-ENOSPC);
1252         }
1253         spin_lock(&hugetlb_lock);
1254         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1255         if (!page) {
1256                 spin_unlock(&hugetlb_lock);
1257                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1258                 if (!page) {
1259                         hugetlb_cgroup_uncharge_cgroup(idx,
1260                                                        pages_per_huge_page(h),
1261                                                        h_cg);
1262                         if (chg || avoid_reserve)
1263                                 hugepage_subpool_put_pages(spool, 1);
1264                         return ERR_PTR(-ENOSPC);
1265                 }
1266                 spin_lock(&hugetlb_lock);
1267                 list_move(&page->lru, &h->hugepage_activelist);
1268                 /* Fall through */
1269         }
1270         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1271         spin_unlock(&hugetlb_lock);
1272
1273         set_page_private(page, (unsigned long)spool);
1274
1275         vma_commit_reservation(h, vma, addr);
1276         return page;
1277 }
1278
1279 /*
1280  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1281  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1282  * where no ERR_VALUE is expected to be returned.
1283  */
1284 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1285                                 unsigned long addr, int avoid_reserve)
1286 {
1287         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1288         if (IS_ERR(page))
1289                 page = NULL;
1290         return page;
1291 }
1292
1293 int __weak alloc_bootmem_huge_page(struct hstate *h)
1294 {
1295         struct huge_bootmem_page *m;
1296         int nr_nodes, node;
1297
1298         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1299                 void *addr;
1300
1301                 addr = memblock_virt_alloc_try_nid_nopanic(
1302                                 huge_page_size(h), huge_page_size(h),
1303                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1304                 if (addr) {
1305                         /*
1306                          * Use the beginning of the huge page to store the
1307                          * huge_bootmem_page struct (until gather_bootmem
1308                          * puts them into the mem_map).
1309                          */
1310                         m = addr;
1311                         goto found;
1312                 }
1313         }
1314         return 0;
1315
1316 found:
1317         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1318         /* Put them into a private list first because mem_map is not up yet */
1319         list_add(&m->list, &huge_boot_pages);
1320         m->hstate = h;
1321         return 1;
1322 }
1323
1324 static void __init prep_compound_huge_page(struct page *page, int order)
1325 {
1326         if (unlikely(order > (MAX_ORDER - 1)))
1327                 prep_compound_gigantic_page(page, order);
1328         else
1329                 prep_compound_page(page, order);
1330 }
1331
1332 /* Put bootmem huge pages into the standard lists after mem_map is up */
1333 static void __init gather_bootmem_prealloc(void)
1334 {
1335         struct huge_bootmem_page *m;
1336
1337         list_for_each_entry(m, &huge_boot_pages, list) {
1338                 struct hstate *h = m->hstate;
1339                 struct page *page;
1340
1341 #ifdef CONFIG_HIGHMEM
1342                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1343                 memblock_free_late(__pa(m),
1344                                    sizeof(struct huge_bootmem_page));
1345 #else
1346                 page = virt_to_page(m);
1347 #endif
1348                 WARN_ON(page_count(page) != 1);
1349                 prep_compound_huge_page(page, h->order);
1350                 WARN_ON(PageReserved(page));
1351                 prep_new_huge_page(h, page, page_to_nid(page));
1352                 /*
1353                  * If we had gigantic hugepages allocated at boot time, we need
1354                  * to restore the 'stolen' pages to totalram_pages in order to
1355                  * fix confusing memory reports from free(1) and another
1356                  * side-effects, like CommitLimit going negative.
1357                  */
1358                 if (hstate_is_gigantic(h))
1359                         adjust_managed_page_count(page, 1 << h->order);
1360         }
1361 }
1362
1363 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1364 {
1365         unsigned long i;
1366
1367         for (i = 0; i < h->max_huge_pages; ++i) {
1368                 if (hstate_is_gigantic(h)) {
1369                         if (!alloc_bootmem_huge_page(h))
1370                                 break;
1371                 } else if (!alloc_fresh_huge_page(h,
1372                                          &node_states[N_MEMORY]))
1373                         break;
1374         }
1375         h->max_huge_pages = i;
1376 }
1377
1378 static void __init hugetlb_init_hstates(void)
1379 {
1380         struct hstate *h;
1381
1382         for_each_hstate(h) {
1383                 /* oversize hugepages were init'ed in early boot */
1384                 if (!hstate_is_gigantic(h))
1385                         hugetlb_hstate_alloc_pages(h);
1386         }
1387 }
1388
1389 static char * __init memfmt(char *buf, unsigned long n)
1390 {
1391         if (n >= (1UL << 30))
1392                 sprintf(buf, "%lu GB", n >> 30);
1393         else if (n >= (1UL << 20))
1394                 sprintf(buf, "%lu MB", n >> 20);
1395         else
1396                 sprintf(buf, "%lu KB", n >> 10);
1397         return buf;
1398 }
1399
1400 static void __init report_hugepages(void)
1401 {
1402         struct hstate *h;
1403
1404         for_each_hstate(h) {
1405                 char buf[32];
1406                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1407                         memfmt(buf, huge_page_size(h)),
1408                         h->free_huge_pages);
1409         }
1410 }
1411
1412 #ifdef CONFIG_HIGHMEM
1413 static void try_to_free_low(struct hstate *h, unsigned long count,
1414                                                 nodemask_t *nodes_allowed)
1415 {
1416         int i;
1417
1418         if (hstate_is_gigantic(h))
1419                 return;
1420
1421         for_each_node_mask(i, *nodes_allowed) {
1422                 struct page *page, *next;
1423                 struct list_head *freel = &h->hugepage_freelists[i];
1424                 list_for_each_entry_safe(page, next, freel, lru) {
1425                         if (count >= h->nr_huge_pages)
1426                                 return;
1427                         if (PageHighMem(page))
1428                                 continue;
1429                         list_del(&page->lru);
1430                         update_and_free_page(h, page);
1431                         h->free_huge_pages--;
1432                         h->free_huge_pages_node[page_to_nid(page)]--;
1433                 }
1434         }
1435 }
1436 #else
1437 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1438                                                 nodemask_t *nodes_allowed)
1439 {
1440 }
1441 #endif
1442
1443 /*
1444  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1445  * balanced by operating on them in a round-robin fashion.
1446  * Returns 1 if an adjustment was made.
1447  */
1448 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1449                                 int delta)
1450 {
1451         int nr_nodes, node;
1452
1453         VM_BUG_ON(delta != -1 && delta != 1);
1454
1455         if (delta < 0) {
1456                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1457                         if (h->surplus_huge_pages_node[node])
1458                                 goto found;
1459                 }
1460         } else {
1461                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1462                         if (h->surplus_huge_pages_node[node] <
1463                                         h->nr_huge_pages_node[node])
1464                                 goto found;
1465                 }
1466         }
1467         return 0;
1468
1469 found:
1470         h->surplus_huge_pages += delta;
1471         h->surplus_huge_pages_node[node] += delta;
1472         return 1;
1473 }
1474
1475 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1476 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1477                                                 nodemask_t *nodes_allowed)
1478 {
1479         unsigned long min_count, ret;
1480
1481         if (hstate_is_gigantic(h))
1482                 return h->max_huge_pages;
1483
1484         /*
1485          * Increase the pool size
1486          * First take pages out of surplus state.  Then make up the
1487          * remaining difference by allocating fresh huge pages.
1488          *
1489          * We might race with alloc_buddy_huge_page() here and be unable
1490          * to convert a surplus huge page to a normal huge page. That is
1491          * not critical, though, it just means the overall size of the
1492          * pool might be one hugepage larger than it needs to be, but
1493          * within all the constraints specified by the sysctls.
1494          */
1495         spin_lock(&hugetlb_lock);
1496         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1497                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1498                         break;
1499         }
1500
1501         while (count > persistent_huge_pages(h)) {
1502                 /*
1503                  * If this allocation races such that we no longer need the
1504                  * page, free_huge_page will handle it by freeing the page
1505                  * and reducing the surplus.
1506                  */
1507                 spin_unlock(&hugetlb_lock);
1508                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1509                 spin_lock(&hugetlb_lock);
1510                 if (!ret)
1511                         goto out;
1512
1513                 /* Bail for signals. Probably ctrl-c from user */
1514                 if (signal_pending(current))
1515                         goto out;
1516         }
1517
1518         /*
1519          * Decrease the pool size
1520          * First return free pages to the buddy allocator (being careful
1521          * to keep enough around to satisfy reservations).  Then place
1522          * pages into surplus state as needed so the pool will shrink
1523          * to the desired size as pages become free.
1524          *
1525          * By placing pages into the surplus state independent of the
1526          * overcommit value, we are allowing the surplus pool size to
1527          * exceed overcommit. There are few sane options here. Since
1528          * alloc_buddy_huge_page() is checking the global counter,
1529          * though, we'll note that we're not allowed to exceed surplus
1530          * and won't grow the pool anywhere else. Not until one of the
1531          * sysctls are changed, or the surplus pages go out of use.
1532          */
1533         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1534         min_count = max(count, min_count);
1535         try_to_free_low(h, min_count, nodes_allowed);
1536         while (min_count < persistent_huge_pages(h)) {
1537                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1538                         break;
1539                 cond_resched_lock(&hugetlb_lock);
1540         }
1541         while (count < persistent_huge_pages(h)) {
1542                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1543                         break;
1544         }
1545 out:
1546         ret = persistent_huge_pages(h);
1547         spin_unlock(&hugetlb_lock);
1548         return ret;
1549 }
1550
1551 #define HSTATE_ATTR_RO(_name) \
1552         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1553
1554 #define HSTATE_ATTR(_name) \
1555         static struct kobj_attribute _name##_attr = \
1556                 __ATTR(_name, 0644, _name##_show, _name##_store)
1557
1558 static struct kobject *hugepages_kobj;
1559 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1560
1561 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1562
1563 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1564 {
1565         int i;
1566
1567         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1568                 if (hstate_kobjs[i] == kobj) {
1569                         if (nidp)
1570                                 *nidp = NUMA_NO_NODE;
1571                         return &hstates[i];
1572                 }
1573
1574         return kobj_to_node_hstate(kobj, nidp);
1575 }
1576
1577 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1578                                         struct kobj_attribute *attr, char *buf)
1579 {
1580         struct hstate *h;
1581         unsigned long nr_huge_pages;
1582         int nid;
1583
1584         h = kobj_to_hstate(kobj, &nid);
1585         if (nid == NUMA_NO_NODE)
1586                 nr_huge_pages = h->nr_huge_pages;
1587         else
1588                 nr_huge_pages = h->nr_huge_pages_node[nid];
1589
1590         return sprintf(buf, "%lu\n", nr_huge_pages);
1591 }
1592
1593 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1594                         struct kobject *kobj, struct kobj_attribute *attr,
1595                         const char *buf, size_t len)
1596 {
1597         int err;
1598         int nid;
1599         unsigned long count;
1600         struct hstate *h;
1601         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1602
1603         err = kstrtoul(buf, 10, &count);
1604         if (err)
1605                 goto out;
1606
1607         h = kobj_to_hstate(kobj, &nid);
1608         if (hstate_is_gigantic(h)) {
1609                 err = -EINVAL;
1610                 goto out;
1611         }
1612
1613         if (nid == NUMA_NO_NODE) {
1614                 /*
1615                  * global hstate attribute
1616                  */
1617                 if (!(obey_mempolicy &&
1618                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1619                         NODEMASK_FREE(nodes_allowed);
1620                         nodes_allowed = &node_states[N_MEMORY];
1621                 }
1622         } else if (nodes_allowed) {
1623                 /*
1624                  * per node hstate attribute: adjust count to global,
1625                  * but restrict alloc/free to the specified node.
1626                  */
1627                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1628                 init_nodemask_of_node(nodes_allowed, nid);
1629         } else
1630                 nodes_allowed = &node_states[N_MEMORY];
1631
1632         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1633
1634         if (nodes_allowed != &node_states[N_MEMORY])
1635                 NODEMASK_FREE(nodes_allowed);
1636
1637         return len;
1638 out:
1639         NODEMASK_FREE(nodes_allowed);
1640         return err;
1641 }
1642
1643 static ssize_t nr_hugepages_show(struct kobject *kobj,
1644                                        struct kobj_attribute *attr, char *buf)
1645 {
1646         return nr_hugepages_show_common(kobj, attr, buf);
1647 }
1648
1649 static ssize_t nr_hugepages_store(struct kobject *kobj,
1650                struct kobj_attribute *attr, const char *buf, size_t len)
1651 {
1652         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1653 }
1654 HSTATE_ATTR(nr_hugepages);
1655
1656 #ifdef CONFIG_NUMA
1657
1658 /*
1659  * hstate attribute for optionally mempolicy-based constraint on persistent
1660  * huge page alloc/free.
1661  */
1662 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1663                                        struct kobj_attribute *attr, char *buf)
1664 {
1665         return nr_hugepages_show_common(kobj, attr, buf);
1666 }
1667
1668 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1669                struct kobj_attribute *attr, const char *buf, size_t len)
1670 {
1671         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1672 }
1673 HSTATE_ATTR(nr_hugepages_mempolicy);
1674 #endif
1675
1676
1677 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1678                                         struct kobj_attribute *attr, char *buf)
1679 {
1680         struct hstate *h = kobj_to_hstate(kobj, NULL);
1681         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1682 }
1683
1684 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1685                 struct kobj_attribute *attr, const char *buf, size_t count)
1686 {
1687         int err;
1688         unsigned long input;
1689         struct hstate *h = kobj_to_hstate(kobj, NULL);
1690
1691         if (hstate_is_gigantic(h))
1692                 return -EINVAL;
1693
1694         err = kstrtoul(buf, 10, &input);
1695         if (err)
1696                 return err;
1697
1698         spin_lock(&hugetlb_lock);
1699         h->nr_overcommit_huge_pages = input;
1700         spin_unlock(&hugetlb_lock);
1701
1702         return count;
1703 }
1704 HSTATE_ATTR(nr_overcommit_hugepages);
1705
1706 static ssize_t free_hugepages_show(struct kobject *kobj,
1707                                         struct kobj_attribute *attr, char *buf)
1708 {
1709         struct hstate *h;
1710         unsigned long free_huge_pages;
1711         int nid;
1712
1713         h = kobj_to_hstate(kobj, &nid);
1714         if (nid == NUMA_NO_NODE)
1715                 free_huge_pages = h->free_huge_pages;
1716         else
1717                 free_huge_pages = h->free_huge_pages_node[nid];
1718
1719         return sprintf(buf, "%lu\n", free_huge_pages);
1720 }
1721 HSTATE_ATTR_RO(free_hugepages);
1722
1723 static ssize_t resv_hugepages_show(struct kobject *kobj,
1724                                         struct kobj_attribute *attr, char *buf)
1725 {
1726         struct hstate *h = kobj_to_hstate(kobj, NULL);
1727         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1728 }
1729 HSTATE_ATTR_RO(resv_hugepages);
1730
1731 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1732                                         struct kobj_attribute *attr, char *buf)
1733 {
1734         struct hstate *h;
1735         unsigned long surplus_huge_pages;
1736         int nid;
1737
1738         h = kobj_to_hstate(kobj, &nid);
1739         if (nid == NUMA_NO_NODE)
1740                 surplus_huge_pages = h->surplus_huge_pages;
1741         else
1742                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1743
1744         return sprintf(buf, "%lu\n", surplus_huge_pages);
1745 }
1746 HSTATE_ATTR_RO(surplus_hugepages);
1747
1748 static struct attribute *hstate_attrs[] = {
1749         &nr_hugepages_attr.attr,
1750         &nr_overcommit_hugepages_attr.attr,
1751         &free_hugepages_attr.attr,
1752         &resv_hugepages_attr.attr,
1753         &surplus_hugepages_attr.attr,
1754 #ifdef CONFIG_NUMA
1755         &nr_hugepages_mempolicy_attr.attr,
1756 #endif
1757         NULL,
1758 };
1759
1760 static struct attribute_group hstate_attr_group = {
1761         .attrs = hstate_attrs,
1762 };
1763
1764 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1765                                     struct kobject **hstate_kobjs,
1766                                     struct attribute_group *hstate_attr_group)
1767 {
1768         int retval;
1769         int hi = hstate_index(h);
1770
1771         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1772         if (!hstate_kobjs[hi])
1773                 return -ENOMEM;
1774
1775         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1776         if (retval)
1777                 kobject_put(hstate_kobjs[hi]);
1778
1779         return retval;
1780 }
1781
1782 static void __init hugetlb_sysfs_init(void)
1783 {
1784         struct hstate *h;
1785         int err;
1786
1787         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1788         if (!hugepages_kobj)
1789                 return;
1790
1791         for_each_hstate(h) {
1792                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1793                                          hstate_kobjs, &hstate_attr_group);
1794                 if (err)
1795                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1796         }
1797 }
1798
1799 #ifdef CONFIG_NUMA
1800
1801 /*
1802  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1803  * with node devices in node_devices[] using a parallel array.  The array
1804  * index of a node device or _hstate == node id.
1805  * This is here to avoid any static dependency of the node device driver, in
1806  * the base kernel, on the hugetlb module.
1807  */
1808 struct node_hstate {
1809         struct kobject          *hugepages_kobj;
1810         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1811 };
1812 struct node_hstate node_hstates[MAX_NUMNODES];
1813
1814 /*
1815  * A subset of global hstate attributes for node devices
1816  */
1817 static struct attribute *per_node_hstate_attrs[] = {
1818         &nr_hugepages_attr.attr,
1819         &free_hugepages_attr.attr,
1820         &surplus_hugepages_attr.attr,
1821         NULL,
1822 };
1823
1824 static struct attribute_group per_node_hstate_attr_group = {
1825         .attrs = per_node_hstate_attrs,
1826 };
1827
1828 /*
1829  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1830  * Returns node id via non-NULL nidp.
1831  */
1832 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1833 {
1834         int nid;
1835
1836         for (nid = 0; nid < nr_node_ids; nid++) {
1837                 struct node_hstate *nhs = &node_hstates[nid];
1838                 int i;
1839                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1840                         if (nhs->hstate_kobjs[i] == kobj) {
1841                                 if (nidp)
1842                                         *nidp = nid;
1843                                 return &hstates[i];
1844                         }
1845         }
1846
1847         BUG();
1848         return NULL;
1849 }
1850
1851 /*
1852  * Unregister hstate attributes from a single node device.
1853  * No-op if no hstate attributes attached.
1854  */
1855 static void hugetlb_unregister_node(struct node *node)
1856 {
1857         struct hstate *h;
1858         struct node_hstate *nhs = &node_hstates[node->dev.id];
1859
1860         if (!nhs->hugepages_kobj)
1861                 return;         /* no hstate attributes */
1862
1863         for_each_hstate(h) {
1864                 int idx = hstate_index(h);
1865                 if (nhs->hstate_kobjs[idx]) {
1866                         kobject_put(nhs->hstate_kobjs[idx]);
1867                         nhs->hstate_kobjs[idx] = NULL;
1868                 }
1869         }
1870
1871         kobject_put(nhs->hugepages_kobj);
1872         nhs->hugepages_kobj = NULL;
1873 }
1874
1875 /*
1876  * hugetlb module exit:  unregister hstate attributes from node devices
1877  * that have them.
1878  */
1879 static void hugetlb_unregister_all_nodes(void)
1880 {
1881         int nid;
1882
1883         /*
1884          * disable node device registrations.
1885          */
1886         register_hugetlbfs_with_node(NULL, NULL);
1887
1888         /*
1889          * remove hstate attributes from any nodes that have them.
1890          */
1891         for (nid = 0; nid < nr_node_ids; nid++)
1892                 hugetlb_unregister_node(node_devices[nid]);
1893 }
1894
1895 /*
1896  * Register hstate attributes for a single node device.
1897  * No-op if attributes already registered.
1898  */
1899 static void hugetlb_register_node(struct node *node)
1900 {
1901         struct hstate *h;
1902         struct node_hstate *nhs = &node_hstates[node->dev.id];
1903         int err;
1904
1905         if (nhs->hugepages_kobj)
1906                 return;         /* already allocated */
1907
1908         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1909                                                         &node->dev.kobj);
1910         if (!nhs->hugepages_kobj)
1911                 return;
1912
1913         for_each_hstate(h) {
1914                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1915                                                 nhs->hstate_kobjs,
1916                                                 &per_node_hstate_attr_group);
1917                 if (err) {
1918                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1919                                 h->name, node->dev.id);
1920                         hugetlb_unregister_node(node);
1921                         break;
1922                 }
1923         }
1924 }
1925
1926 /*
1927  * hugetlb init time:  register hstate attributes for all registered node
1928  * devices of nodes that have memory.  All on-line nodes should have
1929  * registered their associated device by this time.
1930  */
1931 static void hugetlb_register_all_nodes(void)
1932 {
1933         int nid;
1934
1935         for_each_node_state(nid, N_MEMORY) {
1936                 struct node *node = node_devices[nid];
1937                 if (node->dev.id == nid)
1938                         hugetlb_register_node(node);
1939         }
1940
1941         /*
1942          * Let the node device driver know we're here so it can
1943          * [un]register hstate attributes on node hotplug.
1944          */
1945         register_hugetlbfs_with_node(hugetlb_register_node,
1946                                      hugetlb_unregister_node);
1947 }
1948 #else   /* !CONFIG_NUMA */
1949
1950 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1951 {
1952         BUG();
1953         if (nidp)
1954                 *nidp = -1;
1955         return NULL;
1956 }
1957
1958 static void hugetlb_unregister_all_nodes(void) { }
1959
1960 static void hugetlb_register_all_nodes(void) { }
1961
1962 #endif
1963
1964 static void __exit hugetlb_exit(void)
1965 {
1966         struct hstate *h;
1967
1968         hugetlb_unregister_all_nodes();
1969
1970         for_each_hstate(h) {
1971                 kobject_put(hstate_kobjs[hstate_index(h)]);
1972         }
1973
1974         kobject_put(hugepages_kobj);
1975         kfree(htlb_fault_mutex_table);
1976 }
1977 module_exit(hugetlb_exit);
1978
1979 static int __init hugetlb_init(void)
1980 {
1981         int i;
1982
1983         if (!hugepages_supported())
1984                 return 0;
1985
1986         if (!size_to_hstate(default_hstate_size)) {
1987                 default_hstate_size = HPAGE_SIZE;
1988                 if (!size_to_hstate(default_hstate_size))
1989                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1990         }
1991         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1992         if (default_hstate_max_huge_pages)
1993                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1994
1995         hugetlb_init_hstates();
1996         gather_bootmem_prealloc();
1997         report_hugepages();
1998
1999         hugetlb_sysfs_init();
2000         hugetlb_register_all_nodes();
2001         hugetlb_cgroup_file_init();
2002
2003 #ifdef CONFIG_SMP
2004         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2005 #else
2006         num_fault_mutexes = 1;
2007 #endif
2008         htlb_fault_mutex_table =
2009                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2010         BUG_ON(!htlb_fault_mutex_table);
2011
2012         for (i = 0; i < num_fault_mutexes; i++)
2013                 mutex_init(&htlb_fault_mutex_table[i]);
2014         return 0;
2015 }
2016 module_init(hugetlb_init);
2017
2018 /* Should be called on processing a hugepagesz=... option */
2019 void __init hugetlb_add_hstate(unsigned order)
2020 {
2021         struct hstate *h;
2022         unsigned long i;
2023
2024         if (size_to_hstate(PAGE_SIZE << order)) {
2025                 pr_warning("hugepagesz= specified twice, ignoring\n");
2026                 return;
2027         }
2028         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2029         BUG_ON(order == 0);
2030         h = &hstates[hugetlb_max_hstate++];
2031         h->order = order;
2032         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2033         h->nr_huge_pages = 0;
2034         h->free_huge_pages = 0;
2035         for (i = 0; i < MAX_NUMNODES; ++i)
2036                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2037         INIT_LIST_HEAD(&h->hugepage_activelist);
2038         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2039         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2040         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2041                                         huge_page_size(h)/1024);
2042
2043         parsed_hstate = h;
2044 }
2045
2046 static int __init hugetlb_nrpages_setup(char *s)
2047 {
2048         unsigned long *mhp;
2049         static unsigned long *last_mhp;
2050
2051         /*
2052          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2053          * so this hugepages= parameter goes to the "default hstate".
2054          */
2055         if (!hugetlb_max_hstate)
2056                 mhp = &default_hstate_max_huge_pages;
2057         else
2058                 mhp = &parsed_hstate->max_huge_pages;
2059
2060         if (mhp == last_mhp) {
2061                 pr_warning("hugepages= specified twice without "
2062                            "interleaving hugepagesz=, ignoring\n");
2063                 return 1;
2064         }
2065
2066         if (sscanf(s, "%lu", mhp) <= 0)
2067                 *mhp = 0;
2068
2069         /*
2070          * Global state is always initialized later in hugetlb_init.
2071          * But we need to allocate >= MAX_ORDER hstates here early to still
2072          * use the bootmem allocator.
2073          */
2074         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2075                 hugetlb_hstate_alloc_pages(parsed_hstate);
2076
2077         last_mhp = mhp;
2078
2079         return 1;
2080 }
2081 __setup("hugepages=", hugetlb_nrpages_setup);
2082
2083 static int __init hugetlb_default_setup(char *s)
2084 {
2085         default_hstate_size = memparse(s, &s);
2086         return 1;
2087 }
2088 __setup("default_hugepagesz=", hugetlb_default_setup);
2089
2090 static unsigned int cpuset_mems_nr(unsigned int *array)
2091 {
2092         int node;
2093         unsigned int nr = 0;
2094
2095         for_each_node_mask(node, cpuset_current_mems_allowed)
2096                 nr += array[node];
2097
2098         return nr;
2099 }
2100
2101 #ifdef CONFIG_SYSCTL
2102 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2103                          struct ctl_table *table, int write,
2104                          void __user *buffer, size_t *length, loff_t *ppos)
2105 {
2106         struct hstate *h = &default_hstate;
2107         unsigned long tmp;
2108         int ret;
2109
2110         if (!hugepages_supported())
2111                 return -ENOTSUPP;
2112
2113         tmp = h->max_huge_pages;
2114
2115         if (write && hstate_is_gigantic(h))
2116                 return -EINVAL;
2117
2118         table->data = &tmp;
2119         table->maxlen = sizeof(unsigned long);
2120         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2121         if (ret)
2122                 goto out;
2123
2124         if (write) {
2125                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2126                                                 GFP_KERNEL | __GFP_NORETRY);
2127                 if (!(obey_mempolicy &&
2128                                init_nodemask_of_mempolicy(nodes_allowed))) {
2129                         NODEMASK_FREE(nodes_allowed);
2130                         nodes_allowed = &node_states[N_MEMORY];
2131                 }
2132                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2133
2134                 if (nodes_allowed != &node_states[N_MEMORY])
2135                         NODEMASK_FREE(nodes_allowed);
2136         }
2137 out:
2138         return ret;
2139 }
2140
2141 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2142                           void __user *buffer, size_t *length, loff_t *ppos)
2143 {
2144
2145         return hugetlb_sysctl_handler_common(false, table, write,
2146                                                         buffer, length, ppos);
2147 }
2148
2149 #ifdef CONFIG_NUMA
2150 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2151                           void __user *buffer, size_t *length, loff_t *ppos)
2152 {
2153         return hugetlb_sysctl_handler_common(true, table, write,
2154                                                         buffer, length, ppos);
2155 }
2156 #endif /* CONFIG_NUMA */
2157
2158 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2159                         void __user *buffer,
2160                         size_t *length, loff_t *ppos)
2161 {
2162         struct hstate *h = &default_hstate;
2163         unsigned long tmp;
2164         int ret;
2165
2166         if (!hugepages_supported())
2167                 return -ENOTSUPP;
2168
2169         tmp = h->nr_overcommit_huge_pages;
2170
2171         if (write && hstate_is_gigantic(h))
2172                 return -EINVAL;
2173
2174         table->data = &tmp;
2175         table->maxlen = sizeof(unsigned long);
2176         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2177         if (ret)
2178                 goto out;
2179
2180         if (write) {
2181                 spin_lock(&hugetlb_lock);
2182                 h->nr_overcommit_huge_pages = tmp;
2183                 spin_unlock(&hugetlb_lock);
2184         }
2185 out:
2186         return ret;
2187 }
2188
2189 #endif /* CONFIG_SYSCTL */
2190
2191 void hugetlb_report_meminfo(struct seq_file *m)
2192 {
2193         struct hstate *h = &default_hstate;
2194         if (!hugepages_supported())
2195                 return;
2196         seq_printf(m,
2197                         "HugePages_Total:   %5lu\n"
2198                         "HugePages_Free:    %5lu\n"
2199                         "HugePages_Rsvd:    %5lu\n"
2200                         "HugePages_Surp:    %5lu\n"
2201                         "Hugepagesize:   %8lu kB\n",
2202                         h->nr_huge_pages,
2203                         h->free_huge_pages,
2204                         h->resv_huge_pages,
2205                         h->surplus_huge_pages,
2206                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2207 }
2208
2209 int hugetlb_report_node_meminfo(int nid, char *buf)
2210 {
2211         struct hstate *h = &default_hstate;
2212         if (!hugepages_supported())
2213                 return 0;
2214         return sprintf(buf,
2215                 "Node %d HugePages_Total: %5u\n"
2216                 "Node %d HugePages_Free:  %5u\n"
2217                 "Node %d HugePages_Surp:  %5u\n",
2218                 nid, h->nr_huge_pages_node[nid],
2219                 nid, h->free_huge_pages_node[nid],
2220                 nid, h->surplus_huge_pages_node[nid]);
2221 }
2222
2223 void hugetlb_show_meminfo(void)
2224 {
2225         struct hstate *h;
2226         int nid;
2227
2228         if (!hugepages_supported())
2229                 return;
2230
2231         for_each_node_state(nid, N_MEMORY)
2232                 for_each_hstate(h)
2233                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2234                                 nid,
2235                                 h->nr_huge_pages_node[nid],
2236                                 h->free_huge_pages_node[nid],
2237                                 h->surplus_huge_pages_node[nid],
2238                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2239 }
2240
2241 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2242 unsigned long hugetlb_total_pages(void)
2243 {
2244         struct hstate *h;
2245         unsigned long nr_total_pages = 0;
2246
2247         for_each_hstate(h)
2248                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2249         return nr_total_pages;
2250 }
2251
2252 static int hugetlb_acct_memory(struct hstate *h, long delta)
2253 {
2254         int ret = -ENOMEM;
2255
2256         spin_lock(&hugetlb_lock);
2257         /*
2258          * When cpuset is configured, it breaks the strict hugetlb page
2259          * reservation as the accounting is done on a global variable. Such
2260          * reservation is completely rubbish in the presence of cpuset because
2261          * the reservation is not checked against page availability for the
2262          * current cpuset. Application can still potentially OOM'ed by kernel
2263          * with lack of free htlb page in cpuset that the task is in.
2264          * Attempt to enforce strict accounting with cpuset is almost
2265          * impossible (or too ugly) because cpuset is too fluid that
2266          * task or memory node can be dynamically moved between cpusets.
2267          *
2268          * The change of semantics for shared hugetlb mapping with cpuset is
2269          * undesirable. However, in order to preserve some of the semantics,
2270          * we fall back to check against current free page availability as
2271          * a best attempt and hopefully to minimize the impact of changing
2272          * semantics that cpuset has.
2273          */
2274         if (delta > 0) {
2275                 if (gather_surplus_pages(h, delta) < 0)
2276                         goto out;
2277
2278                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2279                         return_unused_surplus_pages(h, delta);
2280                         goto out;
2281                 }
2282         }
2283
2284         ret = 0;
2285         if (delta < 0)
2286                 return_unused_surplus_pages(h, (unsigned long) -delta);
2287
2288 out:
2289         spin_unlock(&hugetlb_lock);
2290         return ret;
2291 }
2292
2293 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2294 {
2295         struct resv_map *resv = vma_resv_map(vma);
2296
2297         /*
2298          * This new VMA should share its siblings reservation map if present.
2299          * The VMA will only ever have a valid reservation map pointer where
2300          * it is being copied for another still existing VMA.  As that VMA
2301          * has a reference to the reservation map it cannot disappear until
2302          * after this open call completes.  It is therefore safe to take a
2303          * new reference here without additional locking.
2304          */
2305         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2306                 kref_get(&resv->refs);
2307 }
2308
2309 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2310 {
2311         struct hstate *h = hstate_vma(vma);
2312         struct resv_map *resv = vma_resv_map(vma);
2313         struct hugepage_subpool *spool = subpool_vma(vma);
2314         unsigned long reserve, start, end;
2315
2316         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2317                 return;
2318
2319         start = vma_hugecache_offset(h, vma, vma->vm_start);
2320         end = vma_hugecache_offset(h, vma, vma->vm_end);
2321
2322         reserve = (end - start) - region_count(resv, start, end);
2323
2324         kref_put(&resv->refs, resv_map_release);
2325
2326         if (reserve) {
2327                 hugetlb_acct_memory(h, -reserve);
2328                 hugepage_subpool_put_pages(spool, reserve);
2329         }
2330 }
2331
2332 /*
2333  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2334  * handle_mm_fault() to try to instantiate regular-sized pages in the
2335  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2336  * this far.
2337  */
2338 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2339 {
2340         BUG();
2341         return 0;
2342 }
2343
2344 const struct vm_operations_struct hugetlb_vm_ops = {
2345         .fault = hugetlb_vm_op_fault,
2346         .open = hugetlb_vm_op_open,
2347         .close = hugetlb_vm_op_close,
2348 };
2349
2350 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2351                                 int writable)
2352 {
2353         pte_t entry;
2354
2355         if (writable) {
2356                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2357                                          vma->vm_page_prot)));
2358         } else {
2359                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2360                                            vma->vm_page_prot));
2361         }
2362         entry = pte_mkyoung(entry);
2363         entry = pte_mkhuge(entry);
2364         entry = arch_make_huge_pte(entry, vma, page, writable);
2365
2366         return entry;
2367 }
2368
2369 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2370                                    unsigned long address, pte_t *ptep)
2371 {
2372         pte_t entry;
2373
2374         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2375         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2376                 update_mmu_cache(vma, address, ptep);
2377 }
2378
2379
2380 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2381                             struct vm_area_struct *vma)
2382 {
2383         pte_t *src_pte, *dst_pte, entry;
2384         struct page *ptepage;
2385         unsigned long addr;
2386         int cow;
2387         struct hstate *h = hstate_vma(vma);
2388         unsigned long sz = huge_page_size(h);
2389         unsigned long mmun_start;       /* For mmu_notifiers */
2390         unsigned long mmun_end;         /* For mmu_notifiers */
2391         int ret = 0;
2392
2393         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2394
2395         mmun_start = vma->vm_start;
2396         mmun_end = vma->vm_end;
2397         if (cow)
2398                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2399
2400         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2401                 spinlock_t *src_ptl, *dst_ptl;
2402                 src_pte = huge_pte_offset(src, addr);
2403                 if (!src_pte)
2404                         continue;
2405                 dst_pte = huge_pte_alloc(dst, addr, sz);
2406                 if (!dst_pte) {
2407                         ret = -ENOMEM;
2408                         break;
2409                 }
2410
2411                 /* If the pagetables are shared don't copy or take references */
2412                 if (dst_pte == src_pte)
2413                         continue;
2414
2415                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2416                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2417                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2418                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2419                         if (cow)
2420                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2421                         entry = huge_ptep_get(src_pte);
2422                         ptepage = pte_page(entry);
2423                         get_page(ptepage);
2424                         page_dup_rmap(ptepage);
2425                         set_huge_pte_at(dst, addr, dst_pte, entry);
2426                 }
2427                 spin_unlock(src_ptl);
2428                 spin_unlock(dst_ptl);
2429         }
2430
2431         if (cow)
2432                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2433
2434         return ret;
2435 }
2436
2437 static int is_hugetlb_entry_migration(pte_t pte)
2438 {
2439         swp_entry_t swp;
2440
2441         if (huge_pte_none(pte) || pte_present(pte))
2442                 return 0;
2443         swp = pte_to_swp_entry(pte);
2444         if (non_swap_entry(swp) && is_migration_entry(swp))
2445                 return 1;
2446         else
2447                 return 0;
2448 }
2449
2450 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2451 {
2452         swp_entry_t swp;
2453
2454         if (huge_pte_none(pte) || pte_present(pte))
2455                 return 0;
2456         swp = pte_to_swp_entry(pte);
2457         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2458                 return 1;
2459         else
2460                 return 0;
2461 }
2462
2463 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2464                             unsigned long start, unsigned long end,
2465                             struct page *ref_page)
2466 {
2467         int force_flush = 0;
2468         struct mm_struct *mm = vma->vm_mm;
2469         unsigned long address;
2470         pte_t *ptep;
2471         pte_t pte;
2472         spinlock_t *ptl;
2473         struct page *page;
2474         struct hstate *h = hstate_vma(vma);
2475         unsigned long sz = huge_page_size(h);
2476         const unsigned long mmun_start = start; /* For mmu_notifiers */
2477         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2478
2479         WARN_ON(!is_vm_hugetlb_page(vma));
2480         BUG_ON(start & ~huge_page_mask(h));
2481         BUG_ON(end & ~huge_page_mask(h));
2482
2483         tlb_start_vma(tlb, vma);
2484         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2485 again:
2486         for (address = start; address < end; address += sz) {
2487                 ptep = huge_pte_offset(mm, address);
2488                 if (!ptep)
2489                         continue;
2490
2491                 ptl = huge_pte_lock(h, mm, ptep);
2492                 if (huge_pmd_unshare(mm, &address, ptep))
2493                         goto unlock;
2494
2495                 pte = huge_ptep_get(ptep);
2496                 if (huge_pte_none(pte))
2497                         goto unlock;
2498
2499                 /*
2500                  * HWPoisoned hugepage is already unmapped and dropped reference
2501                  */
2502                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2503                         huge_pte_clear(mm, address, ptep);
2504                         goto unlock;
2505                 }
2506
2507                 page = pte_page(pte);
2508                 /*
2509                  * If a reference page is supplied, it is because a specific
2510                  * page is being unmapped, not a range. Ensure the page we
2511                  * are about to unmap is the actual page of interest.
2512                  */
2513                 if (ref_page) {
2514                         if (page != ref_page)
2515                                 goto unlock;
2516
2517                         /*
2518                          * Mark the VMA as having unmapped its page so that
2519                          * future faults in this VMA will fail rather than
2520                          * looking like data was lost
2521                          */
2522                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2523                 }
2524
2525                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2526                 tlb_remove_tlb_entry(tlb, ptep, address);
2527                 if (huge_pte_dirty(pte))
2528                         set_page_dirty(page);
2529
2530                 page_remove_rmap(page);
2531                 force_flush = !__tlb_remove_page(tlb, page);
2532                 if (force_flush) {
2533                         spin_unlock(ptl);
2534                         break;
2535                 }
2536                 /* Bail out after unmapping reference page if supplied */
2537                 if (ref_page) {
2538                         spin_unlock(ptl);
2539                         break;
2540                 }
2541 unlock:
2542                 spin_unlock(ptl);
2543         }
2544         /*
2545          * mmu_gather ran out of room to batch pages, we break out of
2546          * the PTE lock to avoid doing the potential expensive TLB invalidate
2547          * and page-free while holding it.
2548          */
2549         if (force_flush) {
2550                 force_flush = 0;
2551                 tlb_flush_mmu(tlb);
2552                 if (address < end && !ref_page)
2553                         goto again;
2554         }
2555         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2556         tlb_end_vma(tlb, vma);
2557 }
2558
2559 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2560                           struct vm_area_struct *vma, unsigned long start,
2561                           unsigned long end, struct page *ref_page)
2562 {
2563         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2564
2565         /*
2566          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2567          * test will fail on a vma being torn down, and not grab a page table
2568          * on its way out.  We're lucky that the flag has such an appropriate
2569          * name, and can in fact be safely cleared here. We could clear it
2570          * before the __unmap_hugepage_range above, but all that's necessary
2571          * is to clear it before releasing the i_mmap_mutex. This works
2572          * because in the context this is called, the VMA is about to be
2573          * destroyed and the i_mmap_mutex is held.
2574          */
2575         vma->vm_flags &= ~VM_MAYSHARE;
2576 }
2577
2578 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2579                           unsigned long end, struct page *ref_page)
2580 {
2581         struct mm_struct *mm;
2582         struct mmu_gather tlb;
2583
2584         mm = vma->vm_mm;
2585
2586         tlb_gather_mmu(&tlb, mm, start, end);
2587         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2588         tlb_finish_mmu(&tlb, start, end);
2589 }
2590
2591 /*
2592  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2593  * mappping it owns the reserve page for. The intention is to unmap the page
2594  * from other VMAs and let the children be SIGKILLed if they are faulting the
2595  * same region.
2596  */
2597 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2598                                 struct page *page, unsigned long address)
2599 {
2600         struct hstate *h = hstate_vma(vma);
2601         struct vm_area_struct *iter_vma;
2602         struct address_space *mapping;
2603         pgoff_t pgoff;
2604
2605         /*
2606          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2607          * from page cache lookup which is in HPAGE_SIZE units.
2608          */
2609         address = address & huge_page_mask(h);
2610         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2611                         vma->vm_pgoff;
2612         mapping = file_inode(vma->vm_file)->i_mapping;
2613
2614         /*
2615          * Take the mapping lock for the duration of the table walk. As
2616          * this mapping should be shared between all the VMAs,
2617          * __unmap_hugepage_range() is called as the lock is already held
2618          */
2619         mutex_lock(&mapping->i_mmap_mutex);
2620         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2621                 /* Do not unmap the current VMA */
2622                 if (iter_vma == vma)
2623                         continue;
2624
2625                 /*
2626                  * Unmap the page from other VMAs without their own reserves.
2627                  * They get marked to be SIGKILLed if they fault in these
2628                  * areas. This is because a future no-page fault on this VMA
2629                  * could insert a zeroed page instead of the data existing
2630                  * from the time of fork. This would look like data corruption
2631                  */
2632                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2633                         unmap_hugepage_range(iter_vma, address,
2634                                              address + huge_page_size(h), page);
2635         }
2636         mutex_unlock(&mapping->i_mmap_mutex);
2637
2638         return 1;
2639 }
2640
2641 /*
2642  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2643  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2644  * cannot race with other handlers or page migration.
2645  * Keep the pte_same checks anyway to make transition from the mutex easier.
2646  */
2647 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2648                         unsigned long address, pte_t *ptep, pte_t pte,
2649                         struct page *pagecache_page, spinlock_t *ptl)
2650 {
2651         struct hstate *h = hstate_vma(vma);
2652         struct page *old_page, *new_page;
2653         int outside_reserve = 0;
2654         unsigned long mmun_start;       /* For mmu_notifiers */
2655         unsigned long mmun_end;         /* For mmu_notifiers */
2656
2657         old_page = pte_page(pte);
2658
2659 retry_avoidcopy:
2660         /* If no-one else is actually using this page, avoid the copy
2661          * and just make the page writable */
2662         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2663                 page_move_anon_rmap(old_page, vma, address);
2664                 set_huge_ptep_writable(vma, address, ptep);
2665                 return 0;
2666         }
2667
2668         /*
2669          * If the process that created a MAP_PRIVATE mapping is about to
2670          * perform a COW due to a shared page count, attempt to satisfy
2671          * the allocation without using the existing reserves. The pagecache
2672          * page is used to determine if the reserve at this address was
2673          * consumed or not. If reserves were used, a partial faulted mapping
2674          * at the time of fork() could consume its reserves on COW instead
2675          * of the full address range.
2676          */
2677         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2678                         old_page != pagecache_page)
2679                 outside_reserve = 1;
2680
2681         page_cache_get(old_page);
2682
2683         /* Drop page table lock as buddy allocator may be called */
2684         spin_unlock(ptl);
2685         new_page = alloc_huge_page(vma, address, outside_reserve);
2686
2687         if (IS_ERR(new_page)) {
2688                 long err = PTR_ERR(new_page);
2689                 page_cache_release(old_page);
2690
2691                 /*
2692                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2693                  * it is due to references held by a child and an insufficient
2694                  * huge page pool. To guarantee the original mappers
2695                  * reliability, unmap the page from child processes. The child
2696                  * may get SIGKILLed if it later faults.
2697                  */
2698                 if (outside_reserve) {
2699                         BUG_ON(huge_pte_none(pte));
2700                         if (unmap_ref_private(mm, vma, old_page, address)) {
2701                                 BUG_ON(huge_pte_none(pte));
2702                                 spin_lock(ptl);
2703                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2704                                 if (likely(ptep &&
2705                                            pte_same(huge_ptep_get(ptep), pte)))
2706                                         goto retry_avoidcopy;
2707                                 /*
2708                                  * race occurs while re-acquiring page table
2709                                  * lock, and our job is done.
2710                                  */
2711                                 return 0;
2712                         }
2713                         WARN_ON_ONCE(1);
2714                 }
2715
2716                 /* Caller expects lock to be held */
2717                 spin_lock(ptl);
2718                 if (err == -ENOMEM)
2719                         return VM_FAULT_OOM;
2720                 else
2721                         return VM_FAULT_SIGBUS;
2722         }
2723
2724         /*
2725          * When the original hugepage is shared one, it does not have
2726          * anon_vma prepared.
2727          */
2728         if (unlikely(anon_vma_prepare(vma))) {
2729                 page_cache_release(new_page);
2730                 page_cache_release(old_page);
2731                 /* Caller expects lock to be held */
2732                 spin_lock(ptl);
2733                 return VM_FAULT_OOM;
2734         }
2735
2736         copy_user_huge_page(new_page, old_page, address, vma,
2737                             pages_per_huge_page(h));
2738         __SetPageUptodate(new_page);
2739
2740         mmun_start = address & huge_page_mask(h);
2741         mmun_end = mmun_start + huge_page_size(h);
2742         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2743         /*
2744          * Retake the page table lock to check for racing updates
2745          * before the page tables are altered
2746          */
2747         spin_lock(ptl);
2748         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2749         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2750                 ClearPagePrivate(new_page);
2751
2752                 /* Break COW */
2753                 huge_ptep_clear_flush(vma, address, ptep);
2754                 set_huge_pte_at(mm, address, ptep,
2755                                 make_huge_pte(vma, new_page, 1));
2756                 page_remove_rmap(old_page);
2757                 hugepage_add_new_anon_rmap(new_page, vma, address);
2758                 /* Make the old page be freed below */
2759                 new_page = old_page;
2760         }
2761         spin_unlock(ptl);
2762         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2763         page_cache_release(new_page);
2764         page_cache_release(old_page);
2765
2766         /* Caller expects lock to be held */
2767         spin_lock(ptl);
2768         return 0;
2769 }
2770
2771 /* Return the pagecache page at a given address within a VMA */
2772 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2773                         struct vm_area_struct *vma, unsigned long address)
2774 {
2775         struct address_space *mapping;
2776         pgoff_t idx;
2777
2778         mapping = vma->vm_file->f_mapping;
2779         idx = vma_hugecache_offset(h, vma, address);
2780
2781         return find_lock_page(mapping, idx);
2782 }
2783
2784 /*
2785  * Return whether there is a pagecache page to back given address within VMA.
2786  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2787  */
2788 static bool hugetlbfs_pagecache_present(struct hstate *h,
2789                         struct vm_area_struct *vma, unsigned long address)
2790 {
2791         struct address_space *mapping;
2792         pgoff_t idx;
2793         struct page *page;
2794
2795         mapping = vma->vm_file->f_mapping;
2796         idx = vma_hugecache_offset(h, vma, address);
2797
2798         page = find_get_page(mapping, idx);
2799         if (page)
2800                 put_page(page);
2801         return page != NULL;
2802 }
2803
2804 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2805                            struct address_space *mapping, pgoff_t idx,
2806                            unsigned long address, pte_t *ptep, unsigned int flags)
2807 {
2808         struct hstate *h = hstate_vma(vma);
2809         int ret = VM_FAULT_SIGBUS;
2810         int anon_rmap = 0;
2811         unsigned long size;
2812         struct page *page;
2813         pte_t new_pte;
2814         spinlock_t *ptl;
2815
2816         /*
2817          * Currently, we are forced to kill the process in the event the
2818          * original mapper has unmapped pages from the child due to a failed
2819          * COW. Warn that such a situation has occurred as it may not be obvious
2820          */
2821         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2822                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2823                            current->pid);
2824                 return ret;
2825         }
2826
2827         /*
2828          * Use page lock to guard against racing truncation
2829          * before we get page_table_lock.
2830          */
2831 retry:
2832         page = find_lock_page(mapping, idx);
2833         if (!page) {
2834                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2835                 if (idx >= size)
2836                         goto out;
2837                 page = alloc_huge_page(vma, address, 0);
2838                 if (IS_ERR(page)) {
2839                         ret = PTR_ERR(page);
2840                         if (ret == -ENOMEM)
2841                                 ret = VM_FAULT_OOM;
2842                         else
2843                                 ret = VM_FAULT_SIGBUS;
2844                         goto out;
2845                 }
2846                 clear_huge_page(page, address, pages_per_huge_page(h));
2847                 __SetPageUptodate(page);
2848
2849                 if (vma->vm_flags & VM_MAYSHARE) {
2850                         int err;
2851                         struct inode *inode = mapping->host;
2852
2853                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2854                         if (err) {
2855                                 put_page(page);
2856                                 if (err == -EEXIST)
2857                                         goto retry;
2858                                 goto out;
2859                         }
2860                         ClearPagePrivate(page);
2861
2862                         spin_lock(&inode->i_lock);
2863                         inode->i_blocks += blocks_per_huge_page(h);
2864                         spin_unlock(&inode->i_lock);
2865                 } else {
2866                         lock_page(page);
2867                         if (unlikely(anon_vma_prepare(vma))) {
2868                                 ret = VM_FAULT_OOM;
2869                                 goto backout_unlocked;
2870                         }
2871                         anon_rmap = 1;
2872                 }
2873         } else {
2874                 /*
2875                  * If memory error occurs between mmap() and fault, some process
2876                  * don't have hwpoisoned swap entry for errored virtual address.
2877                  * So we need to block hugepage fault by PG_hwpoison bit check.
2878                  */
2879                 if (unlikely(PageHWPoison(page))) {
2880                         ret = VM_FAULT_HWPOISON |
2881                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2882                         goto backout_unlocked;
2883                 }
2884         }
2885
2886         /*
2887          * If we are going to COW a private mapping later, we examine the
2888          * pending reservations for this page now. This will ensure that
2889          * any allocations necessary to record that reservation occur outside
2890          * the spinlock.
2891          */
2892         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2893                 if (vma_needs_reservation(h, vma, address) < 0) {
2894                         ret = VM_FAULT_OOM;
2895                         goto backout_unlocked;
2896                 }
2897
2898         ptl = huge_pte_lockptr(h, mm, ptep);
2899         spin_lock(ptl);
2900         size = i_size_read(mapping->host) >> huge_page_shift(h);
2901         if (idx >= size)
2902                 goto backout;
2903
2904         ret = 0;
2905         if (!huge_pte_none(huge_ptep_get(ptep)))
2906                 goto backout;
2907
2908         if (anon_rmap) {
2909                 ClearPagePrivate(page);
2910                 hugepage_add_new_anon_rmap(page, vma, address);
2911         } else
2912                 page_dup_rmap(page);
2913         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2914                                 && (vma->vm_flags & VM_SHARED)));
2915         set_huge_pte_at(mm, address, ptep, new_pte);
2916
2917         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2918                 /* Optimization, do the COW without a second fault */
2919                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2920         }
2921
2922         spin_unlock(ptl);
2923         unlock_page(page);
2924 out:
2925         return ret;
2926
2927 backout:
2928         spin_unlock(ptl);
2929 backout_unlocked:
2930         unlock_page(page);
2931         put_page(page);
2932         goto out;
2933 }
2934
2935 #ifdef CONFIG_SMP
2936 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2937                             struct vm_area_struct *vma,
2938                             struct address_space *mapping,
2939                             pgoff_t idx, unsigned long address)
2940 {
2941         unsigned long key[2];
2942         u32 hash;
2943
2944         if (vma->vm_flags & VM_SHARED) {
2945                 key[0] = (unsigned long) mapping;
2946                 key[1] = idx;
2947         } else {
2948                 key[0] = (unsigned long) mm;
2949                 key[1] = address >> huge_page_shift(h);
2950         }
2951
2952         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2953
2954         return hash & (num_fault_mutexes - 1);
2955 }
2956 #else
2957 /*
2958  * For uniprocesor systems we always use a single mutex, so just
2959  * return 0 and avoid the hashing overhead.
2960  */
2961 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2962                             struct vm_area_struct *vma,
2963                             struct address_space *mapping,
2964                             pgoff_t idx, unsigned long address)
2965 {
2966         return 0;
2967 }
2968 #endif
2969
2970 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2971                         unsigned long address, unsigned int flags)
2972 {
2973         pte_t *ptep, entry;
2974         spinlock_t *ptl;
2975         int ret;
2976         u32 hash;
2977         pgoff_t idx;
2978         struct page *page = NULL;
2979         struct page *pagecache_page = NULL;
2980         struct hstate *h = hstate_vma(vma);
2981         struct address_space *mapping;
2982
2983         address &= huge_page_mask(h);
2984
2985         ptep = huge_pte_offset(mm, address);
2986         if (ptep) {
2987                 entry = huge_ptep_get(ptep);
2988                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2989                         migration_entry_wait_huge(vma, mm, ptep);
2990                         return 0;
2991                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2992                         return VM_FAULT_HWPOISON_LARGE |
2993                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2994         }
2995
2996         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2997         if (!ptep)
2998                 return VM_FAULT_OOM;
2999
3000         mapping = vma->vm_file->f_mapping;
3001         idx = vma_hugecache_offset(h, vma, address);
3002
3003         /*
3004          * Serialize hugepage allocation and instantiation, so that we don't
3005          * get spurious allocation failures if two CPUs race to instantiate
3006          * the same page in the page cache.
3007          */
3008         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3009         mutex_lock(&htlb_fault_mutex_table[hash]);
3010
3011         entry = huge_ptep_get(ptep);
3012         if (huge_pte_none(entry)) {
3013                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3014                 goto out_mutex;
3015         }
3016
3017         ret = 0;
3018
3019         /*
3020          * If we are going to COW the mapping later, we examine the pending
3021          * reservations for this page now. This will ensure that any
3022          * allocations necessary to record that reservation occur outside the
3023          * spinlock. For private mappings, we also lookup the pagecache
3024          * page now as it is used to determine if a reservation has been
3025          * consumed.
3026          */
3027         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3028                 if (vma_needs_reservation(h, vma, address) < 0) {
3029                         ret = VM_FAULT_OOM;
3030                         goto out_mutex;
3031                 }
3032
3033                 if (!(vma->vm_flags & VM_MAYSHARE))
3034                         pagecache_page = hugetlbfs_pagecache_page(h,
3035                                                                 vma, address);
3036         }
3037
3038         /*
3039          * hugetlb_cow() requires page locks of pte_page(entry) and
3040          * pagecache_page, so here we need take the former one
3041          * when page != pagecache_page or !pagecache_page.
3042          * Note that locking order is always pagecache_page -> page,
3043          * so no worry about deadlock.
3044          */
3045         page = pte_page(entry);
3046         get_page(page);
3047         if (page != pagecache_page)
3048                 lock_page(page);
3049
3050         ptl = huge_pte_lockptr(h, mm, ptep);
3051         spin_lock(ptl);
3052         /* Check for a racing update before calling hugetlb_cow */
3053         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3054                 goto out_ptl;
3055
3056
3057         if (flags & FAULT_FLAG_WRITE) {
3058                 if (!huge_pte_write(entry)) {
3059                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3060                                         pagecache_page, ptl);
3061                         goto out_ptl;
3062                 }
3063                 entry = huge_pte_mkdirty(entry);
3064         }
3065         entry = pte_mkyoung(entry);
3066         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3067                                                 flags & FAULT_FLAG_WRITE))
3068                 update_mmu_cache(vma, address, ptep);
3069
3070 out_ptl:
3071         spin_unlock(ptl);
3072
3073         if (pagecache_page) {
3074                 unlock_page(pagecache_page);
3075                 put_page(pagecache_page);
3076         }
3077         if (page != pagecache_page)
3078                 unlock_page(page);
3079         put_page(page);
3080
3081 out_mutex:
3082         mutex_unlock(&htlb_fault_mutex_table[hash]);
3083         return ret;
3084 }
3085
3086 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3087                          struct page **pages, struct vm_area_struct **vmas,
3088                          unsigned long *position, unsigned long *nr_pages,
3089                          long i, unsigned int flags)
3090 {
3091         unsigned long pfn_offset;
3092         unsigned long vaddr = *position;
3093         unsigned long remainder = *nr_pages;
3094         struct hstate *h = hstate_vma(vma);
3095
3096         while (vaddr < vma->vm_end && remainder) {
3097                 pte_t *pte;
3098                 spinlock_t *ptl = NULL;
3099                 int absent;
3100                 struct page *page;
3101
3102                 /*
3103                  * Some archs (sparc64, sh*) have multiple pte_ts to
3104                  * each hugepage.  We have to make sure we get the
3105                  * first, for the page indexing below to work.
3106                  *
3107                  * Note that page table lock is not held when pte is null.
3108                  */
3109                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3110                 if (pte)
3111                         ptl = huge_pte_lock(h, mm, pte);
3112                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3113
3114                 /*
3115                  * When coredumping, it suits get_dump_page if we just return
3116                  * an error where there's an empty slot with no huge pagecache
3117                  * to back it.  This way, we avoid allocating a hugepage, and
3118                  * the sparse dumpfile avoids allocating disk blocks, but its
3119                  * huge holes still show up with zeroes where they need to be.
3120                  */
3121                 if (absent && (flags & FOLL_DUMP) &&
3122                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3123                         if (pte)
3124                                 spin_unlock(ptl);
3125                         remainder = 0;
3126                         break;
3127                 }
3128
3129                 /*
3130                  * We need call hugetlb_fault for both hugepages under migration
3131                  * (in which case hugetlb_fault waits for the migration,) and
3132                  * hwpoisoned hugepages (in which case we need to prevent the
3133                  * caller from accessing to them.) In order to do this, we use
3134                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3135                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3136                  * both cases, and because we can't follow correct pages
3137                  * directly from any kind of swap entries.
3138                  */
3139                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3140                     ((flags & FOLL_WRITE) &&
3141                       !huge_pte_write(huge_ptep_get(pte)))) {
3142                         int ret;
3143
3144                         if (pte)
3145                                 spin_unlock(ptl);
3146                         ret = hugetlb_fault(mm, vma, vaddr,
3147                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3148                         if (!(ret & VM_FAULT_ERROR))
3149                                 continue;
3150
3151                         remainder = 0;
3152                         break;
3153                 }
3154
3155                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3156                 page = pte_page(huge_ptep_get(pte));
3157 same_page:
3158                 if (pages) {
3159                         pages[i] = mem_map_offset(page, pfn_offset);
3160                         get_page_foll(pages[i]);
3161                 }
3162
3163                 if (vmas)
3164                         vmas[i] = vma;
3165
3166                 vaddr += PAGE_SIZE;
3167                 ++pfn_offset;
3168                 --remainder;
3169                 ++i;
3170                 if (vaddr < vma->vm_end && remainder &&
3171                                 pfn_offset < pages_per_huge_page(h)) {
3172                         /*
3173                          * We use pfn_offset to avoid touching the pageframes
3174                          * of this compound page.
3175                          */
3176                         goto same_page;
3177                 }
3178                 spin_unlock(ptl);
3179         }
3180         *nr_pages = remainder;
3181         *position = vaddr;
3182
3183         return i ? i : -EFAULT;
3184 }
3185
3186 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3187                 unsigned long address, unsigned long end, pgprot_t newprot)
3188 {
3189         struct mm_struct *mm = vma->vm_mm;
3190         unsigned long start = address;
3191         pte_t *ptep;
3192         pte_t pte;
3193         struct hstate *h = hstate_vma(vma);
3194         unsigned long pages = 0;
3195
3196         BUG_ON(address >= end);
3197         flush_cache_range(vma, address, end);
3198
3199         mmu_notifier_invalidate_range_start(mm, start, end);
3200         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3201         for (; address < end; address += huge_page_size(h)) {
3202                 spinlock_t *ptl;
3203                 ptep = huge_pte_offset(mm, address);
3204                 if (!ptep)
3205                         continue;
3206                 ptl = huge_pte_lock(h, mm, ptep);
3207                 if (huge_pmd_unshare(mm, &address, ptep)) {
3208                         pages++;
3209                         spin_unlock(ptl);
3210                         continue;
3211                 }
3212                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3213                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3214                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3215                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3216                         set_huge_pte_at(mm, address, ptep, pte);
3217                         pages++;
3218                 }
3219                 spin_unlock(ptl);
3220         }
3221         /*
3222          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3223          * may have cleared our pud entry and done put_page on the page table:
3224          * once we release i_mmap_mutex, another task can do the final put_page
3225          * and that page table be reused and filled with junk.
3226          */
3227         flush_tlb_range(vma, start, end);
3228         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3229         mmu_notifier_invalidate_range_end(mm, start, end);
3230
3231         return pages << h->order;
3232 }
3233
3234 int hugetlb_reserve_pages(struct inode *inode,
3235                                         long from, long to,
3236                                         struct vm_area_struct *vma,
3237                                         vm_flags_t vm_flags)
3238 {
3239         long ret, chg;
3240         struct hstate *h = hstate_inode(inode);
3241         struct hugepage_subpool *spool = subpool_inode(inode);
3242         struct resv_map *resv_map;
3243
3244         /*
3245          * Only apply hugepage reservation if asked. At fault time, an
3246          * attempt will be made for VM_NORESERVE to allocate a page
3247          * without using reserves
3248          */
3249         if (vm_flags & VM_NORESERVE)
3250                 return 0;
3251
3252         /*
3253          * Shared mappings base their reservation on the number of pages that
3254          * are already allocated on behalf of the file. Private mappings need
3255          * to reserve the full area even if read-only as mprotect() may be
3256          * called to make the mapping read-write. Assume !vma is a shm mapping
3257          */
3258         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3259                 resv_map = inode_resv_map(inode);
3260
3261                 chg = region_chg(resv_map, from, to);
3262
3263         } else {
3264                 resv_map = resv_map_alloc();
3265                 if (!resv_map)
3266                         return -ENOMEM;
3267
3268                 chg = to - from;
3269
3270                 set_vma_resv_map(vma, resv_map);
3271                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3272         }
3273
3274         if (chg < 0) {
3275                 ret = chg;
3276                 goto out_err;
3277         }
3278
3279         /* There must be enough pages in the subpool for the mapping */
3280         if (hugepage_subpool_get_pages(spool, chg)) {
3281                 ret = -ENOSPC;
3282                 goto out_err;
3283         }
3284
3285         /*
3286          * Check enough hugepages are available for the reservation.
3287          * Hand the pages back to the subpool if there are not
3288          */
3289         ret = hugetlb_acct_memory(h, chg);
3290         if (ret < 0) {
3291                 hugepage_subpool_put_pages(spool, chg);
3292                 goto out_err;
3293         }
3294
3295         /*
3296          * Account for the reservations made. Shared mappings record regions
3297          * that have reservations as they are shared by multiple VMAs.
3298          * When the last VMA disappears, the region map says how much
3299          * the reservation was and the page cache tells how much of
3300          * the reservation was consumed. Private mappings are per-VMA and
3301          * only the consumed reservations are tracked. When the VMA
3302          * disappears, the original reservation is the VMA size and the
3303          * consumed reservations are stored in the map. Hence, nothing
3304          * else has to be done for private mappings here
3305          */
3306         if (!vma || vma->vm_flags & VM_MAYSHARE)
3307                 region_add(resv_map, from, to);
3308         return 0;
3309 out_err:
3310         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3311                 kref_put(&resv_map->refs, resv_map_release);
3312         return ret;
3313 }
3314
3315 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3316 {
3317         struct hstate *h = hstate_inode(inode);
3318         struct resv_map *resv_map = inode_resv_map(inode);
3319         long chg = 0;
3320         struct hugepage_subpool *spool = subpool_inode(inode);
3321
3322         if (resv_map)
3323                 chg = region_truncate(resv_map, offset);
3324         spin_lock(&inode->i_lock);
3325         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3326         spin_unlock(&inode->i_lock);
3327
3328         hugepage_subpool_put_pages(spool, (chg - freed));
3329         hugetlb_acct_memory(h, -(chg - freed));
3330 }
3331
3332 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3333 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3334                                 struct vm_area_struct *vma,
3335                                 unsigned long addr, pgoff_t idx)
3336 {
3337         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3338                                 svma->vm_start;
3339         unsigned long sbase = saddr & PUD_MASK;
3340         unsigned long s_end = sbase + PUD_SIZE;
3341
3342         /* Allow segments to share if only one is marked locked */
3343         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3344         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3345
3346         /*
3347          * match the virtual addresses, permission and the alignment of the
3348          * page table page.
3349          */
3350         if (pmd_index(addr) != pmd_index(saddr) ||
3351             vm_flags != svm_flags ||
3352             sbase < svma->vm_start || svma->vm_end < s_end)
3353                 return 0;
3354
3355         return saddr;
3356 }
3357
3358 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3359 {
3360         unsigned long base = addr & PUD_MASK;
3361         unsigned long end = base + PUD_SIZE;
3362
3363         /*
3364          * check on proper vm_flags and page table alignment
3365          */
3366         if (vma->vm_flags & VM_MAYSHARE &&
3367             vma->vm_start <= base && end <= vma->vm_end)
3368                 return 1;
3369         return 0;
3370 }
3371
3372 /*
3373  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3374  * and returns the corresponding pte. While this is not necessary for the
3375  * !shared pmd case because we can allocate the pmd later as well, it makes the
3376  * code much cleaner. pmd allocation is essential for the shared case because
3377  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3378  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3379  * bad pmd for sharing.
3380  */
3381 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3382 {
3383         struct vm_area_struct *vma = find_vma(mm, addr);
3384         struct address_space *mapping = vma->vm_file->f_mapping;
3385         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3386                         vma->vm_pgoff;
3387         struct vm_area_struct *svma;
3388         unsigned long saddr;
3389         pte_t *spte = NULL;
3390         pte_t *pte;
3391         spinlock_t *ptl;
3392
3393         if (!vma_shareable(vma, addr))
3394                 return (pte_t *)pmd_alloc(mm, pud, addr);
3395
3396         mutex_lock(&mapping->i_mmap_mutex);
3397         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3398                 if (svma == vma)
3399                         continue;
3400
3401                 saddr = page_table_shareable(svma, vma, addr, idx);
3402                 if (saddr) {
3403                         spte = huge_pte_offset(svma->vm_mm, saddr);
3404                         if (spte) {
3405                                 get_page(virt_to_page(spte));
3406                                 break;
3407                         }
3408                 }
3409         }
3410
3411         if (!spte)
3412                 goto out;
3413
3414         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3415         spin_lock(ptl);
3416         if (pud_none(*pud))
3417                 pud_populate(mm, pud,
3418                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3419         else
3420                 put_page(virt_to_page(spte));
3421         spin_unlock(ptl);
3422 out:
3423         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3424         mutex_unlock(&mapping->i_mmap_mutex);
3425         return pte;
3426 }
3427
3428 /*
3429  * unmap huge page backed by shared pte.
3430  *
3431  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3432  * indicated by page_count > 1, unmap is achieved by clearing pud and
3433  * decrementing the ref count. If count == 1, the pte page is not shared.
3434  *
3435  * called with page table lock held.
3436  *
3437  * returns: 1 successfully unmapped a shared pte page
3438  *          0 the underlying pte page is not shared, or it is the last user
3439  */
3440 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3441 {
3442         pgd_t *pgd = pgd_offset(mm, *addr);
3443         pud_t *pud = pud_offset(pgd, *addr);
3444
3445         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3446         if (page_count(virt_to_page(ptep)) == 1)
3447                 return 0;
3448
3449         pud_clear(pud);
3450         put_page(virt_to_page(ptep));
3451         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3452         return 1;
3453 }
3454 #define want_pmd_share()        (1)
3455 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3456 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3457 {
3458         return NULL;
3459 }
3460 #define want_pmd_share()        (0)
3461 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3462
3463 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3464 pte_t *huge_pte_alloc(struct mm_struct *mm,
3465                         unsigned long addr, unsigned long sz)
3466 {
3467         pgd_t *pgd;
3468         pud_t *pud;
3469         pte_t *pte = NULL;
3470
3471         pgd = pgd_offset(mm, addr);
3472         pud = pud_alloc(mm, pgd, addr);
3473         if (pud) {
3474                 if (sz == PUD_SIZE) {
3475                         pte = (pte_t *)pud;
3476                 } else {
3477                         BUG_ON(sz != PMD_SIZE);
3478                         if (want_pmd_share() && pud_none(*pud))
3479                                 pte = huge_pmd_share(mm, addr, pud);
3480                         else
3481                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3482                 }
3483         }
3484         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3485
3486         return pte;
3487 }
3488
3489 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3490 {
3491         pgd_t *pgd;
3492         pud_t *pud;
3493         pmd_t *pmd = NULL;
3494
3495         pgd = pgd_offset(mm, addr);
3496         if (pgd_present(*pgd)) {
3497                 pud = pud_offset(pgd, addr);
3498                 if (pud_present(*pud)) {
3499                         if (pud_huge(*pud))
3500                                 return (pte_t *)pud;
3501                         pmd = pmd_offset(pud, addr);
3502                 }
3503         }
3504         return (pte_t *) pmd;
3505 }
3506
3507 struct page *
3508 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3509                 pmd_t *pmd, int write)
3510 {
3511         struct page *page;
3512
3513         page = pte_page(*(pte_t *)pmd);
3514         if (page)
3515                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3516         return page;
3517 }
3518
3519 struct page *
3520 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3521                 pud_t *pud, int write)
3522 {
3523         struct page *page;
3524
3525         page = pte_page(*(pte_t *)pud);
3526         if (page)
3527                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3528         return page;
3529 }
3530
3531 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3532
3533 /* Can be overriden by architectures */
3534 struct page * __weak
3535 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3536                pud_t *pud, int write)
3537 {
3538         BUG();
3539         return NULL;
3540 }
3541
3542 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3543
3544 #ifdef CONFIG_MEMORY_FAILURE
3545
3546 /* Should be called in hugetlb_lock */
3547 static int is_hugepage_on_freelist(struct page *hpage)
3548 {
3549         struct page *page;
3550         struct page *tmp;
3551         struct hstate *h = page_hstate(hpage);
3552         int nid = page_to_nid(hpage);
3553
3554         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3555                 if (page == hpage)
3556                         return 1;
3557         return 0;
3558 }
3559
3560 /*
3561  * This function is called from memory failure code.
3562  * Assume the caller holds page lock of the head page.
3563  */
3564 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3565 {
3566         struct hstate *h = page_hstate(hpage);
3567         int nid = page_to_nid(hpage);
3568         int ret = -EBUSY;
3569
3570         spin_lock(&hugetlb_lock);
3571         if (is_hugepage_on_freelist(hpage)) {
3572                 /*
3573                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3574                  * but dangling hpage->lru can trigger list-debug warnings
3575                  * (this happens when we call unpoison_memory() on it),
3576                  * so let it point to itself with list_del_init().
3577                  */
3578                 list_del_init(&hpage->lru);
3579                 set_page_refcounted(hpage);
3580                 h->free_huge_pages--;
3581                 h->free_huge_pages_node[nid]--;
3582                 ret = 0;
3583         }
3584         spin_unlock(&hugetlb_lock);
3585         return ret;
3586 }
3587 #endif
3588
3589 bool isolate_huge_page(struct page *page, struct list_head *list)
3590 {
3591         VM_BUG_ON_PAGE(!PageHead(page), page);
3592         if (!get_page_unless_zero(page))
3593                 return false;
3594         spin_lock(&hugetlb_lock);
3595         list_move_tail(&page->lru, list);
3596         spin_unlock(&hugetlb_lock);
3597         return true;
3598 }
3599
3600 void putback_active_hugepage(struct page *page)
3601 {
3602         VM_BUG_ON_PAGE(!PageHead(page), page);
3603         spin_lock(&hugetlb_lock);
3604         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3605         spin_unlock(&hugetlb_lock);
3606         put_page(page);
3607 }
3608
3609 bool is_hugepage_active(struct page *page)
3610 {
3611         VM_BUG_ON_PAGE(!PageHuge(page), page);
3612         /*
3613          * This function can be called for a tail page because the caller,
3614          * scan_movable_pages, scans through a given pfn-range which typically
3615          * covers one memory block. In systems using gigantic hugepage (1GB
3616          * for x86_64,) a hugepage is larger than a memory block, and we don't
3617          * support migrating such large hugepages for now, so return false
3618          * when called for tail pages.
3619          */
3620         if (PageTail(page))
3621                 return false;
3622         /*
3623          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3624          * so we should return false for them.
3625          */
3626         if (unlikely(PageHWPoison(page)))
3627                 return false;
3628         return page_count(page) > 0;
3629 }