OSDN Git Service

mm: hugetlb: yield when prepping struct pages
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg) {
376                         kfree(nrg);
377                         return -ENOMEM;
378                 }
379
380                 spin_lock(&resv->lock);
381                 list_add(&trg->link, &resv->region_cache);
382                 resv->region_cache_count++;
383                 goto retry_locked;
384         }
385
386         /* Locate the region we are before or in. */
387         list_for_each_entry(rg, head, link)
388                 if (f <= rg->to)
389                         break;
390
391         /* If we are below the current region then a new region is required.
392          * Subtle, allocate a new region at the position but make it zero
393          * size such that we can guarantee to record the reservation. */
394         if (&rg->link == head || t < rg->from) {
395                 if (!nrg) {
396                         resv->adds_in_progress--;
397                         spin_unlock(&resv->lock);
398                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
399                         if (!nrg)
400                                 return -ENOMEM;
401
402                         nrg->from = f;
403                         nrg->to   = f;
404                         INIT_LIST_HEAD(&nrg->link);
405                         goto retry;
406                 }
407
408                 list_add(&nrg->link, rg->link.prev);
409                 chg = t - f;
410                 goto out_nrg;
411         }
412
413         /* Round our left edge to the current segment if it encloses us. */
414         if (f > rg->from)
415                 f = rg->from;
416         chg = t - f;
417
418         /* Check for and consume any regions we now overlap with. */
419         list_for_each_entry(rg, rg->link.prev, link) {
420                 if (&rg->link == head)
421                         break;
422                 if (rg->from > t)
423                         goto out;
424
425                 /* We overlap with this area, if it extends further than
426                  * us then we must extend ourselves.  Account for its
427                  * existing reservation. */
428                 if (rg->to > t) {
429                         chg += rg->to - t;
430                         t = rg->to;
431                 }
432                 chg -= rg->to - rg->from;
433         }
434
435 out:
436         spin_unlock(&resv->lock);
437         /*  We already know we raced and no longer need the new region */
438         kfree(nrg);
439         return chg;
440 out_nrg:
441         spin_unlock(&resv->lock);
442         return chg;
443 }
444
445 /*
446  * Abort the in progress add operation.  The adds_in_progress field
447  * of the resv_map keeps track of the operations in progress between
448  * calls to region_chg and region_add.  Operations are sometimes
449  * aborted after the call to region_chg.  In such cases, region_abort
450  * is called to decrement the adds_in_progress counter.
451  *
452  * NOTE: The range arguments [f, t) are not needed or used in this
453  * routine.  They are kept to make reading the calling code easier as
454  * arguments will match the associated region_chg call.
455  */
456 static void region_abort(struct resv_map *resv, long f, long t)
457 {
458         spin_lock(&resv->lock);
459         VM_BUG_ON(!resv->region_cache_count);
460         resv->adds_in_progress--;
461         spin_unlock(&resv->lock);
462 }
463
464 /*
465  * Delete the specified range [f, t) from the reserve map.  If the
466  * t parameter is LONG_MAX, this indicates that ALL regions after f
467  * should be deleted.  Locate the regions which intersect [f, t)
468  * and either trim, delete or split the existing regions.
469  *
470  * Returns the number of huge pages deleted from the reserve map.
471  * In the normal case, the return value is zero or more.  In the
472  * case where a region must be split, a new region descriptor must
473  * be allocated.  If the allocation fails, -ENOMEM will be returned.
474  * NOTE: If the parameter t == LONG_MAX, then we will never split
475  * a region and possibly return -ENOMEM.  Callers specifying
476  * t == LONG_MAX do not need to check for -ENOMEM error.
477  */
478 static long region_del(struct resv_map *resv, long f, long t)
479 {
480         struct list_head *head = &resv->regions;
481         struct file_region *rg, *trg;
482         struct file_region *nrg = NULL;
483         long del = 0;
484
485 retry:
486         spin_lock(&resv->lock);
487         list_for_each_entry_safe(rg, trg, head, link) {
488                 /*
489                  * Skip regions before the range to be deleted.  file_region
490                  * ranges are normally of the form [from, to).  However, there
491                  * may be a "placeholder" entry in the map which is of the form
492                  * (from, to) with from == to.  Check for placeholder entries
493                  * at the beginning of the range to be deleted.
494                  */
495                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496                         continue;
497
498                 if (rg->from >= t)
499                         break;
500
501                 if (f > rg->from && t < rg->to) { /* Must split region */
502                         /*
503                          * Check for an entry in the cache before dropping
504                          * lock and attempting allocation.
505                          */
506                         if (!nrg &&
507                             resv->region_cache_count > resv->adds_in_progress) {
508                                 nrg = list_first_entry(&resv->region_cache,
509                                                         struct file_region,
510                                                         link);
511                                 list_del(&nrg->link);
512                                 resv->region_cache_count--;
513                         }
514
515                         if (!nrg) {
516                                 spin_unlock(&resv->lock);
517                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
518                                 if (!nrg)
519                                         return -ENOMEM;
520                                 goto retry;
521                         }
522
523                         del += t - f;
524
525                         /* New entry for end of split region */
526                         nrg->from = t;
527                         nrg->to = rg->to;
528                         INIT_LIST_HEAD(&nrg->link);
529
530                         /* Original entry is trimmed */
531                         rg->to = f;
532
533                         list_add(&nrg->link, &rg->link);
534                         nrg = NULL;
535                         break;
536                 }
537
538                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
539                         del += rg->to - rg->from;
540                         list_del(&rg->link);
541                         kfree(rg);
542                         continue;
543                 }
544
545                 if (f <= rg->from) {    /* Trim beginning of region */
546                         del += t - rg->from;
547                         rg->from = t;
548                 } else {                /* Trim end of region */
549                         del += rg->to - f;
550                         rg->to = f;
551                 }
552         }
553
554         spin_unlock(&resv->lock);
555         kfree(nrg);
556         return del;
557 }
558
559 /*
560  * A rare out of memory error was encountered which prevented removal of
561  * the reserve map region for a page.  The huge page itself was free'ed
562  * and removed from the page cache.  This routine will adjust the subpool
563  * usage count, and the global reserve count if needed.  By incrementing
564  * these counts, the reserve map entry which could not be deleted will
565  * appear as a "reserved" entry instead of simply dangling with incorrect
566  * counts.
567  */
568 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
569 {
570         struct hugepage_subpool *spool = subpool_inode(inode);
571         long rsv_adjust;
572
573         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
574         if (restore_reserve && rsv_adjust) {
575                 struct hstate *h = hstate_inode(inode);
576
577                 hugetlb_acct_memory(h, 1);
578         }
579 }
580
581 /*
582  * Count and return the number of huge pages in the reserve map
583  * that intersect with the range [f, t).
584  */
585 static long region_count(struct resv_map *resv, long f, long t)
586 {
587         struct list_head *head = &resv->regions;
588         struct file_region *rg;
589         long chg = 0;
590
591         spin_lock(&resv->lock);
592         /* Locate each segment we overlap with, and count that overlap. */
593         list_for_each_entry(rg, head, link) {
594                 long seg_from;
595                 long seg_to;
596
597                 if (rg->to <= f)
598                         continue;
599                 if (rg->from >= t)
600                         break;
601
602                 seg_from = max(rg->from, f);
603                 seg_to = min(rg->to, t);
604
605                 chg += seg_to - seg_from;
606         }
607         spin_unlock(&resv->lock);
608
609         return chg;
610 }
611
612 /*
613  * Convert the address within this vma to the page offset within
614  * the mapping, in pagecache page units; huge pages here.
615  */
616 static pgoff_t vma_hugecache_offset(struct hstate *h,
617                         struct vm_area_struct *vma, unsigned long address)
618 {
619         return ((address - vma->vm_start) >> huge_page_shift(h)) +
620                         (vma->vm_pgoff >> huge_page_order(h));
621 }
622
623 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
624                                      unsigned long address)
625 {
626         return vma_hugecache_offset(hstate_vma(vma), vma, address);
627 }
628
629 /*
630  * Return the size of the pages allocated when backing a VMA. In the majority
631  * cases this will be same size as used by the page table entries.
632  */
633 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
634 {
635         struct hstate *hstate;
636
637         if (!is_vm_hugetlb_page(vma))
638                 return PAGE_SIZE;
639
640         hstate = hstate_vma(vma);
641
642         return 1UL << huge_page_shift(hstate);
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647  * Return the page size being used by the MMU to back a VMA. In the majority
648  * of cases, the page size used by the kernel matches the MMU size. On
649  * architectures where it differs, an architecture-specific version of this
650  * function is required.
651  */
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657 #endif
658
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689         return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693                                                         unsigned long value)
694 {
695         vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703         if (!resv_map || !rg) {
704                 kfree(resv_map);
705                 kfree(rg);
706                 return NULL;
707         }
708
709         kref_init(&resv_map->refs);
710         spin_lock_init(&resv_map->lock);
711         INIT_LIST_HEAD(&resv_map->regions);
712
713         resv_map->adds_in_progress = 0;
714
715         INIT_LIST_HEAD(&resv_map->region_cache);
716         list_add(&rg->link, &resv_map->region_cache);
717         resv_map->region_cache_count = 1;
718
719         return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725         struct list_head *head = &resv_map->region_cache;
726         struct file_region *rg, *trg;
727
728         /* Clear out any active regions before we release the map. */
729         region_del(resv_map, 0, LONG_MAX);
730
731         /* ... and any entries left in the cache */
732         list_for_each_entry_safe(rg, trg, head, link) {
733                 list_del(&rg->link);
734                 kfree(rg);
735         }
736
737         VM_BUG_ON(resv_map->adds_in_progress);
738
739         kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744         return inode->i_mapping->private_data;
745 }
746
747 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
748 {
749         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750         if (vma->vm_flags & VM_MAYSHARE) {
751                 struct address_space *mapping = vma->vm_file->f_mapping;
752                 struct inode *inode = mapping->host;
753
754                 return inode_resv_map(inode);
755
756         } else {
757                 return (struct resv_map *)(get_vma_private_data(vma) &
758                                                         ~HPAGE_RESV_MASK);
759         }
760 }
761
762 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
763 {
764         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
766
767         set_vma_private_data(vma, (get_vma_private_data(vma) &
768                                 HPAGE_RESV_MASK) | (unsigned long)map);
769 }
770
771 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
772 {
773         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775
776         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 }
778
779 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
780 {
781         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782
783         return (get_vma_private_data(vma) & flag) != 0;
784 }
785
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
788 {
789         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790         if (!(vma->vm_flags & VM_MAYSHARE))
791                 vma->vm_private_data = (void *)0;
792 }
793
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
796 {
797         if (vma->vm_flags & VM_NORESERVE) {
798                 /*
799                  * This address is already reserved by other process(chg == 0),
800                  * so, we should decrement reserved count. Without decrementing,
801                  * reserve count remains after releasing inode, because this
802                  * allocated page will go into page cache and is regarded as
803                  * coming from reserved pool in releasing step.  Currently, we
804                  * don't have any other solution to deal with this situation
805                  * properly, so add work-around here.
806                  */
807                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808                         return true;
809                 else
810                         return false;
811         }
812
813         /* Shared mappings always use reserves */
814         if (vma->vm_flags & VM_MAYSHARE) {
815                 /*
816                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
817                  * be a region map for all pages.  The only situation where
818                  * there is no region map is if a hole was punched via
819                  * fallocate.  In this case, there really are no reverves to
820                  * use.  This situation is indicated if chg != 0.
821                  */
822                 if (chg)
823                         return false;
824                 else
825                         return true;
826         }
827
828         /*
829          * Only the process that called mmap() has reserves for
830          * private mappings.
831          */
832         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833                 return true;
834
835         return false;
836 }
837
838 static void enqueue_huge_page(struct hstate *h, struct page *page)
839 {
840         int nid = page_to_nid(page);
841         list_move(&page->lru, &h->hugepage_freelists[nid]);
842         h->free_huge_pages++;
843         h->free_huge_pages_node[nid]++;
844 }
845
846 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
847 {
848         struct page *page;
849
850         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
851                 if (!is_migrate_isolate_page(page))
852                         break;
853         /*
854          * if 'non-isolated free hugepage' not found on the list,
855          * the allocation fails.
856          */
857         if (&h->hugepage_freelists[nid] == &page->lru)
858                 return NULL;
859         list_move(&page->lru, &h->hugepage_activelist);
860         set_page_refcounted(page);
861         h->free_huge_pages--;
862         h->free_huge_pages_node[nid]--;
863         return page;
864 }
865
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t htlb_alloc_mask(struct hstate *h)
868 {
869         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870                 return GFP_HIGHUSER_MOVABLE;
871         else
872                 return GFP_HIGHUSER;
873 }
874
875 static struct page *dequeue_huge_page_vma(struct hstate *h,
876                                 struct vm_area_struct *vma,
877                                 unsigned long address, int avoid_reserve,
878                                 long chg)
879 {
880         struct page *page = NULL;
881         struct mempolicy *mpol;
882         nodemask_t *nodemask;
883         struct zonelist *zonelist;
884         struct zone *zone;
885         struct zoneref *z;
886         unsigned int cpuset_mems_cookie;
887
888         /*
889          * A child process with MAP_PRIVATE mappings created by their parent
890          * have no page reserves. This check ensures that reservations are
891          * not "stolen". The child may still get SIGKILLed
892          */
893         if (!vma_has_reserves(vma, chg) &&
894                         h->free_huge_pages - h->resv_huge_pages == 0)
895                 goto err;
896
897         /* If reserves cannot be used, ensure enough pages are in the pool */
898         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899                 goto err;
900
901 retry_cpuset:
902         cpuset_mems_cookie = read_mems_allowed_begin();
903         zonelist = huge_zonelist(vma, address,
904                                         htlb_alloc_mask(h), &mpol, &nodemask);
905
906         for_each_zone_zonelist_nodemask(zone, z, zonelist,
907                                                 MAX_NR_ZONES - 1, nodemask) {
908                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
910                         if (page) {
911                                 if (avoid_reserve)
912                                         break;
913                                 if (!vma_has_reserves(vma, chg))
914                                         break;
915
916                                 SetPagePrivate(page);
917                                 h->resv_huge_pages--;
918                                 break;
919                         }
920                 }
921         }
922
923         mpol_cond_put(mpol);
924         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925                 goto retry_cpuset;
926         return page;
927
928 err:
929         return NULL;
930 }
931
932 /*
933  * common helper functions for hstate_next_node_to_{alloc|free}.
934  * We may have allocated or freed a huge page based on a different
935  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936  * be outside of *nodes_allowed.  Ensure that we use an allowed
937  * node for alloc or free.
938  */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         nid = next_node(nid, *nodes_allowed);
942         if (nid == MAX_NUMNODES)
943                 nid = first_node(*nodes_allowed);
944         VM_BUG_ON(nid >= MAX_NUMNODES);
945
946         return nid;
947 }
948
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951         if (!node_isset(nid, *nodes_allowed))
952                 nid = next_node_allowed(nid, nodes_allowed);
953         return nid;
954 }
955
956 /*
957  * returns the previously saved node ["this node"] from which to
958  * allocate a persistent huge page for the pool and advance the
959  * next node from which to allocate, handling wrap at end of node
960  * mask.
961  */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963                                         nodemask_t *nodes_allowed)
964 {
965         int nid;
966
967         VM_BUG_ON(!nodes_allowed);
968
969         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972         return nid;
973 }
974
975 /*
976  * helper for free_pool_huge_page() - return the previously saved
977  * node ["this node"] from which to free a huge page.  Advance the
978  * next node id whether or not we find a free huge page to free so
979  * that the next attempt to free addresses the next node.
980  */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983         int nid;
984
985         VM_BUG_ON(!nodes_allowed);
986
987         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990         return nid;
991 }
992
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
994         for (nr_nodes = nodes_weight(*mask);                            \
995                 nr_nodes > 0 &&                                         \
996                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
997                 nr_nodes--)
998
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1000         for (nr_nodes = nodes_weight(*mask);                            \
1001                 nr_nodes > 0 &&                                         \
1002                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1003                 nr_nodes--)
1004
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page *page,
1007                                         unsigned int order)
1008 {
1009         int i;
1010         int nr_pages = 1 << order;
1011         struct page *p = page + 1;
1012
1013         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014                 clear_compound_head(p);
1015                 set_page_refcounted(p);
1016         }
1017
1018         set_compound_order(page, 0);
1019         __ClearPageHead(page);
1020 }
1021
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024         free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028                                 unsigned long nr_pages)
1029 {
1030         unsigned long end_pfn = start_pfn + nr_pages;
1031         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035                                 unsigned long nr_pages)
1036 {
1037         unsigned long i, end_pfn = start_pfn + nr_pages;
1038         struct page *page;
1039
1040         for (i = start_pfn; i < end_pfn; i++) {
1041                 if (!pfn_valid(i))
1042                         return false;
1043
1044                 page = pfn_to_page(i);
1045
1046                 if (PageReserved(page))
1047                         return false;
1048
1049                 if (page_count(page) > 0)
1050                         return false;
1051
1052                 if (PageHuge(page))
1053                         return false;
1054         }
1055
1056         return true;
1057 }
1058
1059 static bool zone_spans_last_pfn(const struct zone *zone,
1060                         unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062         unsigned long last_pfn = start_pfn + nr_pages - 1;
1063         return zone_spans_pfn(zone, last_pfn);
1064 }
1065
1066 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 {
1068         unsigned long nr_pages = 1 << order;
1069         unsigned long ret, pfn, flags;
1070         struct zone *z;
1071
1072         z = NODE_DATA(nid)->node_zones;
1073         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074                 spin_lock_irqsave(&z->lock, flags);
1075
1076                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1079                                 /*
1080                                  * We release the zone lock here because
1081                                  * alloc_contig_range() will also lock the zone
1082                                  * at some point. If there's an allocation
1083                                  * spinning on this lock, it may win the race
1084                                  * and cause alloc_contig_range() to fail...
1085                                  */
1086                                 spin_unlock_irqrestore(&z->lock, flags);
1087                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1088                                 if (!ret)
1089                                         return pfn_to_page(pfn);
1090                                 spin_lock_irqsave(&z->lock, flags);
1091                         }
1092                         pfn += nr_pages;
1093                 }
1094
1095                 spin_unlock_irqrestore(&z->lock, flags);
1096         }
1097
1098         return NULL;
1099 }
1100
1101 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103
1104 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1105 {
1106         struct page *page;
1107
1108         page = alloc_gigantic_page(nid, huge_page_order(h));
1109         if (page) {
1110                 prep_compound_gigantic_page(page, huge_page_order(h));
1111                 prep_new_huge_page(h, page, nid);
1112         }
1113
1114         return page;
1115 }
1116
1117 static int alloc_fresh_gigantic_page(struct hstate *h,
1118                                 nodemask_t *nodes_allowed)
1119 {
1120         struct page *page = NULL;
1121         int nr_nodes, node;
1122
1123         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124                 page = alloc_fresh_gigantic_page_node(h, node);
1125                 if (page)
1126                         return 1;
1127         }
1128
1129         return 0;
1130 }
1131
1132 static inline bool gigantic_page_supported(void) { return true; }
1133 #else
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136 static inline void destroy_compound_gigantic_page(struct page *page,
1137                                                 unsigned int order) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139                                         nodemask_t *nodes_allowed) { return 0; }
1140 #endif
1141
1142 static void update_and_free_page(struct hstate *h, struct page *page)
1143 {
1144         int i;
1145
1146         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147                 return;
1148
1149         h->nr_huge_pages--;
1150         h->nr_huge_pages_node[page_to_nid(page)]--;
1151         for (i = 0; i < pages_per_huge_page(h); i++) {
1152                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153                                 1 << PG_referenced | 1 << PG_dirty |
1154                                 1 << PG_active | 1 << PG_private |
1155                                 1 << PG_writeback);
1156         }
1157         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1159         set_page_refcounted(page);
1160         if (hstate_is_gigantic(h)) {
1161                 destroy_compound_gigantic_page(page, huge_page_order(h));
1162                 free_gigantic_page(page, huge_page_order(h));
1163         } else {
1164                 __free_pages(page, huge_page_order(h));
1165         }
1166 }
1167
1168 struct hstate *size_to_hstate(unsigned long size)
1169 {
1170         struct hstate *h;
1171
1172         for_each_hstate(h) {
1173                 if (huge_page_size(h) == size)
1174                         return h;
1175         }
1176         return NULL;
1177 }
1178
1179 /*
1180  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181  * to hstate->hugepage_activelist.)
1182  *
1183  * This function can be called for tail pages, but never returns true for them.
1184  */
1185 bool page_huge_active(struct page *page)
1186 {
1187         VM_BUG_ON_PAGE(!PageHuge(page), page);
1188         return PageHead(page) && PagePrivate(&page[1]);
1189 }
1190
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page *page)
1193 {
1194         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195         SetPagePrivate(&page[1]);
1196 }
1197
1198 static void clear_page_huge_active(struct page *page)
1199 {
1200         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201         ClearPagePrivate(&page[1]);
1202 }
1203
1204 void free_huge_page(struct page *page)
1205 {
1206         /*
1207          * Can't pass hstate in here because it is called from the
1208          * compound page destructor.
1209          */
1210         struct hstate *h = page_hstate(page);
1211         int nid = page_to_nid(page);
1212         struct hugepage_subpool *spool =
1213                 (struct hugepage_subpool *)page_private(page);
1214         bool restore_reserve;
1215
1216         set_page_private(page, 0);
1217         page->mapping = NULL;
1218         BUG_ON(page_count(page));
1219         BUG_ON(page_mapcount(page));
1220         restore_reserve = PagePrivate(page);
1221         ClearPagePrivate(page);
1222
1223         /*
1224          * A return code of zero implies that the subpool will be under its
1225          * minimum size if the reservation is not restored after page is free.
1226          * Therefore, force restore_reserve operation.
1227          */
1228         if (hugepage_subpool_put_pages(spool, 1) == 0)
1229                 restore_reserve = true;
1230
1231         spin_lock(&hugetlb_lock);
1232         clear_page_huge_active(page);
1233         hugetlb_cgroup_uncharge_page(hstate_index(h),
1234                                      pages_per_huge_page(h), page);
1235         if (restore_reserve)
1236                 h->resv_huge_pages++;
1237
1238         if (h->surplus_huge_pages_node[nid]) {
1239                 /* remove the page from active list */
1240                 list_del(&page->lru);
1241                 update_and_free_page(h, page);
1242                 h->surplus_huge_pages--;
1243                 h->surplus_huge_pages_node[nid]--;
1244         } else {
1245                 arch_clear_hugepage_flags(page);
1246                 enqueue_huge_page(h, page);
1247         }
1248         spin_unlock(&hugetlb_lock);
1249 }
1250
1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252 {
1253         INIT_LIST_HEAD(&page->lru);
1254         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255         spin_lock(&hugetlb_lock);
1256         set_hugetlb_cgroup(page, NULL);
1257         h->nr_huge_pages++;
1258         h->nr_huge_pages_node[nid]++;
1259         spin_unlock(&hugetlb_lock);
1260         put_page(page); /* free it into the hugepage allocator */
1261 }
1262
1263 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 {
1265         int i;
1266         int nr_pages = 1 << order;
1267         struct page *p = page + 1;
1268
1269         /* we rely on prep_new_huge_page to set the destructor */
1270         set_compound_order(page, order);
1271         __SetPageHead(page);
1272         __ClearPageReserved(page);
1273         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274                 /*
1275                  * For gigantic hugepages allocated through bootmem at
1276                  * boot, it's safer to be consistent with the not-gigantic
1277                  * hugepages and clear the PG_reserved bit from all tail pages
1278                  * too.  Otherwse drivers using get_user_pages() to access tail
1279                  * pages may get the reference counting wrong if they see
1280                  * PG_reserved set on a tail page (despite the head page not
1281                  * having PG_reserved set).  Enforcing this consistency between
1282                  * head and tail pages allows drivers to optimize away a check
1283                  * on the head page when they need know if put_page() is needed
1284                  * after get_user_pages().
1285                  */
1286                 __ClearPageReserved(p);
1287                 set_page_count(p, 0);
1288                 set_compound_head(p, page);
1289         }
1290 }
1291
1292 /*
1293  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294  * transparent huge pages.  See the PageTransHuge() documentation for more
1295  * details.
1296  */
1297 int PageHuge(struct page *page)
1298 {
1299         if (!PageCompound(page))
1300                 return 0;
1301
1302         page = compound_head(page);
1303         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309  * normal or transparent huge pages.
1310  */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313         if (!PageHead(page_head))
1314                 return 0;
1315
1316         return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321         struct page *page_head = compound_head(page);
1322         pgoff_t index = page_index(page_head);
1323         unsigned long compound_idx;
1324
1325         if (!PageHuge(page_head))
1326                 return page_index(page);
1327
1328         if (compound_order(page_head) >= MAX_ORDER)
1329                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330         else
1331                 compound_idx = page - page_head;
1332
1333         return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338         struct page *page;
1339
1340         page = __alloc_pages_node(nid,
1341                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342                                                 __GFP_REPEAT|__GFP_NOWARN,
1343                 huge_page_order(h));
1344         if (page) {
1345                 prep_new_huge_page(h, page, nid);
1346         }
1347
1348         return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353         struct page *page;
1354         int nr_nodes, node;
1355         int ret = 0;
1356
1357         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358                 page = alloc_fresh_huge_page_node(h, node);
1359                 if (page) {
1360                         ret = 1;
1361                         break;
1362                 }
1363         }
1364
1365         if (ret)
1366                 count_vm_event(HTLB_BUDDY_PGALLOC);
1367         else
1368                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370         return ret;
1371 }
1372
1373 /*
1374  * Free huge page from pool from next node to free.
1375  * Attempt to keep persistent huge pages more or less
1376  * balanced over allowed nodes.
1377  * Called with hugetlb_lock locked.
1378  */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380                                                          bool acct_surplus)
1381 {
1382         int nr_nodes, node;
1383         int ret = 0;
1384
1385         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386                 /*
1387                  * If we're returning unused surplus pages, only examine
1388                  * nodes with surplus pages.
1389                  */
1390                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391                     !list_empty(&h->hugepage_freelists[node])) {
1392                         struct page *page =
1393                                 list_entry(h->hugepage_freelists[node].next,
1394                                           struct page, lru);
1395                         list_del(&page->lru);
1396                         h->free_huge_pages--;
1397                         h->free_huge_pages_node[node]--;
1398                         if (acct_surplus) {
1399                                 h->surplus_huge_pages--;
1400                                 h->surplus_huge_pages_node[node]--;
1401                         }
1402                         update_and_free_page(h, page);
1403                         ret = 1;
1404                         break;
1405                 }
1406         }
1407
1408         return ret;
1409 }
1410
1411 /*
1412  * Dissolve a given free hugepage into free buddy pages. This function does
1413  * nothing for in-use (including surplus) hugepages.
1414  */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417         spin_lock(&hugetlb_lock);
1418         if (PageHuge(page) && !page_count(page)) {
1419                 struct page *head = compound_head(page);
1420                 struct hstate *h = page_hstate(head);
1421                 int nid = page_to_nid(head);
1422                 list_del(&head->lru);
1423                 h->free_huge_pages--;
1424                 h->free_huge_pages_node[nid]--;
1425                 update_and_free_page(h, head);
1426         }
1427         spin_unlock(&hugetlb_lock);
1428 }
1429
1430 /*
1431  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1432  * make specified memory blocks removable from the system.
1433  * Note that this will dissolve a free gigantic hugepage completely, if any
1434  * part of it lies within the given range.
1435  */
1436 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1437 {
1438         unsigned long pfn;
1439
1440         if (!hugepages_supported())
1441                 return;
1442
1443         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1444                 dissolve_free_huge_page(pfn_to_page(pfn));
1445 }
1446
1447 /*
1448  * There are 3 ways this can get called:
1449  * 1. With vma+addr: we use the VMA's memory policy
1450  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1451  *    page from any node, and let the buddy allocator itself figure
1452  *    it out.
1453  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1454  *    strictly from 'nid'
1455  */
1456 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1457                 struct vm_area_struct *vma, unsigned long addr, int nid)
1458 {
1459         int order = huge_page_order(h);
1460         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1461         unsigned int cpuset_mems_cookie;
1462
1463         /*
1464          * We need a VMA to get a memory policy.  If we do not
1465          * have one, we use the 'nid' argument.
1466          *
1467          * The mempolicy stuff below has some non-inlined bits
1468          * and calls ->vm_ops.  That makes it hard to optimize at
1469          * compile-time, even when NUMA is off and it does
1470          * nothing.  This helps the compiler optimize it out.
1471          */
1472         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1473                 /*
1474                  * If a specific node is requested, make sure to
1475                  * get memory from there, but only when a node
1476                  * is explicitly specified.
1477                  */
1478                 if (nid != NUMA_NO_NODE)
1479                         gfp |= __GFP_THISNODE;
1480                 /*
1481                  * Make sure to call something that can handle
1482                  * nid=NUMA_NO_NODE
1483                  */
1484                 return alloc_pages_node(nid, gfp, order);
1485         }
1486
1487         /*
1488          * OK, so we have a VMA.  Fetch the mempolicy and try to
1489          * allocate a huge page with it.  We will only reach this
1490          * when CONFIG_NUMA=y.
1491          */
1492         do {
1493                 struct page *page;
1494                 struct mempolicy *mpol;
1495                 struct zonelist *zl;
1496                 nodemask_t *nodemask;
1497
1498                 cpuset_mems_cookie = read_mems_allowed_begin();
1499                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1500                 mpol_cond_put(mpol);
1501                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1502                 if (page)
1503                         return page;
1504         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1505
1506         return NULL;
1507 }
1508
1509 /*
1510  * There are two ways to allocate a huge page:
1511  * 1. When you have a VMA and an address (like a fault)
1512  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1513  *
1514  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1515  * this case which signifies that the allocation should be done with
1516  * respect for the VMA's memory policy.
1517  *
1518  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1519  * implies that memory policies will not be taken in to account.
1520  */
1521 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1522                 struct vm_area_struct *vma, unsigned long addr, int nid)
1523 {
1524         struct page *page;
1525         unsigned int r_nid;
1526
1527         if (hstate_is_gigantic(h))
1528                 return NULL;
1529
1530         /*
1531          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1532          * This makes sure the caller is picking _one_ of the modes with which
1533          * we can call this function, not both.
1534          */
1535         if (vma || (addr != -1)) {
1536                 VM_WARN_ON_ONCE(addr == -1);
1537                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1538         }
1539         /*
1540          * Assume we will successfully allocate the surplus page to
1541          * prevent racing processes from causing the surplus to exceed
1542          * overcommit
1543          *
1544          * This however introduces a different race, where a process B
1545          * tries to grow the static hugepage pool while alloc_pages() is
1546          * called by process A. B will only examine the per-node
1547          * counters in determining if surplus huge pages can be
1548          * converted to normal huge pages in adjust_pool_surplus(). A
1549          * won't be able to increment the per-node counter, until the
1550          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1551          * no more huge pages can be converted from surplus to normal
1552          * state (and doesn't try to convert again). Thus, we have a
1553          * case where a surplus huge page exists, the pool is grown, and
1554          * the surplus huge page still exists after, even though it
1555          * should just have been converted to a normal huge page. This
1556          * does not leak memory, though, as the hugepage will be freed
1557          * once it is out of use. It also does not allow the counters to
1558          * go out of whack in adjust_pool_surplus() as we don't modify
1559          * the node values until we've gotten the hugepage and only the
1560          * per-node value is checked there.
1561          */
1562         spin_lock(&hugetlb_lock);
1563         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1564                 spin_unlock(&hugetlb_lock);
1565                 return NULL;
1566         } else {
1567                 h->nr_huge_pages++;
1568                 h->surplus_huge_pages++;
1569         }
1570         spin_unlock(&hugetlb_lock);
1571
1572         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1573
1574         spin_lock(&hugetlb_lock);
1575         if (page) {
1576                 INIT_LIST_HEAD(&page->lru);
1577                 r_nid = page_to_nid(page);
1578                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1579                 set_hugetlb_cgroup(page, NULL);
1580                 /*
1581                  * We incremented the global counters already
1582                  */
1583                 h->nr_huge_pages_node[r_nid]++;
1584                 h->surplus_huge_pages_node[r_nid]++;
1585                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1586         } else {
1587                 h->nr_huge_pages--;
1588                 h->surplus_huge_pages--;
1589                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1590         }
1591         spin_unlock(&hugetlb_lock);
1592
1593         return page;
1594 }
1595
1596 /*
1597  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1598  * NUMA_NO_NODE, which means that it may be allocated
1599  * anywhere.
1600  */
1601 static
1602 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1603 {
1604         unsigned long addr = -1;
1605
1606         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1607 }
1608
1609 /*
1610  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1611  */
1612 static
1613 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614                 struct vm_area_struct *vma, unsigned long addr)
1615 {
1616         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1617 }
1618
1619 /*
1620  * This allocation function is useful in the context where vma is irrelevant.
1621  * E.g. soft-offlining uses this function because it only cares physical
1622  * address of error page.
1623  */
1624 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1625 {
1626         struct page *page = NULL;
1627
1628         spin_lock(&hugetlb_lock);
1629         if (h->free_huge_pages - h->resv_huge_pages > 0)
1630                 page = dequeue_huge_page_node(h, nid);
1631         spin_unlock(&hugetlb_lock);
1632
1633         if (!page)
1634                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1635
1636         return page;
1637 }
1638
1639 /*
1640  * Increase the hugetlb pool such that it can accommodate a reservation
1641  * of size 'delta'.
1642  */
1643 static int gather_surplus_pages(struct hstate *h, int delta)
1644 {
1645         struct list_head surplus_list;
1646         struct page *page, *tmp;
1647         int ret, i;
1648         int needed, allocated;
1649         bool alloc_ok = true;
1650
1651         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1652         if (needed <= 0) {
1653                 h->resv_huge_pages += delta;
1654                 return 0;
1655         }
1656
1657         allocated = 0;
1658         INIT_LIST_HEAD(&surplus_list);
1659
1660         ret = -ENOMEM;
1661 retry:
1662         spin_unlock(&hugetlb_lock);
1663         for (i = 0; i < needed; i++) {
1664                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1665                 if (!page) {
1666                         alloc_ok = false;
1667                         break;
1668                 }
1669                 list_add(&page->lru, &surplus_list);
1670         }
1671         allocated += i;
1672
1673         /*
1674          * After retaking hugetlb_lock, we need to recalculate 'needed'
1675          * because either resv_huge_pages or free_huge_pages may have changed.
1676          */
1677         spin_lock(&hugetlb_lock);
1678         needed = (h->resv_huge_pages + delta) -
1679                         (h->free_huge_pages + allocated);
1680         if (needed > 0) {
1681                 if (alloc_ok)
1682                         goto retry;
1683                 /*
1684                  * We were not able to allocate enough pages to
1685                  * satisfy the entire reservation so we free what
1686                  * we've allocated so far.
1687                  */
1688                 goto free;
1689         }
1690         /*
1691          * The surplus_list now contains _at_least_ the number of extra pages
1692          * needed to accommodate the reservation.  Add the appropriate number
1693          * of pages to the hugetlb pool and free the extras back to the buddy
1694          * allocator.  Commit the entire reservation here to prevent another
1695          * process from stealing the pages as they are added to the pool but
1696          * before they are reserved.
1697          */
1698         needed += allocated;
1699         h->resv_huge_pages += delta;
1700         ret = 0;
1701
1702         /* Free the needed pages to the hugetlb pool */
1703         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1704                 if ((--needed) < 0)
1705                         break;
1706                 /*
1707                  * This page is now managed by the hugetlb allocator and has
1708                  * no users -- drop the buddy allocator's reference.
1709                  */
1710                 put_page_testzero(page);
1711                 VM_BUG_ON_PAGE(page_count(page), page);
1712                 enqueue_huge_page(h, page);
1713         }
1714 free:
1715         spin_unlock(&hugetlb_lock);
1716
1717         /* Free unnecessary surplus pages to the buddy allocator */
1718         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1719                 put_page(page);
1720         spin_lock(&hugetlb_lock);
1721
1722         return ret;
1723 }
1724
1725 /*
1726  * This routine has two main purposes:
1727  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1728  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1729  *    to the associated reservation map.
1730  * 2) Free any unused surplus pages that may have been allocated to satisfy
1731  *    the reservation.  As many as unused_resv_pages may be freed.
1732  *
1733  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1734  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1735  * we must make sure nobody else can claim pages we are in the process of
1736  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1737  * number of huge pages we plan to free when dropping the lock.
1738  */
1739 static void return_unused_surplus_pages(struct hstate *h,
1740                                         unsigned long unused_resv_pages)
1741 {
1742         unsigned long nr_pages;
1743
1744         /* Cannot return gigantic pages currently */
1745         if (hstate_is_gigantic(h))
1746                 goto out;
1747
1748         /*
1749          * Part (or even all) of the reservation could have been backed
1750          * by pre-allocated pages. Only free surplus pages.
1751          */
1752         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1753
1754         /*
1755          * We want to release as many surplus pages as possible, spread
1756          * evenly across all nodes with memory. Iterate across these nodes
1757          * until we can no longer free unreserved surplus pages. This occurs
1758          * when the nodes with surplus pages have no free pages.
1759          * free_pool_huge_page() will balance the the freed pages across the
1760          * on-line nodes with memory and will handle the hstate accounting.
1761          *
1762          * Note that we decrement resv_huge_pages as we free the pages.  If
1763          * we drop the lock, resv_huge_pages will still be sufficiently large
1764          * to cover subsequent pages we may free.
1765          */
1766         while (nr_pages--) {
1767                 h->resv_huge_pages--;
1768                 unused_resv_pages--;
1769                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1770                         goto out;
1771                 cond_resched_lock(&hugetlb_lock);
1772         }
1773
1774 out:
1775         /* Fully uncommit the reservation */
1776         h->resv_huge_pages -= unused_resv_pages;
1777 }
1778
1779
1780 /*
1781  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1782  * are used by the huge page allocation routines to manage reservations.
1783  *
1784  * vma_needs_reservation is called to determine if the huge page at addr
1785  * within the vma has an associated reservation.  If a reservation is
1786  * needed, the value 1 is returned.  The caller is then responsible for
1787  * managing the global reservation and subpool usage counts.  After
1788  * the huge page has been allocated, vma_commit_reservation is called
1789  * to add the page to the reservation map.  If the page allocation fails,
1790  * the reservation must be ended instead of committed.  vma_end_reservation
1791  * is called in such cases.
1792  *
1793  * In the normal case, vma_commit_reservation returns the same value
1794  * as the preceding vma_needs_reservation call.  The only time this
1795  * is not the case is if a reserve map was changed between calls.  It
1796  * is the responsibility of the caller to notice the difference and
1797  * take appropriate action.
1798  */
1799 enum vma_resv_mode {
1800         VMA_NEEDS_RESV,
1801         VMA_COMMIT_RESV,
1802         VMA_END_RESV,
1803 };
1804 static long __vma_reservation_common(struct hstate *h,
1805                                 struct vm_area_struct *vma, unsigned long addr,
1806                                 enum vma_resv_mode mode)
1807 {
1808         struct resv_map *resv;
1809         pgoff_t idx;
1810         long ret;
1811
1812         resv = vma_resv_map(vma);
1813         if (!resv)
1814                 return 1;
1815
1816         idx = vma_hugecache_offset(h, vma, addr);
1817         switch (mode) {
1818         case VMA_NEEDS_RESV:
1819                 ret = region_chg(resv, idx, idx + 1);
1820                 break;
1821         case VMA_COMMIT_RESV:
1822                 ret = region_add(resv, idx, idx + 1);
1823                 break;
1824         case VMA_END_RESV:
1825                 region_abort(resv, idx, idx + 1);
1826                 ret = 0;
1827                 break;
1828         default:
1829                 BUG();
1830         }
1831
1832         if (vma->vm_flags & VM_MAYSHARE)
1833                 return ret;
1834         else
1835                 return ret < 0 ? ret : 0;
1836 }
1837
1838 static long vma_needs_reservation(struct hstate *h,
1839                         struct vm_area_struct *vma, unsigned long addr)
1840 {
1841         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1842 }
1843
1844 static long vma_commit_reservation(struct hstate *h,
1845                         struct vm_area_struct *vma, unsigned long addr)
1846 {
1847         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1848 }
1849
1850 static void vma_end_reservation(struct hstate *h,
1851                         struct vm_area_struct *vma, unsigned long addr)
1852 {
1853         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1854 }
1855
1856 struct page *alloc_huge_page(struct vm_area_struct *vma,
1857                                     unsigned long addr, int avoid_reserve)
1858 {
1859         struct hugepage_subpool *spool = subpool_vma(vma);
1860         struct hstate *h = hstate_vma(vma);
1861         struct page *page;
1862         long map_chg, map_commit;
1863         long gbl_chg;
1864         int ret, idx;
1865         struct hugetlb_cgroup *h_cg;
1866
1867         idx = hstate_index(h);
1868         /*
1869          * Examine the region/reserve map to determine if the process
1870          * has a reservation for the page to be allocated.  A return
1871          * code of zero indicates a reservation exists (no change).
1872          */
1873         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1874         if (map_chg < 0)
1875                 return ERR_PTR(-ENOMEM);
1876
1877         /*
1878          * Processes that did not create the mapping will have no
1879          * reserves as indicated by the region/reserve map. Check
1880          * that the allocation will not exceed the subpool limit.
1881          * Allocations for MAP_NORESERVE mappings also need to be
1882          * checked against any subpool limit.
1883          */
1884         if (map_chg || avoid_reserve) {
1885                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1886                 if (gbl_chg < 0) {
1887                         vma_end_reservation(h, vma, addr);
1888                         return ERR_PTR(-ENOSPC);
1889                 }
1890
1891                 /*
1892                  * Even though there was no reservation in the region/reserve
1893                  * map, there could be reservations associated with the
1894                  * subpool that can be used.  This would be indicated if the
1895                  * return value of hugepage_subpool_get_pages() is zero.
1896                  * However, if avoid_reserve is specified we still avoid even
1897                  * the subpool reservations.
1898                  */
1899                 if (avoid_reserve)
1900                         gbl_chg = 1;
1901         }
1902
1903         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1904         if (ret)
1905                 goto out_subpool_put;
1906
1907         spin_lock(&hugetlb_lock);
1908         /*
1909          * glb_chg is passed to indicate whether or not a page must be taken
1910          * from the global free pool (global change).  gbl_chg == 0 indicates
1911          * a reservation exists for the allocation.
1912          */
1913         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1914         if (!page) {
1915                 spin_unlock(&hugetlb_lock);
1916                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1917                 if (!page)
1918                         goto out_uncharge_cgroup;
1919                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1920                         SetPagePrivate(page);
1921                         h->resv_huge_pages--;
1922                 }
1923                 spin_lock(&hugetlb_lock);
1924                 list_move(&page->lru, &h->hugepage_activelist);
1925                 /* Fall through */
1926         }
1927         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1928         spin_unlock(&hugetlb_lock);
1929
1930         set_page_private(page, (unsigned long)spool);
1931
1932         map_commit = vma_commit_reservation(h, vma, addr);
1933         if (unlikely(map_chg > map_commit)) {
1934                 /*
1935                  * The page was added to the reservation map between
1936                  * vma_needs_reservation and vma_commit_reservation.
1937                  * This indicates a race with hugetlb_reserve_pages.
1938                  * Adjust for the subpool count incremented above AND
1939                  * in hugetlb_reserve_pages for the same page.  Also,
1940                  * the reservation count added in hugetlb_reserve_pages
1941                  * no longer applies.
1942                  */
1943                 long rsv_adjust;
1944
1945                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1946                 hugetlb_acct_memory(h, -rsv_adjust);
1947         }
1948         return page;
1949
1950 out_uncharge_cgroup:
1951         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1952 out_subpool_put:
1953         if (map_chg || avoid_reserve)
1954                 hugepage_subpool_put_pages(spool, 1);
1955         vma_end_reservation(h, vma, addr);
1956         return ERR_PTR(-ENOSPC);
1957 }
1958
1959 /*
1960  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1961  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1962  * where no ERR_VALUE is expected to be returned.
1963  */
1964 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1965                                 unsigned long addr, int avoid_reserve)
1966 {
1967         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1968         if (IS_ERR(page))
1969                 page = NULL;
1970         return page;
1971 }
1972
1973 int __weak alloc_bootmem_huge_page(struct hstate *h)
1974 {
1975         struct huge_bootmem_page *m;
1976         int nr_nodes, node;
1977
1978         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1979                 void *addr;
1980
1981                 addr = memblock_virt_alloc_try_nid_nopanic(
1982                                 huge_page_size(h), huge_page_size(h),
1983                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1984                 if (addr) {
1985                         /*
1986                          * Use the beginning of the huge page to store the
1987                          * huge_bootmem_page struct (until gather_bootmem
1988                          * puts them into the mem_map).
1989                          */
1990                         m = addr;
1991                         goto found;
1992                 }
1993         }
1994         return 0;
1995
1996 found:
1997         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1998         /* Put them into a private list first because mem_map is not up yet */
1999         list_add(&m->list, &huge_boot_pages);
2000         m->hstate = h;
2001         return 1;
2002 }
2003
2004 static void __init prep_compound_huge_page(struct page *page,
2005                 unsigned int order)
2006 {
2007         if (unlikely(order > (MAX_ORDER - 1)))
2008                 prep_compound_gigantic_page(page, order);
2009         else
2010                 prep_compound_page(page, order);
2011 }
2012
2013 /* Put bootmem huge pages into the standard lists after mem_map is up */
2014 static void __init gather_bootmem_prealloc(void)
2015 {
2016         struct huge_bootmem_page *m;
2017
2018         list_for_each_entry(m, &huge_boot_pages, list) {
2019                 struct hstate *h = m->hstate;
2020                 struct page *page;
2021
2022 #ifdef CONFIG_HIGHMEM
2023                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2024                 memblock_free_late(__pa(m),
2025                                    sizeof(struct huge_bootmem_page));
2026 #else
2027                 page = virt_to_page(m);
2028 #endif
2029                 WARN_ON(page_count(page) != 1);
2030                 prep_compound_huge_page(page, h->order);
2031                 WARN_ON(PageReserved(page));
2032                 prep_new_huge_page(h, page, page_to_nid(page));
2033                 /*
2034                  * If we had gigantic hugepages allocated at boot time, we need
2035                  * to restore the 'stolen' pages to totalram_pages in order to
2036                  * fix confusing memory reports from free(1) and another
2037                  * side-effects, like CommitLimit going negative.
2038                  */
2039                 if (hstate_is_gigantic(h))
2040                         adjust_managed_page_count(page, 1 << h->order);
2041                 cond_resched();
2042         }
2043 }
2044
2045 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2046 {
2047         unsigned long i;
2048
2049         for (i = 0; i < h->max_huge_pages; ++i) {
2050                 if (hstate_is_gigantic(h)) {
2051                         if (!alloc_bootmem_huge_page(h))
2052                                 break;
2053                 } else if (!alloc_fresh_huge_page(h,
2054                                          &node_states[N_MEMORY]))
2055                         break;
2056         }
2057         h->max_huge_pages = i;
2058 }
2059
2060 static void __init hugetlb_init_hstates(void)
2061 {
2062         struct hstate *h;
2063
2064         for_each_hstate(h) {
2065                 if (minimum_order > huge_page_order(h))
2066                         minimum_order = huge_page_order(h);
2067
2068                 /* oversize hugepages were init'ed in early boot */
2069                 if (!hstate_is_gigantic(h))
2070                         hugetlb_hstate_alloc_pages(h);
2071         }
2072         VM_BUG_ON(minimum_order == UINT_MAX);
2073 }
2074
2075 static char * __init memfmt(char *buf, unsigned long n)
2076 {
2077         if (n >= (1UL << 30))
2078                 sprintf(buf, "%lu GB", n >> 30);
2079         else if (n >= (1UL << 20))
2080                 sprintf(buf, "%lu MB", n >> 20);
2081         else
2082                 sprintf(buf, "%lu KB", n >> 10);
2083         return buf;
2084 }
2085
2086 static void __init report_hugepages(void)
2087 {
2088         struct hstate *h;
2089
2090         for_each_hstate(h) {
2091                 char buf[32];
2092                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2093                         memfmt(buf, huge_page_size(h)),
2094                         h->free_huge_pages);
2095         }
2096 }
2097
2098 #ifdef CONFIG_HIGHMEM
2099 static void try_to_free_low(struct hstate *h, unsigned long count,
2100                                                 nodemask_t *nodes_allowed)
2101 {
2102         int i;
2103
2104         if (hstate_is_gigantic(h))
2105                 return;
2106
2107         for_each_node_mask(i, *nodes_allowed) {
2108                 struct page *page, *next;
2109                 struct list_head *freel = &h->hugepage_freelists[i];
2110                 list_for_each_entry_safe(page, next, freel, lru) {
2111                         if (count >= h->nr_huge_pages)
2112                                 return;
2113                         if (PageHighMem(page))
2114                                 continue;
2115                         list_del(&page->lru);
2116                         update_and_free_page(h, page);
2117                         h->free_huge_pages--;
2118                         h->free_huge_pages_node[page_to_nid(page)]--;
2119                 }
2120         }
2121 }
2122 #else
2123 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2124                                                 nodemask_t *nodes_allowed)
2125 {
2126 }
2127 #endif
2128
2129 /*
2130  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2131  * balanced by operating on them in a round-robin fashion.
2132  * Returns 1 if an adjustment was made.
2133  */
2134 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2135                                 int delta)
2136 {
2137         int nr_nodes, node;
2138
2139         VM_BUG_ON(delta != -1 && delta != 1);
2140
2141         if (delta < 0) {
2142                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2143                         if (h->surplus_huge_pages_node[node])
2144                                 goto found;
2145                 }
2146         } else {
2147                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2148                         if (h->surplus_huge_pages_node[node] <
2149                                         h->nr_huge_pages_node[node])
2150                                 goto found;
2151                 }
2152         }
2153         return 0;
2154
2155 found:
2156         h->surplus_huge_pages += delta;
2157         h->surplus_huge_pages_node[node] += delta;
2158         return 1;
2159 }
2160
2161 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2162 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2163                                                 nodemask_t *nodes_allowed)
2164 {
2165         unsigned long min_count, ret;
2166
2167         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2168                 return h->max_huge_pages;
2169
2170         /*
2171          * Increase the pool size
2172          * First take pages out of surplus state.  Then make up the
2173          * remaining difference by allocating fresh huge pages.
2174          *
2175          * We might race with __alloc_buddy_huge_page() here and be unable
2176          * to convert a surplus huge page to a normal huge page. That is
2177          * not critical, though, it just means the overall size of the
2178          * pool might be one hugepage larger than it needs to be, but
2179          * within all the constraints specified by the sysctls.
2180          */
2181         spin_lock(&hugetlb_lock);
2182         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2183                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2184                         break;
2185         }
2186
2187         while (count > persistent_huge_pages(h)) {
2188                 /*
2189                  * If this allocation races such that we no longer need the
2190                  * page, free_huge_page will handle it by freeing the page
2191                  * and reducing the surplus.
2192                  */
2193                 spin_unlock(&hugetlb_lock);
2194
2195                 /* yield cpu to avoid soft lockup */
2196                 cond_resched();
2197
2198                 if (hstate_is_gigantic(h))
2199                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2200                 else
2201                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2202                 spin_lock(&hugetlb_lock);
2203                 if (!ret)
2204                         goto out;
2205
2206                 /* Bail for signals. Probably ctrl-c from user */
2207                 if (signal_pending(current))
2208                         goto out;
2209         }
2210
2211         /*
2212          * Decrease the pool size
2213          * First return free pages to the buddy allocator (being careful
2214          * to keep enough around to satisfy reservations).  Then place
2215          * pages into surplus state as needed so the pool will shrink
2216          * to the desired size as pages become free.
2217          *
2218          * By placing pages into the surplus state independent of the
2219          * overcommit value, we are allowing the surplus pool size to
2220          * exceed overcommit. There are few sane options here. Since
2221          * __alloc_buddy_huge_page() is checking the global counter,
2222          * though, we'll note that we're not allowed to exceed surplus
2223          * and won't grow the pool anywhere else. Not until one of the
2224          * sysctls are changed, or the surplus pages go out of use.
2225          */
2226         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2227         min_count = max(count, min_count);
2228         try_to_free_low(h, min_count, nodes_allowed);
2229         while (min_count < persistent_huge_pages(h)) {
2230                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2231                         break;
2232                 cond_resched_lock(&hugetlb_lock);
2233         }
2234         while (count < persistent_huge_pages(h)) {
2235                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2236                         break;
2237         }
2238 out:
2239         ret = persistent_huge_pages(h);
2240         spin_unlock(&hugetlb_lock);
2241         return ret;
2242 }
2243
2244 #define HSTATE_ATTR_RO(_name) \
2245         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2246
2247 #define HSTATE_ATTR(_name) \
2248         static struct kobj_attribute _name##_attr = \
2249                 __ATTR(_name, 0644, _name##_show, _name##_store)
2250
2251 static struct kobject *hugepages_kobj;
2252 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2253
2254 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2255
2256 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2257 {
2258         int i;
2259
2260         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2261                 if (hstate_kobjs[i] == kobj) {
2262                         if (nidp)
2263                                 *nidp = NUMA_NO_NODE;
2264                         return &hstates[i];
2265                 }
2266
2267         return kobj_to_node_hstate(kobj, nidp);
2268 }
2269
2270 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2271                                         struct kobj_attribute *attr, char *buf)
2272 {
2273         struct hstate *h;
2274         unsigned long nr_huge_pages;
2275         int nid;
2276
2277         h = kobj_to_hstate(kobj, &nid);
2278         if (nid == NUMA_NO_NODE)
2279                 nr_huge_pages = h->nr_huge_pages;
2280         else
2281                 nr_huge_pages = h->nr_huge_pages_node[nid];
2282
2283         return sprintf(buf, "%lu\n", nr_huge_pages);
2284 }
2285
2286 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2287                                            struct hstate *h, int nid,
2288                                            unsigned long count, size_t len)
2289 {
2290         int err;
2291         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2292
2293         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2294                 err = -EINVAL;
2295                 goto out;
2296         }
2297
2298         if (nid == NUMA_NO_NODE) {
2299                 /*
2300                  * global hstate attribute
2301                  */
2302                 if (!(obey_mempolicy &&
2303                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2304                         NODEMASK_FREE(nodes_allowed);
2305                         nodes_allowed = &node_states[N_MEMORY];
2306                 }
2307         } else if (nodes_allowed) {
2308                 /*
2309                  * per node hstate attribute: adjust count to global,
2310                  * but restrict alloc/free to the specified node.
2311                  */
2312                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2313                 init_nodemask_of_node(nodes_allowed, nid);
2314         } else
2315                 nodes_allowed = &node_states[N_MEMORY];
2316
2317         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2318
2319         if (nodes_allowed != &node_states[N_MEMORY])
2320                 NODEMASK_FREE(nodes_allowed);
2321
2322         return len;
2323 out:
2324         NODEMASK_FREE(nodes_allowed);
2325         return err;
2326 }
2327
2328 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2329                                          struct kobject *kobj, const char *buf,
2330                                          size_t len)
2331 {
2332         struct hstate *h;
2333         unsigned long count;
2334         int nid;
2335         int err;
2336
2337         err = kstrtoul(buf, 10, &count);
2338         if (err)
2339                 return err;
2340
2341         h = kobj_to_hstate(kobj, &nid);
2342         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2343 }
2344
2345 static ssize_t nr_hugepages_show(struct kobject *kobj,
2346                                        struct kobj_attribute *attr, char *buf)
2347 {
2348         return nr_hugepages_show_common(kobj, attr, buf);
2349 }
2350
2351 static ssize_t nr_hugepages_store(struct kobject *kobj,
2352                struct kobj_attribute *attr, const char *buf, size_t len)
2353 {
2354         return nr_hugepages_store_common(false, kobj, buf, len);
2355 }
2356 HSTATE_ATTR(nr_hugepages);
2357
2358 #ifdef CONFIG_NUMA
2359
2360 /*
2361  * hstate attribute for optionally mempolicy-based constraint on persistent
2362  * huge page alloc/free.
2363  */
2364 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2365                                        struct kobj_attribute *attr, char *buf)
2366 {
2367         return nr_hugepages_show_common(kobj, attr, buf);
2368 }
2369
2370 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2371                struct kobj_attribute *attr, const char *buf, size_t len)
2372 {
2373         return nr_hugepages_store_common(true, kobj, buf, len);
2374 }
2375 HSTATE_ATTR(nr_hugepages_mempolicy);
2376 #endif
2377
2378
2379 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2380                                         struct kobj_attribute *attr, char *buf)
2381 {
2382         struct hstate *h = kobj_to_hstate(kobj, NULL);
2383         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2384 }
2385
2386 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2387                 struct kobj_attribute *attr, const char *buf, size_t count)
2388 {
2389         int err;
2390         unsigned long input;
2391         struct hstate *h = kobj_to_hstate(kobj, NULL);
2392
2393         if (hstate_is_gigantic(h))
2394                 return -EINVAL;
2395
2396         err = kstrtoul(buf, 10, &input);
2397         if (err)
2398                 return err;
2399
2400         spin_lock(&hugetlb_lock);
2401         h->nr_overcommit_huge_pages = input;
2402         spin_unlock(&hugetlb_lock);
2403
2404         return count;
2405 }
2406 HSTATE_ATTR(nr_overcommit_hugepages);
2407
2408 static ssize_t free_hugepages_show(struct kobject *kobj,
2409                                         struct kobj_attribute *attr, char *buf)
2410 {
2411         struct hstate *h;
2412         unsigned long free_huge_pages;
2413         int nid;
2414
2415         h = kobj_to_hstate(kobj, &nid);
2416         if (nid == NUMA_NO_NODE)
2417                 free_huge_pages = h->free_huge_pages;
2418         else
2419                 free_huge_pages = h->free_huge_pages_node[nid];
2420
2421         return sprintf(buf, "%lu\n", free_huge_pages);
2422 }
2423 HSTATE_ATTR_RO(free_hugepages);
2424
2425 static ssize_t resv_hugepages_show(struct kobject *kobj,
2426                                         struct kobj_attribute *attr, char *buf)
2427 {
2428         struct hstate *h = kobj_to_hstate(kobj, NULL);
2429         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2430 }
2431 HSTATE_ATTR_RO(resv_hugepages);
2432
2433 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2434                                         struct kobj_attribute *attr, char *buf)
2435 {
2436         struct hstate *h;
2437         unsigned long surplus_huge_pages;
2438         int nid;
2439
2440         h = kobj_to_hstate(kobj, &nid);
2441         if (nid == NUMA_NO_NODE)
2442                 surplus_huge_pages = h->surplus_huge_pages;
2443         else
2444                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2445
2446         return sprintf(buf, "%lu\n", surplus_huge_pages);
2447 }
2448 HSTATE_ATTR_RO(surplus_hugepages);
2449
2450 static struct attribute *hstate_attrs[] = {
2451         &nr_hugepages_attr.attr,
2452         &nr_overcommit_hugepages_attr.attr,
2453         &free_hugepages_attr.attr,
2454         &resv_hugepages_attr.attr,
2455         &surplus_hugepages_attr.attr,
2456 #ifdef CONFIG_NUMA
2457         &nr_hugepages_mempolicy_attr.attr,
2458 #endif
2459         NULL,
2460 };
2461
2462 static struct attribute_group hstate_attr_group = {
2463         .attrs = hstate_attrs,
2464 };
2465
2466 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2467                                     struct kobject **hstate_kobjs,
2468                                     struct attribute_group *hstate_attr_group)
2469 {
2470         int retval;
2471         int hi = hstate_index(h);
2472
2473         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2474         if (!hstate_kobjs[hi])
2475                 return -ENOMEM;
2476
2477         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2478         if (retval)
2479                 kobject_put(hstate_kobjs[hi]);
2480
2481         return retval;
2482 }
2483
2484 static void __init hugetlb_sysfs_init(void)
2485 {
2486         struct hstate *h;
2487         int err;
2488
2489         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2490         if (!hugepages_kobj)
2491                 return;
2492
2493         for_each_hstate(h) {
2494                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2495                                          hstate_kobjs, &hstate_attr_group);
2496                 if (err)
2497                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2498         }
2499 }
2500
2501 #ifdef CONFIG_NUMA
2502
2503 /*
2504  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2505  * with node devices in node_devices[] using a parallel array.  The array
2506  * index of a node device or _hstate == node id.
2507  * This is here to avoid any static dependency of the node device driver, in
2508  * the base kernel, on the hugetlb module.
2509  */
2510 struct node_hstate {
2511         struct kobject          *hugepages_kobj;
2512         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2513 };
2514 static struct node_hstate node_hstates[MAX_NUMNODES];
2515
2516 /*
2517  * A subset of global hstate attributes for node devices
2518  */
2519 static struct attribute *per_node_hstate_attrs[] = {
2520         &nr_hugepages_attr.attr,
2521         &free_hugepages_attr.attr,
2522         &surplus_hugepages_attr.attr,
2523         NULL,
2524 };
2525
2526 static struct attribute_group per_node_hstate_attr_group = {
2527         .attrs = per_node_hstate_attrs,
2528 };
2529
2530 /*
2531  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2532  * Returns node id via non-NULL nidp.
2533  */
2534 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2535 {
2536         int nid;
2537
2538         for (nid = 0; nid < nr_node_ids; nid++) {
2539                 struct node_hstate *nhs = &node_hstates[nid];
2540                 int i;
2541                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2542                         if (nhs->hstate_kobjs[i] == kobj) {
2543                                 if (nidp)
2544                                         *nidp = nid;
2545                                 return &hstates[i];
2546                         }
2547         }
2548
2549         BUG();
2550         return NULL;
2551 }
2552
2553 /*
2554  * Unregister hstate attributes from a single node device.
2555  * No-op if no hstate attributes attached.
2556  */
2557 static void hugetlb_unregister_node(struct node *node)
2558 {
2559         struct hstate *h;
2560         struct node_hstate *nhs = &node_hstates[node->dev.id];
2561
2562         if (!nhs->hugepages_kobj)
2563                 return;         /* no hstate attributes */
2564
2565         for_each_hstate(h) {
2566                 int idx = hstate_index(h);
2567                 if (nhs->hstate_kobjs[idx]) {
2568                         kobject_put(nhs->hstate_kobjs[idx]);
2569                         nhs->hstate_kobjs[idx] = NULL;
2570                 }
2571         }
2572
2573         kobject_put(nhs->hugepages_kobj);
2574         nhs->hugepages_kobj = NULL;
2575 }
2576
2577 /*
2578  * hugetlb module exit:  unregister hstate attributes from node devices
2579  * that have them.
2580  */
2581 static void hugetlb_unregister_all_nodes(void)
2582 {
2583         int nid;
2584
2585         /*
2586          * disable node device registrations.
2587          */
2588         register_hugetlbfs_with_node(NULL, NULL);
2589
2590         /*
2591          * remove hstate attributes from any nodes that have them.
2592          */
2593         for (nid = 0; nid < nr_node_ids; nid++)
2594                 hugetlb_unregister_node(node_devices[nid]);
2595 }
2596
2597 /*
2598  * Register hstate attributes for a single node device.
2599  * No-op if attributes already registered.
2600  */
2601 static void hugetlb_register_node(struct node *node)
2602 {
2603         struct hstate *h;
2604         struct node_hstate *nhs = &node_hstates[node->dev.id];
2605         int err;
2606
2607         if (nhs->hugepages_kobj)
2608                 return;         /* already allocated */
2609
2610         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2611                                                         &node->dev.kobj);
2612         if (!nhs->hugepages_kobj)
2613                 return;
2614
2615         for_each_hstate(h) {
2616                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2617                                                 nhs->hstate_kobjs,
2618                                                 &per_node_hstate_attr_group);
2619                 if (err) {
2620                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2621                                 h->name, node->dev.id);
2622                         hugetlb_unregister_node(node);
2623                         break;
2624                 }
2625         }
2626 }
2627
2628 /*
2629  * hugetlb init time:  register hstate attributes for all registered node
2630  * devices of nodes that have memory.  All on-line nodes should have
2631  * registered their associated device by this time.
2632  */
2633 static void __init hugetlb_register_all_nodes(void)
2634 {
2635         int nid;
2636
2637         for_each_node_state(nid, N_MEMORY) {
2638                 struct node *node = node_devices[nid];
2639                 if (node->dev.id == nid)
2640                         hugetlb_register_node(node);
2641         }
2642
2643         /*
2644          * Let the node device driver know we're here so it can
2645          * [un]register hstate attributes on node hotplug.
2646          */
2647         register_hugetlbfs_with_node(hugetlb_register_node,
2648                                      hugetlb_unregister_node);
2649 }
2650 #else   /* !CONFIG_NUMA */
2651
2652 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2653 {
2654         BUG();
2655         if (nidp)
2656                 *nidp = -1;
2657         return NULL;
2658 }
2659
2660 static void hugetlb_unregister_all_nodes(void) { }
2661
2662 static void hugetlb_register_all_nodes(void) { }
2663
2664 #endif
2665
2666 static void __exit hugetlb_exit(void)
2667 {
2668         struct hstate *h;
2669
2670         hugetlb_unregister_all_nodes();
2671
2672         for_each_hstate(h) {
2673                 kobject_put(hstate_kobjs[hstate_index(h)]);
2674         }
2675
2676         kobject_put(hugepages_kobj);
2677         kfree(hugetlb_fault_mutex_table);
2678 }
2679 module_exit(hugetlb_exit);
2680
2681 static int __init hugetlb_init(void)
2682 {
2683         int i;
2684
2685         if (!hugepages_supported())
2686                 return 0;
2687
2688         if (!size_to_hstate(default_hstate_size)) {
2689                 default_hstate_size = HPAGE_SIZE;
2690                 if (!size_to_hstate(default_hstate_size))
2691                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2692         }
2693         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2694         if (default_hstate_max_huge_pages)
2695                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2696
2697         hugetlb_init_hstates();
2698         gather_bootmem_prealloc();
2699         report_hugepages();
2700
2701         hugetlb_sysfs_init();
2702         hugetlb_register_all_nodes();
2703         hugetlb_cgroup_file_init();
2704
2705 #ifdef CONFIG_SMP
2706         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2707 #else
2708         num_fault_mutexes = 1;
2709 #endif
2710         hugetlb_fault_mutex_table =
2711                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2712         BUG_ON(!hugetlb_fault_mutex_table);
2713
2714         for (i = 0; i < num_fault_mutexes; i++)
2715                 mutex_init(&hugetlb_fault_mutex_table[i]);
2716         return 0;
2717 }
2718 module_init(hugetlb_init);
2719
2720 /* Should be called on processing a hugepagesz=... option */
2721 void __init hugetlb_add_hstate(unsigned int order)
2722 {
2723         struct hstate *h;
2724         unsigned long i;
2725
2726         if (size_to_hstate(PAGE_SIZE << order)) {
2727                 pr_warning("hugepagesz= specified twice, ignoring\n");
2728                 return;
2729         }
2730         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2731         BUG_ON(order == 0);
2732         h = &hstates[hugetlb_max_hstate++];
2733         h->order = order;
2734         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2735         h->nr_huge_pages = 0;
2736         h->free_huge_pages = 0;
2737         for (i = 0; i < MAX_NUMNODES; ++i)
2738                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2739         INIT_LIST_HEAD(&h->hugepage_activelist);
2740         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2741         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2742         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2743                                         huge_page_size(h)/1024);
2744
2745         parsed_hstate = h;
2746 }
2747
2748 static int __init hugetlb_nrpages_setup(char *s)
2749 {
2750         unsigned long *mhp;
2751         static unsigned long *last_mhp;
2752
2753         /*
2754          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2755          * so this hugepages= parameter goes to the "default hstate".
2756          */
2757         if (!hugetlb_max_hstate)
2758                 mhp = &default_hstate_max_huge_pages;
2759         else
2760                 mhp = &parsed_hstate->max_huge_pages;
2761
2762         if (mhp == last_mhp) {
2763                 pr_warning("hugepages= specified twice without "
2764                            "interleaving hugepagesz=, ignoring\n");
2765                 return 1;
2766         }
2767
2768         if (sscanf(s, "%lu", mhp) <= 0)
2769                 *mhp = 0;
2770
2771         /*
2772          * Global state is always initialized later in hugetlb_init.
2773          * But we need to allocate >= MAX_ORDER hstates here early to still
2774          * use the bootmem allocator.
2775          */
2776         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2777                 hugetlb_hstate_alloc_pages(parsed_hstate);
2778
2779         last_mhp = mhp;
2780
2781         return 1;
2782 }
2783 __setup("hugepages=", hugetlb_nrpages_setup);
2784
2785 static int __init hugetlb_default_setup(char *s)
2786 {
2787         default_hstate_size = memparse(s, &s);
2788         return 1;
2789 }
2790 __setup("default_hugepagesz=", hugetlb_default_setup);
2791
2792 static unsigned int cpuset_mems_nr(unsigned int *array)
2793 {
2794         int node;
2795         unsigned int nr = 0;
2796
2797         for_each_node_mask(node, cpuset_current_mems_allowed)
2798                 nr += array[node];
2799
2800         return nr;
2801 }
2802
2803 #ifdef CONFIG_SYSCTL
2804 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2805                          struct ctl_table *table, int write,
2806                          void __user *buffer, size_t *length, loff_t *ppos)
2807 {
2808         struct hstate *h = &default_hstate;
2809         unsigned long tmp = h->max_huge_pages;
2810         int ret;
2811
2812         if (!hugepages_supported())
2813                 return -ENOTSUPP;
2814
2815         table->data = &tmp;
2816         table->maxlen = sizeof(unsigned long);
2817         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2818         if (ret)
2819                 goto out;
2820
2821         if (write)
2822                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2823                                                   NUMA_NO_NODE, tmp, *length);
2824 out:
2825         return ret;
2826 }
2827
2828 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2829                           void __user *buffer, size_t *length, loff_t *ppos)
2830 {
2831
2832         return hugetlb_sysctl_handler_common(false, table, write,
2833                                                         buffer, length, ppos);
2834 }
2835
2836 #ifdef CONFIG_NUMA
2837 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2838                           void __user *buffer, size_t *length, loff_t *ppos)
2839 {
2840         return hugetlb_sysctl_handler_common(true, table, write,
2841                                                         buffer, length, ppos);
2842 }
2843 #endif /* CONFIG_NUMA */
2844
2845 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2846                         void __user *buffer,
2847                         size_t *length, loff_t *ppos)
2848 {
2849         struct hstate *h = &default_hstate;
2850         unsigned long tmp;
2851         int ret;
2852
2853         if (!hugepages_supported())
2854                 return -ENOTSUPP;
2855
2856         tmp = h->nr_overcommit_huge_pages;
2857
2858         if (write && hstate_is_gigantic(h))
2859                 return -EINVAL;
2860
2861         table->data = &tmp;
2862         table->maxlen = sizeof(unsigned long);
2863         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2864         if (ret)
2865                 goto out;
2866
2867         if (write) {
2868                 spin_lock(&hugetlb_lock);
2869                 h->nr_overcommit_huge_pages = tmp;
2870                 spin_unlock(&hugetlb_lock);
2871         }
2872 out:
2873         return ret;
2874 }
2875
2876 #endif /* CONFIG_SYSCTL */
2877
2878 void hugetlb_report_meminfo(struct seq_file *m)
2879 {
2880         struct hstate *h = &default_hstate;
2881         if (!hugepages_supported())
2882                 return;
2883         seq_printf(m,
2884                         "HugePages_Total:   %5lu\n"
2885                         "HugePages_Free:    %5lu\n"
2886                         "HugePages_Rsvd:    %5lu\n"
2887                         "HugePages_Surp:    %5lu\n"
2888                         "Hugepagesize:   %8lu kB\n",
2889                         h->nr_huge_pages,
2890                         h->free_huge_pages,
2891                         h->resv_huge_pages,
2892                         h->surplus_huge_pages,
2893                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2894 }
2895
2896 int hugetlb_report_node_meminfo(int nid, char *buf)
2897 {
2898         struct hstate *h = &default_hstate;
2899         if (!hugepages_supported())
2900                 return 0;
2901         return sprintf(buf,
2902                 "Node %d HugePages_Total: %5u\n"
2903                 "Node %d HugePages_Free:  %5u\n"
2904                 "Node %d HugePages_Surp:  %5u\n",
2905                 nid, h->nr_huge_pages_node[nid],
2906                 nid, h->free_huge_pages_node[nid],
2907                 nid, h->surplus_huge_pages_node[nid]);
2908 }
2909
2910 void hugetlb_show_meminfo(void)
2911 {
2912         struct hstate *h;
2913         int nid;
2914
2915         if (!hugepages_supported())
2916                 return;
2917
2918         for_each_node_state(nid, N_MEMORY)
2919                 for_each_hstate(h)
2920                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2921                                 nid,
2922                                 h->nr_huge_pages_node[nid],
2923                                 h->free_huge_pages_node[nid],
2924                                 h->surplus_huge_pages_node[nid],
2925                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2926 }
2927
2928 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2929 {
2930         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2931                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2932 }
2933
2934 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2935 unsigned long hugetlb_total_pages(void)
2936 {
2937         struct hstate *h;
2938         unsigned long nr_total_pages = 0;
2939
2940         for_each_hstate(h)
2941                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2942         return nr_total_pages;
2943 }
2944
2945 static int hugetlb_acct_memory(struct hstate *h, long delta)
2946 {
2947         int ret = -ENOMEM;
2948
2949         spin_lock(&hugetlb_lock);
2950         /*
2951          * When cpuset is configured, it breaks the strict hugetlb page
2952          * reservation as the accounting is done on a global variable. Such
2953          * reservation is completely rubbish in the presence of cpuset because
2954          * the reservation is not checked against page availability for the
2955          * current cpuset. Application can still potentially OOM'ed by kernel
2956          * with lack of free htlb page in cpuset that the task is in.
2957          * Attempt to enforce strict accounting with cpuset is almost
2958          * impossible (or too ugly) because cpuset is too fluid that
2959          * task or memory node can be dynamically moved between cpusets.
2960          *
2961          * The change of semantics for shared hugetlb mapping with cpuset is
2962          * undesirable. However, in order to preserve some of the semantics,
2963          * we fall back to check against current free page availability as
2964          * a best attempt and hopefully to minimize the impact of changing
2965          * semantics that cpuset has.
2966          */
2967         if (delta > 0) {
2968                 if (gather_surplus_pages(h, delta) < 0)
2969                         goto out;
2970
2971                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2972                         return_unused_surplus_pages(h, delta);
2973                         goto out;
2974                 }
2975         }
2976
2977         ret = 0;
2978         if (delta < 0)
2979                 return_unused_surplus_pages(h, (unsigned long) -delta);
2980
2981 out:
2982         spin_unlock(&hugetlb_lock);
2983         return ret;
2984 }
2985
2986 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2987 {
2988         struct resv_map *resv = vma_resv_map(vma);
2989
2990         /*
2991          * This new VMA should share its siblings reservation map if present.
2992          * The VMA will only ever have a valid reservation map pointer where
2993          * it is being copied for another still existing VMA.  As that VMA
2994          * has a reference to the reservation map it cannot disappear until
2995          * after this open call completes.  It is therefore safe to take a
2996          * new reference here without additional locking.
2997          */
2998         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2999                 kref_get(&resv->refs);
3000 }
3001
3002 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3003 {
3004         struct hstate *h = hstate_vma(vma);
3005         struct resv_map *resv = vma_resv_map(vma);
3006         struct hugepage_subpool *spool = subpool_vma(vma);
3007         unsigned long reserve, start, end;
3008         long gbl_reserve;
3009
3010         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3011                 return;
3012
3013         start = vma_hugecache_offset(h, vma, vma->vm_start);
3014         end = vma_hugecache_offset(h, vma, vma->vm_end);
3015
3016         reserve = (end - start) - region_count(resv, start, end);
3017
3018         kref_put(&resv->refs, resv_map_release);
3019
3020         if (reserve) {
3021                 /*
3022                  * Decrement reserve counts.  The global reserve count may be
3023                  * adjusted if the subpool has a minimum size.
3024                  */
3025                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3026                 hugetlb_acct_memory(h, -gbl_reserve);
3027         }
3028 }
3029
3030 /*
3031  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3032  * handle_mm_fault() to try to instantiate regular-sized pages in the
3033  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3034  * this far.
3035  */
3036 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3037 {
3038         BUG();
3039         return 0;
3040 }
3041
3042 const struct vm_operations_struct hugetlb_vm_ops = {
3043         .fault = hugetlb_vm_op_fault,
3044         .open = hugetlb_vm_op_open,
3045         .close = hugetlb_vm_op_close,
3046 };
3047
3048 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3049                                 int writable)
3050 {
3051         pte_t entry;
3052
3053         if (writable) {
3054                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3055                                          vma->vm_page_prot)));
3056         } else {
3057                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3058                                            vma->vm_page_prot));
3059         }
3060         entry = pte_mkyoung(entry);
3061         entry = pte_mkhuge(entry);
3062         entry = arch_make_huge_pte(entry, vma, page, writable);
3063
3064         return entry;
3065 }
3066
3067 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3068                                    unsigned long address, pte_t *ptep)
3069 {
3070         pte_t entry;
3071
3072         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3073         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3074                 update_mmu_cache(vma, address, ptep);
3075 }
3076
3077 static int is_hugetlb_entry_migration(pte_t pte)
3078 {
3079         swp_entry_t swp;
3080
3081         if (huge_pte_none(pte) || pte_present(pte))
3082                 return 0;
3083         swp = pte_to_swp_entry(pte);
3084         if (non_swap_entry(swp) && is_migration_entry(swp))
3085                 return 1;
3086         else
3087                 return 0;
3088 }
3089
3090 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3091 {
3092         swp_entry_t swp;
3093
3094         if (huge_pte_none(pte) || pte_present(pte))
3095                 return 0;
3096         swp = pte_to_swp_entry(pte);
3097         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3098                 return 1;
3099         else
3100                 return 0;
3101 }
3102
3103 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3104                             struct vm_area_struct *vma)
3105 {
3106         pte_t *src_pte, *dst_pte, entry;
3107         struct page *ptepage;
3108         unsigned long addr;
3109         int cow;
3110         struct hstate *h = hstate_vma(vma);
3111         unsigned long sz = huge_page_size(h);
3112         unsigned long mmun_start;       /* For mmu_notifiers */
3113         unsigned long mmun_end;         /* For mmu_notifiers */
3114         int ret = 0;
3115
3116         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3117
3118         mmun_start = vma->vm_start;
3119         mmun_end = vma->vm_end;
3120         if (cow)
3121                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3122
3123         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3124                 spinlock_t *src_ptl, *dst_ptl;
3125                 src_pte = huge_pte_offset(src, addr);
3126                 if (!src_pte)
3127                         continue;
3128                 dst_pte = huge_pte_alloc(dst, addr, sz);
3129                 if (!dst_pte) {
3130                         ret = -ENOMEM;
3131                         break;
3132                 }
3133
3134                 /* If the pagetables are shared don't copy or take references */
3135                 if (dst_pte == src_pte)
3136                         continue;
3137
3138                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3139                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3140                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3141                 entry = huge_ptep_get(src_pte);
3142                 if (huge_pte_none(entry)) { /* skip none entry */
3143                         ;
3144                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3145                                     is_hugetlb_entry_hwpoisoned(entry))) {
3146                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3147
3148                         if (is_write_migration_entry(swp_entry) && cow) {
3149                                 /*
3150                                  * COW mappings require pages in both
3151                                  * parent and child to be set to read.
3152                                  */
3153                                 make_migration_entry_read(&swp_entry);
3154                                 entry = swp_entry_to_pte(swp_entry);
3155                                 set_huge_pte_at(src, addr, src_pte, entry);
3156                         }
3157                         set_huge_pte_at(dst, addr, dst_pte, entry);
3158                 } else {
3159                         if (cow) {
3160                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3161                                 mmu_notifier_invalidate_range(src, mmun_start,
3162                                                                    mmun_end);
3163                         }
3164                         entry = huge_ptep_get(src_pte);
3165                         ptepage = pte_page(entry);
3166                         get_page(ptepage);
3167                         page_dup_rmap(ptepage);
3168                         set_huge_pte_at(dst, addr, dst_pte, entry);
3169                         hugetlb_count_add(pages_per_huge_page(h), dst);
3170                 }
3171                 spin_unlock(src_ptl);
3172                 spin_unlock(dst_ptl);
3173         }
3174
3175         if (cow)
3176                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3177
3178         return ret;
3179 }
3180
3181 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3182                             unsigned long start, unsigned long end,
3183                             struct page *ref_page)
3184 {
3185         int force_flush = 0;
3186         struct mm_struct *mm = vma->vm_mm;
3187         unsigned long address;
3188         pte_t *ptep;
3189         pte_t pte;
3190         spinlock_t *ptl;
3191         struct page *page;
3192         struct hstate *h = hstate_vma(vma);
3193         unsigned long sz = huge_page_size(h);
3194         const unsigned long mmun_start = start; /* For mmu_notifiers */
3195         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3196
3197         WARN_ON(!is_vm_hugetlb_page(vma));
3198         BUG_ON(start & ~huge_page_mask(h));
3199         BUG_ON(end & ~huge_page_mask(h));
3200
3201         tlb_start_vma(tlb, vma);
3202         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3203         address = start;
3204 again:
3205         for (; address < end; address += sz) {
3206                 ptep = huge_pte_offset(mm, address);
3207                 if (!ptep)
3208                         continue;
3209
3210                 ptl = huge_pte_lock(h, mm, ptep);
3211                 if (huge_pmd_unshare(mm, &address, ptep))
3212                         goto unlock;
3213
3214                 pte = huge_ptep_get(ptep);
3215                 if (huge_pte_none(pte))
3216                         goto unlock;
3217
3218                 /*
3219                  * Migrating hugepage or HWPoisoned hugepage is already
3220                  * unmapped and its refcount is dropped, so just clear pte here.
3221                  */
3222                 if (unlikely(!pte_present(pte))) {
3223                         huge_pte_clear(mm, address, ptep);
3224                         goto unlock;
3225                 }
3226
3227                 page = pte_page(pte);
3228                 /*
3229                  * If a reference page is supplied, it is because a specific
3230                  * page is being unmapped, not a range. Ensure the page we
3231                  * are about to unmap is the actual page of interest.
3232                  */
3233                 if (ref_page) {
3234                         if (page != ref_page)
3235                                 goto unlock;
3236
3237                         /*
3238                          * Mark the VMA as having unmapped its page so that
3239                          * future faults in this VMA will fail rather than
3240                          * looking like data was lost
3241                          */
3242                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3243                 }
3244
3245                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3246                 tlb_remove_tlb_entry(tlb, ptep, address);
3247                 if (huge_pte_dirty(pte))
3248                         set_page_dirty(page);
3249
3250                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3251                 page_remove_rmap(page);
3252                 force_flush = !__tlb_remove_page(tlb, page);
3253                 if (force_flush) {
3254                         address += sz;
3255                         spin_unlock(ptl);
3256                         break;
3257                 }
3258                 /* Bail out after unmapping reference page if supplied */
3259                 if (ref_page) {
3260                         spin_unlock(ptl);
3261                         break;
3262                 }
3263 unlock:
3264                 spin_unlock(ptl);
3265         }
3266         /*
3267          * mmu_gather ran out of room to batch pages, we break out of
3268          * the PTE lock to avoid doing the potential expensive TLB invalidate
3269          * and page-free while holding it.
3270          */
3271         if (force_flush) {
3272                 force_flush = 0;
3273                 tlb_flush_mmu(tlb);
3274                 if (address < end && !ref_page)
3275                         goto again;
3276         }
3277         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3278         tlb_end_vma(tlb, vma);
3279 }
3280
3281 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3282                           struct vm_area_struct *vma, unsigned long start,
3283                           unsigned long end, struct page *ref_page)
3284 {
3285         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3286
3287         /*
3288          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3289          * test will fail on a vma being torn down, and not grab a page table
3290          * on its way out.  We're lucky that the flag has such an appropriate
3291          * name, and can in fact be safely cleared here. We could clear it
3292          * before the __unmap_hugepage_range above, but all that's necessary
3293          * is to clear it before releasing the i_mmap_rwsem. This works
3294          * because in the context this is called, the VMA is about to be
3295          * destroyed and the i_mmap_rwsem is held.
3296          */
3297         vma->vm_flags &= ~VM_MAYSHARE;
3298 }
3299
3300 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3301                           unsigned long end, struct page *ref_page)
3302 {
3303         struct mm_struct *mm;
3304         struct mmu_gather tlb;
3305
3306         mm = vma->vm_mm;
3307
3308         tlb_gather_mmu(&tlb, mm, start, end);
3309         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3310         tlb_finish_mmu(&tlb, start, end);
3311 }
3312
3313 /*
3314  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3315  * mappping it owns the reserve page for. The intention is to unmap the page
3316  * from other VMAs and let the children be SIGKILLed if they are faulting the
3317  * same region.
3318  */
3319 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3320                               struct page *page, unsigned long address)
3321 {
3322         struct hstate *h = hstate_vma(vma);
3323         struct vm_area_struct *iter_vma;
3324         struct address_space *mapping;
3325         pgoff_t pgoff;
3326
3327         /*
3328          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3329          * from page cache lookup which is in HPAGE_SIZE units.
3330          */
3331         address = address & huge_page_mask(h);
3332         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3333                         vma->vm_pgoff;
3334         mapping = file_inode(vma->vm_file)->i_mapping;
3335
3336         /*
3337          * Take the mapping lock for the duration of the table walk. As
3338          * this mapping should be shared between all the VMAs,
3339          * __unmap_hugepage_range() is called as the lock is already held
3340          */
3341         i_mmap_lock_write(mapping);
3342         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3343                 /* Do not unmap the current VMA */
3344                 if (iter_vma == vma)
3345                         continue;
3346
3347                 /*
3348                  * Shared VMAs have their own reserves and do not affect
3349                  * MAP_PRIVATE accounting but it is possible that a shared
3350                  * VMA is using the same page so check and skip such VMAs.
3351                  */
3352                 if (iter_vma->vm_flags & VM_MAYSHARE)
3353                         continue;
3354
3355                 /*
3356                  * Unmap the page from other VMAs without their own reserves.
3357                  * They get marked to be SIGKILLed if they fault in these
3358                  * areas. This is because a future no-page fault on this VMA
3359                  * could insert a zeroed page instead of the data existing
3360                  * from the time of fork. This would look like data corruption
3361                  */
3362                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3363                         unmap_hugepage_range(iter_vma, address,
3364                                              address + huge_page_size(h), page);
3365         }
3366         i_mmap_unlock_write(mapping);
3367 }
3368
3369 /*
3370  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3371  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3372  * cannot race with other handlers or page migration.
3373  * Keep the pte_same checks anyway to make transition from the mutex easier.
3374  */
3375 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3376                         unsigned long address, pte_t *ptep, pte_t pte,
3377                         struct page *pagecache_page, spinlock_t *ptl)
3378 {
3379         struct hstate *h = hstate_vma(vma);
3380         struct page *old_page, *new_page;
3381         int ret = 0, outside_reserve = 0;
3382         unsigned long mmun_start;       /* For mmu_notifiers */
3383         unsigned long mmun_end;         /* For mmu_notifiers */
3384
3385         old_page = pte_page(pte);
3386
3387 retry_avoidcopy:
3388         /* If no-one else is actually using this page, avoid the copy
3389          * and just make the page writable */
3390         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3391                 page_move_anon_rmap(old_page, vma, address);
3392                 set_huge_ptep_writable(vma, address, ptep);
3393                 return 0;
3394         }
3395
3396         /*
3397          * If the process that created a MAP_PRIVATE mapping is about to
3398          * perform a COW due to a shared page count, attempt to satisfy
3399          * the allocation without using the existing reserves. The pagecache
3400          * page is used to determine if the reserve at this address was
3401          * consumed or not. If reserves were used, a partial faulted mapping
3402          * at the time of fork() could consume its reserves on COW instead
3403          * of the full address range.
3404          */
3405         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3406                         old_page != pagecache_page)
3407                 outside_reserve = 1;
3408
3409         page_cache_get(old_page);
3410
3411         /*
3412          * Drop page table lock as buddy allocator may be called. It will
3413          * be acquired again before returning to the caller, as expected.
3414          */
3415         spin_unlock(ptl);
3416         new_page = alloc_huge_page(vma, address, outside_reserve);
3417
3418         if (IS_ERR(new_page)) {
3419                 /*
3420                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3421                  * it is due to references held by a child and an insufficient
3422                  * huge page pool. To guarantee the original mappers
3423                  * reliability, unmap the page from child processes. The child
3424                  * may get SIGKILLed if it later faults.
3425                  */
3426                 if (outside_reserve) {
3427                         page_cache_release(old_page);
3428                         BUG_ON(huge_pte_none(pte));
3429                         unmap_ref_private(mm, vma, old_page, address);
3430                         BUG_ON(huge_pte_none(pte));
3431                         spin_lock(ptl);
3432                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3433                         if (likely(ptep &&
3434                                    pte_same(huge_ptep_get(ptep), pte)))
3435                                 goto retry_avoidcopy;
3436                         /*
3437                          * race occurs while re-acquiring page table
3438                          * lock, and our job is done.
3439                          */
3440                         return 0;
3441                 }
3442
3443                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3444                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3445                 goto out_release_old;
3446         }
3447
3448         /*
3449          * When the original hugepage is shared one, it does not have
3450          * anon_vma prepared.
3451          */
3452         if (unlikely(anon_vma_prepare(vma))) {
3453                 ret = VM_FAULT_OOM;
3454                 goto out_release_all;
3455         }
3456
3457         copy_user_huge_page(new_page, old_page, address, vma,
3458                             pages_per_huge_page(h));
3459         __SetPageUptodate(new_page);
3460         set_page_huge_active(new_page);
3461
3462         mmun_start = address & huge_page_mask(h);
3463         mmun_end = mmun_start + huge_page_size(h);
3464         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3465
3466         /*
3467          * Retake the page table lock to check for racing updates
3468          * before the page tables are altered
3469          */
3470         spin_lock(ptl);
3471         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3472         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3473                 ClearPagePrivate(new_page);
3474
3475                 /* Break COW */
3476                 huge_ptep_clear_flush(vma, address, ptep);
3477                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3478                 set_huge_pte_at(mm, address, ptep,
3479                                 make_huge_pte(vma, new_page, 1));
3480                 page_remove_rmap(old_page);
3481                 hugepage_add_new_anon_rmap(new_page, vma, address);
3482                 /* Make the old page be freed below */
3483                 new_page = old_page;
3484         }
3485         spin_unlock(ptl);
3486         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3487 out_release_all:
3488         page_cache_release(new_page);
3489 out_release_old:
3490         page_cache_release(old_page);
3491
3492         spin_lock(ptl); /* Caller expects lock to be held */
3493         return ret;
3494 }
3495
3496 /* Return the pagecache page at a given address within a VMA */
3497 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3498                         struct vm_area_struct *vma, unsigned long address)
3499 {
3500         struct address_space *mapping;
3501         pgoff_t idx;
3502
3503         mapping = vma->vm_file->f_mapping;
3504         idx = vma_hugecache_offset(h, vma, address);
3505
3506         return find_lock_page(mapping, idx);
3507 }
3508
3509 /*
3510  * Return whether there is a pagecache page to back given address within VMA.
3511  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3512  */
3513 static bool hugetlbfs_pagecache_present(struct hstate *h,
3514                         struct vm_area_struct *vma, unsigned long address)
3515 {
3516         struct address_space *mapping;
3517         pgoff_t idx;
3518         struct page *page;
3519
3520         mapping = vma->vm_file->f_mapping;
3521         idx = vma_hugecache_offset(h, vma, address);
3522
3523         page = find_get_page(mapping, idx);
3524         if (page)
3525                 put_page(page);
3526         return page != NULL;
3527 }
3528
3529 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3530                            pgoff_t idx)
3531 {
3532         struct inode *inode = mapping->host;
3533         struct hstate *h = hstate_inode(inode);
3534         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3535
3536         if (err)
3537                 return err;
3538         ClearPagePrivate(page);
3539
3540         spin_lock(&inode->i_lock);
3541         inode->i_blocks += blocks_per_huge_page(h);
3542         spin_unlock(&inode->i_lock);
3543         return 0;
3544 }
3545
3546 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3547                            struct address_space *mapping, pgoff_t idx,
3548                            unsigned long address, pte_t *ptep, unsigned int flags)
3549 {
3550         struct hstate *h = hstate_vma(vma);
3551         int ret = VM_FAULT_SIGBUS;
3552         int anon_rmap = 0;
3553         unsigned long size;
3554         struct page *page;
3555         pte_t new_pte;
3556         spinlock_t *ptl;
3557
3558         /*
3559          * Currently, we are forced to kill the process in the event the
3560          * original mapper has unmapped pages from the child due to a failed
3561          * COW. Warn that such a situation has occurred as it may not be obvious
3562          */
3563         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3564                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3565                            current->pid);
3566                 return ret;
3567         }
3568
3569         /*
3570          * Use page lock to guard against racing truncation
3571          * before we get page_table_lock.
3572          */
3573 retry:
3574         page = find_lock_page(mapping, idx);
3575         if (!page) {
3576                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3577                 if (idx >= size)
3578                         goto out;
3579                 page = alloc_huge_page(vma, address, 0);
3580                 if (IS_ERR(page)) {
3581                         ret = PTR_ERR(page);
3582                         if (ret == -ENOMEM)
3583                                 ret = VM_FAULT_OOM;
3584                         else
3585                                 ret = VM_FAULT_SIGBUS;
3586                         goto out;
3587                 }
3588                 clear_huge_page(page, address, pages_per_huge_page(h));
3589                 __SetPageUptodate(page);
3590                 set_page_huge_active(page);
3591
3592                 if (vma->vm_flags & VM_MAYSHARE) {
3593                         int err = huge_add_to_page_cache(page, mapping, idx);
3594                         if (err) {
3595                                 put_page(page);
3596                                 if (err == -EEXIST)
3597                                         goto retry;
3598                                 goto out;
3599                         }
3600                 } else {
3601                         lock_page(page);
3602                         if (unlikely(anon_vma_prepare(vma))) {
3603                                 ret = VM_FAULT_OOM;
3604                                 goto backout_unlocked;
3605                         }
3606                         anon_rmap = 1;
3607                 }
3608         } else {
3609                 /*
3610                  * If memory error occurs between mmap() and fault, some process
3611                  * don't have hwpoisoned swap entry for errored virtual address.
3612                  * So we need to block hugepage fault by PG_hwpoison bit check.
3613                  */
3614                 if (unlikely(PageHWPoison(page))) {
3615                         ret = VM_FAULT_HWPOISON |
3616                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3617                         goto backout_unlocked;
3618                 }
3619         }
3620
3621         /*
3622          * If we are going to COW a private mapping later, we examine the
3623          * pending reservations for this page now. This will ensure that
3624          * any allocations necessary to record that reservation occur outside
3625          * the spinlock.
3626          */
3627         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3628                 if (vma_needs_reservation(h, vma, address) < 0) {
3629                         ret = VM_FAULT_OOM;
3630                         goto backout_unlocked;
3631                 }
3632                 /* Just decrements count, does not deallocate */
3633                 vma_end_reservation(h, vma, address);
3634         }
3635
3636         ptl = huge_pte_lockptr(h, mm, ptep);
3637         spin_lock(ptl);
3638         size = i_size_read(mapping->host) >> huge_page_shift(h);
3639         if (idx >= size)
3640                 goto backout;
3641
3642         ret = 0;
3643         if (!huge_pte_none(huge_ptep_get(ptep)))
3644                 goto backout;
3645
3646         if (anon_rmap) {
3647                 ClearPagePrivate(page);
3648                 hugepage_add_new_anon_rmap(page, vma, address);
3649         } else
3650                 page_dup_rmap(page);
3651         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3652                                 && (vma->vm_flags & VM_SHARED)));
3653         set_huge_pte_at(mm, address, ptep, new_pte);
3654
3655         hugetlb_count_add(pages_per_huge_page(h), mm);
3656         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3657                 /* Optimization, do the COW without a second fault */
3658                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3659         }
3660
3661         spin_unlock(ptl);
3662         unlock_page(page);
3663 out:
3664         return ret;
3665
3666 backout:
3667         spin_unlock(ptl);
3668 backout_unlocked:
3669         unlock_page(page);
3670         put_page(page);
3671         goto out;
3672 }
3673
3674 #ifdef CONFIG_SMP
3675 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3676                             struct vm_area_struct *vma,
3677                             struct address_space *mapping,
3678                             pgoff_t idx, unsigned long address)
3679 {
3680         unsigned long key[2];
3681         u32 hash;
3682
3683         if (vma->vm_flags & VM_SHARED) {
3684                 key[0] = (unsigned long) mapping;
3685                 key[1] = idx;
3686         } else {
3687                 key[0] = (unsigned long) mm;
3688                 key[1] = address >> huge_page_shift(h);
3689         }
3690
3691         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3692
3693         return hash & (num_fault_mutexes - 1);
3694 }
3695 #else
3696 /*
3697  * For uniprocesor systems we always use a single mutex, so just
3698  * return 0 and avoid the hashing overhead.
3699  */
3700 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3701                             struct vm_area_struct *vma,
3702                             struct address_space *mapping,
3703                             pgoff_t idx, unsigned long address)
3704 {
3705         return 0;
3706 }
3707 #endif
3708
3709 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3710                         unsigned long address, unsigned int flags)
3711 {
3712         pte_t *ptep, entry;
3713         spinlock_t *ptl;
3714         int ret;
3715         u32 hash;
3716         pgoff_t idx;
3717         struct page *page = NULL;
3718         struct page *pagecache_page = NULL;
3719         struct hstate *h = hstate_vma(vma);
3720         struct address_space *mapping;
3721         int need_wait_lock = 0;
3722
3723         address &= huge_page_mask(h);
3724
3725         ptep = huge_pte_offset(mm, address);
3726         if (ptep) {
3727                 entry = huge_ptep_get(ptep);
3728                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3729                         migration_entry_wait_huge(vma, mm, ptep);
3730                         return 0;
3731                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3732                         return VM_FAULT_HWPOISON_LARGE |
3733                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3734         } else {
3735                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3736                 if (!ptep)
3737                         return VM_FAULT_OOM;
3738         }
3739
3740         mapping = vma->vm_file->f_mapping;
3741         idx = vma_hugecache_offset(h, vma, address);
3742
3743         /*
3744          * Serialize hugepage allocation and instantiation, so that we don't
3745          * get spurious allocation failures if two CPUs race to instantiate
3746          * the same page in the page cache.
3747          */
3748         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3749         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3750
3751         entry = huge_ptep_get(ptep);
3752         if (huge_pte_none(entry)) {
3753                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3754                 goto out_mutex;
3755         }
3756
3757         ret = 0;
3758
3759         /*
3760          * entry could be a migration/hwpoison entry at this point, so this
3761          * check prevents the kernel from going below assuming that we have
3762          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3763          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3764          * handle it.
3765          */
3766         if (!pte_present(entry))
3767                 goto out_mutex;
3768
3769         /*
3770          * If we are going to COW the mapping later, we examine the pending
3771          * reservations for this page now. This will ensure that any
3772          * allocations necessary to record that reservation occur outside the
3773          * spinlock. For private mappings, we also lookup the pagecache
3774          * page now as it is used to determine if a reservation has been
3775          * consumed.
3776          */
3777         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3778                 if (vma_needs_reservation(h, vma, address) < 0) {
3779                         ret = VM_FAULT_OOM;
3780                         goto out_mutex;
3781                 }
3782                 /* Just decrements count, does not deallocate */
3783                 vma_end_reservation(h, vma, address);
3784
3785                 if (!(vma->vm_flags & VM_MAYSHARE))
3786                         pagecache_page = hugetlbfs_pagecache_page(h,
3787                                                                 vma, address);
3788         }
3789
3790         ptl = huge_pte_lock(h, mm, ptep);
3791
3792         /* Check for a racing update before calling hugetlb_cow */
3793         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3794                 goto out_ptl;
3795
3796         /*
3797          * hugetlb_cow() requires page locks of pte_page(entry) and
3798          * pagecache_page, so here we need take the former one
3799          * when page != pagecache_page or !pagecache_page.
3800          */
3801         page = pte_page(entry);
3802         if (page != pagecache_page)
3803                 if (!trylock_page(page)) {
3804                         need_wait_lock = 1;
3805                         goto out_ptl;
3806                 }
3807
3808         get_page(page);
3809
3810         if (flags & FAULT_FLAG_WRITE) {
3811                 if (!huge_pte_write(entry)) {
3812                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3813                                         pagecache_page, ptl);
3814                         goto out_put_page;
3815                 }
3816                 entry = huge_pte_mkdirty(entry);
3817         }
3818         entry = pte_mkyoung(entry);
3819         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3820                                                 flags & FAULT_FLAG_WRITE))
3821                 update_mmu_cache(vma, address, ptep);
3822 out_put_page:
3823         if (page != pagecache_page)
3824                 unlock_page(page);
3825         put_page(page);
3826 out_ptl:
3827         spin_unlock(ptl);
3828
3829         if (pagecache_page) {
3830                 unlock_page(pagecache_page);
3831                 put_page(pagecache_page);
3832         }
3833 out_mutex:
3834         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3835         /*
3836          * Generally it's safe to hold refcount during waiting page lock. But
3837          * here we just wait to defer the next page fault to avoid busy loop and
3838          * the page is not used after unlocked before returning from the current
3839          * page fault. So we are safe from accessing freed page, even if we wait
3840          * here without taking refcount.
3841          */
3842         if (need_wait_lock)
3843                 wait_on_page_locked(page);
3844         return ret;
3845 }
3846
3847 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3848                          struct page **pages, struct vm_area_struct **vmas,
3849                          unsigned long *position, unsigned long *nr_pages,
3850                          long i, unsigned int flags)
3851 {
3852         unsigned long pfn_offset;
3853         unsigned long vaddr = *position;
3854         unsigned long remainder = *nr_pages;
3855         struct hstate *h = hstate_vma(vma);
3856
3857         while (vaddr < vma->vm_end && remainder) {
3858                 pte_t *pte;
3859                 spinlock_t *ptl = NULL;
3860                 int absent;
3861                 struct page *page;
3862
3863                 /*
3864                  * If we have a pending SIGKILL, don't keep faulting pages and
3865                  * potentially allocating memory.
3866                  */
3867                 if (unlikely(fatal_signal_pending(current))) {
3868                         remainder = 0;
3869                         break;
3870                 }
3871
3872                 /*
3873                  * Some archs (sparc64, sh*) have multiple pte_ts to
3874                  * each hugepage.  We have to make sure we get the
3875                  * first, for the page indexing below to work.
3876                  *
3877                  * Note that page table lock is not held when pte is null.
3878                  */
3879                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3880                 if (pte)
3881                         ptl = huge_pte_lock(h, mm, pte);
3882                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3883
3884                 /*
3885                  * When coredumping, it suits get_dump_page if we just return
3886                  * an error where there's an empty slot with no huge pagecache
3887                  * to back it.  This way, we avoid allocating a hugepage, and
3888                  * the sparse dumpfile avoids allocating disk blocks, but its
3889                  * huge holes still show up with zeroes where they need to be.
3890                  */
3891                 if (absent && (flags & FOLL_DUMP) &&
3892                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3893                         if (pte)
3894                                 spin_unlock(ptl);
3895                         remainder = 0;
3896                         break;
3897                 }
3898
3899                 /*
3900                  * We need call hugetlb_fault for both hugepages under migration
3901                  * (in which case hugetlb_fault waits for the migration,) and
3902                  * hwpoisoned hugepages (in which case we need to prevent the
3903                  * caller from accessing to them.) In order to do this, we use
3904                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3905                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3906                  * both cases, and because we can't follow correct pages
3907                  * directly from any kind of swap entries.
3908                  */
3909                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3910                     ((flags & FOLL_WRITE) &&
3911                       !huge_pte_write(huge_ptep_get(pte)))) {
3912                         int ret;
3913
3914                         if (pte)
3915                                 spin_unlock(ptl);
3916                         ret = hugetlb_fault(mm, vma, vaddr,
3917                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3918                         if (!(ret & VM_FAULT_ERROR))
3919                                 continue;
3920
3921                         remainder = 0;
3922                         break;
3923                 }
3924
3925                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3926                 page = pte_page(huge_ptep_get(pte));
3927 same_page:
3928                 if (pages) {
3929                         pages[i] = mem_map_offset(page, pfn_offset);
3930                         get_page_foll(pages[i]);
3931                 }
3932
3933                 if (vmas)
3934                         vmas[i] = vma;
3935
3936                 vaddr += PAGE_SIZE;
3937                 ++pfn_offset;
3938                 --remainder;
3939                 ++i;
3940                 if (vaddr < vma->vm_end && remainder &&
3941                                 pfn_offset < pages_per_huge_page(h)) {
3942                         /*
3943                          * We use pfn_offset to avoid touching the pageframes
3944                          * of this compound page.
3945                          */
3946                         goto same_page;
3947                 }
3948                 spin_unlock(ptl);
3949         }
3950         *nr_pages = remainder;
3951         *position = vaddr;
3952
3953         return i ? i : -EFAULT;
3954 }
3955
3956 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3957                 unsigned long address, unsigned long end, pgprot_t newprot)
3958 {
3959         struct mm_struct *mm = vma->vm_mm;
3960         unsigned long start = address;
3961         pte_t *ptep;
3962         pte_t pte;
3963         struct hstate *h = hstate_vma(vma);
3964         unsigned long pages = 0;
3965
3966         BUG_ON(address >= end);
3967         flush_cache_range(vma, address, end);
3968
3969         mmu_notifier_invalidate_range_start(mm, start, end);
3970         i_mmap_lock_write(vma->vm_file->f_mapping);
3971         for (; address < end; address += huge_page_size(h)) {
3972                 spinlock_t *ptl;
3973                 ptep = huge_pte_offset(mm, address);
3974                 if (!ptep)
3975                         continue;
3976                 ptl = huge_pte_lock(h, mm, ptep);
3977                 if (huge_pmd_unshare(mm, &address, ptep)) {
3978                         pages++;
3979                         spin_unlock(ptl);
3980                         continue;
3981                 }
3982                 pte = huge_ptep_get(ptep);
3983                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3984                         spin_unlock(ptl);
3985                         continue;
3986                 }
3987                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3988                         swp_entry_t entry = pte_to_swp_entry(pte);
3989
3990                         if (is_write_migration_entry(entry)) {
3991                                 pte_t newpte;
3992
3993                                 make_migration_entry_read(&entry);
3994                                 newpte = swp_entry_to_pte(entry);
3995                                 set_huge_pte_at(mm, address, ptep, newpte);
3996                                 pages++;
3997                         }
3998                         spin_unlock(ptl);
3999                         continue;
4000                 }
4001                 if (!huge_pte_none(pte)) {
4002                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4003                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4004                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4005                         set_huge_pte_at(mm, address, ptep, pte);
4006                         pages++;
4007                 }
4008                 spin_unlock(ptl);
4009         }
4010         /*
4011          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4012          * may have cleared our pud entry and done put_page on the page table:
4013          * once we release i_mmap_rwsem, another task can do the final put_page
4014          * and that page table be reused and filled with junk.
4015          */
4016         flush_tlb_range(vma, start, end);
4017         mmu_notifier_invalidate_range(mm, start, end);
4018         i_mmap_unlock_write(vma->vm_file->f_mapping);
4019         mmu_notifier_invalidate_range_end(mm, start, end);
4020
4021         return pages << h->order;
4022 }
4023
4024 int hugetlb_reserve_pages(struct inode *inode,
4025                                         long from, long to,
4026                                         struct vm_area_struct *vma,
4027                                         vm_flags_t vm_flags)
4028 {
4029         long ret, chg;
4030         struct hstate *h = hstate_inode(inode);
4031         struct hugepage_subpool *spool = subpool_inode(inode);
4032         struct resv_map *resv_map;
4033         long gbl_reserve;
4034
4035         /*
4036          * Only apply hugepage reservation if asked. At fault time, an
4037          * attempt will be made for VM_NORESERVE to allocate a page
4038          * without using reserves
4039          */
4040         if (vm_flags & VM_NORESERVE)
4041                 return 0;
4042
4043         /*
4044          * Shared mappings base their reservation on the number of pages that
4045          * are already allocated on behalf of the file. Private mappings need
4046          * to reserve the full area even if read-only as mprotect() may be
4047          * called to make the mapping read-write. Assume !vma is a shm mapping
4048          */
4049         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4050                 resv_map = inode_resv_map(inode);
4051
4052                 chg = region_chg(resv_map, from, to);
4053
4054         } else {
4055                 resv_map = resv_map_alloc();
4056                 if (!resv_map)
4057                         return -ENOMEM;
4058
4059                 chg = to - from;
4060
4061                 set_vma_resv_map(vma, resv_map);
4062                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4063         }
4064
4065         if (chg < 0) {
4066                 ret = chg;
4067                 goto out_err;
4068         }
4069
4070         /*
4071          * There must be enough pages in the subpool for the mapping. If
4072          * the subpool has a minimum size, there may be some global
4073          * reservations already in place (gbl_reserve).
4074          */
4075         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4076         if (gbl_reserve < 0) {
4077                 ret = -ENOSPC;
4078                 goto out_err;
4079         }
4080
4081         /*
4082          * Check enough hugepages are available for the reservation.
4083          * Hand the pages back to the subpool if there are not
4084          */
4085         ret = hugetlb_acct_memory(h, gbl_reserve);
4086         if (ret < 0) {
4087                 /* put back original number of pages, chg */
4088                 (void)hugepage_subpool_put_pages(spool, chg);
4089                 goto out_err;
4090         }
4091
4092         /*
4093          * Account for the reservations made. Shared mappings record regions
4094          * that have reservations as they are shared by multiple VMAs.
4095          * When the last VMA disappears, the region map says how much
4096          * the reservation was and the page cache tells how much of
4097          * the reservation was consumed. Private mappings are per-VMA and
4098          * only the consumed reservations are tracked. When the VMA
4099          * disappears, the original reservation is the VMA size and the
4100          * consumed reservations are stored in the map. Hence, nothing
4101          * else has to be done for private mappings here
4102          */
4103         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4104                 long add = region_add(resv_map, from, to);
4105
4106                 if (unlikely(chg > add)) {
4107                         /*
4108                          * pages in this range were added to the reserve
4109                          * map between region_chg and region_add.  This
4110                          * indicates a race with alloc_huge_page.  Adjust
4111                          * the subpool and reserve counts modified above
4112                          * based on the difference.
4113                          */
4114                         long rsv_adjust;
4115
4116                         rsv_adjust = hugepage_subpool_put_pages(spool,
4117                                                                 chg - add);
4118                         hugetlb_acct_memory(h, -rsv_adjust);
4119                 }
4120         }
4121         return 0;
4122 out_err:
4123         if (!vma || vma->vm_flags & VM_MAYSHARE)
4124                 region_abort(resv_map, from, to);
4125         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4126                 kref_put(&resv_map->refs, resv_map_release);
4127         return ret;
4128 }
4129
4130 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4131                                                                 long freed)
4132 {
4133         struct hstate *h = hstate_inode(inode);
4134         struct resv_map *resv_map = inode_resv_map(inode);
4135         long chg = 0;
4136         struct hugepage_subpool *spool = subpool_inode(inode);
4137         long gbl_reserve;
4138
4139         if (resv_map) {
4140                 chg = region_del(resv_map, start, end);
4141                 /*
4142                  * region_del() can fail in the rare case where a region
4143                  * must be split and another region descriptor can not be
4144                  * allocated.  If end == LONG_MAX, it will not fail.
4145                  */
4146                 if (chg < 0)
4147                         return chg;
4148         }
4149
4150         spin_lock(&inode->i_lock);
4151         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4152         spin_unlock(&inode->i_lock);
4153
4154         /*
4155          * If the subpool has a minimum size, the number of global
4156          * reservations to be released may be adjusted.
4157          */
4158         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4159         hugetlb_acct_memory(h, -gbl_reserve);
4160
4161         return 0;
4162 }
4163
4164 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4165 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4166                                 struct vm_area_struct *vma,
4167                                 unsigned long addr, pgoff_t idx)
4168 {
4169         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4170                                 svma->vm_start;
4171         unsigned long sbase = saddr & PUD_MASK;
4172         unsigned long s_end = sbase + PUD_SIZE;
4173
4174         /* Allow segments to share if only one is marked locked */
4175         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4176         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4177
4178         /*
4179          * match the virtual addresses, permission and the alignment of the
4180          * page table page.
4181          */
4182         if (pmd_index(addr) != pmd_index(saddr) ||
4183             vm_flags != svm_flags ||
4184             sbase < svma->vm_start || svma->vm_end < s_end)
4185                 return 0;
4186
4187         return saddr;
4188 }
4189
4190 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4191 {
4192         unsigned long base = addr & PUD_MASK;
4193         unsigned long end = base + PUD_SIZE;
4194
4195         /*
4196          * check on proper vm_flags and page table alignment
4197          */
4198         if (vma->vm_flags & VM_MAYSHARE &&
4199             vma->vm_start <= base && end <= vma->vm_end)
4200                 return true;
4201         return false;
4202 }
4203
4204 /*
4205  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4206  * and returns the corresponding pte. While this is not necessary for the
4207  * !shared pmd case because we can allocate the pmd later as well, it makes the
4208  * code much cleaner. pmd allocation is essential for the shared case because
4209  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4210  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4211  * bad pmd for sharing.
4212  */
4213 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4214 {
4215         struct vm_area_struct *vma = find_vma(mm, addr);
4216         struct address_space *mapping = vma->vm_file->f_mapping;
4217         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4218                         vma->vm_pgoff;
4219         struct vm_area_struct *svma;
4220         unsigned long saddr;
4221         pte_t *spte = NULL;
4222         pte_t *pte;
4223         spinlock_t *ptl;
4224
4225         if (!vma_shareable(vma, addr))
4226                 return (pte_t *)pmd_alloc(mm, pud, addr);
4227
4228         i_mmap_lock_write(mapping);
4229         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4230                 if (svma == vma)
4231                         continue;
4232
4233                 saddr = page_table_shareable(svma, vma, addr, idx);
4234                 if (saddr) {
4235                         spte = huge_pte_offset(svma->vm_mm, saddr);
4236                         if (spte) {
4237                                 get_page(virt_to_page(spte));
4238                                 break;
4239                         }
4240                 }
4241         }
4242
4243         if (!spte)
4244                 goto out;
4245
4246         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4247         spin_lock(ptl);
4248         if (pud_none(*pud)) {
4249                 pud_populate(mm, pud,
4250                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4251                 mm_inc_nr_pmds(mm);
4252         } else {
4253                 put_page(virt_to_page(spte));
4254         }
4255         spin_unlock(ptl);
4256 out:
4257         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4258         i_mmap_unlock_write(mapping);
4259         return pte;
4260 }
4261
4262 /*
4263  * unmap huge page backed by shared pte.
4264  *
4265  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4266  * indicated by page_count > 1, unmap is achieved by clearing pud and
4267  * decrementing the ref count. If count == 1, the pte page is not shared.
4268  *
4269  * called with page table lock held.
4270  *
4271  * returns: 1 successfully unmapped a shared pte page
4272  *          0 the underlying pte page is not shared, or it is the last user
4273  */
4274 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4275 {
4276         pgd_t *pgd = pgd_offset(mm, *addr);
4277         pud_t *pud = pud_offset(pgd, *addr);
4278
4279         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4280         if (page_count(virt_to_page(ptep)) == 1)
4281                 return 0;
4282
4283         pud_clear(pud);
4284         put_page(virt_to_page(ptep));
4285         mm_dec_nr_pmds(mm);
4286         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4287         return 1;
4288 }
4289 #define want_pmd_share()        (1)
4290 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4291 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4292 {
4293         return NULL;
4294 }
4295
4296 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4297 {
4298         return 0;
4299 }
4300 #define want_pmd_share()        (0)
4301 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4302
4303 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4304 pte_t *huge_pte_alloc(struct mm_struct *mm,
4305                         unsigned long addr, unsigned long sz)
4306 {
4307         pgd_t *pgd;
4308         pud_t *pud;
4309         pte_t *pte = NULL;
4310
4311         pgd = pgd_offset(mm, addr);
4312         pud = pud_alloc(mm, pgd, addr);
4313         if (pud) {
4314                 if (sz == PUD_SIZE) {
4315                         pte = (pte_t *)pud;
4316                 } else {
4317                         BUG_ON(sz != PMD_SIZE);
4318                         if (want_pmd_share() && pud_none(*pud))
4319                                 pte = huge_pmd_share(mm, addr, pud);
4320                         else
4321                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4322                 }
4323         }
4324         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4325
4326         return pte;
4327 }
4328
4329 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4330 {
4331         pgd_t *pgd;
4332         pud_t *pud;
4333         pmd_t *pmd = NULL;
4334
4335         pgd = pgd_offset(mm, addr);
4336         if (pgd_present(*pgd)) {
4337                 pud = pud_offset(pgd, addr);
4338                 if (pud_present(*pud)) {
4339                         if (pud_huge(*pud))
4340                                 return (pte_t *)pud;
4341                         pmd = pmd_offset(pud, addr);
4342                 }
4343         }
4344         return (pte_t *) pmd;
4345 }
4346
4347 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4348
4349 /*
4350  * These functions are overwritable if your architecture needs its own
4351  * behavior.
4352  */
4353 struct page * __weak
4354 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4355                               int write)
4356 {
4357         return ERR_PTR(-EINVAL);
4358 }
4359
4360 struct page * __weak
4361 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4362                 pmd_t *pmd, int flags)
4363 {
4364         struct page *page = NULL;
4365         spinlock_t *ptl;
4366         pte_t pte;
4367 retry:
4368         ptl = pmd_lockptr(mm, pmd);
4369         spin_lock(ptl);
4370         /*
4371          * make sure that the address range covered by this pmd is not
4372          * unmapped from other threads.
4373          */
4374         if (!pmd_huge(*pmd))
4375                 goto out;
4376         pte = huge_ptep_get((pte_t *)pmd);
4377         if (pte_present(pte)) {
4378                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4379                 if (flags & FOLL_GET)
4380                         get_page(page);
4381         } else {
4382                 if (is_hugetlb_entry_migration(pte)) {
4383                         spin_unlock(ptl);
4384                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4385                         goto retry;
4386                 }
4387                 /*
4388                  * hwpoisoned entry is treated as no_page_table in
4389                  * follow_page_mask().
4390                  */
4391         }
4392 out:
4393         spin_unlock(ptl);
4394         return page;
4395 }
4396
4397 struct page * __weak
4398 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4399                 pud_t *pud, int flags)
4400 {
4401         if (flags & FOLL_GET)
4402                 return NULL;
4403
4404         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4405 }
4406
4407 #ifdef CONFIG_MEMORY_FAILURE
4408
4409 /*
4410  * This function is called from memory failure code.
4411  * Assume the caller holds page lock of the head page.
4412  */
4413 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4414 {
4415         struct hstate *h = page_hstate(hpage);
4416         int nid = page_to_nid(hpage);
4417         int ret = -EBUSY;
4418
4419         spin_lock(&hugetlb_lock);
4420         /*
4421          * Just checking !page_huge_active is not enough, because that could be
4422          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4423          */
4424         if (!page_huge_active(hpage) && !page_count(hpage)) {
4425                 /*
4426                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4427                  * but dangling hpage->lru can trigger list-debug warnings
4428                  * (this happens when we call unpoison_memory() on it),
4429                  * so let it point to itself with list_del_init().
4430                  */
4431                 list_del_init(&hpage->lru);
4432                 set_page_refcounted(hpage);
4433                 h->free_huge_pages--;
4434                 h->free_huge_pages_node[nid]--;
4435                 ret = 0;
4436         }
4437         spin_unlock(&hugetlb_lock);
4438         return ret;
4439 }
4440 #endif
4441
4442 bool isolate_huge_page(struct page *page, struct list_head *list)
4443 {
4444         bool ret = true;
4445
4446         VM_BUG_ON_PAGE(!PageHead(page), page);
4447         spin_lock(&hugetlb_lock);
4448         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4449                 ret = false;
4450                 goto unlock;
4451         }
4452         clear_page_huge_active(page);
4453         list_move_tail(&page->lru, list);
4454 unlock:
4455         spin_unlock(&hugetlb_lock);
4456         return ret;
4457 }
4458
4459 void putback_active_hugepage(struct page *page)
4460 {
4461         VM_BUG_ON_PAGE(!PageHead(page), page);
4462         spin_lock(&hugetlb_lock);
4463         set_page_huge_active(page);
4464         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4465         spin_unlock(&hugetlb_lock);
4466         put_page(page);
4467 }